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Introduction

Human fungal pathogens cause more than a million life-
threatening illnesses each year (Brown et  al. 2012). Anti-
fungal drug development focuses on targeting the pathogen 
without causing significant side effects in the host. The 
cell cycle is highly conserved across eukaryotic species, 
because it is an essential process for growth and division. 
Thus, cell-cycle machinery is not an ideal candidate for 
antifungal drug design. However, connections between the 
cell cycle and fungal-specific virulence factors are poorly 
understood. An improved basic biological understanding 
of fungal proliferation and links to virulence pathways can 
increase drug treatment options.

The cell division cycle is a fundamental biological pro-
cess underlying growth and reproduction. The cell cycle 
is divided into four phases (Gap 1, Synthesis, Gap 2, and 
Mitosis), where cells precisely duplicate their genomic 
content and then faithfully segregate cellular contents into 
two new cells (Morgan 2007). These cell-cycle events, such 
as DNA replication and spindle formation, are regulated by 
cyclin-dependent kinases (CDKs) and their cyclin-binding 
partners (Bloom and Cross 2007; Evans et al. 1983; Hart-
well et al. 1974; Nasmyth 1993; Nurse and Thuriaux 1980). 
In addition to driving periodic cellular events, many genes 
encoding cell-cycle regulators are themselves periodically 
transcribed. Programs of periodic gene expression have 
been observed in many eukaryotes including fungi, plants, 
mice fibroblasts, and human cell lines (Bar-Joseph et  al. 
2008; Grant et  al. 2013; Ishida et  al. 2001; Menges et  al. 
2005; Oliva et  al. 2005; Peng et  al. 2005; Rustici et  al. 

Abstract  Proliferation and host evasion are critical pro-
cesses to understand at a basic biological level for improv-
ing infectious disease treatment options. The human fungal 
pathogen Cryptococcus neoformans causes fungal menin-
gitis in immunocompromised individuals by proliferating 
in cerebrospinal fluid. Current antifungal drugs target “vir-
ulence factors” for disease, such as components of the cell 
wall and polysaccharide capsule in C. neoformans. How-
ever, mechanistic links between virulence pathways and 
the cell cycle are not as well studied. Recently, cell-cycle 
synchronized C. neoformans cells were profiled over time 
to identify gene expression dynamics (Kelliher et al., PLoS 
Genet 12(12):e1006453, 2016). Almost 20% of all genes 
in the C. neoformans genome were periodically activated 
during the cell cycle in rich media, including 40 genes that 
have previously been implicated in virulence pathways. 
Here, we review important findings about cell-cycle-regu-
lated genes in C. neoformans and provide two examples of 
virulence pathways—chitin synthesis and G-protein cou-
pled receptor signaling—with their putative connections 
to cell division. We propose that a “comparative functional 
genomics” approach, leveraging gene expression timing 
during the cell cycle, orthology to genes in other fungal 
species, and previous experimental findings, can lead to 
mechanistic hypotheses connecting the cell cycle to fungal 
virulence.

Communicated by M. Kupiec.

 *	 Steven B. Haase 
	 shaase@duke.edu

1	 Department of Biology, Duke University, Box 90338, 130 
Science Drive, Durham, NC 27708‑0338, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00294-017-0688-5&domain=pdf


804	 Curr Genet (2017) 63:803–811

1 3

2004). In the budding yeast Saccharomyces cerevisiae, 
transcription of periodic genes in the proper cell-cycle 
phase is controlled by transcription factors, which are also 
regulated at the protein level by cyclin/CDKs and by ubiq-
uitin ligases such as the APC/C (Bristow et al. 2014; Lan-
dry et al. 2014; Lee et al. 2002; Orlando et al. 2008; Osta-
penko and Solomon 2011; Simmons Kovacs et  al. 2012; 
Simon et al. 2001) (reviewed in: Benanti 2016; Haase and 
Wittenberg 2014).

Cryptococcus neoformans (Basidiomycota) is a distantly 
related budding yeast to S. cerevisiae (Ascomycota) (Sta-
jich et al. 2009), but the cell cycle is not as well character-
ized in C. neoformans. C. neoformans can cause a respira-
tory infection with pneumonia-like symptoms in the lungs, 
followed by dissemination and proliferation in the human 
central nervous system. Fungal meningitis and other infec-
tions are a leading cause of death in immune-compromised 
individuals (Brown et al. 2012; Park et al. 2009). The most 
effective antifungal treatments for cryptococcosis target 
C. neoformans cells without affecting host cells. There-
fore, the translational realm of the C. neoformans field 
studies “virulence factors” for fungal disease, such as the 
yeasts’ cell wall and polysaccharide capsule (O’Meara and 
Alspaugh 2012). The cell cycle has not traditionally been 
considered a virulence factor, but many virulence func-
tions appear to be under cell-cycle control, so mechanisms 
controlling cell division will impact fungal virulence. For 
example, one G1 cyclin gene has been identified in C. neo-
formans (CNAG_06092), and its mRNA is expressed peri-
odically during the cell cycle (Kelliher et  al. 2016). The 
CLN1 gene is not essential for viability, but the knockout 
strain is defective in proliferation at 37 °C, less virulent 
in an insect model, grows to abnormally large cell sizes, 
lacks melanin production, and shows polysaccharide cap-
sule defects compared to wild-type controls (García-Rodas 
et al. 2014, 2015). These genetic findings directly connect 
cell-cycle machinery defects to canonical virulence path-
ways. Interestingly, a recent screen for essential genes C. 
neoformans identified ribosomal RNA and other metabolic 
regulators but did not identify any putative cell-cycle genes 
(Kuwada et al. 2015). Thus, there is still much to be learned 
about the cell cycle in C. neoformans, as the only known 
G1 cyclin gene and other putative key regulators of the cell 
cycle do not appear to be required for viability.

In this review, we highlight the importance of combin-
ing transcriptome dynamics with functional studies. We 
investigate two virulence pathways in C. neoformans that 
contain genes that are periodically expressed during the 
cell cycle. We find that multiple enzymes controlling chi-
tin synthesis are co-expressed periodically in a specific 
cell-cycle phase. On the other hand, genes involved in 
mating pheromone sensing are expressed in different cell-
cycle phases. After identifying the expression timing of the 

virulence genes of interest, we predict roles of these genes 
during the cell cycle by incorporating the previous genetic 
and cell biological findings about gene function and by 
comparing to sequence orthologs in S. cerevisiae. These 
two virulence pathways serve as examples for the types of 
mechanistic hypotheses that can be generated from under-
standing the gene expression dynamics of the C. neofor-
mans cell cycle. We close with a discussion of the direc-
tion of this functional genomics work—constructing gene 
regulatory networks that explain how large programs of 
periodic genes are controlled during the fungal cell cycle.

Phase‑specific gene expression during the fungal 
cell cycle

Periodic cell-cycle genes have been characterized exten-
sively in the budding yeast S. cerevisiae (Bristow et  al. 
2014; Cho et  al. 1998; de Lichtenberg et  al. 2005; Eser 
et al. 2014; Granovskaia et al. 2010; Hereford et al. 1981; 
Orlando et  al. 2008; Pramila et  al. 2006; Spellman et  al. 
1998). In S. cerevisiae, many cell-cycle genes peak in 
mRNA expression level before their protein products are 
used in cell cycle events. One canonical example is DNA 
replication origin firing, where replication origin proteins 
are assembled into a complex before S phase, activated, 
and then degraded or changed in localization to prevent re-
replication (Bell and Dutta 2002). This “just-in-time tran-
scription” phenomenon can be visualized for the conserved 
DNA helicase complex that acts during origin firing in both 
S. cerevisiae and C. neoformans (Fig.  1a, b). Our recent 
publication describes in detail how different time series 
experiments for C. neoformans and S. cerevisiae cells 
are aligned on a common “cell-cycle time” axis using the 
CLOCCS algorithm (Orlando et  al. 2007, 2009) (Kelliher 
et al. 2016: S1 File). According to this common timeline, 
origin-firing genes are transcribed in early G1 phase dur-
ing each cell cycle (Guo et al. 2013; Kelliher et al. 2016). 
These findings suggest a common function for MCM genes 
in S. cerevisiae and in C. neoformans.

Comparative genomics was also applied to groups of co-
regulated cell-cycle genes (Kelliher et al. 2016). We found 
that DNA replication (S phase) and mitosis (M phase) 
genes in S. cerevisiae and C. neoformans were highly con-
served in periodicity and timing of expression during the 
fungal cell cycle. These analyses required identification of 
orthologous genes in the two species of budding yeast, and 
our recent publication describes in detail how orthologous 
genes were identified in C. neoformans and S. cerevisiae 
(Kelliher et al. 2016: S1 File). Almost one thousand addi-
tional periodic genes were identified in C. neoformans, 
many of which have not been previously linked to the cell 
cycle. We posit that identifying the phase in which these 
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Fig. 1   Timing of expression provides mechanistic insights for 
DNA replication, chitin synthase, and GPCR subunits during the 
C. neoformans and S. cerevisiae cell cycles. The MCM2-7 genes 
involved in DNA replication origin firing are plotted in C. neofor-
mans (respectively: CNAG_03341, CNAG_00099, CNAG_06182, 
CNAG_04052, CNAG_03962, and CNAG_05825) (a) and S. cer-
evisiae (respectively: YBL023C, YEL032W, YPR019W, YLR274W, 
YGL201C, and YBR202W) (b) to visualize activation timing before 
S phase of the cell cycle. Chitin synthase genes in C. neoformans 
are expressed after S phase (c), while S. cerevisiae orthologs vary in 
their expression timing (d). C.n. CHS4 is orthologous to S.c. CHS3 
(YBR023C, red c, d). Both CHS6 and CHS8 have orthology to CHS1 
(YNL192W) and CHS2 (YBR038W) in S. cerevisiae. According to a 
global sequence similarity measure (Kelliher et  al. 2016: S4 Table), 
C.n. CHS6 is most similar to S.c. CHS2 (green c, d), and C.n. CHS8 

is more similar to S.c. CHS1 (blue c, d). GPCR subunits in C. neo-
formans are expressed at different times during the cell cycle (e), and 
S. cerevisiae orthologs are less periodic and vary in expression tim-
ing (f). C.n. GPA2 is orthologous to both S.c. GPA1 (YHR005C) and 
GPA2 (YER020W, red lines e, f), and GPG2 is orthologous to STE18 
(YJR086W) in S. cerevisiae. In all plots, orthologous gene pairs are 
shown in the same color, and ortholog identification data can be 
found in the previous work (Kelliher et al. 2016: S4 Table, S1 File). 
Line plots are shown on an fpkm unit scale, which were normalized 
separately for each yeast experiment. All transcripts are plotted on a 
common cell-cycle timeline in CLOCCS lifeline points as described 
(Kelliher et al. 2016: S1 File). Periodicity rankings for each C. neo-
formans gene can be found in S2 Table, and S. cerevisiae genes can 
be found in S1 Table (Kelliher et al. 2016)
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unknown genes are expressed can provide mechanistic 
insights. For example, S. cerevisiae genes that play a role 
in bud emergence peak in expression before G1/S phase. 
Orthologous genes in C. neoformans were not highly con-
served in periodicity or timing of expression at G1/S phase 
(Kelliher et al. 2016: Figure 4). This putative divergence in 
budding gene timing is supported by data that C. neofor-
mans bud emergence can occur in a range of times between 
G1 and G2 phases, depending on culturing conditions such 
as oxygen levels and cell concentration (Ohkusu et  al. 
2001, 2004). Thus, gene orthology alone is not necessar-
ily informative regarding biological function across fungal 
systems. Below, we investigate gene expression timing of 
two virulence pathways to connect virulence mechanisms 
to cell-cycle progression.

Chitin synthesis in C. neoformans may be directly 
linked to cell‑cycle progression

Genes involved in virulence pathways are of critical impor-
tance for understanding the biology and for treating the 
opportunistic fungal pathogen C. neoformans (Buchanan 
and Murphy 1998; Liu et  al. 2008). Our recent publica-
tion identified 40 periodic genes that have been previously 
identified by genetic screens for virulence phenotypes (Kel-
liher et  al. 2016: S3 Table). Here, we asked if any meta-
bolic pathways were enriched in this list of 40 virulence 
genes using the database FungiDB (Stajich et  al. 2012). 
The most significant Metabolic Pathway hit (PWY-6981) 
included four genes involved in chitin biosynthesis. These 
four chitin synthase enzymes—CHS4 (CNAG_00546), 
CHS5 (CNAG_05818), CHS6 (CNAG_06487), and CHS8 
(CNAG_07499)—are periodically expressed during the C. 
neoformans cell cycle (Kelliher et al. 2016).

Chitin synthesis is a ubiquitous and dynamic process 
across fungal species (Langner and Göhre 2016). The pre-
vious work has characterized the family of chitin synthase 
genes and shown that chitin and chitosan levels accumulate 
along with population density in C. neoformans, unlike the 
budding yeasts S. cerevisiae and Candida albicans (Banks 
et al. 2005). The CHS3 gene is highly expressed in prolif-
erating C. neoformans cells, and single chs3 mutants are 
temperature sensitive at 37 °C, which is a highly relevant 
virulence factor for human infection (Bloom and Panepinto 
2014). In addition to the previous work on steady-state 
expression levels of chitin synthase genes from asynchro-
nous C. neoformans cells (Banks et  al. 2005: Figure  3), 
the cell-cycle time series data set now provides much more 
dynamical detail. We visualized the periodic chitin syn-
thase genes to determine their timing of peak expression 
during the cell cycle.

The four periodic chitin synthase genes are co-expressed 
and peak in expression after the S phase MCM genes in C. 
neoformans (Fig.  1a, c). The previous work showed that 
chitin/chitosan levels in the cell wall vary between S. cer-
evisiae and C. neoformans (Banks et  al. 2005), and thus, 
it was important to compare these chitin genes to their 
putative orthologous genes in S. cerevisiae. In C. neofor-
mans, chitin synthase genes are much more coordinately 
expressed in time than their S. cerevisiae orthologs (Fig. 1c, 
d). The S. cerevisiae gene CHS2 is most similar in dynam-
ics and expression timing to the group of C. neoformans 
chitin synthases. The S. cerevisiae CHS2 gene plays a role 
in cell wall remodeling during cytokinesis (Oh et al. 2012; 
Sburlati and Cabib 1986), while CHS1 and CHS3 affect 
chitin levels in the S. cerevisiae cell wall during alpha-fac-
tor arrest (shmoo formation), during bud emergence, and 
generally during cell growth (Shaw et al. 1991).

We hypothesize that the four periodically expressed 
chitin synthase enzymes in C. neoformans are utilized 
after S phase for bud growth and/or during cytokinesis for 
extracellular matrix remodeling. Unlike S. cerevisiae, the 
expression of CHS4, CHS5, CHS6, and CHS8 is tightly 
coordinated, suggesting they act at the same time to per-
form a similar function. The transcription factor(s) control-
ling the coordinated activation of CHS genes is unknown. 
The CRZ1 transcription factor (CNAG_00156) is known to 
regulate CHS6 expression levels under various stress con-
ditions (Lev et  al. 2012), but the CRZ1 transcript did not 
score highly for cell-cycle periodicity (Kelliher et al. 2016: 
S2 Table). If the transcriptional regulator(s) can be identi-
fied, a combination drug therapy (Bahn 2015; Zhang et al. 
2014) to stall the fungal cell cycle in G2 or M phase and 
simultaneously inhibit chitin synthase could render cells as 
poorly virulent as chs3 mutants in the laboratory (Banks 
et  al. 2005). Chitin synthesis represents a promising anti-
fungal target for further study.

A subset of G‑protein coupled receptor subunits 
are expressed at different times during the C. 
neoformans cell cycle

Given the 40 periodic genes with previously identified 
virulence phenotypes (Kelliher et  al. 2016: S3 Table), we 
also used FungiDB to ask if any Gene Ontology terms were 
enriched (Stajich et  al. 2012). G-protein coupled recep-
tor signaling (GO:0007186) was one of the top five most 
significant GO terms. G-protein coupled receptor (GPCR) 
signaling pathways have been studied extensively in C. 
neoformans for their role in sensing and responding to 
the cellular environment (Xue et al. 2008). The three peri-
odically expressed GPCR subunits have previously been 
implicated in the signaling pathway that allows haploid 
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C. neoformans cells to sense the opposite mating type via 
mating pheromones. During infection, C. neoformans cells 
are typically haploid and proliferating asexually. However, 
meiotic spores are thought to initiate the first steps of host 
colonization in the lungs, and thus, understanding the biol-
ogy of both the asexual and sexual phases of C. neoformans 
growth is essential (Kozubowski and Heitman 2012).

Three periodic GPCR subunits are expressed at different 
times during the cell cycle (Fig. 1e). GPG2 (CNAG_05890) 
is a Gγ subunit, which can bind to Gβ subunits in two dif-
ferent signaling pathways: Gib2 (CNAG_05465), associ-
ated with nutrient sensing, and Gpb1 (CNAG_05465), 
associated with mating pheromone sensing (Palmer et  al. 
2006). GPA2 (CNAG_00179) and GPA3 (CNAG_02090) 
are Gα subunits, and are expressed in different phases of 
the cell cycle (Fig. 1e). The previous work has shown that 
GPA2 activates mating, while GPA3 inhibits mating, but 
both Gα genes must be deleted for a fungal sterility pheno-
type (Hsueh et al. 2007). The mating pathway in S. cerevi-
siae is well understood and has fewer components than C. 
neoformans (Bardwell 2004; Dohlman and Thorner 2001). 
In S. cerevisiae, the G-protein subunits involved in mat-
ing pheromone signaling are GPA1 (Gα), STE18 (Gγ), and 
STE4 (Gβ). The S. cerevisiae GPA1 subunit is periodically 
expressed during the cell cycle, but its peak expression tim-
ing does not precisely match its ortholog in C. neoformans 
(Fig. 1e, f).

Unlike GPA1 in S. cerevisiae, the Gα subunits of the 
C. neoformans mating pathway (GPA2 and GPA3) peak in 
different phases of the cell cycle. Perhaps, C. neoformans 
cells are capable of sensing mating pheromone throughout 
the cell cycle, rather than exclusively G1 phase. Alterna-
tively, these GPCRs may have been repurposed for other 
functions in C. neoformans. The strong peak of GPA2 
expression at each G1 phase in C. neoformans does suggest 
that, like S. cerevisiae, cells may be “deciding” whether or 
not to mate before commitment to each cell cycle (Fig. 1e, 
f). Intriguingly, mating in C. neoformans is also linked to 
light–dark cycles and regulated by the circadian rhythm 
transcription factor orthologs BWC1 (CNAG_05181) and 
BWC2 (CNAG_02435) (Idnurm and Heitman 2005). These 
two TF genes do not score as highly periodic during the C. 
neoformans cell cycle (Kelliher et al. 2016: S2 Table), but 
the contribution of circadian rhythms to virulence is not 
well understood for many pathogenic species and warrants 
further study (Hevia et al. 2016).

Future directions: building gene regulatory 
networks

In this review, we highlight what can be learned about gene 
function by the pattern of expression throughout the cell 

cycle. By combining information about expression dynam-
ics with orthology and functional studies from model sys-
tems, we demonstrate that new mechanistic hypotheses can 
be rapidly generated. Here, we begin to elucidate connec-
tions between the cell cycle and virulence pathways using 
these approaches. We show that four chitin synthases in 
C. neoformans are co-expressed after S phase, unlike 
their putative orthologs in S. cerevisiae (Fig.  1c, d). We 
also demonstrate that two Gα subunits involved in mat-
ing pheromone signaling are expressed in different cell-
cycle phases, where their putative S. cerevisiae ortholog is 
expressed only prior to G1 phase (Fig. 1e, f). By combin-
ing information from timing of expression during the cell 
cycle, evolutionarily related genes, and previous functional 
work in a “comparative functional genomics” approach, we 
can build mechanistic, testable hypotheses about virulence 
gene function in non-model organisms. Both C. neofor-
mans and S. cerevisiae budding yeasts provide supporting 
evidence for the “just-in-time transcription” hypothesis, 
where sets of genes are co-expressed at a given time to per-
form a function during a specific cell-cycle phase (Kelliher 
et al. 2016). In future work, the approaches described here 
can be applied to the many additional periodic genes in C. 
neoformans with unknown cell-cycle functions.

A long-term goal of this work is to characterize the 
regulatory pathways that control periodic gene expression 
during the fungal cell cycle. Identification of transcrip-
tion factors and of their binding sites in the genome will 
be essential knowledge to approach this problem. These 
data sets are available in S. cerevisiae, which quantitative 
models have used to predict an interconnected network of 
periodically expressed transcription factors that are capable 
of driving cell-cycle transcription (Hillenbrand et al. 2016; 
Li et al. 2004; Orlando et al. 2008; Sevim et al. 2010; Sim-
mons Kovacs et  al. 2012). Transcription factor (TF) dele-
tion collections have been generated and carefully phe-
notyped in both C. neoformans (Jung et  al. 2015) and C. 
albicans (Homann et  al. 2009). One promising avenue of 
future work would be to synchronize mutant cells in the 
cell cycle and determine if single or double TF mutants 
affect cell-cycle progression (Simmons Kovacs et al. 2012).

One historical example of a characterized gene regula-
tory network that regulates periodic gene expression is 
the circadian rhythm, which is present in almost all organ-
isms to anticipate environmental light–dark cycles (Zhang 
and Kay 2010). Using Neurospora crassa as a model for 
the eukaryotic circadian clock, mutations in the frequency 
(FRQ) locus were identified in screens for arrhythmic 
fungi (Loros and Feldman 1986; McClung et  al. 1989). 
The FRQ protein participates in a core negative feedback 
loop that regulates the circadian period length (Hurley 
et al. 2016). The screens that identified FRQ in N. crassa 
and its orthologs in other eukaryotes represent the utility 
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of genetic approaches when one gene has a large effect on 
the biological phenotype of interest (analogous to mapping 
human disease genes with Mendelian inheritance).

Complex phenotypes and quantitative traits are more 
challenging to solve using genetic approaches alone. For 
example, the positive regulators of the N. crassa circadian 
network, white collar-1 (WC-1) and white collar-2 (WC-2), 
were characterized more than a decade later than FRQ due 
to complex and partially redundant roles in activating light-
responsive genes in the network (Crosthwaite et al. 1997). 
Redundancy in biological processes can be addressed with 
double mutant screens that are more effective at identifying 
core genes controlling a dynamic process (Costanzo et al. 
2013). However, robustness can come from multiple genes 
with partially overlapping functions or, in response to 
genetic perturbation, from “compensation” in the strength 
of interactions in a network transcription factors, which has 
directly been demonstrated in the mammalian circadian 
clock network (Baggs et al. 2009). Intricate network inter-
actions provide robustness to the network, but can foil the 
traditional genetic approaches, and thus network modeling 
of dynamical systems will become an invaluable approach 
for learning complex mechanisms.

We posit that cell-cycle networks, like the circadian 
rhythm, are also ancient in origin and contain highly redun-
dant regulatory pathways (Simmons Kovacs et  al. 2008). 
In the recent C. neoformans publication, the cell-cycle net-
work topology at G1/S phase was highlighted as a region 
of partial conservation between fungal species (Kelliher 
et  al. 2016: Figure 6). In fact, the transcriptional machin-
ery involved in the cellular “decision” to commit to the cell 
cycle, enter quiescence, or select another fate is function-
ally conserved in G1/S phase from S. cerevisiae to human 
cells (Miles and Breeden 2016). Further work is needed to 
understand interacting genes in pathogenic fungi and also 
in the conservation of these fungal and animal gene net-
works (Brown and Madhani 2012; Medina et al. 2016). In 
addition to quantifying mRNA abundance, the localization 
and protein activity of TFs and other cell-cycle regulators 
will be important directions for future work in C. neofor-
mans (Chong et al. 2015; Kuwada et al. 2015).

Building networks of genes that control a given pro-
cess is critical for a full understanding of the dynamics 
of a biological system. Understanding dynamics and net-
work topology also allows us to predict how gene net-
works will respond to perturbation (such as drug treat-
ment) and combat drug resistance, which is a major 
problem in infectious diseases. Preliminary networks 
of interacting genes have been established in the wheat 
pathogen Fusarium graminearum (Guo et  al. 2016), in 
nitrogen utilization in the pathogenic yeast C. albicans 
(Ramachandra et  al. 2014), and during ordered cap-
sule assembly in C. neoformans (Maier et al. 2015). We 

propose that synchronizing populations of cells for the 
cell cycle could build on this pioneering work and elu-
cidate direct connections between proliferation and vir-
ulence factors. Another useful direction for future work 
on understanding gene regulatory networks in C. neofor-
mans will be to profile cell-cycle synchronized cells in 
non-rich media and/or at high temperature, as it is already 
known that steady-state gene expression levels change in 
response to poor media conditions (Janbon et al. 2014).

The opportunistic fungal pathogen C. neoformans 
expresses nearly 20% of all genes periodically during the 
cell cycle (Kelliher et  al. 2016), and we have begun to 
make connections between virulence pathways and the 
cell cycle. To elucidate the network of transcription factors 
and other cell-cycle regulators that control periodic viru-
lence pathways, future work will assay cell-cycle pheno-
types from the C. neoformans TF deletion collection (Jung 
et al. 2015) in rich media and in poor media conditions that 
mimic infection (Janbon et al. 2014). An improved under-
standing of cell-cycle biology in fungal species will lead 
to more informed, and potentially combination therapies to 
treat fungal diseases.

Acknowledgements  We thank members of the Haase Labora-
tory for helpful discussions. We also thank J. Uehling for feedback 
on the manuscript. This work is supported by the Defense Advanced 
Research Projects Agency (DARPA) Grant #D12AP00025.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Baggs JE, Price TS, Ditacchio L, Panda S, Fitzgerald GA, Hogenesch 
JB (2009) Network features of the mammalian circadian clock. 
PLoS Biol 7(3):0563–0575. doi:10.1371/journal.pbio.1000052

Bahn YS (2015) Exploiting fungal virulence-regulating transcrip-
tion factors as novel antifungal drug targets. PLoS Pathog 
11(7):e1004936. doi:10.1371/journal.ppat.1004936

Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK 
(2005) A chitin synthase and its regulator protein are criti-
cal for chitosan production and growth of the fungal pathogen 
Cryptococcus neoformans. Eukaryot Cell 4(11):1902–1912. 
doi:10.1128/EC.4.11.1902-1912.2005

Bardwell L (2004) A walk-through of the yeast mating pheromone 
response pathway. Peptides 25(9):1465–1476. doi:10.1016/j.
peptides.2003.10.022

Bar-Joseph Z, Siegfried Z, Brandeis M, Brors B, Lu Y, Eils R et al 
(2008) Genome-wide transcriptional analysis of the human cell 
cycle identifies genes differentially regulated in normal and 
cancer cells. Proc Natl Acad Sci 105(3):955–960. doi:10.1073/
pnas.0704723105

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1371/journal.pbio.1000052
http://dx.doi.org/10.1371/journal.ppat.1004936
http://dx.doi.org/10.1128/EC.4.11.1902-1912.2005
http://dx.doi.org/10.1016/j.peptides.2003.10.022
http://dx.doi.org/10.1016/j.peptides.2003.10.022
http://dx.doi.org/10.1073/pnas.0704723105
http://dx.doi.org/10.1073/pnas.0704723105


809Curr Genet (2017) 63:803–811	

1 3

Bell S, Dutta A (2002) DNA replication in eukaryotic cells. 
Annu Rev Biochem 71:333–374. doi:10.1146/annurev.
biochem.71.110601.135425

Benanti JA (2016) Create, activate, destroy, repeat: Cdk1 controls 
proliferation by limiting transcription factor activity. Curr Genet 
62(2):271–276. doi:10.1007/s00294-015-0535-5

Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-
cycle control. Nat Rev Mol Cell Biol 8(2):149–160. doi:10.1038/
nrm2105

Bloom ALM, Panepinto JC (2014) RNA biology and the adaptation of 
Cryptococcus neoformans to host temperature and stress. Wiley 
Interdiscip Rev RNA 5(3):393–406. doi:10.1002/wrna.1219

Bristow SL, Leman AR, Simmons Kovacs LA, Deckard A, Harer 
J, Haase SB (2014) Checkpoints couple transcription network 
oscillator dynamics to cell-cycle progression. Genome Biol 
15(9):446. doi:10.1186/s13059-014-0446-7

Brown JCS, Madhani HD (2012) Approaching the functional anno-
tation of fungal virulence factors using cross-species genetic 
interaction profiling. PLoS Genet 8(12). doi:10.1371/journal.
pgen.1003168

Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White 
TC (2012) Hidden Killers: Human Fungal Infections. Sci Transl 
Med 4(165):165rv13. doi:10.1126/scitranslmed.3004404

Buchanan KL, Murphy JW (1998) What makes Cryptococcus neo-
formans a pathogen? Emerg Infect Dis 4(1):71–83. doi:10.3201/
eid0401.980109

Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wod-
icka L et  al (1998) A genome-wide transcriptional analysis 
of the mitotic cell cycle. Mol Cell 2(1):65–73. doi:10.1016/
S1097-2765(00)80114-8

Chong YT, Koh JLY, Friesen H, Duffy K, Cox MJ, Moses A et  al 
(2015) Yeast proteome dynamics from single cell imaging and 
automated analysis. Cell 161(6):1413–1424. doi:10.1016/j.
cell.2015.04.051

Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier 
CS et  al (2013) The genetic landscape of a cell. Science 
327(5964):425–431. doi:10.1126/science.1180823

Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and 
wc-2: transcription, photoresponses, and the origins of circa-
dian rhythmicity. Science 276(5313):763–769. doi:10.1126/
science.276.5313.763

de Lichtenberg U, Jensen LJ, Fausbøll A, Jensen TS, Bork P, Brunak 
S (2005) Comparison of computational methods for the identifi-
cation of cell cycle-regulated genes. Bioinformatics 21(7):1164–
1171. doi:10.1093/bioinformatics/bti093

Dohlman HG, Thorner JW (2001) Regulation of G protein-initiated 
signal transduction in yeast: paradigms and principles. Annu Rev 
Biochem 70:703–754. doi:10.1146/annurev.biochem.70.1.703

Eser P, Demel C, Maier KC, Schwalb B, Pirkl N, Martin DE et  al 
(2014) Periodic mRNA synthesis and degradation co-operate 
during cell cycle gene expression. Mol Syst Biol 10(1):1–15. 
doi:10.1002/msb.134886

Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyc-
lin: a protein specified by maternal mRNA in sea urchin eggs 
that is destroyed at each cleavage division. Cell 33(2):389–396. 
doi:10.1016/0092-8674(83)90420-8

García-Rodas R, Cordero RJB, Trevijano-Contador N, Janbon G, 
Moyrand F, Casadevall A, Zaragoza O (2014) Capsule growth in 
Cryptococcus neoformans is coordinated with cell cycle progres-
sion. mBio 5(3). doi:10.1128/mBio.00945-14

García-Rodas R, Trevijano-Contador N, Román E, Janbon G, Moy-
rand F, Pla J et  al (2015) Role of Cln1 during melanization of 
Cryptococcus neoformans. Front Microbiol 6:798. doi:10.3389/
fmicb.2015.00798

Granovskaia MV, Jensen LJ, Ritchie ME, Toedling J, Ning Y, Bork P 
et al (2010) High-resolution transcription atlas of the mitotic cell 

cycle in budding yeast. Genome Biol 11(3):R24. doi:10.1186/
gb-2010-11-3-r24

Grant GD, Brooks L, Zhang X, Mahoney JM, Martyanov V, Wood T 
a. et al (2013) Identification of cell cycle-regulated genes period-
ically expressed in U2OS cells and their regulation by FOXM1 
and E2F transcription factors. Mol Biol Cell 24:3634–3650. 
doi:10.1091/mbc.E13-05-0264

Guo X, Bernard A, Orlando D a, Haase SB, Hartemink AJ 
(2013) Branching process deconvolution algorithm reveals a 
detailed cell-cycle transcription program. Proc Natl Acad Sci 
110(10):E968–E977. doi:10.1073/pnas.1120991110

Guo L, Zhao G, Xu J, Kistler HC, Gao L, Ma L (2016) Compartmen-
talized gene regulatory network of the pathogenic fungus Fusar-
ium graminearum. New Phytol 211(2):527–541. doi:10.1111/
nph.13912

Haase SB, Wittenberg C (2014) Topology and control of the cell-
cycle-regulated transcriptional circuitry. Genetics 196(1):65–90. 
doi:10.1534/genetics.113.152595

Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of 
the cell division cycle in yeast. Science 183(4120):46–51

Hereford LM, Osley MA, Ludwig JR, McLaughlin CS (1981) Cell-
cycle regulation of yeast histone mRNA. Cell 24(2):367–375. 
doi:10.1016/0092-8674(81)90326-3

Hevia MA, Canessa P, Larrondo LF (2016) Circadian clocks and the 
regulation of virulence in fungi: getting up to speed. Semin Cell 
Dev Biol 57:147–155. doi:10.1016/j.semcdb.2016.03.021

Hillenbrand P, Maier KC, Cramer P, Gerland U (2016) Inference of 
gene regulation functions from dynamic transcriptome data. 
eLife 5:e12188. doi:10.7554/eLife.12188

Homann OR, Dea J, Noble SM, Johnson AD (2009) A phenotypic 
profile of the Candida albicans regulatory network. PLoS Genet 
5(12). doi:10.1371/journal.pgen.1000783

Hsueh Y-P, Xue C, Heitman J (2007) G protein signaling governing 
cell fate decisions involves opposing G subunits in Cryptococcus 
neoformans. Mol Biol Cell 18(9):3237–3249. doi:10.1091/mbc.
E07-02-0133

Hurley JM, Loros JJ, Dunlap JC (2016) Circadian oscillators: 
around the transcription-translation feedback loop and on to 
output. Trends Biochem Sci 41(10):834–846. doi:10.1016/j.
tibs.2016.07.009

Idnurm A, Heitman J (2005) Light controls growth and develop-
ment via a conserved pathway in the fungal kingdom. PLoS Biol 
3(4):0615–0626. doi:10.1371/journal.pbio.0030095

Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M, Nevins 
JR (2001) Role for E2F in control of both DNA replication and 
mitotic functions as revealed from DNA microarray analysis. 
Mol Cell Biol 21(14):4684–4699. doi:10.1128/MCB.21.14.4684

Janbon G, Ormerod KL, Paulet D, Byrnes EJ, Yadav V, Chatterjee G 
et al (2014) Analysis of the genome and transcriptome of Cryp-
tococcus neoformans var. grubii reveals complex RNA expres-
sion and microevolution leading to virulence attenuation. PLoS 
Genet 10(4):e1004261. doi:10.1371/journal.pgen.1004261

Jung KW, Yang DH, Maeng S, Lee KT, So YS, Hong J et al (2015) 
Systematic functional profiling of transcription factor networks 
in Cryptococcus neoformans. Nat Commun 6:6757. doi:10.1038/
ncomms7757

Kelliher CM, Leman AR, Sierra CS, Haase SB (2016) Investigating 
conservation of the cell-cycle-regulated transcriptional program 
in the fungal pathogen, Cryptococcus neoformans. PLoS Genet 
12(12):e1006453. doi:10.1371/journal.pgen.1006453

Kozubowski L, Heitman J (2012) Profiling a killer, the development 
of Cryptococcus neoformans. FEMS Microbiol Rev 36(1):78–
94. doi:10.1111/j.1574-6976.2011.00286.x

Kuwada NJ, Traxler B, Wiggins PA (2015) High-throughput cell-
cycle imaging opens new doors for discovery. Curr Genet. 
doi:10.1007/s00294-015-0493-y

http://dx.doi.org/10.1146/annurev.biochem.71.110601.135425
http://dx.doi.org/10.1146/annurev.biochem.71.110601.135425
http://dx.doi.org/10.1007/s00294-015-0535-5
http://dx.doi.org/10.1038/nrm2105
http://dx.doi.org/10.1038/nrm2105
http://dx.doi.org/10.1002/wrna.1219
http://dx.doi.org/10.1186/s13059-014-0446-7
http://dx.doi.org/10.1371/journal.pgen.1003168
http://dx.doi.org/10.1371/journal.pgen.1003168
http://dx.doi.org/10.1126/scitranslmed.3004404
http://dx.doi.org/10.3201/eid0401.980109
http://dx.doi.org/10.3201/eid0401.980109
http://dx.doi.org/10.1016/S1097-2765(00)80114-8
http://dx.doi.org/10.1016/S1097-2765(00)80114-8
http://dx.doi.org/10.1016/j.cell.2015.04.051
http://dx.doi.org/10.1016/j.cell.2015.04.051
http://dx.doi.org/10.1126/science.1180823
http://dx.doi.org/10.1126/science.276.5313.763
http://dx.doi.org/10.1126/science.276.5313.763
http://dx.doi.org/10.1093/bioinformatics/bti093
http://dx.doi.org/10.1146/annurev.biochem.70.1.703
http://dx.doi.org/10.1002/msb.134886
http://dx.doi.org/10.1016/0092-8674(83)90420-8
http://dx.doi.org/10.1128/mBio.00945-14
http://dx.doi.org/10.3389/fmicb.2015.00798
http://dx.doi.org/10.3389/fmicb.2015.00798
http://dx.doi.org/10.1186/gb-2010-11-3-r24
http://dx.doi.org/10.1186/gb-2010-11-3-r24
http://dx.doi.org/10.1091/mbc.E13-05-0264
http://dx.doi.org/10.1073/pnas.1120991110
http://dx.doi.org/10.1111/nph.13912
http://dx.doi.org/10.1111/nph.13912
http://dx.doi.org/10.1534/genetics.113.152595
http://dx.doi.org/10.1016/0092-8674(81)90326-3
http://dx.doi.org/10.1016/j.semcdb.2016.03.021
http://dx.doi.org/10.7554/eLife.12188
http://dx.doi.org/10.1371/journal.pgen.1000783
http://dx.doi.org/10.1091/mbc.E07-02-0133
http://dx.doi.org/10.1091/mbc.E07-02-0133
http://dx.doi.org/10.1016/j.tibs.2016.07.009
http://dx.doi.org/10.1016/j.tibs.2016.07.009
http://dx.doi.org/10.1371/journal.pbio.0030095
http://dx.doi.org/10.1128/MCB.21.14.4684
http://dx.doi.org/10.1371/journal.pgen.1004261
http://dx.doi.org/10.1038/ncomms7757
http://dx.doi.org/10.1038/ncomms7757
http://dx.doi.org/10.1371/journal.pgen.1006453
http://dx.doi.org/10.1111/j.1574-6976.2011.00286.x
http://dx.doi.org/10.1007/s00294-015-0493-y


810	 Curr Genet (2017) 63:803–811

1 3

Landry BD, Mapa CE, Arsenault HE, Poti KE, Benanti JA (2014) 
Regulation of a transcription factor network by Cdk1 coordi-
nates late cell cycle gene expression. EMBO J 33(9):1044–1060. 
doi:10.1002/embj.201386877

Langner T, Göhre V (2016) Fungal chitinases: function, regulation, 
and potential roles in plant/pathogen interactions. Curr Genet 
62(2):243–254. doi:10.1007/s00294-015-0530-x

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK 
et  al (2002) Transcriptional regulatory networks in Saccharo-
myces cerevisiae. Science 298(5594):799–804. doi:10.1126/
science.1075090

Lev S, Desmarini D, Chayakulkeeree M, Sorrell TC, Djordjevic JT 
(2012) The Crz1/Sp1 transcription factor of Cryptococcus neo-
formans is activated by calcineurin and regulates cell wall integ-
rity. PLoS One 7(12). doi:10.1371/journal.pone.0051403

Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle 
network is robustly designed. Proc Natl Acad Sci 101(14):4781–
4786. doi:10.1073/pnas.0305937101

Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM 
(2008) Systematic genetic analysis of virulence in the human 
fungal pathogen Cryptococcus neoformans. Cell 135(1):174–
188. doi:10.1016/j.cell.2008.07.046

Loros JJ, Feldman JF (1986) Loss of temperature compensation of cir-
cadian period length in the frq-9 mutant of Neurospora crassa. J 
Biol Rhythms 1(3):187–198. doi:10.1177/074873048600100302

Maier EJ, Haynes BC, Gish SR, Wang ZA, Skowyra ML, Marulli 
AL et  al (2015) Model-driven mapping of transcriptional net-
works reveals the circuitry and dynamics of virulence regulation. 
Genome Res 125(5):690–700. doi:10.1101/gr.184101.114

McClung CR, Fox BA, Dunlap JC (1989) The Neurospora clock gene 
frequency shares a sequence element with the Drosophila clock 
gene period. Nature 339(6225):558–562. doi:10.1038/339558a0

Medina EM, Turner JJ, Gordân R, Skotheim JM, Buchler NE 
(2016) Punctuated evolution and transitional hybrid network 
in an ancestral cell cycle of fungi. eLife 5:1–23. doi:10.7554/
eLife.09492

Menges M, de Jager SM, Gruissem W, Murray JAH. (2005) 
Global analysis of the core cell cycle regulators of Arabi-
dopsis identifies novel genes, reveals multiple and highly 
specific profiles of expression and provides a coherent 
model for plant cell cycle control. Plant J 41(4):546–566. 
doi:10.1111/j.1365-313X.2004.02319.x

Miles S, Breeden L (2016) A common strategy for initiating the tran-
sition from proliferation to quiescence. Curr Genet. doi:10.1007/
s00294-016-0640-0

Morgan DO (2007) The cell cycle: principles of control. New Science 
Press, London

Nasmyth K (1993) Control of the yeast cell cycle by the 
Cdc28 protein kinase. Curr Opin Cell Biol 5(2):166–179. 
doi:10.1016/0955-0674(93)90099-C

Nurse P, Thuriaux P (1980) Regulatory genes controlling mito-
sis in the fission yeast Schizosaccharomyces pombe. Genetics 
96(3):627–637

O’Meara TR, Alspaugh JA (2012) The Cryptococcus neoformans 
capsule: a sword and a shield. Clin Microbiol Rev 25(3):387–
408. doi:10.1128/CMR.00001-12

Oh Y, Chang K-J, Orlean P, Wloka C, Deshaies R, Bi E (2012) 
Mitotic exit kinase Dbf2 directly phosphorylates chitin synthase 
Chs2 to regulate cytokinesis in budding yeast. Mol Biol Cell 
23(13):2445–2456. doi:10.1091/mbc.E12-01-0033

Ohkusu M, Hata K, Takeo K (2001) Bud emergence is gradually 
delayed from S to G2 with progression of growth phase in Cryp-
tococcus neoformans. FEMS Microbiol Lett 194(2):251–255. 
doi:10.1016/S0378-1097(00)00501-2

Ohkusu M, Raclavsky V, Takeo K (2004) Induced synchrony 
in Cryptococcus neoformans after release from G2-arrest. 

Antonie Van Leeuwenhoek 85(1):37–44. doi:10.1023/B:A
NTO.0000020272.19569.15

Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S et al 
(2005) The cell cycle-regulated genes of Schizosaccharomy-
ces pombe. PLoS Biol 3(7):1239–1260. doi:10.1371/journal.
pbio.0030225

Orlando DA, Lin CY, Bernard A, Iversen ES, Hartemink AJ, Haase 
SB (2007) A probabilistic model for cell cycle distributions in 
synchrony experiments. Cell Cycle 6(4):478–488. doi:10.4161/
cc.6.4.3859

Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, Iversen ES 
et  al (2008) Global control of cell-cycle transcription by cou-
pled CDK and network oscillators. Nature 453(7197):944–947. 
doi:10.1038/nature06955

Orlando DA, Iversen ES, Hartemink AJ, Haase SB (2009) A branch-
ing process model for flow cytometry and budding index 
measurements in cell synchrony experiments. Ann Appl Stat 
3(4):1521–1541. doi:10.1214/09-AOAS264

Ostapenko D, Solomon MJ (2011) Anaphase promoting complex-
dependent degradation of transcriptional repressors Nrm1 and 
Yhp1 in Saccharomyces cerevisiae. Mol Biol Cell 22(13):2175–
2184. doi:10.1091/mbc.E11-01-0031

Palmer DA, Thompson JK, Li L, Prat A, Wang P (2006) Gib2, a novel 
Gβ-like/RACK1 homolog, functions as a Gβ subunit in cAMP 
signaling and is essential in Cryptococcus neoformans. J Biol 
Chem 281(43):32596–32605. doi:10.1074/jbc.M602768200

Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, 
Chiller TM (2009) Estimation of the current global burden of 
cryptococcal meningitis among persons living with HIV/AIDS. 
AIDS 23(4):525–530. doi:10.1097/QAD.0b013e328322ffac

Peng X, Karuturi RK, Miller LD, Lin K, Jia Y, Kondu P et al (2005) 
Identification of cell cycle-regulated genes in fission yeast. Mol 
Biol Cell 16(3):1026–1042

Pramila T, Wu W, Miles S, Noble WS, Breeden LL (2006) The 
forkhead transcription factor Hcm1 regulates chromosome 
segregation genes and fills the S-phase gap in the transcrip-
tional circuitry of the cell cycle. Genes Dev 20(16):2266–2278. 
doi:10.1101/gad.1450606

Ramachandra S, Linde J, Brock M, Guthke R, Hube B, Brunke S 
(2014) Regulatory networks controlling nitrogen sensing and 
uptake in Candida albicans. PLoS One 9(3). doi:10.1371/jour-
nal.pone.0092734

Rustici G, Mata J, Kivinen K, Lió P, Penkett CJ, Burns G et al (2004) 
Periodic gene expression program of the fission yeast cell cycle. 
Nat Genet 36(8):809–817. doi:10.1038/ng1377

Sburlati A, Cabib E (1986) Chitin synthetase 2, a presumptive par-
ticipant in septum formation in Saccharomyces cerevisiae. J Biol 
Chem 261(32):15147–15152

Sevim V, Gong X, Socolar JES. (2010) Reliability of transcriptional 
cycles and the yeast cell-cycle oscillator. PLoS Comput Biol 
6(7):18. doi:10.1371/journal.pcbi.1000842

Shaw JA, Mol PC, Bowers B, Silverman SJ, Valdivieso MH, Durán 
A, Cabib E (1991) The function of chitin synthases 2 and 3 in 
the Saccharomyces cerevisiae cell cycle. J Cell Biol 114(1):111–
123. doi:10.1083/jcb.114.1.111

Simmons Kovacs LA, Orlando DA, Haase SB (2008) Transcription 
network and cyclin/CDKs: the yin and yang of cell cycle oscilla-
tors. Cell Cycle 7(17):2626–2629. doi:10.4161/cc.7.17.6515

Simmons Kovacs LA, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang 
C et al (2012) Cyclin-dependent kinases are regulators and effec-
tors of oscillations driven by a transcription factor network. Mol 
Cell 45(5):669–679. doi:10.1016/j.molcel.2011.12.033

Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert 
TL et  al (2001) Serial regulation of transcriptional regula-
tors in the yeast cell cycle. Cell 106(6):697–708. doi:10.1016/
S0092-8674(01)00494-9

http://dx.doi.org/10.1002/embj.201386877
http://dx.doi.org/10.1007/s00294-015-0530-x
http://dx.doi.org/10.1126/science.1075090
http://dx.doi.org/10.1126/science.1075090
http://dx.doi.org/10.1371/journal.pone.0051403
http://dx.doi.org/10.1073/pnas.0305937101
http://dx.doi.org/10.1016/j.cell.2008.07.046
http://dx.doi.org/10.1177/074873048600100302
http://dx.doi.org/10.1101/gr.184101.114
http://dx.doi.org/10.1038/339558a0
http://dx.doi.org/10.7554/eLife.09492
http://dx.doi.org/10.7554/eLife.09492
http://dx.doi.org/10.1111/j.1365-313X.2004.02319.x
http://dx.doi.org/10.1007/s00294-016-0640-0
http://dx.doi.org/10.1007/s00294-016-0640-0
http://dx.doi.org/10.1016/0955-0674(93)90099-C
http://dx.doi.org/10.1128/CMR.00001-12
http://dx.doi.org/10.1091/mbc.E12-01-0033
http://dx.doi.org/10.1016/S0378-1097(00)00501-2
http://dx.doi.org/10.1023/B:ANTO.0000020272.19569.15
http://dx.doi.org/10.1023/B:ANTO.0000020272.19569.15
http://dx.doi.org/10.1371/journal.pbio.0030225
http://dx.doi.org/10.1371/journal.pbio.0030225
http://dx.doi.org/10.4161/cc.6.4.3859
http://dx.doi.org/10.4161/cc.6.4.3859
http://dx.doi.org/10.1038/nature06955
http://dx.doi.org/10.1214/09-AOAS264
http://dx.doi.org/10.1091/mbc.E11-01-0031
http://dx.doi.org/10.1074/jbc.M602768200
http://dx.doi.org/10.1097/QAD.0b013e328322ffac
http://dx.doi.org/10.1101/gad.1450606
http://dx.doi.org/10.1371/journal.pone.0092734
http://dx.doi.org/10.1371/journal.pone.0092734
http://dx.doi.org/10.1038/ng1377
http://dx.doi.org/10.1371/journal.pcbi.1000842
http://dx.doi.org/10.1083/jcb.114.1.111
http://dx.doi.org/10.4161/cc.7.17.6515
http://dx.doi.org/10.1016/j.molcel.2011.12.033
http://dx.doi.org/10.1016/S0092-8674(01)00494-9
http://dx.doi.org/10.1016/S0092-8674(01)00494-9


811Curr Genet (2017) 63:803–811	

1 3

Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB 
et  al (1998) Comprehensive identification of cell cycle-regu-
lated genes of the yeast Saccharomyces cerevisiae by microar-
ray hybridization. Mol Biol Cell 9(12):3273–3297. doi:10.1091/
mbc.9.12.3273

Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spata-
fora JW, Taylor JW (2009) The fungi. Curr Biol 19(18):R840–
R845. doi:10.1016/j.cub.2009.07.004

Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS et al 
(2012) FungiDB: An integrated functional genomics database 
for fungi. Nucleic Acids Res 40(D1):675–681. doi:10.1093/nar/
gkr918

Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles 
of G protein-coupled receptors in extracellular sens-
ing in fungi. FEMS Microbiol Rev 32(6):1010–1032. 
doi:10.1111/j.1574-6976.2008.00131.x

Zhang EE, Kay SA (2010) Clocks not winding down: unravelling 
circadian networks. Nat Rev Mol Cell Biol 11(11):764–776. 
doi:10.1038/nrm2995

Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) 
A circadian gene expression atlas in mammals: implications 
for biology and medicine. Proc Natl Acad Sci 111(45):16219–
16224. doi:10.1073/pnas.1408886111

http://dx.doi.org/10.1091/mbc.9.12.3273
http://dx.doi.org/10.1091/mbc.9.12.3273
http://dx.doi.org/10.1016/j.cub.2009.07.004
http://dx.doi.org/10.1093/nar/gkr918
http://dx.doi.org/10.1093/nar/gkr918
http://dx.doi.org/10.1111/j.1574-6976.2008.00131.x
http://dx.doi.org/10.1038/nrm2995
http://dx.doi.org/10.1073/pnas.1408886111

	Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans
	Abstract 
	Introduction
	Phase-specific gene expression during the fungal cell cycle
	Chitin synthesis in C. neoformans may be directly linked to cell-cycle progression
	A subset of G-protein coupled receptor subunits are expressed at different times during the C. neoformans cell cycle
	Future directions: building gene regulatory networks
	Acknowledgements 
	References


