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to go deeper into transcriptomes, revealing that eukaryotic 
genomes are pervasively transcribed (Berretta and Morillon 
2009). For instance, the ENCODE project revealed that up 
to 75 % of the human genome is transcribed in at least one 
cell line or condition (Djebali et al. 2012).

The pervasive transcription of eukaryotic genomes pro-
duces thousands of non-coding transcripts, that are com-
monly classified into small and long (l)ncRNAs, and that 
are now recognized as major regulators involved in multiple 
cellular processes, including cell differentiation and devel-
opment, chromosome dosage compensation, imprinting, 
regulation of gene expression, cell cycle control and adapta-
tion to environment changes (Rinn and Chang 2012; Sole 
et al. 2015; Wery et al. 2011). In addition, lncRNAs show 
tissue-specificity (Djebali et al. 2012), indicating that their 
expression is tightly regulated. Furthermore, dysregulation 
of ncRNAs has been associated to human diseases, such as 
cancer or neurodegenerative disorders (Taft et al. 2010).

In most eukaryotes, small and long regulatory ncRNAs 
coexist and even cooperate. However, the budding yeast 
Saccharomyces cerevisiae constitutes an exception to this 
paradigm as it has lost the RNA interference system and is, 
therefore, devoid of small-interfering (si)RNAs and micro 
(mi)RNAs (Drinnenberg et al. 2009). In this respect, S. cer-
evisiae is a unique model to specifically study the regula-
tory effects of lncRNAs, which in other organisms might be 
partially hidden by the effects of the small RNAs (such as 
siRNAs and miRNAs).

Cytoplasmic lncRNAs are targeted by a 
translation‑dependent surveillance pathway

Over the last years, thousands of lncRNAs have been 
annotated in S. cerevisiae (Tisseur et al. 2011). Strikingly, 

Abstract  Over the last decade, advances in transcriptomics 
have revealed that the pervasive transcription of eukaryotic 
genomes produces plethora of long noncoding RNAs (lncR-
NAs), which are now recognized as major regulators of mul-
tiple cellular processes. Although they have been thought to 
lack any protein-coding potential, recent ribosome-profiling 
data indicate that lncRNAs can interact with the translation 
machinery, leading to the production of functional peptides 
in some cases. In this perspective, we have explored the idea 
that translation can be part of the fate of cytoplasmic lncR-
NAs, raising the possibility for them to work as bifunctional 
RNAs, endowed with dual coding and regulatory functions.
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Introduction: the arrival on the scene of the 
non‑coding RNAs

With protein-coding genes representing only 2  % of the 
human genome, the other 98  % have been considered for 
a long time as inactive material, regions of several mega-
bases without any function, so-called ‘junk DNA’ (Taft et al. 
2007). However, the overwhelming development of high-
density micro-arrays and high-throughput sequencing tech-
nologies, as well as of bioinformatics analyses, has enabled 
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most of them were found to be cryptic due to their rapid 
and extensive degradation in the nucleus or in the cyto-
plasm (Tisseur et  al. 2011; Tudek et  al. 2015). Notably, 
the nuclear and cytoplasmic RNA degradation machineries 
target distinct types of lncRNAs. For instance, the nuclear 
exosome-dependent 3′–5′ decay pathway degrades the 
so-called Cryptic Unstable Transcripts (CUTs), a class of 
lncRNAs that are mainly transcribed from divergent bidi-
rectional promoters (Neil et al. 2009; Xu et al. 2009). On 
the other hand, the cytoplasmic Xrn1-dependent 5′–3′ 
RNA decay pathway is specialized into the degradation 
of another class of lncRNAs referred to as Xrn1-sensitive 
unstable transcripts (XUTs), most of which are antisense to 
protein-coding genes (Van Dijk et al. 2011).

XUTs are synthesized by RNA Polymerase II as capped 
and poly-adenylated transcripts, similar to mRNAs (Van 
Dijk et  al. 2011; Wery et  al. 2016). But what determines 
their instability has remained unclear until the recent find-
ing that the majority of them are specifically targeted by the 
Nonsense-Mediated Decay (NMD) pathway (Malabat et al. 
2015; Wery et  al. 2016). NMD is a translation-dependent 
RNA decay pathway that targets mRNAs with aberrant 
translation termination, such as mRNAs with premature 
stop codon (Muhlrad and Parker 1994) and long 3′-UTR 
(Muhlrad and Parker 1999). The sensitivity of XUTs to 
NMD suggests that once in the cytoplasm, they associate 
to the translation machinery and undergo at least a pioneer 
round of translation. Supporting this hypothesis, ribosome 
profiling data revealed the presence of small open reading 
frames (smORFs) on yeast lncRNAs (Smith et  al. 2014), 
including a large set of XUTs (Malabat et al. 2015; Wery 
et al. 2016), and some of them were shown to be translated 
into peptides in vivo (Smith et  al. 2014). Strikingly, ribo-
somes on NMD-sensitive XUTs are restricted to a short 
5′-proximal region, followed by a long ribosome-free 
3′-UTR, which probably constitutes the NMD-activating 
signal (Wery et al. 2016).

Notably, ribosome-profiling approaches also identified 
smORFs on transcripts annotated as non-coding in other 
Eukaryotes, including Drosophila (Aspden et  al. 2014), 
zebrafish (Bazzini et  al. 2014) and mouse (Ingolia et  al. 
2011), although there is debate on the extent to which ribo-
some-footprints detection reflects genuine on-going trans-
lation (Chew et al. 2013; Guttman et al. 2013).

The observation of ribosome binding to smORFs on 
transcripts annotated as lncRNAs challenges the initial 
assumption that these transcripts are really noncoding 
and raises the fundamental question of the function of the 
peptides produced upon translation of such smORFs. In 
this regard, recent works described lncRNAs producing 
smORFs peptides that control heart activity in Drosophila 
(Magny et al. 2013) and mammals (Nelson et al. 2016), or 
cell movement during embryogenesis in zebrafish (Pauli 

et  al. 2014). In yeast, the evolutionary conservation of a 
subset of lncRNAs smORFs within yeast species indicates 
that the encoded peptides might have biological importance 
(Smith et al. 2014).

Thus, many transcripts initially thought to lack coding 
potential are likely to bear smORFs, that can be translated 
and give rise to functional peptides (Fig. 1). On the other 
hand, we speculate that a fraction of smORFs-bearing tran-
scripts, reminiscent of the yeast NMD-sensitive XUTs, 
will also be targeted by the NMD in other eukaryotic cells 
(Fig. 1). In this respect, NMD inhibition in mouse embry-
onic stem cells has been shown to result in stabilization of 
a subset of annotated lncRNAs (Smith et  al. 2014). Con-
ceptually, one can also imagine that a cryptic transcript tar-
geted to the NMD in one condition could escape the NMD 
and be stabilized in another condition (see below), possibly 
giving rise to a functional smORF peptide. Additional work 
will be required to define the comprehensive landscape of 
NMD-sensitive lncRNAs in different eukaryote models, 
but given the extent of ribosome association to lncRNAs, 
we anticipate the NMD to be recognized in the future as a 
major regulator of cytoplasmic lncRNAs.

NMD as an additional layer in lncRNA‑mediated 
regulation of gene expression

In yeast, antisense XUTs can regulate paired-sense gene 
expression, at the transcriptional level, through histone 
modifications (Berretta et  al. 2008; Van Dijk et  al. 2011) 
and constitute to date the only class of lncRNAs for which 
the associated gene-regulation is thought to depend on the 
lncRNA per se, rather than its transcription. Interestingly, 
NMD specifically and exclusively targets this class of reg-
ulatory lncRNAs (Wery et al. 2016) and might be consid-
ered in that way as a novel player in the lncRNA-dependent 
buffering of genome expression.

NMD not only acts as a surveillance pathway targeting 
aberrant mRNAs and cryptic lncRNAs to degradation, but 
it also directly regulates physiological mRNAs in yeast, 
Drosophila and human (Peccarelli and Kebaara 2014). 
NMD itself is tightly regulated, and its activity is modu-
lated in response to multiple stresses, including hypoxia, 
amino-acid or nutrient deprivation (Karam et  al. 2013; 
Lykke-Andersen and Jensen 2015). Interestingly, many 
stress-related mRNAs are targeted by the NMD under 
normal physiological conditions but are stabilized upon 
stress, due to NMD activity inhibition (Lykke-Andersen 
and Jensen 2015). Note that under stress conditions, global 
translation also decreases, selectively preserving translation 
of stress-related mRNAs to the detriment of “housekeep-
ing” mRNAs (Yamasaki and Anderson 2008). Another con-
sequence of such a stress-mediated reduction of translation 
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is that transcripts (aberrant mRNAs or lncRNAs) that are 
normally targeted by the NMD will be stabilized, since 
transcripts evading translation escape NMD.

On this basis, we propose a model where a stress that 
results in translation inhibition and/or NMD inhibition will 
lead to stabilization of regulatory antisense NMD-sensitive 
lncRNAs (such as yeast XUTs), which could in turn repress 
the transcription of their paired-sense genes (Fig. 2). This 
would prevent the synthesis of mRNAs that could probably 
not be translated, avoiding the cell to waste an energy that 
could be crucial to survive the stress. Alternatively but not 
exclusively, the regulatory antisense lncRNAs could also 
regulate the paired-sense mRNAs at the post-transcriptional 
level, potentially through the formation of double-stranded 
(ds) RNA structures. In yeast, sense mRNAs and antisense 
XUTs have been shown to form dsRNA in vivo, and this 
protects XUTs from NMD (Wery et al. 2016). Reciprocally, 
formation of dsRNA with a stabilized antisense lncRNA 
might affect sense mRNA stability, as suggested by a recent 
study of mRNA isoforms half-lives (Geisberg et al. 2014). 
Besides RNA stability, regulatory antisense lncRNAs might 
also interfere with mRNA splicing, localization, or transla-
tion. Future work will be needed to decipher these potential 
lncRNA-mediated regulatory mechanisms and determine 

whether they can be integrated within larger stress-acti-
vated signalling networks (Ho and Gasch 2015).

Concluding remarks

Over the years, lncRNAs have been recognized as major 
regulators of multiple cellular processes. However, the ini-
tial assumption that they are devoid of coding potential is 
now challenged. Conceptually, coding a peptide/protein 
in specific circumstances and functioning as a regulatory 
RNA molecule in others are not exclusive possibilities for 
a transcript, whatever it has been primarily annotated as a 
lncRNA or mRNA. Examples of bifunctional RNAs with 
dual coding and regulatory functions have been reported 
(Ulveling et al. 2011). In this respect, in yeast, convergent 
mRNAs can regulate each other at the RNA level providing 
additional intriguing cases where mRNAs can switch their 
initial coding function into regulatory RNAs (Sinturel et al. 
2015). But how many among the thousands of lncRNAs 
annotated in the different eukaryotic models correspond 
to such bifunctional RNAs remains to be determined. The 
classical distinction between coding and non-coding RNAs 
might, therefore, become less strict in the future, if the 
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Fig. 1   Translation of lncRNAs smORFs can lead to RNA degrada-
tion or functional peptide production. Translation of smORF (red 
box) on a transcript annotated as lncRNA might target this transcript 
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possibility to switch between regulatory and coding func-
tions in response to specific stimuli appears to be a com-
mon feature of “lncRNAs”.
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