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Quantitative genetic studies and their industrial 
applications

The budding yeast Saccharomyces cerevisiae represents an 
outstanding model for evolutionary, molecular biology and 
genetics studies, mostly due to its ease of cultivation and 
laboratory manipulation, alongside its (prominent) role as 
a cornerstone of the genomics era (Liti 2015; Voordeckers 
et  al. 2015). The importance of yeast became clear more 
than 80  years ago, with the beginning of genetics studies 
in brewing. Indeed, beer production aided the birth of yeast 
genetics by pioneering crosses between different strains to 
enhance the quality, flavour and stability of the final fer-
mented product (Barnett 2007; Gibbons and Rinker 2015). 
Since then, yeast has become a key player in many indus-
trial fermentation processes such as wine and sake as well 
as the production of fermented food like bread (Legras 
et al. 2007; Querol et al. 2003).

The close association between S. cerevisiae and humans 
implies that budding yeast corresponds to a domesticated 
species; however, re-sequencing studies demonstrated that 
it is not necessarily domesticated and many new wild iso-
lates are continually being described (Bergstrom et  al. 
2014; Cromie et  al. 2013; Liti et  al. 2009; Skelly et  al. 
2013; Wang et  al. 2012). In this context, field surveys in 
habitats remote from human activity have demonstrated 
that China harbours an important pool of different natu-
ral isolates with extensive genetic variation (Wang et  al. 
2012). This standing natural diversity of different S. cerevi-
siae strains provides a unique niche for the industry. Con-
sequently, hundreds to thousands of strains are being used 
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for molecular and quantitative genetic studies in different 
laboratories around the world, with the aim of: on one hand 
understanding yeast biology and on the other, providing 
the appropriate strains for utilisation in industry (Steensels 
et al. 2014). In an industrial setting, exploiting new genetic 
variants allows fine tuning of the final preferred product by, 
for example, increasing substrate utilisation for the produc-
tion of desirable secondary metabolites or modifying meta-
bolic fluxes in a particular genetic background (Marsit and 
Dequin 2015). Thus, deciphering the genetics underlying 
traits of industrial interest has enormous potential to iden-
tify new alleles that could serve to ameliorate fermentation 
processes, representing an opportunity to cope with the 
demands of increased productivity.

Throughout the last two decades several linkage map-
ping studies have been conducted in recombinant popu-
lations in order to elucidate the inheritance patterns of 
complex traits in yeast and identify Quantitative trait loci 
(QTLs) (Ehrenreich et  al. 2009; Liti and Louis 2012). 
Most of these advances were performed utilising labora-
tory strains, such as S288c and their derivatives (Ehren-
reich et  al. 2009), providing little information about the 
allelic variants that explain the phenotypic diversity of the 
species in the wild (Liti 2015) and limiting their industrial 
use. With the advent of the genomic revolution and new 
sequencing technologies; the genome sequence of hundreds 
of strains is now available allowing the study of a greater 
genetic panel (Peter and Schacherer 2016). Thus, the latest 
quantitative genetic studies exploiting yeast allelic diver-
sity expanded our knowledge of the ecology and evolution-
ary biology in this simple model organism by unveiling 
many new variants that could be useful in applied studies 
(Ambroset et al. 2011; Cubillos et al. 2013; Gutierrez et al. 
2013; Hou et al. 2016; Jara et al. 2014; Parts et al. 2011; 
Salinas et al. 2012; Steyer et al. 2012; Tesniere et al. 2015; 
Wilkening et al. 2014).

The fermentation of beer and wine represents the main 
two beverages for which yeast has been utilised for cen-
turies (Sicard and Legras 2011). The mapping of QTLs in 
S. cerevisiae during wine must fermentation has uncov-
ered genetic variants for many traits that have likely been 
exposed to selection, such as: nitrogen consumption (Brice 
et al. 2014; Gutierrez et al. 2013; Jara et al. 2014), ethanol 
tolerance and production (Duitama et al. 2014; Snoek et al. 
2016; Swinnen et al. 2012; Tilloy et al. 2014), fermentation 
kinetics (Kessi-Perez et al. 2016), sulphite resistance (Zim-
mer et al. 2014) and aroma production (Steyer et al. 2012). 
For example, utilising bulk segregant analysis coupled with 
whole-genome sequencing, four genetic variants which 
can improve nitrogen uptake in wine strains were discov-
ered (Brice et al. 2014). Similarly, consumers and the wine 
industry are demanding lower alcohol levels and for this, 
directed evolved populations grown in the laboratory under 

limiting conditions have provided new artificial genetic var-
iants to cope with this request (Tilloy et al. 2014). Further-
more, linkage analysis in a cross between CBS6412 and 
ER7A (an industrial strain) revealed SSK1, an osmosensor 
member of the HOG pathway, as responsible for ethanol 
yield differences between these two strains. The CBS6412 
allele affected growth, volumetric productivity and had a 
low glycerol/high ethanol production ratio (Hubmann et al. 
2013). One of the advantages of this type of study is that 
two independent genetic variants with completely oppo-
site phenotypes may be equally useful for the industry. For 
example, an allele which is responsible for the production 
of greater ethanol levels may not be desirable in the wine 
industry, but it would be highly prized in the bioethanol 
business (Pais et al. 2013). In this way, deciphering genetic 
variants can have multiple applications in different indus-
trial processes with high economic impact.

What drives natural phenotypic variation?

Originally, the majority of the genetic studies focused 
their efforts in finding differences between strains in cod-
ing regions. This bias is based on the premise that most 
allelic variants within ORFs will significantly affect the 
protein structure and therefore non-synonymous muta-
tions represent key targets in the search for causal poly-
morphisms (Ehrenreich et  al. 2009; Liti and Louis 2012). 
These variants were thought for years to be the principal 
force behind natural phenotypic variation. However, it has 
recently been argued that these types of mutations are usu-
ally deleterious within natural populations and most protein 
coding sequences are conserved even between different 
species (Wray 2007). Alternatively, coding regions could 
be finely modulated through their gene expression. In the 
past decades, experimental evidence has been gathered, 
predominantly in higher eukaryotes, demonstrating that 
natural gene expression variation represents a key factor 
shaping an individual’s phenotype, where polymorphisms 
within, e.g., transcription factor binding sites, can lead to 
phenotypic differences between strains (Chidi et al. 2016; 
Cubillos et al. 2012; Fraser et al. 2012; Salinas et al. 2016; 
Wittkopp and Kalay 2012). Moreover, in recent years gene 
expression regulation has been at the forefront of genetic 
and evolution studies in multiple species. By finely tuning 
mutations in both portions of the genome (coding and regu-
latory regions), organisms can exhibit distinct phenotypes 
and adapt to stressful conditions (Salinas et  al. 2016). By 
modifying gene expression patterns individuals can exhibit 
an extraordinary regulatory elasticity, allowing them to 
withstand unfavourable environmental conditions. A well-
known approach to quantify the effect of natural variants 
acting in cis (this is near the encoded transcript) is to study 
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allele-specific expression (ASE) through massive RNA 
sequencing (McManus et  al. 2010; Salinas et  al. 2016). 
ASE is the difference in expression levels between two 
parental alleles within a hybrid and reflects the outcome of 
polymorphisms located upstream of the ORF. Therefore, 
ASE is a highly useful tool for understanding the impact of 
genetic variation within regulatory regions (Fig. 1).

ASE in natural yeast isolates

Previously, we were able to demonstrate that ASE is highly 
widespread between natural S. cerevisiae isolates by quan-
tifying the effect of cis-variants in a grid of six F1 hybrids 
derived from the cross of four divergent strains (Salinas 
et al. 2016). Furthermore, several efforts have demonstrated 
that allelic expression differences can directly impact a 
phenotype (Fay et al. 2004; Gerke et al. 2009; Salinas et al. 
2016). By estimating the consumption of aspartic acid and 
glutamic acid in wine fermentation must in two strains of 
different geographic origin, we were able to show that pol-
ymorphisms in both portion of the gene ASN1 (coding and 
regulatory), an asparagine synthetase that catalyses the syn-
thesis of asparagine from aspartic acid (Salinas et al. 2016), 
were partly responsible for nitrogen assimilation differ-
ences between these two genetic backgrounds. Interest-
ingly, ASN1 was not the only case where we could directly 
correlate allele-specific expression and phenotype. Among 
the thousands of alleles differentially expressed, we also 
found GDB1, a glycogen debranching enzyme required 
for glycogen degradation and relevant in the fermentation 
process (Apweiler et  al. 2012). In our ASE strategy, we 
found that a Wine/European isolate (DBVPG6765, named 
as WE) exhibited greater expression levels compared to 
any other surveyed strain (Fig. 2a). To determine the influ-
ence of dissimilar GDB1 allelic variants in the fermenta-
tion process and its potential industrial application, we 
performed a reciprocal hemizygosity assay between WE 
and a North American (NA) strain, since they showed the 
greatest allelic expression differences, and characterised 
them for fermentation kinetics in synthetic wine must. 
We observed significant differences in the total CO2 out-
put between reciprocal hemizygotes, with the NA-gdb1Δ/
WE-GDB1 hybrid having a greater rate of CO2 produc-
tion than the NA-GDB1/WE-gdb1Δ hemizygote, in agree-
ment with greater expression levels in the WE background 
(Fig.  2b). These strains differ by several polymorphisms 
in both, the regulatory and coding regions within GDB1. 
In order to determine whether the phenotypic differences 
were due to either category of polymorphic changes, we 
performed an allele swap assay where we swapped, on one 
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Fig. 1   Allele-specific expression pipeline. F1 hybrids generated from 
two individuals genetically diverged (Strain A in red and Strain B 
in blue) can be utilised to estimate allele-specific expression (ASE) 
and quantify expression divergence between genetic backgrounds. To 
accomplish this, the F1 hybrid is subjected to RNA-seq and then spe-
cific reads belonging to Strain A or Strain B are quantified for each 
parental background. Significant deviations from a 50/50 distribution 
for each allele are labelled as ASE between strains
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hand the promoters of the two strains and on the other, the 
coding portion (Salinas et  al. 2016) (Fig.  2c). Based on 
this approach, we reconstructed all the possible recipro-
cal hemizygote combinations in the parental backgrounds 
by varying either the ORF or the regulatory region. After 
21  days of fermentation, we observed in the NA back-
ground that the CO2 production increased by 14  % when 
the GDB1WE promoter was introduced (Fig.  2d(i)), in 
agreement with greater expression levels of the GDB1WE. 
Surprisingly, when we introduced the NA promoter into the 
WE background, the NA promoter allele did not change the 
fermentation kinetics, suggesting a background-dependent 
effect on the ORF being expressed (Fig.  2d(ii)). Subse-
quently, when we performed the corresponding experiment 
replacing the ORF region, we observed an 18 % lower CO2 
output when we introduced the GDB1NA allele into the WE 
background (Fig.  2d(iv)). These results demonstrate that, 
just like in ASN1, polymorphisms located in regulatory 
and coding regions in GDB1 explain the phenotypic differ-
ences observed in reciprocal hemizygotes and ultimately, 
between NA and WE strains. Based on these results, GDB1 
alleles (and many others so far described in the literature) 
could represent potential genetic variants for applied yeast 
studies.

Perspectives

Quantitative genetic studies have provided a wide set of nat-
ural allelic variants which can be used to tackle the needs of 
the fermentation industry. In the near future, low sequencing 
costs will expand the repertoire of sequenced strains, reveal-
ing an even larger number of genetic variants to explore. 
However, the phenotypic contribution of these alleles may 
vary when placed in different genetic backgrounds and 
therefore large screens to estimate gene–gene (G × G) inter-
actions should be explored before they can be extrapolated to 
other strains. In this context, establishing not only how these 

allelic variants interact with other genes from different back-
grounds, but also how they interact with the environment 
(G × E) is a milestone that has not been reached. Screens in 
offspring derived from dozens of parental pairs (Hou et al. 
2016) or the utilisation of recombinant hybrids (Hallin et al. 
2016) grown under an array of environments will provide 
the means for dissecting and understanding complex genetic 
interactions. Part of these screens can be complemented by 
determining the effects of polymorphisms upon gene expres-
sion or protein structure. Thus far, although many studies 
have described differences in expression levels, the molecu-
lar mechanisms underlying transcript abundance variation 
are still not clear and represent a current challenge in mod-
ern genetics. Thus, deciphering G × G and G × E interac-
tions will help to understand how allelic variants respond to 
genetic and environmental interactions and generate better 
models for their application in the industry.
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