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Mutation is the ultimate source of all genetic variation, 
and has been a long-standing research focus in evolution-
ary genetics. Until recently, estimating mutation rates has 
necessitated using reporter loci (Drake 1991) and it has 
not been possible to obtain direct estimates of the muta-
tion spectrum, which is the relative frequency of different 
nucleotide substitutions, insertions/deletions (indels), and 
rearrangements. However, with current methods, sequenc-
ing massive amounts of DNA to discover the relatively few 
newly arising, spontaneous mutations at the genome level 
is now affordable. This has allowed mutation accumula-
tion (MA) studies (Lynch et  al. 1999) to be used to esti-
mate both the genome-wide mutation rate and its spectrum 
in a variety of organisms: Arabidopsis thaliana (Ossowski 
et al. 2010; Jiang et al. 2014), Bacillus subtilis (Sung et al. 
2015), Burkholderia cenocepacia (Dillon et al. 2015), Cae-
norhabditis elegans (Denver et al. 2009; Meier et al. 2014), 
Chlamydomonas reinhardtii (Ness et al. 2012; Sung et al. 
2012), Daphnia pulex (Keith et  al. 2015), Dictyostelium 
dicsoideum (Saxer et  al. 2012), Dienococcus radiodurans 
(Long et  al. 2015), Drosophila melanogaster (Schrider 
et  al. 2013; Keightley et  al. 2014), Escherichia coli (Lee 
et al. 2012), Heliconius melpomene (Keightley et al. 2015), 
Mesoplasma florum (Sung et al. 2012), Paramecium tetrau-
relia (Sung et  al. 2012), Pristionchus pacificus (Weller 
et  al. 2014), Pseudomonas aeruginosa (Dettman et  al. 
2016), Pseudomonas fluorescens (Long et  al. 2015), Sac-
charomyces cerevisiae (Lynch et  al. 2008; Nishant et  al. 
2010; Zhu et al. 2014), Schizosaccromyces pombe (Farlow 
et  al. 2015; Behringer and Hall 2016), and Tetrahymena 

Abstract  Over the last decade, mutation studies have 
grown in popularity due to the affordability and accessibil-
ity of whole genome sequencing. As the number of species 
in which spontaneous mutation has been directly estimated 
approaches 20 across two domains of life, questions arise 
over the repeatability of results in such experiments. Five 
species were identified in which duplicate mutation stud-
ies have been performed. Across these studies the differ-
ence in estimated spontaneous mutation rate is at most, 
weakly significant (p  <  0.01). However, a highly signifi-
cant (p  <  10−5), threefold difference in the rate of inser-
tions/deletions (indels) exists between two recent studies 
in Schizosaccharomyces pombe. Upon investigation of the 
ancestral genome sequence for both studies, a possible 
anti-mutator allele was identified. The observed variation 
in indel rate may imply that the use of indel markers, such 
as microsatellites, for the investigation of genetic diver-
sity within and among populations may be inappropriate 
because of the assumption of uniform mutation rate within 
a species.
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thermophila (Long et  al. 2015). As the list of species for 
which genome-wide estimates or mutation rate and spec-
trum are available increases, the question of repeatability 
becomes paramount.

Genome-wide estimates of parameters of mutation have 
been performed in the same species only a few times, either 
as controls for an experimental evolution project or as a 
specific effort to understand the spontaneous mutation rate, 
so the reproducibility of results has seldom been examined. 
The five species with two independent genome-wide esti-
mates reported before 2015 are included in Table 1, which 
indicates that they often suffer from low power due to small 
sample size, making it difficult to evaluate reproducibility.

Our recent mutation accumulation study in Schizosac-
charomyces pombe (Behringer and Hall 2016) unintention-
ally overlapped a concurrent study of similar scope (Farlow 
et  al. 2015) and allowed a statistically robust comparison 
of the repeatability of mutation rate and spectrum estimates 
in this species. The conditions of the two experiments dif-
fered with respect to starting strain, culture temperature, 
time between line transfers and growth medium, but were 
otherwise similar.

Genome-wide mutation rates vary across studies. In the 
five species with data prior to 2015, the single nucleotide 
mutation rate estimates vary 1.34–3.50-fold (Table  1). In 
comparison, the single nucleotide mutation rate estimates 
in the two S. pombe studies are only 1.18-fold different. 
This difference, though smaller than seen in the other five 
species, is statistically significant (p  <  0.05). In previous 
studies, the mutation rate for small (≤50 bp) indels varied 
from 1.10–3.00-fold, though none of the differences were 
significant because of the low number of observed muta-
tional events (Table 1). In comparison, the indel mutation 
rate estimates in the two S. pombe studies are 2.83-fold dif-
ferent, which is a highly statistically significant difference 
(p < 10−5).

There are at least three possible explanations for the 
threefold difference observed in indel rates in S. pombe. 
First, indels are more challenging to accurately detect bio-
informatically than base substitutions, not only because 
the resulting mismatches can make an indel-containing 
sequencing read more difficult to map, but also because 
indels commonly occur within microsatellites and highly 
repetitive regions which already have an increased PCR 
and sequencing error rate (Jiang et al. 2015; Narzisi et al. 
2014). Two different pipelines were used for small indel 
detection in the two studies. In Farlow et  al., sequenc-
ing reads were mapped with BWA (Li and Durbin 2009), 
and realigned with both Breakdancer (Chen et  al. 2009) 
and Pindel (Ye et al. 2009). In our study, we also mapped 
sequencing reads with BWA, but realigned them with 
GATK’s IndelRealigner (Auwera et  al. 2013). Both prac-
tices are not without their issues; GATK is less sensitive 

when it comes to larger indels, while Pindel has trouble 
with insertions (Narzisi et al. 2014). In our study, we esti-
mated the false-positive and false-negative error rates and 
found them both to be less than 2.5 %. Even if error rates 
were an order of magnitude greater in the Farlow et  al. 
study, they would be insufficient to explain the difference 
in indel mutation rate.

Second, the indel mutation rate may be altered by the 
different environmental conditions of the two experiments, 
with temperature being a likely candidate (Matsuba et  al. 
2013). Stressful temperatures have been demonstrated to 
affect microsatellite mutation rate in Caenorhabditis ele-
gans (Matsuba et  al. 2013), with increased temperatures 
leading to an increase in mutation rate. However, if S. 
pombe also exhibits increased indel mutation rate at stress-
ful temperatures, we would expect the Farlow et al. study 
to have a higher rate, since they performed their mutation 
accumulation experiment at a higher, presumably more 
stressful, temperature (32° vs 30 °C). There is no obvious 
other difference that would suggest that S. pombe was more 
or less stressed in one versus the other experiment.

Third, differences in genetic background may explain 
the different indel mutation rates. To examine this hypoth-
esis, we compared the ancestral strains in the two studies, 
specifically to ask whether ours exhibited a higher relative 
number of indels when compared to the reference. In our 
MA study, we found 315 indel and single nucleotide sub-
stitution differences between the ancestor and reference 
genome, which was a surprisingly large number given that 
both isolates have the same strain designation (972 h-). A 
comparison of our ancestor with the one used by Farlow 
et al., identified 208 shared differences. This high number 
of shared differences between the ancestors strongly sug-
gests that they represent errors in the reference assembly. 
The reference genome is thought to have at least 190 errors 
(Hu et al. 2015; Wood et al. 2011), 183 of which are among 
the 208 shared mutations, and thus confirmed by our anal-
ysis. The remaining 25 have not been previously inferred 
(Supplemental Table). Of the remaining 107 differences 
between our ancestor and the reference, there are approxi-
mately 3.5-fold more indels than single nucleotide muta-
tions. A similar analysis of Farlow et al.’s ancestor indicates 
0.95-fold more indels than single nucleotide mutations, 
relative to the reference. Thus, our ancestor shows a 3.7-
fold higher number of indels, relative to single nucleotide 
changes, compared to the Farlow et al. ancestor. This sug-
gests that there may indeed be a genetic background dif-
ference between the two strains that is causing a relatively 
higher indel mutation rate in our ancestral strain. We 
note that there is no evidence for selection having played 
a major role in the mutational differences between either 
ancestor: the effects of mutational differences between the 
ancestors and the reference are not significantly different 
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from those that arose during MA, when selection is known 
to be ineffective (Fig. 1).

When examining differences between the ances-
tors for their potential to cause differences in indel rate, 

two mutations were found in genes associated with DNA 
repair in the Farlow et al. ancestor. One of these is in rev7 
(SPBC12D12.09), which is a subunit of DNA polymer-
ase zeta with inferred involvement in translesion synthesis 

Fig. 1   Comparison of muta-
tional effects in MA ancestor 
and MA lines. There is no 
difference between any of the 
three spectra (Chi-squared test: 
p value = 0.61)
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Fig. 2   Comparison of mutation accumulation spectra for the four 
species in which there are sufficient numbers of mutations to make 
a comparison. In all four species, spectra are not significantly differ-

ent across studies (Chi-squared test: a A. thaliana, p value = 0.75, b 
D. melanogaster, p value = 0.58, c C. elegans, p value = 0.164, d S. 
pombe, p value = 0.66)
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(Kosarek et al. 2008), but the mutation is synonymous and 
thus not likely to have an effect, unless it alters mRNA sta-
bility and thus protein levels in the cell. The second is a 
missense mutation in cdc6 (SPBC336.04), also known as 
POLD3, which is a subunit of DNA polymerase delta. A 
mutation in cdc6, specifically cdc6-121 has known muta-
tor qualities, while another variant, cdc6-23, may reduce 
the mutation rate relative to wild type (Liu et al. 1999). It 
is possible that the cdc6 missense mutation in the Farlow 
ancestor has anti-mutator qualities, which could account 
for the indel differences between the two ancestors and the 
estimated rate differences in the two MA experiments.

Regardless of whether it is environmental or due to 
genetic background, the substantial variation seen in indel 
rate has serious implications for the use of microsatel-
lite repeats as genetic markers. In nature, populations that 
appear to be significantly different in their microsatellite 
genotypes and are thus inferred to be genetically isolated 
from others may simply have higher mutation rates. Micro-
satellite mutation models, such as the stepwise-mutation 
model (Slatkin 1995), assume uniformity in the indel rate 
within species. While warnings have been issued about the 
robustness of microsatellites due to differing mutation rates 
amongst loci (Putman and Carbone 2014), microsatellites 
may also miscalculate genetic distance because of differing 
mutation rates amongst populations.

Other parameters of the mutational process, which 
require large numbers of mutations to estimate with pre-
cision, including the spectrum of single nucleotide muta-
tions, the insertion to deletion ratio for small indels, and 
the location of mutational hotspots do not differ between 
the two S. pombe studies. Three of the previous studies in 
other species have sufficient numbers of single nucleotide 
mutations to estimate the spectrum for this class of muta-
tions (Fig. 2). In these three species, and in S. pombe, the 
spectra are remarkably similar to one another. The relative 
frequency of insertions versus deletions in small indels 
across studies within species can only be compared within 
S. pombe; there are insufficient numbers of indels in other 
studies. The ratio of insertions to deletions is not signifi-
cantly different in the two S. pombe studies; it is 5.88 in 
Farlow et  al. and 6.12 in our study. Further, the ratio of 
insertions to deletions is similar, 6.4, for those indels that 
differ between our ancestor and the reference, after remov-
ing those that are shared with the Farlow et al. ancestor. It 
is only in the Farlow ancestor, in which the ratio is 0.82, 
based on 20 indels, that we find a significant difference 
(Fisher’s exact test, p ≤ 0.0003) from the others we have 
observed.

In conclusion, the inadvertent overlap of our S. pombe 
MA experiment with that of Farlow et al. allowed one of the 
first statistically robust comparisons of estimates of param-
eters of mutation within a species. Generally, estimates 

revealed remarkable repeatability. The single nucleotide 
mutation rates, though statistically significantly differ-
ent, were within 20  % of one another, and the mutational 
spectrum for these mutations was not different. Further the 
relative occurrence of insertions to deletion was also not 
different across the two studies. The only substantial differ-
ence was the indel mutation rate, which varies by threefold 
across the two studies and is highly statistically significant. 
This suggests that the mutation rate for indels may be more 
sensitive to genetic background, environment, or both.
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