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2013). Recent studies have detected acetylation of 15–20 % 
of the Escherichia coli and Bacillus subtilis proteomes 
(Kosono et al. 2015; Kuhn et al. 2014; Weinert et al. 2013; 
Zhang et al. 2013). Here, I will provide a brief review and 
raise questions I consider to be most important.

Nε‑acetylation can occur by two different 
mechanisms

The conventional mechanism for Nε-acetylation is enzy-
matic (Fig. 1i), relying on a lysine acetyltransferase (KAT) 
to catalyze donation of the acetyl group from acetyl-coen-
zyme A (acCoA) to the ε-amino group of a deprotonated 
lysine. This is the mechanism used by KATs to acetylate 
lysines in the unstructured N-termini of eukaryotic his-
tones. KATs from diverse bacteria have been identified and 
some characterized [for reviews, see Bernal et al. (2014), 
Hentchel and Escalante-Semerena (2015), Hu et al. (2010), 
Jones and O’Connor (2011), Kim and Yang (2011), Soppa 
(2010) and Thao and Escalante-Semerena (2011b)].

In E. coli, researchers have identified a single KAT: a 
member of the GCN5-like acetyltransferase (GNAT) family 
called YfiQ. It was first identified and characterized in Sal-
monella enterica (Hentchel and Escalante-Semerena 2015; 
Starai and Escalante-Semerena 2004b; Thao and Escalante-
Semerena 2011a), where it is called Protein AcetylTrans-
ferase or Pat. To avoid confusion, use of this acronym in E. 
coli should be discouraged, as it was previously assigned 
to Putrescine AminoTransferase. For a similar reason, an 
alternative acronym (Pka) should also be discouraged, as 
it is the widely used acronym for Protein Kinase A, which 
modifies eukaryotic proteins by phosphorylation.

It is possible that E. coli expresses KATs in addi-
tion to YfiQ, as several E. coli GNATs have not yet been 
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Nε‑acetylation is abundant in bacteria

Post-translational modifications control protein structure, 
stability and function. In eukaryotes, Nε-lysine acetyla-
tion is an abundant post-translational modification affect-
ing thousands of proteins in diverse processes (Glozak 
and Seto 2007; Rardin et al. 2013; Verdin and Ott 2015; 
Yang and Seto 2008a). Compelling evidence exists that 
Nε-acetylation is also abundant in bacteria. Global surveys 
have revealed acetylation in diverse bacterial phyla (Baeza 
et al. 2014; Kim et al. 2013; Kosono et al. 2015; Kuhn 
et al. 2014; Lee et al. 2013; Wang et al. 2010; Weinert et al. 
2013; Wu et al. 2013; Yu et al. 2008; Zhang et al. 2009, 
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assigned a function. However, previous attempts to identify 
additional KATs have failed. New approaches should be 
applied.

Recent studies reveal a novel non-enzymatic mecha-
nism, in which acetyl phosphate (acP) directly donates 
its acetyl group to the ε-amino group of a deprotonated 
lysine (Kuhn et al. 2014; Weinert et al. 2013). The result 
is the same as the enzymatic mechanism, acetylation of the 
Nε-amino group of a lysine (Fig. 1ii). In sheer numbers of 
sensitive lysines, acP-dependent acetylation dwarfs YfiQ-
dependent acetylation (Kuhn et al. 2014; Weinert et al. 
2013). A novel, label-free quantitative mass spectrometric 
(MS) method called Skyline ‘MS1 Filtering’ (Rardin et al. 
2013; Schilling et al. 2012) was used to determine, with 
statistical significance, that 592 lysines from 292 proteins 
were sensitive to acP levels. In contrast, many fewer lysines 
(~6X) were sensitive to the KAT YfiQ (Kuhn et al. 2014). 
Using more conventional SILAC methods, others obtained 
similar results (Weinert et al. 2013). Thus, in terms of 
sheer numbers of acetylated lysines, the non-enzymatic, 
acP-dependent mechanism predominates in E. coli. Non-
enzymatic, acP-dependent acetylation is not confined to 
E. coli; a similar story is unfolding in B. subtilis (Kosono 
et al. 2015).

The impact of acetylation is predicted to depend upon its 
stoichiometry. A highly regulated and common acetylation 
likely has more impact than a highly regulated but uncom-
mon acetylation. To address this issue, John Denu and 
co-workers developed a method to calculate global acetyl-
stoichiometry in cell lysates. They modified an approach 
previously developed by Brad Gibson’s group to determine 
relative lysine reactivities in an isolated protein (Guo et al. 

2008). Denu’s team detected substantial acetyl-stoichiome-
try in E. coli; hundreds of quantified peptides had stoichi-
ometries greater than 10 %, with 150 peptides acetylated 
at stoichiometries >20 % (Baeza et al. 2014). Since both 
acetylating mechanisms were operable in the tested cells, it 
is unclear whether the detected acetyllysines resulted from 
the enzymatic, acCoA-dependent mechanism or from the 
non-enzymatic, acP-dependent mechanism. Further analy-
ses of stoichiometry should be pursued under a variety of 
physiologically relevant conditions. Such studies will help 
prioritize the study of acetyllysines predicted to have the 
largest impact.

The deacetylase CobB can reverse acetylations 
from either mechanism

Acetyllysines are quite stable; however, they can be 
enzymatically reversed by lysine deacetylases (KDACs) 
(Fig. 1iii). Two major families of KDACs have been identi-
fied: the zinc-dependent Rpd3/Hda1 family (Yang and Seto 
2008b) and the NAD+-dependent sirtuin family (Blander 
and Guarente 2004). For each HDAC family, putative bac-
terial homologs have been identified [reviewed by Hild-
mann et al. (2007)], but only a few have been shown to 
serve as protein deacetylases [for a review, see Hentchel 
and Escalante-Semerena (2015)]. The best example of a 
bacterial sirtuin is CobB, first identified and characterized 
in S. enterica (Starai et al. 2002, 2003). In E. coli, the sir-
tuin CobB appears to be the sole (or predominant) KDAC 
(AbouElfetouh et al. 2015). It shows no preference for 
acetyl donors (AbouElfetouh et al. 2015); it can deacetylate 
both YfiQ-catalyzed acCoA-dependent acetyllysines (e.g., 
K609 of acetyl-CoA synthetase) and non-enzymatic acP-
dependent acetyllysines (e.g., K154 of RcsB) (AbouElfe-
touh et al. 2015). Thus, it is not a member of a system 
designed specifically to reversibly acetylated a few key 
lysines, as suggested (Hentchel and Escalante-Semerena 
2015), but instead appears to operate independently, at least 
in E. coli. How CobB recognizes its substrates remains to 
be determined; however, we know that specificity depends 
on accessibility and three-dimensional microenvironment 
of the target acetyllysine (AbouElfetouh et al. 2015). In 
contrast to dogma, most acetyllysines appear to be insensi-
tive to CobB (Kuhn et al. 2014; Weinert et al. 2013). MS1 
Filtering identified and quantified only 69 CobB-sensi-
tive lysines. This contrasts with the 592 acP-dependent 
acetyllysines (Kuhn et al. 2014). Only 24 were sensitive to 
both acP and CobB (AbouElfetouh et al. 2015). Thus, the 
vast majority of acetyllysines are not reversed and a major 
unanswered question is how does the cell cope with acety-
lations that are not reversed?

Fig. 1  Mechanisms for Nε-lysine acetylation and deacetylation. i 
Acetyltransferase (YfiQ)- and acCoA-dependent acetylation (blue). 
ii Non-enzymatic acP-dependent acetylation (green). iii The NAD+-
dependent deacetylase CobB can remove acetyl groups from some 
acetyllysines. acP is the high-energy intermediate of the phospho-
transacetylase (Pta)–acetate kinase (AckA) pathway
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acP‑dependent acetylation is specific

Most lysines are not acetylated or only at very low unde-
tectable levels. Some (e.g., K609 of Acs) are specifi-
cally acetylated by the enzymatic reaction (Hentchel and 
Escalante-Semerena 2015). Those that are acetylated in 
an acP-dependent manner exhibit different acetylation 
rates with different fold changes over time (Schilling 
et al. 2015). Most acetylated lysines reside in a three-
dimensional environment conducive to non-enzymatic 
acetylation. This environment contains residues that bind 
the phosphoryl group; these residues are either positively 
charged or tend toward H-bond formation (Baeza et al. 
2015; Kuhn et al. 2014). Also, the lysine must be depro-
tonated. In the enzymatic, acCoA-dependent mechanism, 
often a negatively charged residue on the enzyme surface 
acts as a general base catalyst to perform this function. In 
the non-enzymatic, acP-dependent mechanism, the cata-
lyst appears to be a negatively charged residue adjacent 
to the target lysine (Kuhn et al. 2014). This model should 
be rigorously tested, but independent evidence supports 
it. A prime example is the cAMP receptor protein (CRP), 
the major carbon regulator in δ-proteobacteria, e.g., 
Enterobacteriaceae (Shimada et al. 2011) and Vibrion-
aceae (Colton and Stabb 2015). CRP has two adjacent 
lysines (K100 and K101) that exhibit strikingly differ-
ent behaviors with respect to acetylation. AcP-dependent 
acetylation of K100 is almost always detected, whereas 
acetyl-K101 has never been detected (Baeza et al. 2014; 
Kuhn et al. 2014; Weinert et al. 2013; Zhang et al. 2013). 
The former includes all the aforementioned molecular 
features; the latter does not.

acP‑dependent acetylation is a consequence 
of acetate fermentation

Enzyme-dependent acetylation is regulated at several lev-
els. As mentioned previously, CobB deacetylates a subset 
of YfiQ-dependent acetyllysines in S. enterica and E. coli 
(AbouElfetouh et al. 2015; Garrity et al. 2007; Li et al. 
2010; Starai et al. 2002; Zhao et al. 2004). In S. enterica, 
the myo-inositol catabolism repressor LolR activates tran-
scription of pat and cobB, as well as that of acs, which 
encodes their substrate acetyl-CoA synthetase (Hentchel 
et al. 2015). Transcription of pat, but not cobB, decreases 
under acid stress. This might be due to reduced cAMP-CRP 
complex as acid stress also reduced cya and crp transcrip-
tion (Ren et al. 2015) and E. coli yfiQ transcription depends 
on the cAMP-CRP complex (Castano-Cerezo et al. 2011). 
In E. coli, acP-dependent acetylation also requires cAMP-
CRP (see below), but not YfiQ, and CobB can deacetylate a 
subset of acP-dependent acetyllysines (AbouElfetouh et al. 

2015). Also, acP-dependent acetylation seems to result 
from overflow metabolism, which occurs if the CoA pool 
is overwhelmed, for example, when carbon exceeds nitro-
gen and/or oxygen. Cells solve this metabolic bottleneck by 
recycling CoA via mixed acid fermentation (Wolfe 2005). 
Species that perform mixed acid fermentation are found 
in the genera Escherichia, Neisseria, Bacillus and Vibrio, 
among others (Wolfe 2015). The major products of mixed 
acid fermentation are ATP and acetate. The intermedi-
ate of this pathway (Pta-AckA) is acP (Wolfe 2005). With 
millimolar levels of acP (Klein et al. 2007), many lysines 
become acetylated (Kuhn et al. 2014; Weinert et al. 2013). 
We propose a simple model: Overflow metabolism causes 
acP accumulation, and acP accumulation causes acety-
lation. This scenario is supported by a recent study that 
showed global acetylation increasing over time and corre-
lating closely with glucose consumption and acetate excre-
tion (Schilling et al. 2015). Attempts to further test this 
model are underway. If it is correct, then genetic or envi-
ronmental manipulations that alter the timing of glucose 
consumption should simultaneously influence acetylation.

AcP‑dependent acetylation is enriched in central 
metabolic pathways

If acetylation is a response to overflow metabolism, then 
acetylation might feed back to regulate central metabolism. 
If so, then central metabolic enzymes should be enriched 
for acetylation. Indeed, MS1 Filtering revealed that pro-
teins with glucose-regulated acetyl sites are overwhelm-
ingly involved in central metabolism, notably glycolysis, 
gluconeogenesis, the TCA cycle, the glyoxylate bypass, 
fatty acid biosynthesis and pyruvate metabolism, which 
links them all. Our group and others had previously shown 
that acetylation is enriched in central metabolic pathways 
(Kuhn et al. 2014; Wang et al. 2010; Weinert et al. 2013; 
Zhang et al. 2013), but this was the first demonstration that 
central metabolic enzymes become acetylated over time in 
response to glucose consumption. It also revealed that most 
glucose-induced acetylation was acP-dependent (Schilling 
et al. 2015). Moreover, this effect is not restricted to glu-
cose, as similar results were obtained with other carbon 
sources (e.g., lactate) that result in acetate fermentation 
[(Schilling et al. 2015) and unpublished data].

cAMP‑CRP regulates glucose‑induced 
acP‑dependent acetylation

Since glucose-regulated acetylation was enriched in cen-
tral metabolism, we tested the hypothesis that some central 
metabolic regulator would regulate acetylation. Glucose 
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consumption and acetate excretion were delayed, and 
global acetylation was essentially eliminated in cya and crp 
mutants, but not in mutants lacking other central metabolic 
regulators, including arcA, cra and csrA (Schilling et al. 
2015). Most CRP-dependent acetylation requires acP syn-
thesis: acetylation was low in mutants that fail to synthe-
size acP, even when CRP was overexpressed. In contrast, 
acetylation was restored in crp mutants that accumulated 
acP. These results are consistent with a model in which acP 
is downstream of CRP. The mechanism by which cAMP-
CRP-dependent transcription facilitates acP synthesis 
remains unknown, but it likely involves transcriptional con-
trol of carbon transport and flux through glycolytic path-
ways (Schilling et al. 2015).

The impact of acetylation on protein function 
and cellular physiology

We now know that protein acetylation occurs in diverse 
bacteria. It is abundant, stoichiometrically relevant, and 
regulated at multiple levels. As such, bacterial protein acet-
ylation resembles eukaryotic protein acetylation, includ-
ing non-enzymatic acetylation, which occurs at low levels 
in mitochondria (Lombard et al. 2015; Wagner and Payne 
2013; Weinert et al. 2015). The inference is that acetylation 
in bacteria works much like it does in eukaryotes and that 
it exerts a similar impact on protein function and cellular 
physiology.

Most of what we know about the impact of 
Nε-acetylation of bacterial protein function comes from 
the study of a small subset of proteins. For acetyl-CoA 
synthetase (Acs), reversible acetylation serves as a sim-
ple on–off switch. A KAT (Pat in S. enterica, YfiQ in E. 
coli) inhibits Acs activity by acetylating a lysine (K609) 
located in Acs’ active site (Gardner et al. 2006; Starai et al. 
2002). The mechanism by which acetylation inhibits Acs 
activity is unknown; however, reactivation occurs upon 
deacetylation (Starai et al. 2002), catalyzed by the sirtuin 
CobB (Starai et al. 2002, 2003). For the response regulator 
CheY, acetylation of several lysines influences (1) revers-
ible phosphorylation of an aspartyl residue, (2) rotational 
direction of the flagellar motor and (3) CheY’s ability to 
form complexes with 3 protein targets (Barak and Eisen-
bach 2001; Barak et al. 1992, 2004, 2006; Fraiberg et al. 
2014; Li et al. 2010; Liarzi et al. 2010; Yan et al. 2008). 
For RNase R, acetylation controls protein turnover: acet-
ylation and thus neutralization of a lysine residue is pro-
posed to break a salt bridge that sequesters the docking 
site for a chaperone that recruits proteases (Liang et al. 
2011). For RcsB, it appears that acetylation of one lysine 
(K154) inhibits its function (Castano-Cerezo et al. 2014; 

Hu et al. 2013), but the mechanism remains unknown. For 
the alpha subunit of RNA polymerase, acetylation of one 
lysine (K298) is proposed to enhance glucose-induced 
CpxR-dependent transcription of cpxP (Lima et al. 2011), 
whereas acetylation of a second lysine (K291) inhibits that 
transcription (Lima et al. 2012). Thus, acetylation of two 
different lysines on the same protein can differentially reg-
ulate its function.

As with protein function, the impact of acetylation on 
cellular physiology is poorly understood. Some patterns, 
however, have emerged. First, there is the obvious con-
nection to central metabolism. The acetyl donors (acCoA 
and acP) are central metabolites as is the necessary sub-
strate for deacetylation (NAD+). The major carbon regula-
tor in E. coli and other enteric bacteria CRP regulates both 
non-enzymatic acP-dependent acetylation and enzymatic 
acCoA-dependent acetylation and fermentation results in 
acP-dependent acetylation. Furthermore, reversible acetyla-
tion regulates Acs activity (Gardner et al. 2006; Starai et al. 
2002; Starai and Escalante-Semerena 2004a, b). Because 
this activity involves both acCoA and ATP, acetylation 
modulates energy status with its attendant consequences 
(Chan et al. 2011). AcP-dependent and CobB-sensitive 
acetylation of K154 inhibits RcsB function (Castano-Cer-
ezo et al. 2014; Hu et al. 2013), which responds to pepti-
doglycan stress (Cambre et al. 2015; Laubacher and Ades 
2008), controls cell shape (Ranjit and Young 2013) and 
contributes to inherent antibiotic resistance (Laubacher and 
Ades 2008). RcsB also inhibits flagellar expression (Fred-
ericks et al. 2006), activates extracellular polysaccharide 
biosynthesis (Fredericks et al. 2006), enhances the acid 
stress response (Castanie-Cornet et al. 2010) and controls 
transcription of a small RNA (rprA) that modulates the 
response to stationary phase stress (Hu et al. 2013; Majda-
lani et al. 2002). The link between acetylation and stress is 
supported by several other observations. Glucose-induced 
acetylation of alpha regulates transcription of cpxP (Lima 
et al. 2011, 2012), which encodes a chaperone involved the 
periplasmic unfolded protein response (Danese and Silhavy 
1998). Furthermore, YfiQ/Pat and CobB have been associ-
ated with stresses associated with low pH (Ren et al. 2015), 
high temperature (Ma and Wood 2011) and reactive oxida-
tive species (Ma and Wood 2011). Finally, acP has been 
associated with ATP-dependent proteolysis (Mizrahi et al. 
2006) and both protein folding and aggregation (Mizrahi 
et al. 2009). ATP-dependent proteases are linked to carbon 
metabolism (Yang and Lan 2015). Most of these proteases 
and their chaperones are acetylated in an acP-dependent 
manner (Kuhn et al. 2014; Schilling et al. 2015). Since it is 
associated with stresses of multiple types, could acetylation 
be a response to stresses associated with rapid carbon flux 
through central metabolism?
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Consequences for pharmaceutical production

Lysine acetylation has been detected following produc-
tion in E. coli of recombinant therapeutic proteins, includ-
ing the chemokine RANTES (d’Alayer et al. 2007), 
human basic fibroblast growth factor mutein (Suenaga 
et al. 1996), human carbonic anhydrase (Mahon et al. 
2015), insulin lispro (Szewczak et al. 2015), interleu-
kin-10 (Pflumm et al. 1997), interleukin-2 (Moya et al. 
2002), interferon alpha (Takao et al. 1987), neurotropin-3 
(Ross et al. 1996) and somatotropin (Violand et al. 1994). 
Nearly 30 % of currently approved recombinant therapeu-
tic proteins are produced in E. coli (Huang et al. 2012). 
All post-translational modifications in a recombinant 
therapeutic protein could potentially influence its safety 
and efficacy and should be assessed for toxicity, immu-
nogenicity and biological activity (Mahon et al. 2015). 
Thus, it is critical to identify the acetylating mechanism, 
understand its regulation and determine the effect that 
acetylation exerts on the function of these heterologously 
expressed proteins.
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