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Introduction

Bacteria appeared on earth billions of years ago and 
have well customized to diverse environmental condi-
tions. Studying the microbial responses and the adjust-
ments of bacterial life styles helps us to understand how 
certain signals are perceived by these tiny organisms 
and how certain regulatory proteins contribute to the 
adaptation processes. Deeper insights into the control 
of gene regulatory networks reveal how the complex-
ity of signal perception and fine-tuning the transcription 
of hundreds of genes affect the bacterial differentiation 
processes.

Soil dwelling bacteria are well adapted to respond to 
the environmental changes and commit to a certain dif-
ferentiation pathway depending on the ecological con-
ditions. The Gram-positive bacterium, Bacillus subtilis 
shows various differentiation traits under laboratory 
conditions that are related to its survival in the environ-
ment. For example, extracellular matrix dependent bio-
film formation of B. subtilis enables the bacterium to 
attach and colonize the root surface (Bais et al. 2004). 
Depending on the circumstances, B. subtilis can also 
colonize surfaces using flagellum-driven single cell 
based movement (swimming), motility-dependent mul-
ticellular spreading (swarming), or growth-powered 
passive surface translocation (sliding) (Kearns 2010). 
Swarming and sliding are generally observed in wild 
isolates of B. subtilis and lost in domesticated labora-
tory strains (Kinsinger et al. 2003; Patrick and Kearns 
2009; Pollak et al. 2015). While the cultivating condi-
tions determine which process is activated, it seems that 
the activation of cellular machineries required for trans-
location is modulated by precise level of certain sets of 
global regulators (Grau et al. 2015).
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Global regulators influence the differentiation 
of B. subtilis

Intriguingly, the transition among the differentiation path-
ways to slide, to develop highly wrinkled colony biofilms, 
or to enter sporulation depends on the level of the phospho-
rylated Spo0A (Spo0A~P) protein in B. subtilis (Grau et al. 
2015). The global regulator, Spo0A has been originally iden-
tified due to its requirement for sporulation (Trowsdale et al. 
1978). Analysis of the Spo0A~P modulated genes revealed 
that the list of genes up- or downregulated depends on the 
level of Spo0A~P in the cells. While the transcription of 
abrB gene that codes for a transition state regulator in B. 
subtilis is repressed already at low levels of Spo0A~P, acti-
vation of sporulation related gene expression requires high 
levels of Spo0A~P (Fujita et al. 2005). Such a differential 
control of genes is achieved by variance in the Spo0A~P 
binding sites located in the promoter and regulatory regions 
of directly affected genes that defines the binding proper-
ties of Spo0A~P to these sites and therefore transcriptional 
activation or repression. The gradual increase in the phos-
phorylation level of Spo0A is mediated by various histidine 
kinases in B. subtilis (Fujita and Losick 2005). B. subtilis 
harbours five histidine kinases, the cytoplasmic KinA and 
the membrane-bound kinases, KinB to KinE (Jiang et al. 
2000). Increased levels of KinA, KinB, or KinC trigger 
the entry into the sporulation pathway (Fujita and Losick 
2005). Upon activation of these kinases, phosphorylation 
of Spo0A is achieved via a phosphorelay including Spo0F 
and Spo0B proteins (Hoch 1993). Numerous signals have 
been described that are perceived by these kinases (Mhatre 
et al. 2014), including anaerobic conditions [KinA and KinB 
(Kolodkin-Gal et al. 2013)], plant-derived signals [KinC and 
KinD (Beauregard et al. 2013; Chen et al. 2013)], polyke-
tides [KinC (López et al. 2009)], combination of glycerol 
and manganese [KinD (Shemesh and Chai 2013)], osmotic 
conditions [KinD (Rubinstein et al. 2012)], and potassium 
level [KinB (Grau et al. 2015)]. In response to these or other 
so far unknown signals affecting the kinase activity of Kin 
proteins, Spo0A~P level increases in the cells and modu-
lates the transcription of certain sets of genes. Importantly, 
the increase in the Spo0A~P level is heterogeneous within 
a clonal population (Veening et al. 2005). Positive feedback 
loops contribute to the hetero-chronic timing of Spo0A~P 
dependent activation (Chastanet et al. 2010; de Jong et al. 
2010) that greatly determine the level of phenotypic hetero-
geneity between individual cells. Heterogeneity is proposed 
to originate from the variable gene activities of phosphore-
lay components that result in high cell–cell variability (de 
Jong et al. 2010). The versatility of single master regulator 
modulated pathways is not restricted to Spo0A. The level of 
phosphorylated DegU (DegU~P) determines whether B. sub-
tilis commits to competence for DNA uptake (DegU in the 

non-phosphorylated form), swims or swarms (low DegU~P 
level), activate genes related to biofilm formation (medium 
DegU~P level) or increase protease production (high 
DegU~P level) (Kobayashi 2007; Verhamme et al. 2007). 
Importantly, several genes and phenotypes are affected by 
both Spo0A~P and DegU~P, including biofilm formation 
(Marlow et al. 2014) and protease secretion (Veening et al. 
2008a) presenting a naturally occurring logic-AND gates for 
the expression of certain genes (Veening et al. 2008b).

The level of phosphorylated Spo0A defines 
the activation of sliding, biofilm formation or 
sporulation

The seemingly continuous transition between the different 
differentiation pathways was recently reported in B. subti-
lis using identical environmental conditions, but synthetically 
altering the level of Spo0A~P (Grau et al. 2015). Depend-
ing on the induction level of the sad67 gene that codes for a 
phosphorylation-independent active Spo0A protein (Spo0A*), 
distinct phenotypic traits could be stimulated (Fig. 1). Using 
semi-solid nutrient rich medium (lysogeny broth medium with 
0.7 % agar), low, medium, or high levels of Spo0A* activate 
sliding, architecturally complex colony biofilm development or 
high level of spore production, respectively. Both sliding and 
biofilm formation require the production of exopolysaccharide 
(EPS) and an amphiphilic protein (BslA). Expansion of colony 
biofilm is proposed to be driven through the secretion of EPS 
(Seminara et al. 2012; van Gestel et al. 2014) by generating 
osmotic pressure gradient in the extracellular space. Simi-
lar mechanism may act during sliding, where the EPS driven 
colony expansion additionally requires hydrophobins, BslA 
and surfactin (Grau et al. 2015). It is appealing to hypothesize 
that precise levels of these components determine whether cells 
colonize a surface via sliding or through slight expansion of 
the colony biofilm. Alternatively, sliding perceives spatial fix-
ing of cells in the biofilm, i.e., surface attachment and fruiting 
body formation. However, it is clear that gradual activation of a 
global activator controls the transition between surface spread-
ing and biofilm formation, previously believed to be antago-
nistic and independent prokaryotic social behaviours (Grau 
et al. 2015). The importance of single cell based motility has 
recently been reported during B. subtilis biofilm development 
on the air-medium interface verifying the ecological connec-
tion of distinctive pathways (Hölscher et al. 2015).

Sensor kinases influence which differentiation 
pathways are activated by Spo0A~P

The gradual activation of Spo0A~P is believed to be medi-
ated by the differential activation of histidine kinases of B. 
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subtilis. While effective sliding was shown to be depend-
ent on both KinB and KinC (Grau et al. 2015), the KinC 
and KinD proteins seems to mainly trigger biofilm devel-
opment under aerobic conditions (Mhatre et al. 2014), and 
KinA and KinB present the major input during entry into 
sporulation. KinB-initiated sliding of B. subtilis was pro-
posed be triggered by the level of potassium (Grau et al. 
2015). Sensing of potassium in the medium requires a pro-
tein domain of KinB that shows an intriguing homology to 
the conserved K+-filter sequence of eukaryotic and prokar-
yotic potassium channels. It is hypothesized that while both 
KinB and KinC are required for the activation of sliding, 
these kinases might respond to differential levels of potas-
sium (Grau et al. 2015). Finally, it is reasonable to assume 
that these kinases control the spatial activation of these 
pathways to guarantee that these traits are sequentially acti-
vated during surface colonization. Indeed, colony biofilms 
were reported to enclose spatially and temporally separated 
populations with activation of genes related to flagellum-
dependent motility, matrix production or spore develop-
ment (Vlamakis et al. 2008). Thus, it will be fascinating to 
examine how the activation of these differentiation path-
ways is mediated during sliding at the single cell levels and 
determine how heterogeneity contribute to the smooth tran-
sition between these phenotypes.

Protein phosphorylation is not only restricted to regu-
latory proteins in bacteria, but also found in diverse pro-
cesses, including proteins with enzymatic function or those 
involved in cell division (Derouiche et al. 2015). By adjust-
ing protein phosphorylation, bacteria have implemented a 
general way to modulate the function of global regulators 

depending on the environmental cues. Sensory kinases take 
an important role in differentiating the signals and ade-
quately modifying activities of regulators that initiate cer-
tain bacterial differentiation processes.
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