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MVs	� Membrane vesicles
OMVs	� Outer membrane vesicles
CCR	� Carbon catabolite repression

Introduction

Extracellular DNA (eDNA) is a ubiquitous biopolymer 
found in both terrestrial and aquatic ecosystems, reaching 
concentrations up to 2 μg g−1 of the uppermost horizons 
of soil and up to 0.5 g m−2 in the top centimeter of deep-
sea sediments (Dell’Anno and Danovaro 2005; Niemeyer 
and Gessler 2002). The significance of eDNA in bacterial 
physiology and especially in the life cycle of microbial 
pathogens drew attention in the past decade, as it became 
evident that it plays an important role in bacterial patho-
genicity, transition fitness, environmental survival and 
evolution. Bacteria encounter eDNA in the host and out-
side environment. Back in 1928, F. Griffith reported that 
pneumococci are capable of transferring genetic informa-
tion through a process known as transformation, not know-
ing by then that the transferred material is eDNA (Grif-
fith 1928). In 1956, Catlin observed eDNA as a structural 
component of bacterial biofilms and in 1980s eDNA was 
determined as a significant component of small intesti-
nal mucus in rabbit, but its origin in such environments 
remained speculative (Catlin 1956; Ferencz et  al. 1980). 
Since then, we began to understand how eDNA can be 
actively secreted or liberated from eukaryotic and prokary-
otic cells and how, depending on environmental condi-
tions, bacteria can utilize free DNA as a nutrient source, 
for recombination into the chromosome, for repair of their 
own DNA or as a building element in bacterial biofilms 
(Antonova and Hammer 2015; Dubnau 1999; Flemming 
and Wingender 2010). In this review, we provide a brief 
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overview of eDNA occurrence and role for bacterial life-
styles, follow the origin of eDNA to its degradation and 
highlight the importance of eDNA in bacterial life cycle 
(Fig. 1).

eDNA is an important component of the biofilm 
matrix

One stage of bacterial life cycles with relative high local 
eDNA concentrations are biofilms, which represent 
multicellular surface communities formed by different 
microorganisms on biotic or abiotic surfaces. Bacte-
ria can form biofilms in aquatic and terrestrial ecosys-
tems as well as in the host as a survival mode, which 
protects against harsh environmental conditions such 
as pH and temperature changes, antimicrobial agents, 
digestive enzymes, UV light, dehydration or predators 
(Hall-Stoodley et  al. 2004). The substantial segment of 
extracellular matrix of mature biofilms is produced by 

the bacteria themselves and consists mainly of proteins, 
polysaccharides, membrane vesicles and eDNA (Flem-
ming and Wingender 2010). Many studies of biofilms 
formed by Gram-positive and Gram-negative bacteria 
such as Staphylococcus aureus, Listeria monocytogenes, 
Pseudomonas aeruginosa, Neisseria meningitidis and 
Vibrio cholerae reveal eDNA to be required for biofilm 
organization, maturation or even initial attachment of 
bacteria to the surface (Harmsen et  al. 2010; Lappann 
et al. 2010; Mann et al. 2009; Seper et al. 2011; Whitch-
urch et  al. 2002). Besides its function as a structural 
component, Gloag and coworkers additionally showed 
that eDNA was important for coordination of bacterial 
alignment and movements during biofilm growth in P. 
aeruginosa (Gloag et  al. 2013). In contrast, eDNA hin-
ders biofilm development of Salmonella enterica ser. 
Typhimurium and ser. Typhi on abiotic surfaces and 
prevents Caulobacter crescentus swarmer progeny cells 
from settling into biofilm (Berne et al. 2010; Wang et al. 
2014). For certain bacteria that form biofilm inside the 
host, an additional beneficial feature of eDNA is the 
induction of genes responsible for resistance to host 
antimicrobial peptides, as shown for Salmonella enter-
ica ser. Typhimurium and P. aeruginosa (Johnson et  al. 
2013; Mulcahy et  al. 2008). The presence of eDNA in 
bacterial biofilms is frequently accompanied by secre-
tion of bacterial nucleases, which makes it a shapeable 
flexible structural component, adjustable to the needs of 
the bacterial community. Deletion of extracellular nucle-
ases generally results in compact, thick and unstructured 
biofilms. Compared to wild-type these mutant biofilms 
lack visible fluid-filled channels characteristic of mature 
three-dimensional biofilm matrix (Cho et al. 2015; Kied-
rowski et  al. 2011; Seper et  al. 2011; Steichen et  al. 
2011). In addition, nucleases are key enzymes, which 
play a critical role in the degradation of eDNA allowing 
its utilization as a carbon, nitrogen and phosphate source 
in nutrient-limited environments (Mulcahy et  al. 2010; 
Pinchuk et  al. 2008; Seper et  al. 2011). The presence 
of eDNA in biofilms is not limited to the prokaryotic 
world. Recently, several reports demonstrate that eDNA 
contributes also to the maintenance and structural integ-
rity of eukaryotic biofilms such as of Candida albicans 
and Aspergillus fumigatus, where it is hypothesized to 
confer antifungal resistance (Martins et al. 2010; Mathe 
and Van Dijck 2013; Rajendran et  al. 2013). In labora-
tory research, we tend to see biofilms as single species 
communities, which is likely not the case in nature. 
Thus, eDNA could be a vital content produced, modu-
lated and shared for use by multiple species within the 
biofilm association. Elucidation of such interactions and 
cross-talks between different species will be a future 
research task.

Fig. 1   Physiological implications of extracellular DNA (eDNA). 
Bacteria encounter eDNA, the ubiquitous biopolymer, within the ter-
restrial and aquatic environments. Pathogenic microorganisms also 
meet significant amounts of eDNA in the host during infection. Bac-
teria can utilize eDNA dependent on the environmental condition as 
nutrient source, for horizontal gene transfer or as biofilm matrix com-
ponent. By means of degradative enzymes they can not only modulate 
the polymer, but also evade the innate immune defense mechanism 
based on eDNA
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Bacteria encounter eDNA in the host and outside 
environment

Several mechanisms of eDNA release have been reported 
in recent years. eDNA can originate from other microor-
ganisms, host or bacteria themselves. For S. aureus and 
Enterococcus faecalis, it has been proposed that eDNA 
release in biofilm development is mainly dependent on two 
mechanisms of autolysis: programmed cell death (altruistic 
suicide) and killing of sister cells (fratricide) (Montanaro 
et  al. 2011; Rice et  al. 2007; Thomas et  al. 2008, 2009). 
Concordantly, decreased eDNA amounts and reduced bio-
film formation have been observed in N. meningitidis and 
V. cholerae ampD mutants, which exhibit reduced autoly-
sis (Lappann et  al. 2010; Seper et  al. 2011). In dual spe-
cies cultures, Streptococcus sanguinis and Streptococcus 
gordonii release eDNA in a process induced by pyruvate 
oxidase-dependent production of H2O2. Such an autolysis-
independent DNA release is suggested to be an adaptation 
to the competitive oral biofilm environment, where both 
species can efficiently compete with other H2O2-sensitive 
colonizers and autolysis could create open spaces for com-
petitors to invade (Kreth et  al. 2009). Besides bacterial 
eDNA release, eukaryotes can also be a donor of eDNA. 
For example, throughout the bacterial disease, several path-
ogens secrete pore-forming toxins, e.g., the alpha-hemoly-
sin of E. coli, the cytolysin of V. cholerae, the listeriolysin 
O of L. monocytogenes, the alpha-toxin of S. aureus, or 
toxins that act as inhibitors on the protein synthesis, e.g., 
exotoxin A of P. aeruginosa, to induce apoptosis, necro-
sis and lysis of host cells and therefore promote liberation 
of DNA (Bayles et al. 1998; Fernandez-Prada et al. 1998; 
Guzman et al. 1996; Jonas et al. 1994; Merrick et al. 1997; 
Morimoto and Bonavida 1992; Moss et  al. 1999; Rogers 
et al. 1996; Russo et al. 2005; Saka et al. 2008). Notably, 
in a variety of bacteria such as Streptococcus pneumoniae, 
S. aureus and N. meningitidis, typical cytoplasmic pro-
teins are found to be be released via non-classical signal-
dependent pathways (Bergmann et  al. 2001; Gotz et  al. 
2015; Kolberg et al. 2008). Originally thought to occur via 
cell lysis, there is mounting evidence that excretion of such 
proteins involves a programmed process as part of their 
normal cell cycle, which could also be a relevant mecha-
nism for eDNA liberation (Ebner et al. 2015a, b). Another 
source of eDNA in the host is a defense mechanism by the 
innate immune system known as neutrophil extracellular 
traps (NETs). NETs originate from neutrophils undergo-
ing a programmed cell death upon activation through a 
variety of microbial pathogens (Fuchs et  al. 2007). They 
release nuclear or mitochondrial DNA backbone associ-
ated with histones and granular and cytoplasmic proteins 
to capture and kill the intruders (Brinkmann et  al. 2004). 
The immobilization furthermore prevents spread of the 

microbes from the initial site of infection and recruits addi-
tional professional phagocytes to eliminate the pathogens. 
In return, the microbes have evolved to escape these dis-
arming and killing traps. The best strategy to evade NETs 
is to actively degrade them. Since the main component is 
DNA, NETs can be efficiently degraded by DNases, which 
has been demonstrated to be relevant for virulence fitness 
of several bacteria, including the group A Streptococcus, S. 
aureus, S. pneumoniae and V. cholerae (Beiter et al. 2006; 
Berends et al. 2010; Brinkmann et al. 2004; Buchanan et al. 
2006; Seper et  al. 2013). Recently, it was shown that S. 
aureus can further convert the DNA derived from NETs to 
2′-deoxyadenosine by the activity of an adenosine synthase 
A on top of the endo-exonuclease Nuc (Thammavongsa 
et  al. 2011, 2013). The released 2′-deoxyadenosine trig-
gers apoptosis of macrophages via accumulation of intra-
cellular dATP and activation of caspase-3 (Koopman et al. 
1994; Thammavongsa et  al. 2013). Thus, S. aureus not 
only evades NETs, but also turns the DNA of this defense 
mechanism back against the host by the use of bacterial 
enzymes.

Additionally to their function of releasing pathogens 
from NETs, nucleases can also mediate dispersal of bio-
films. For example the two extracellular nucleases of V. 
cholerae are crucial for biofilm detachment (Seper et  al. 
2011). The impact of this biofilm dispersion is highlighted 
by the in vivo fitness of V. cholerae, the causative agent of 
the waterborne diarrheal disease cholera. V. cholerae bio-
film clumps derived from the aquatic reservoir are a likely 
form in which the pathogen is taken up by humans. Such 
infectious aggregates provide a concentrated bacterial 
dose and are protected against acids or bile salts (Hall-
Stoodley and Stoodley 2005; Hartley et al. 2006; Huq et al. 
1996; Nalin et al. 1978, 1979; Pruzzo et al. 2008; Zhu and 
Mekalanos 2003). Indeed, biofilm-derived V. cholerae out-
compete their planktonic counterparts in the murine model 
(Tamayo et  al. 2010). However, for successful coloniza-
tion in the small intestine V. cholerae has to detach from 
the biofilm to adhere and penetrate through the mucosal 
layer aided by motility, which requires a planktonic state 
(Butler and Camilli 2005; Freter and Jones 1976; Freter 
and O’Brien 1981; Zhu and Mekalanos 2003). Concord-
antly, biofilm clumps of extracellular nuclease mutants are 
attenuated in vivo, as biofilm detachment of these mutants 
is massively decreased (Seper et al. 2011).

eDNA serves as element for evolution and nutrient 
source

Extracellular DNA is also a pool for horizontal gene trans-
fer (HGT), which is defined by the utilization of exogenous 
DNA for the purpose of genetic recombination and requires 
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natural competence of bacterial cells to yield evolutionar-
ily favorable properties. Generally, active DNA release for 
the purpose of HGT via bacterial conjugation occurs via 
type IV secretion system, which requires cell–cell con-
tact. To our best knowledge, secretion of DNA via type 
IV secretion system without requirement of a physical 
cell–cell contact has only been documented for Neisseria 
gonorrhoeae. The consequence of such system is spread-
ing genetic information through the population and the pos-
sibility of using eDNA for nutrient acquisition or biofilm 
formation without reducing cell population and promoting 
host immune response (Hamilton et al. 2005; Zweig et al. 
2014). eDNA can also be found in association with outer 
membrane vesicles (OMVs) of Gram-negative species 
(Dorward et al. 1989; Garon et al. 1989; Loeb et al. 1981). 
Interestingly, OMVs in Helicobacter pylori and Pseu-
domonas putida promote biofilm formation (Baumgarten 
et al. 2012; Yonezawa et al. 2009). The same is known for 
Acinetobacter baumannii where release of OMVs is one of 
the main mechanisms that contribute to total availability 
of eDNA (Sahu et al. 2012). The export of DNA via mem-
brane vesicles (MVs) has been observed for a long time as 
a characteristic of Gram-negative species (Dorward and 
Garon 1990); however, a recent study by Liao et al. showed 
the presence of eDNA in MVs of the Gram-positive bac-
terium Streptococcus mutans (Liao et al. 2014). MVs con-
taining DNA increase the efficiency of DNA uptake and 
genetic recombination, as it has been shown for example 
in H. influenzae and E. coli, most likely because DNA in 
vesicles is protected from degradation and vesicles may 
efficiently fuse back into the cell membrane (Deich and 
Hoyer 1982; Kahn et  al. 1983; Renelli et  al. 2004; Yaron 
et al. 2000). Thus, MVs might act as DNA delivery vehi-
cles, but the exact localization of the DNA, the molecular 
mechanism of DNA deposition in vesicles and later uptake 
in the donor cell as well as the relevance of MVs-mediated 
HGT need to be investigated in the future. A recent work of 
Borgeaud et al. demonstrates that V. cholerae is capable of 
type VI secretion system-mediated killing of nonimmune 
neighboring cells and liberation of their DNA, which can 
subsequently act as eDNA for HGT (Borgeaud et al. 2015).

Other examples for HGT include Campylobacter jejuni 
where eDNA facilitates transfer of genetic traits between 
bacteria in biofilm, which can contribute to spread of anti-
microbial resistance (Brown et  al. 2015). Furthermore, 
antibiotic resistances encoded on plasmids can spread via 
transformation in multispecies oral biofilms (Hannan et al. 
2010). Notably, regulatory circuits of biofilm formation, 
quorum sensing (QS), carbon catabolite repression (CCR) 
and competence are frequently linked in bacteria (Spoer-
ing and Gilmore 2006; Yang and Lan 2015). In S. mutans, 
QS signal stimulates the uptake of eDNA causing cells in 
biofilm to undergo an enhanced competence induction 

(Håvarstein and Morrison 1999; Li et al. 2001). Moreover, 
transcription factor CcpA regulates competence and bio-
film development in S. gordonii during CCR to ensure that 
cell energy is used for uptake of preferable carbon source 
(Zheng et al. 2012). In H. influenzae, competence is regu-
lated by the availability of nucleic acid precursors, which 
is under control of CRP-dependent regulon (MacFadyen 
et al. 2001; Redfield et al. 2005). As nutrient starvation is 
the main signal for competence induction in H. influenzae, 
it has been suggested that it emerged as a ‘DNA for food’ 
uptake system, rather than being used for HGT (Redfield 
1993). In addition, the competence system in E.coli possi-
bly favors utilization of DNA for the purpose of nutrient 
acquisition rather than processing it for genetic transforma-
tion (Finkel and Kolter 2001).

One of the intensively studied regulatory systems of 
competence is V. cholerae. Meibom et  al. showed that V. 
cholerae induces natural competence when growing on 
chitin, an abundant biopolymer that can be readily used as 
a carbon source, suggesting another example of bacterial 
competence during CCR (Meibom et al. 2005). Thus, it is 
not surprising that the above-mentioned type VI secretion 
system in V. cholerae, which promotes bacterial predation 
when growing on chitin, is a part of the competence regu-
lon (Borgeaud et  al. 2015). Chitin utilization and compe-
tence genes in V. cholerae are under positive control of the 
QS regulator HapR, the cytidine repressor CytR and CRP, 
a global regulator of CCR (Antonova et al. 2012; Antonova 
and Hammer 2015). Interestingly, CytR acts on the compe-
tence genes as an anti-activator in concert with the CRP–
cAMP complex, while free cytidine is a repressor for natu-
ral competence (Antonova et al. 2012). In contrast, HapR 
acts as a repressor for the secreted endonuclease Dns, and 
CytR negatively controls nucleoside uptake via inner mem-
brane transporters in V. cholerae (Blokesch and Schoolnik 
2008; Gumpenberger et al. 2015; Haugo and Watnick 2002; 
Lo Scrudato and Blokesch 2012). Additionally, the CRP–
cAMP complex positively regulates the nucleoside uptake 
(Gumpenberger et  al. 2015). Taken together, absence of 
PTS sugars resulting in high levels of cAMP is a prerequi-
site for activation of competence and utilization of DNA as 
nutrient source. At low cell densities and presence of nucle-
otide expression of genes involved in utilization of eDNA, 
including the secreted endonuclease Dns may facilitate sur-
vival using eDNA as nutrient source. At high cell density 
and presence of nutrient sources other than nucleotides, 
eDNA utilization is repressed and the uptake of intact DNA 
and potential genome diversification by HGT is in favor.

The complex pathway of eDNA degradation in V. chol-
erae and the subsequent utilization of nucleotides as phos-
phate, carbon and nitrogen source has recently been solved. 
Extracellular nucleases Xds and Dns are both induced 
under low phosphate conditions (McDonough et al. 2014; 
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Seper et  al. 2011), causing extracellular accumulation of 
nucleotides. Nucleotides can transit through outer mem-
brane via pore-forming outer membrane protein OmpK, a 
homolog of Tsx in E. coli (Maier et al. 1988; Osborn and 
Wu 1980), and are subsequently dephosphorylated in the 
periplasm via three periplasmic phosphatases (nucleoti-
dases) with different specificities. In detail, UshA facili-
tates phosphate removal from all four 5′ deoxynucleo-
tides, CpdB from 3′AMP, 3′dGMP and 3′TMP and PhoX 
preferentially from 3′dAMP and 3′dCMP (McDonough 
et al. 2015). Free nucleosides are then readily taken up in 
the cell by three NupC nucleoside transport systems and 
used as a source of carbon and nitrogen (Gumpenberger 
et al. 2015), while phosphate is taken up by the Pst/PhoU 
system which has been identified in the genome and dem-
onstrated as active (Heidelberg et  al. 2000; McDonough 
et  al. 2014; Pratt et  al. 2009). All three nucleoside trans-
port systems are functional, but exhibit slightly different 
nucleobase specificity and activities (Gumpenberger et  al. 
2015). Interestingly, a mutant lacking all three nucleoside 
transporters shows no attenuation in  vivo, but exhibits a 
fitness disadvantage when transitioning from the host to 
nutrient-poor aquatic environment (Gumpenberger et  al. 
2015). Similar observations have been previously reported 
for hexose-6-phosphate uptake in V. cholerae (Moisi et al. 
2013). Notably, V. cholerae is capable of storing carbon 
and phosphate in the form of glycogen or polyphosphate, 
respectively (Bourassa and Camilli 2009; Jahid et al. 2006). 
Such findings reinforce the hypothesis in which nucleoside 
uptake genes, like many other genes induced in later stages 
of the V. cholerae infection, do not play a direct role in the 
in vivo fitness, but rather increase the transition fitness of 
the pathogen due to the severe drop in nutrient source avail-
ability upon exiting from the host into the aquatic environ-
ments (Schild et al. 2007).

Originally described in E. coli, NupC transport system 
was shown to be a member of concentrative nucleoside trans-
porter (CNT) family, driven by H+-motive force and dis-
criminative for adenosine and cytidine (Munch-Petersen and 
Mygind 1976; Patching et al. 2005). Several homologs of E. 
coli NupC have been known to act as nucleoside transport-
ers in S. aureus, H. pylori or Bacillus subtilis where nucleo-
sides can be used as energy source or for de novo synthesis 
of nucleotides (Kriegeskorte et al. 2014; Miller et al. 2012; 
Saxild et al. 1996). Interestingly, three NupC systems of V. 
cholerae are the first bacterial nucleoside transport systems, 
which use Na+ for effective transport like their homologs 
hCNT or rCNT in humans or rodents, respectively (Johnson 
et al. 2012; Ritzel et al. 1997). Therefore, V. cholerae might 
be an ideal bacterial candidate for investigating the cellular 
uptake route for many cytotoxic nucleoside derivatives used 
in the treatment of viral and neoplastic diseases (Baldwin 
et al. 1999; Johnson et al. 2012, 2014).

Conclusion and future perspectives

Throughout the evolution, bacteria have been forced to 
acquire mechanisms, which would enable fast regulation 
of gene expression in response to different environmen-
tal signals. Such genes are often involved in major physi-
ological changes, such as transition from host to the out-
side environment and switch from planktonic to sessile 
state or vice versa. Especially, biofilm formation is a sur-
vival strategy of many bacteria and can be seen in the host, 
or aquatic or terrestrial habitat. Cells in the biofilm are 
embedded in the dynamic matrix where they reach home-
ostasis and are organized to exploit all available nutri-
ents (Sutherland 2001). Particularly, eDNA has recently 
emerged as an important component of the biofilm matrix 
which forms agglomerates with other matrix components 
and therefore acts as a ‘glue’ between cells, contributing 
to its stability (Peterson et al. 2013). Thus, eDNA can be 
seen as a potential target for biofilm control, as destabi-
lizing of eDNA interactions with other matrix components 
generally leads to destabilization of biofilm and increased 
antibiotic susceptibility (Okshevsky et  al. 2015). In this 
review, we also focused on degradation of eDNA and its 
subsequent uptake into the cell via nucleoside transporters 
in human pathogen V. cholerae, which like many bacteria 
can utilize eDNA as source of nutrients. Yet, many ques-
tions are left unanswered—Why are V. cholerae transport-
ers sodium dependent? Why V. cholerae needs three trans-
porters? The answer could lay in the observation of its 
life cycle, which is marked by distinct changes in nutrient 
availability, osmolarity, pH and temperature. Similarly, B. 
subtilis also encodes three nucleoside transporters. B. sub-
tilis enters a dormant stage (spore) when nutrients in the 
environment are deprived. The existence of three nucleo-
side transport systems may enable bacteria to selectively 
take up compounds relevant for a specific stage of the 
life cycle. Concordantly, the regulation of such systems 
ensures that, once the cell has started the differentiation or 
adaptation, they can be completed even with environmen-
tal changes (Beaman et al. 1983). Whether this is also true 
for other pathogens with complex life cycles, which are 
able to make use of eDNA as a nutrient source, remains to 
be elucidated.
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