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Abstract Ultraviolet radiation from sunlight is probably
the most detrimental environmental factor affecting the via-
bility of entomopathogenic fungi applied to solar-exposed
sites (e.g., leaves) for pest control. Most entomopathogenic
fungi are sensitive to UV radiation, but there is great inter-
and intraspecies variability in susceptibility to UV. This
variability may reflect natural adaptations of isolates to
their different environmental conditions. Selecting strains
with outstanding natural tolerance to UV is considered as
an important step to identify promising biological control
agents. However, reports on tolerance among the isolates
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used to date must be analyzed carefully due to consider-
able variations in the methods used to garner the data.
The current review presents tables listing many studies in
which different methods were applied to check natural and
enhanced tolerance to UV stress of numerous entomopatho-
genic fungi, including several well-known isolates of these
fungi. The assessment of UV tolerance is usually conducted
with conidia using dose-response methods, wherein the UV
dose is calculated simply by multiplying the total irradi-
ance by the period (time) of exposure. Although irradiation
from lamps seldom presents an environmentally realistic
spectral distribution, laboratory tests circumvent the uncon-
trollable circumstances associated with field assays. Most
attempts to increase field persistence of microbial agents
have included formulating conidia with UV protectants;
however, in many cases, field efficacy of formulated fungi
is still not fully adequate for dependable pest control.

Keywords Metarhizium - Beauveria - ultraviolet
radiation - fungal tolerance - formulation

Introduction

Many natural abiotic factors are known to limit the ability
of fungal agent to biologically control arthropod pests, but
solar ultraviolet (UV) radiation (UV-A and UV-B) is prob-
ably the most detrimental environmental factor affecting
the viability of fungi applied for pest control (Ignoffo and
Garcia 1992; Moore et al. 1993). Most UV-tolerant iso-
lates probably can survive a few hours of direct exposure
to solar UV radiation, but UV-susceptible isolates succumb.
In addition, the exposure of fungi to UV-B (Fernandes et al.
2007; Fargues et al. 1996; Braga et al. 2001d; Nascimento
et al. 2010) or UV-A (Fargues et al. 1997; Braga et al.
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2001c) may delay conidial germination of survivors and
reduce fungal development, which decreases the persis-
tence and efficacy of infective propagules in the field (Zim-
mermann 1982; Roberts and Campbell 1977). Attempts
to overcome these circumstances have focused on select-
ing strains with natural UV tolerance and on formulating
conidia with adjuvants to absorb or to block solar radiation
and, thereby, protect fungi from UV radiation.

The selection of UV-tolerant strains is not simple. Many
conditions may interfere with the evaluation of conidial
tolerance of entomopathogenic fungi to UV, because many
conditions influence their susceptibility or tolerance to UV.
For example, tolerance of fungi to UV may vary accord-
ing to (1) the nutrient supplied for cultivation; (2) the expo-
sure or restriction of fungi to visible light during cultiva-
tion or after irradiation; (3) the age of fungal cultures and
other conditions surrounding UV exposure. Accordingly,
comparisons of UV tolerance among isolates from differ-
ent studies must be carefully analyzed due to variations in
methods. Variability in susceptibility of fungi to UV seems
to be related to the habitat or the latitude from where fungi
were isolated; no correlation, however, has been found
in relation to fungal species, host, or substrate of origin
(Braga et al. 2001d; Fernandes et al. 2007, 2011; Bidochka
et al. 2001; Fargues et al. 1996).

Formulation of fungal propagules has been investigated
as a tool to protect fungi to some extent from UV radia-
tion. Oil-based formulations are reportedly able to signifi-
cantly enhance the tolerance of conidia to UV radiation,
with advanced germination of conidia, in comparison to
conidia suspended in conventional water-based formula-
tions (Alves et al. 1998). Accordingly, oil-based formu-
lations prepared with emulsifiable or non-emulsifiable
mineral or vegetable oils have been tested. Additional
protection of conidia to UV has also been reported when
some chemical sunscreens were incorporated into water-
or oil-based formulations (Hunt et al. 1994; Moore et al.
1993; Inglis et al. 1995).

Selecting the strains with high virulence to the target
pest, and selecting from those candidate isolates with the
most outstanding natural tolerance to UV are important
steps to identifying promising biological control agents.
Moreover, formulating conidia appropriately before con-
sidering field application is an important approach for
producing efficient biological control products. The cur-
rent review reports the effort of many studies in searching
for entomopathogenic fungi naturally tolerant to UV radi-
ation and in investigating the relationship between their
UV tolerance and the origins of isolates. Furthermore,
this review also focuses on formulations used to enhance
the tolerance of entomopathogenic fungi to UV, as part
of a strategy to increase the efficacy of biological control
agents.
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Seeking fungal isolates naturally tolerant to UV

Entomopathogenic fungi are, in general, very sensitive to
UV radiation. The UV tolerance of Beauveria bassiana
s.l. (Inglis et al. 1995; Morley Davies et al. 1996; Fargues
et al. 1996; Huang and Feng 2009; Posadas et al. 2012),
Isaria fumosorosea (Fargues et al. 1996), Metarhizium
acridum (Morley Davies et al. 1996; Fargues et al. 1996;
Braga et al. 2001d), and Metarhizium. anisopliae s.1. (Far-
gues et al. 1996; Braga et al. 2001d) have been extensively
researched. Other less investigated species include Apha-
nocladium album, Lecanicillium lecanii, Lecanicillium
aphanocladii, Simplicillium lanosoniveum (Braga et al.
2002), Engyodontium albus, Beauveria spp. other than B.
bassiana (Fernandes et al. 2007), and Tolypocladium spp.
(Santos et al. 2011). Great inter- and intraspecies variabil-
ity in susceptibility to solar irradiation has been reported.
For example, the survival rate of B. bassiana s.l. to UV
radiation ranged from 0 to 100 % [at 2.16 kJ m™2 total
irradiance (Fargues et al. 1996)], and from O to 80 %, with
most isolates presenting less than 50 % [at 978 mW m 2
Quaite-weighted irradiance, 7.04 kJ m~2 dose (Fernandes
et al. 2007)]; whereas M. anisopliae s.l. ranged from 0 to
42 9% (Fargues et al. 1996), and M. acridum ranged from
18 to 87 % (Fargues et al. 1996). According to Braga et al.
(2001d), the tolerance of 30 isolates of Metarhizium spp. to
UV (19.9 kJ m™2 Quaite-weighted dose) ranged from 0 to
approximately 55 %. The intraspecific variability in toler-
ance to radiation indicates that selection of tolerant fungal
isolates may be appropriate for considering the develop-
ment of products for biological control of pests in insolated
environments (Huang and Feng 2009; Fargues et al. 1996;
Morley Davies et al. 1996; Fernandes et al. 2007).
Variability in tolerance to UV among isolates may
reflect natural adaptation to different environmental condi-
tions. Accordingly, comparison between origin of isolates
and their tolerance to UV has shown a positive relationship
for some species of entomopathogenic fungi. Isolates of 1.
fumosorosea from warm regions were more tolerant to UV
(1 h exposure = 1.08 kJ m~2) than isolates from temper-
ate regions (Fargues et al. 1996). Likewise, a significant
inverse correlation was reported between tolerance to UV-B
radiation at both 1-h and 2-h exposure to 920 mW m~2
(doses of 3.3 and 6.6 kJ m~2) and 1200 mW m~? (doses
of 4.3 and 8.6 kJ m~?) Quaite-weighted irradiance and the
latitude of origin of 26 Metarhizium strains from sites at
latitudes from 61°N to 54°S. The higher the latitude origin,
the lower the tolerance of isolates to UV-B (Braga et al.
2001d). Similar correlation was reported for B. bassiana
s.l. isolates, where a latitudinal adaptation to UV-B irradia-
tion was detected, i.e., isolates originating near the equa-
tor tended to have the highest UV-B tolerances (Fernandes
et al. 2007, 2009). An association of genetic populations
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of M. anisopliae s.1. with their habitat types was reported
as well. Isolates originated from agricultural areas showed
marked resilience to UV exposure compared to isolates
obtained from forested areas (Bidochka et al. 2001). Con-
versely, conidia of Hirsutella thompsonii obtained from dif-
ferent geographical locations exhibited identical UV (200-
300 nm) inactivation kinetics (Tuveson and McCoy 1982).
The tolerance of B. bassiana s.l. to UV radiation also did
not reveal apparent relationship with the geoclimatic origin
of the isolates (Fargues et al. 1996). No positive correlation
has been reported in consideration with entomopathogenic
fungi species, their host, or substrate of origin (Braga et al.
2001d; Fernandes et al. 2007, 2011; Bidochka et al. 2001;
Fargues et al. 1996).

Variation in susceptibility of entomopathogenic fungi to
UV was also related to the color of conidia, since conid-
ial pigmentation seems to be very efficient in protecting
against UV radiation, directly (Braga et al. 2006; Rangel
et al. 2006b; Nascimento et al. 2010), or indirectly because
enzymes involved in pigment-synthesis pathways are
also required for tolerance to abiotic stresses (Fang et al.
2010). A study conducted with simulated ultraviolet sun-
light reported that conidial color can influence the inac-
tivation of conidia by the radiation, where the UV radia-
tion may be blocked on black conidia whereas penetration
of UV may vary for other pigmented conidia (Ignoffo and
Garcia 1992). Accordingly, the black conidia of Aspergil-
lus niger presented a remarkably higher mean half-life of
14.8 h when exposed to simulated sunlight than those of all
other species investigated, which included less-pigmented
conidia of Beauveria, Nomuraea, Metarhizium, and a tan-
colored mutant of A. niger, with a half-life ranging from
1.1 h for Nomuraea rileyi to 2 h for the tan-colored mutant
A. niger (Ignoffo and Garcia 1992). Color mutants of the
darkly pigmented conidia M. robertsii wild-type ARSEF 23
were, in general, significantly more tolerant to UV than the
less-pigmented conidia of its mutants (Braga et al. 2006;
Rangel et al. 2006b; Nascimento et al. 2010). Conversely,
other studies report that the hyaline conidia of B. bassiana
s.l. isolates were generally more tolerant to UV than the
darkly pigmented conidia of M. anisopliae s.1. or the lightly
pigmented conidia of I. fumosorosea, with 61 % of the B.
bassiana s.l. isolates exhibiting over 50 % survival after
1 h of irradiation (1.08 kJ m~2), whereas 26 % of the M.
anisopliae s.1. and only 3 % of the 1. fumosorosea exhibited
over 50 % survival (Fargues et al. 1996). This indicates that
conidial pigmentation may be important but not crucial in
protecting conidia from UV radiation.

Variability of entomopathogenic fungi to UV tolerance
is mostly assessed by dose-response methods, where the
samples usually are exposed to a single dose of radiation.
Recent studies, however, have proposed a multiple-dose
bioassay system, which estimates a lethal UV-B dose (e.g.,

LDs,) from the survival-dose relationship for an isolate.
This system was based on modeling of the inverted sigmoid
dose-survival trend to generate absolute estimates of lethal
UV doses to compare the tested isolates (Huang and Feng
2009; Yao et al. 2010). In dose-response methods for eval-
uating the susceptibility of fungi to UV radiation, the UV
dose is calculated by multiplying the total irradiance by the
period of exposure. However, not only the total irradiance,
but the distribution of spectral irradiance is also an impor-
tant consideration for evaluating the response of fungi to
irradiation or for comparing the tolerance of isolates based
on data generated from different studies, because the fungal
responses to UV are strongly wavelength dependent. While
short wavelengths of UV radiation (especially UV-B =
280-315 nm) are detrimental to entomopathogenic fungi,
longer wavelengths (375—425 nm) may promote photo-
reactivation and stimulate recovery of damaged conidia
(Fargues et al. 1997; Braga et al. 2002), because photol-
yase enzymes respond to even very low doses of UV-A or
white light. Therefore, conidia exposed to simulated sun-
light (short and long wavelengths combined) may benefit
from long wavelengths in comparison to conidia exposed
to UV-B only. Among the fractions of the UV spectrum
that reach the surface of the Earth, UV-B (290-315 nm)
is the most harmful to biological systems, as reviewed by
Braga et al. (2001d). Fargues et al. (1997) showed that the
detrimental effects of exposure to simulated solar radia-
tion (approximately 290-2200 nm) depend mainly on the
quantity of UV-B received by the inoculum. These results
suggest that the dose of UV-B is the most efficient vari-
able to express the effect of sunlight on the persistence of
entomopathogenic fungi in irradiated environments.

Laboratory tests investigating the tolerance of fungi
to solar radiation should not be assumed to represent real
field conditions. Under natural conditions, the scenario is
very dynamic and the angle of incidence of radiation and
its spectrum which are constantly changing (Fargues et al.
1996), and the fungal infection processes also are dynamic.
Nevertheless, most studies on the effect of solar radiation
on biological systems are conducted in the laboratory due
to the uncontrollable circumstances associated with varia-
tion of intensity and spectral content from sunlight, such as
time of the day, season, location, altitude, and atmospheric
conditions.

Because irradiation from lamps seldom provide envi-
ronmentally realistic spectral distributions, it is important
to quantify the biological effectiveness of irradiances used
for the UV exposure experiments (Braga et al. 2001c).
The BSWF (Biological Spectral Weighting Functions)
weighs the effectiveness of each wavelength. Although
there are no specific action spectra for the inactivation of
fungal conidia, many studies have used the BSWF based
on action spectra developed for other biological systems
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(Braga et al. 2001c; Caldwell and Flint 1997). A frequently
used spectrum for fungi is a DNA-damage function devel-
oped by Quaite et al. (1992), which attributes most of the
effectiveness to UV-B and short UV-A wavelengths (Braga
et al. 2001c). Accordingly, many studies that evaluated the
effect of UV radiation on entomopathogenic fungi have
calculated the dose based on the Quaite-weighted irradi-
ance rather than on the total irradiance (Fernandes et al.
2007; Braga et al. 2001a, d; Rangel et al. 2004; Nasci-
mento et al. 2010). For a more detailed discussion on this
subject, see Braga et al. (2015) in this issue of Current
Genetics.

Most tolerance tests of entomopathogenic fungi are con-
ducted with dormant conidia (Braga et al. 2015). However,
the effects of irradiance on various life-cycle stages of the
fungus may differ. For example, the final phase of germina-
tion of Metarhizium, during or after germ tube emergence,
is the most sensitive stage to UV-B (Braga et al. 2001b). In
nature, the high tolerance of dormant conidia to UV may
increase their persistence in the field; but if the conidium
reaches the arthropod cuticle and germinates, and if at that
point the fungus is exposed to UV radiation, then the fun-
gal infection may be strongly compromised. Blastospores
(short hyphal bodies produced in vitro) of entomopatho-
genic fungi were also very sensitive to UV (Ottati-de-Lima
et al. 2012), and in preliminary laboratory tests with two B.
bassiana s.l. isolates, these blastospores were as sensitive
to UV as were conidia (at 839 mW m™2 Quaite-weighted
irradiance and dose of 1.51 kJ m~?) (Bernardo and Fer-
nandes, unpublished data). Although hyphal bodies form
naturally, they are protected from sunlight because they are
in the hemocoel of their infected hosts. Blastospores also
are produced in liquid media for use in commercialized
biocontrol formulations (Faria and Wraight 2007), but their
efficacy may be reduced by direct exposure to solar radia-
tion during field applications.

M. acridum is reported to be one of the most tolerant
entomopathogenic fungi to UV radiation (Fargues et al.
1996). ARSEF 324, a M. acridum isolate from Queens-
land, Australia, is one of the most UV-tolerant strains
yet tested (Rangel et al. 2005b; Braga et al. 2001d). This
marked tolerance of ARSEF 324 may be correlated with its
ecological conditions during its evolution, which was an
area that exerted strong selective pressure for tolerance to
high insolation (Rangel et al. 2005a). Among the Metarhi-
zium spp. from the anisopliae complex, M. robertsii
ARSEF 2575 is a strain with marked UV-B tolerance. For
example, in a comparison of 24 non-M. acridum isolates, it
was the only one that had some conidial germination after
exposure to UV-B [19.9 kJ m~2 (Quaite-weighted dose)]
(Braga et al. 2001d). The susceptibilities/tolerances to UV
of some well-known strains of entomopathogenic fungi are
listed in Table 1.

@ Springer

Conditions influencing the tolerance
of entomopathogenic fungi to UV

Many studies have aimed to select entomopathogenic fungi
with marked natural tolerance to UV stress. The tolerance
of fungal isolates, however, may be masked by laboratory
methods. Accordingly, a single fungal isolate may demon-
strate different responses due to the methods applied during
investigation. The methods may be very diverse, for exam-
ple, in regard to 1) the culture media for growing the fungi,
2) the age of cultures, 3) the water activity of the inoculum,
4) the surface used to support the inoculum during irradia-
tion, 5) the culture medium used to evaluate the survivals,
6) the exposure of irradiated inoculum to visible light or
darkness, etc. Table 2 lists many studies in which differ-
ent methods were applied to check fungal tolerance to UV
stress, as well as several studies using formulated fungi to
attempt enhancement of UV tolerance of conidia.

The tolerance to UV radiation can be improved by phys-
iological manipulations (Rangel et al. 2004; Rangel and
Roberts 2007). Accordingly, variation of UV tolerance has
been reported in relation to the culture medium on which
conidia were produced (Rangel et al. 2006a). A consider-
able increase in UV tolerance, for example, was observed
in conidia of M. robertsii (ARSEF 2575) produced on min-
imal medium [Czapek medium (inorganic nitrogen without
saccharose), or minimal medium supplemented with non-
preferred carbon sources]. This is in comparison to conidia
produced on the most commonly used medium, PDAY.
Enhanced UV tolerance of conidia produced on low-
nutrient medium may be because the growth on the mini-
mal medium represents a stress condition that requires the
fungi to resist damage (Rangel et al. 2006a, 2008; Rangel
and Roberts 2007). This subject is broadly discussed in a
review published in this issue (Rangel et al. 2015).

Responses of M. robertsii ARSEF 2575 conidia to UV-B
were altered when the fungus was grown on the same
medium type (PDAY or PDBY, potato dextrose broth sup-
plemented with 1 g 17! yeast extract) with pHs varying
from 4.59 to 9.45. Aerial conidia produced under alkaline
conditions were two times more tolerant than conidia pro-
duced on PDAY or PDBY adjusted to neutral or acidic pH
(Rangel and Roberts 2007). Many other culture media have
been considered for obtaining fungal inocula for UV toler-
ance tests, such as Molish’s agar (Speare 1920), Sabouraud
Maltose Agar (SMA), Maltose Agar (MA), Malt Extract
Agar (MEA), rice grains, etc (see Table 2).

The tolerance of fungi also may vary according to the
age of the cultures. Air-dried conidia of B. bassiana s.l.
and M. anisopliae s.1. cultured for 14 d were more toler-
ant to UV (mostly UV-B, at 2.3 W m’z) than conidia from
isolates cultured for 7 d. Conversely, air-dried conidia of
Lecanicillium muscarium and L. lecanii cultured for 14 d
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Table 1 Susceptibility/tolerance to UV of some well-known strains of entomopathogenic fungi is listed below

Strain

Tolerance of fungi to UV*

ARSEF 324, Metarhizium
acridum (Morley Davies
et al. 1996)

ARSEF 324, Metarhizium
acridum (Fargues et al.
1996)

ARSEF 324, Metarhizium
acridum (Braga et al. 2001d)

ARSEF 324, Metarhizium
acridum (Braga et al. 2001c)

ARSEF 324, Metarhizium
robertsii (Rangel et al.
2005a).

ARSEF 2575, Metarhizium
robertsii (Braga et al.
20014d).

ARSEF 2575, Metarhizium
robertsii (Braga et al. 2001c)

ARSEF 2575, Metarhizium
robertsii (Rangel et al. 2004)

Oil formulation, 4-h exposure, percent germination = 76.0 %
Oil formulation, 8-h exposure, percent germination = 53.6 %
Oil formulation, 16-h exposure, percent germination = 17.3 %

Dry conidia, 1-h exposure, percent surviving (CFU) = 80 %
Dry conidia, 2-h exposure, percent surviving (CFU) = 81 %
Dry conidia, 4-h exposure, percent surviving (CFU) = 35.3 %
Dry conidia, 8-h exposure, percent surviving (CFU) = 11.1 %

Water suspension, 1-h exposure (920 mW m™2), culturability (CFU) ~100 %

Water suspension, 1-h exposure (1200 mW m~2), culturability (CFU) ~100 %

Water suspension, 1-h exposure (1200 mW m~2), relative percent germination, 24-h incubation = 97 %,
48 h incubation = 100 %

Water suspension, 4-h exposure (920 mW m™?), culturability (CFU) ~80 %

Water suspension, 4-h exposure (1200 mW m~?), culturability (CFU) ~50 %

Water suspension, 4-h exposure (1200 mW m™~2), relative percent germination, 24-h incubation = 5 %,
48-h incubation = 96 %

Water suspension, 2-h exposure (full-spectrum sunlight), culturability (CFU) ~100 %

Water suspension, 2-h exposure (UV-A sunlight), culturability (CFU) ~100 %

Water suspension, 2-h exposure (full-spectrum sunlight), relative percent germination, 12-h incubation ~45 %,
24 h incubation ~100 %

Water suspension, 2-h exposure (UV-A sunlight), relative percent germination, 12 h incubation ~80 %,
24-h incubation ~100 %

Water suspension, 4-h exposure (full-spectrum sunlight), culturability (CFU) ~70 %

Water suspension, 4-h exposure (UV-A sunlight), culturability (CFU) ~90 %

Water suspension, 4-h exposure (full-spectrum sunlight), relative percent germination, 12-h incubation ~10 %,
24 h incubation ~100 %

Water suspension, 4-h exposure (UV-A sunlight), relative percent germination, 12-h incubation ~40 %,
24-h incubation ~100 %

Water suspension, 3-h exposure (8.3 kJ m~2), PDAY, culturability (CFU) ~90 %
Water suspension, 3-h exposure (8.3 kJ m~2), insect, culturability (CFU) ~85 %
Water suspension, 4-h exposure (11.1 kJ m_z), PDAY, culturability (CFU) ~85 %
Water suspension, 4-h exposure (11.1 kJ m™2), insect, culturability (CFU) ~80 %

Water suspension, 1-h exposure (920 mW m™?), culturability (CFU) ~100 %

Water suspension, 1-h exposure (1200 mW m™2), culturability (CFU) ~85 %

Water suspension, 1-h exposure (1200 mW mfz), relative percent germination, 24-h incubation = 95 %,
48-h incubation = 100 %

Water suspension, 4-h exposure (920 mW m™?), culturability (CFU) ~30 %

Water suspension, 4-h exposure (1200 mW m™~2), culturability (CFU) <5 %

Water suspension, 4-h exposure (1200 mW m™2), relative percent germination, 24-h incubation = 28 %,
48-h incubation = 63 %

Water suspension, 2-h exposure (full-spectrum sunlight), culturability (CFU) ~75 %

Water suspension, 2-h exposure (UV-A sunlight), culturability (CFU) ~100 %

Water suspension, 2-h exposure (full-spectrum sunlight), relative percent germination, 12-h incubation ~70 %,
24-h incubation ~100 %

Water suspension, 2-h exposure (UV-A sunlight), relative percent germination, 12-h incubation ~95 %,
24-h incubation ~100 %

Water suspension, 4-h exposure (full-spectrum sunlight), culturability (CFU) ~0 %

Water suspension, 4-h exposure (UV-A sunlight), culturability (CFU) ~30 %

Water suspension, 4-h exposure (full-spectrum sunlight), relative percent germination, 12-h incubation ~10 %,
24 h incubation ~10 %

Water suspension, 4-h exposure (UV-A sunlight), relative percent germination, 12-h incubation ~25 %,
24-h incubation ~60 %

Water suspension, 3-h exposure (768 mW m~?), PDAY, culturability (CFU) ~40 %

Water suspension, 3-h exposure (768 mW m~2), G. mellonella larva, culturability (CFU) ~20 %
Water suspension, 3-h exposure (768 mW m™2), Z. morio larva, culturability (CFU) <5 %
Water suspension, 2-h exposure (897 mW m™~?2), Czapek, culturability (CFU) ~70 %

Water suspension, 2-h exposure (897 mW m’z), Emerson, culturability (CFU) ~70 %

Water suspension, 2-h exposure (897 mW m~2), Rice, culturability (CFU) ~ 65 %

Water suspension, 2-h exposure (897 mW m~?), PDAY, culturability (CFU) ~90 %

Water suspension, 2-h exposure (897 mW m~2), PDA, culturability (CFU) ~50 %

@ Springer



432

Curr Genet (2015) 61:427-440

Table 1 continued

Strain

Tolerance of fungi to UV*

GHA, Beauveria bassi-
ana (Commercialized by
Mycotech Corp., USA)
(Inglis et al. 1995)

GHA, Beauveria bassiana
(Fargues et al. 1996)

GHA, Beauveria bassiana

(Commercialized by Mycotrol,
Emerald BioAgriculture
Corp., USA) (Leland and
Behle 2005).

GHA, Beauveria bassiana
(Fernandes et al. 2007)

IMI 330189, Metarhizium
acridum (LUBILOSA
product’s active ingredient;
holotype for M. acridum)
(Moore et al. 1993)

IMI 330189, Metarhizium
acridum (Morley Davies
et al. 1996)

IMI 3300189, Metarhizium
acridum (Fargues et al.
1996)

Water formulation, 15-min exposure, on glass, percentage reduction = 96.0 %
Water formulation, 60-min exposure, on glass, percentage reduction = 99.4 %
Water formulation, 60-min exposure, on leaves, percentage reduction = 99.7 %
Oil formulation, 15-min exposure, on glass, percentage reduction = 22.4 %
Oil formulation, 60-min exposure, on glass, percentage reduction = 74.4 %

Oil formulation, 60-min exposure, on leaves, percentage reduction = 97.4 %

Dry conidia, 1-h exposure, percent surviving (CFU) = 37 %
Dry conidia, 2-h exposure, percent surviving (CFU) = 0.3 %

Water formulation, Regression Time (RTs;) = 2.8 h; RT,5 =3.7h
Lignin-coated conidia in water, RTs; = 3.0 h; RT;5 =4.3h

Cross-linked lignin-coated conidia in water, RT5y = 28.3 h; RT;5 = 58.1 h
Corn oil formulation, Regression Time (RT5,) = 4.1 h; RT;5=5.9h
Lignin-coated conidia in corn oil, RT5, = 5.7 h; RT,5s = 11.1 h
Cross-linked lignin-coated conidia in corn oil, RT5q = 8.0 h; RT;5 =19.9h

Water suspension, 2-h exposure (7.04 kJ m~?2), relative germination ~60 %

Water formulation, cultures 7-10 d old, 1-h exposure, germination rate = 3.7 %
Water formulation, 14-20 d or 30-42 d old, 1-h exposure, germination rate = 5.2 %
Oil formulation, cultures 7-10 d old, 1-h exposure, germination rate = 27.1 %

Oil formulation, cultures 14-20 d old, 1-h exposure, germination rate = 28.9 %

Oil formulation, cultures 30-42 d old, 1-h exposure, germination rate = 53.4 %

Oil formulation, 4-h exposure, percent germination = 67.4 %
Oil formulation, 8-h exposure, percent germination = 39.4 %
Oil formulation, 16-h exposure, percent germination = 45.4 %
Oil formulation, 24-h exposure, percent germination = 28.6 %

Dry conidia, 1-h exposure, percent surviving (CFU) = 46 %
Dry conidia, 2-h exposure, percent surviving (CFU) = 23 %
Dry conidia, 4-h exposure, percent surviving (CFU) = 7.5 %
Dry conidia, 8-h exposure, percent surviving (CFU) = 5.2 %

The laboratory methods used for testing the fungal tolerance to UV are briefly mentioned in Table 2; please note that for orientation, the citation
of each study is listed in the first column of both Tables 1 and 2. Studies are listed according to the isolate, which are sorted alphabetically, and

then by the year of publication
* GR germination rates, CFU colony-forming units

were more sensitive to UV radiation than conidia from iso-
lates cultured for 7 d (Le Grand and Cliquet 2013). Conidia
from older cultures of M. acridum were also more tolerant
to UV than conidia from the younger ones (Moore et al.
1993) (see Table 1). Therefore, screening for UV tolerance
among isolates utilized cultures with approximately the
same age to avoid biased results. Despite its importance,
mention of the age of cultures is lacking in several studies.
Studies have considered exposure of fresh or dried
fungal conidia, formulated or not, to UV radiation (see
Table 2). In fact, variable responses in tolerance to UV
(mostly UV-B, at 2.3 W m~?) were reported for a single
isolate of B. bassiana s.l., where an increased viability of
air-dried conidia was demonstrated in relation to freshly
harvested conidia (Le Grand and Cliquet 2013). Conidia
usually have been irradiated on glass, cellulose filter mem-
branes, plant leaves, culture media, etc. The culture media
used have often varied in nutrient content and supplemen-
tations with different antibiotics or fungicides. The most

@ Springer

used fungicides, for example, include 1) chloramphenicol,
to avoid bacterial contamination (Leland and Behle 2005);
2) benomyl, due to its minimal effect on conidial germi-
nation even though benomyl severely inhibits the growth
of germ tubes without adversely affecting germination,
thereby preventing overgrowth of mycelium and allowing
germination to be monitored for up to 72 h (Milner et al.
1991); and 3) dodine (n-dodecylguanidine acetate), as an
ingredient of a semi-selective medium (Chase et al. 1986;
Rangel et al. 2010) as reported by Inglis et al. (1995) to iso-
late entomopathogenic fungi from material possibly con-
taminated with undesired fungi. No variation in tolerance
to UV, however, has been reported in consideration to these
chemicals.

Many studies kept the irradiated fungi in dark condi-
tions to avoid the influence of long wavelengths on pho-
toreactivation, which may stimulate the recovery of dam-
aged conidia while other studies exposed the fungi to a
broad spectrum of irradiance that includes short and long
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wavelengths (as shown in Table 2). Although it may not
reflect a realistic condition, incubating the fungi in darkness
avoids the addition of an extra variable to the tests. Moreo-
ver, if an isolate restricted from photoreactivation presents
high tolerance to UV, it may be expected that the isolate
will achieve a higher performance in natural conditions if
long wavelengths are available. Efficient photoreactivation
was reported for conidia of Hirsutella thompsonii previ-
ously exposed to UV (200-300 nm) (Tuveson and McCoy
1982), and for conidia of Trichoderma sp. exposed to
UV-B and short wavelength UV-A (800 mW m~? Quaite-
weighted irradiance, at 5.5 and 8.8 kJ m~?) (Braga et al.
2002). In contrast, no significant difference was detected
in relative culturability between irradiated conidia of S.
lanosoniveum or L. aphanocladii incubated in visible light
(12 W m™>) in comparison to those incubated in the dark
after UV-B exposure (Braga et al. 2002). The efficiency in
photoreactivation may be related to the high-intensity sun-
light habitat where the fungus normally grows (Tuveson
and McCoy 1982). In addition, the exposure to visible light
(400-700 nm, 150 W m~2, for 2 consecutive photoperiods:
18:6, light:dark) was also detrimental to S. lanosoniveum
conidia previously exposed to UV-B or non-irradiated con-
trols (held in the dark for 48 h after inoculation). The expo-
sure of M. robertsii ARSEF 2575 to visible light during
growth, however, induced significantly increased tolerance
to UV-B radiation (978 mW m™2 Quaite-waited irradiance
for 2 h, 7.04 kJ m’z) (Rangel and Roberts 2007; Rangel
etal. 2011).

A variety of tests are needed to select isolates with both
natural ability to remain viable for long periods in insolated
fields and with marked capacity for controlling arthropod
pests. This review does not suggest that one method is
more appropriate than another for selecting isolates with
outstanding natural tolerance to UV, but it emphasizes sim-
ple laboratory conditions, that may previously have been
believed to be insignificant, that may seriously affect the
susceptibility of isolates.

Formulation to protect entomopathogenic fungi
against UV radiation

Most attempts to increase the persistence of microbial
agents on the field have relied heavily on the use of pro-
tectants as additives in biological products as reviewed
by Ignoffo and Garcia (1992). In laboratory tests with M.
acridum (=M. flavoviride), conidia formulated in ground-
nut or mineral oil were protected from UV compared to
conidia suspended in water due to the radiation absorp-
tion of the oil; however, higher levels of UV protection
would be advantageous for field applications (Moore et al.
1993). Conidia of M. anisopliae s.1. formulated in peanut
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oil or refined paraffinic oil also were significantly protected
against the deleterious effects of UV radiation in a simu-
lated solar radiation chamber (Alves et al. 1998). In addi-
tion, survival of B. bassiana conidia exposed to UV (260—
400 nm, with irradiance of 675 uyW cm’z) was enhanced in
paraffinic oil applied on wheatgrass leaves in comparison
to water formulation (Inglis et al. 1995). The benefits of oil
have led to oil dispersions being one of the most common
formulation types available on the market for application
of entomopathogenic fungi worldwide (Faria and Wraight
2007).

Spray-dried conidia of the commercialized isolate B.
bassiana GHA (provided as technical grade spore powder
in Mycotrol®; Emerald BioAgriculture Corp., Butte, MT,
USA) coated with lignin provided protection against sim-
ulated solar radiation. The formulation that provided the
greatest UV protection was the cross-linked lignin-coated
conidia suspended in water, in which lignin-coated conidia
were complemented with CaCl, as a cross-linking agent
of lignin to reduce the water solubility. The weakest for-
mulation against UV used non-coated conidia suspended
in water. The loss of UV protection of cross-linked lignin-
coated conidia or lignin-coated in oil formulations may be
related to the formation of crusts of lignin in oil (Leland
and Behle 2005).

Variation in conidial protection by sunscreens has also
been reported. Many water-soluble adjuvants used in aque-
ous formulations of B. bassiana s.l. enhanced survival of
conidia exposed to UV radiation in comparison to water
formulation alone (Inglis et al. 1995). In agreement, Tino-
pal (Calcofluor white, 1 to 10 g L") protected B. bassiana
conidia sprayed onto leaves and exposed to UV radiation
(mostly UV-B, 260-400 nm, with a peak at 313 nm); and
Tinopal had no inhibitory effect on growth of B. bassiana
(Reddy et al. 2008). Also, oxybenzone added at 0.5 % (w/v)
to water suspension (Tween 80, 0.05 %) of B. bassiana s.1.
significantly increased the tolerance of conidia to UV in
comparison to the controls (without the sunscreen) for four
of six isolates investigated; however, higher protection was
reached when conidia were suspended in 5 % oil-in-water
emulsions prepared with soybean oil, sunflower oil, corn
oil, or mineral oil prior to UV exposures (Posadas et al.
2012). Soyscreen in sunflower oil reduced transmittance of
light energy, with UV transmission reduced to 99 % at 10
% concentration of sunscreen in sunflower oil; “soyscreen
is a modified- soybean oil that offers UV protection as a
result of biocatalytic esterification with a vegetable antioxi-
dant (ferulic acid) that absorbs UV radiation” as described
by Behle et al. (2009). In agreement, sunflower oil at 10
% concentration of soyscreen provided significant protec-
tion of B. bassiana conidia from simulated UV radiation;
the protection, however, was similar to the protection pro-
vided by 0.15 % of oxyl methoxycinnimate (OMC), that is
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a known sunscreen commonly found in skin-care products
to provide UV protection (Behle et al. 2009). An evaluation
of conidial protection by three different chemical groups
of sunscreen revealed that the addition of oxybenzone to
vegetable oil provided significantly more protection to the
conidia of M. acridum than ethyl cinnamate or Graessorb S
(Moore et al. 1993). In general, the addition of sunscreens
expanded the protection of conidia and increased absorp-
tion over the 208-320 nm range. In contrast, possible reac-
tions and polarity shifts may occur in combination with
vegetable oils and sunscreens, and this may be a risk when
using vegetable oils in final fungal formulations. Moreover,
“the high UV absorption of the vegetable oils can have an
effect on the perceived UV absorption maxima of the sun-
screens if these are near the absorption range of the oil”
(Moore et al. 1993).

The addition of certain sunscreens gave only limited pro-
tection to M. acridum conidia formulated in distilled mineral
oil. The most beneficial effects of sunscreens were evident
only within the first 24 h of incubation of irradiated conidia,
whereas incubation for 48 h allowed unprotected conidia
(formulated in kerosene alone) to germinate at a similar
level to the protected ones in kerosene plus sunscreens; after
48 h of incubation, only conidia formulated in kerosene plus
Eusolex 8021 had higher levels of germination than conidia
formulated with no sunscreen (Hunt et al. 1994). In agree-
ment, nine adjuvants tested in oil-compatible formulations
did not present greater survival of B. bassiana conidia than
that of conidia exposed to radiation in paraffinic oil alone;
in longer periods of exposure, however, conidial survival in
oil formulated with Parsol MCX and 2,2-hydroxy-4-octoxy-
benzophenone was significantly superior to the survival of
conidia in only oil (Inglis et al. 1995).

Adjuvants screened in laboratory tests and selected
as protectants of conidia had their efficacy investigated
in experiments conducted in the field (Inglis et al. 1995).
Conidia of B. bassiana formulated in water with each of
five water-compatible adjuvants indicated that conidial sur-
vival under solar radiation declined logarithmically over
time, but comparisons of the formulations with the con-
trol treatment (water formulation) indicated that the stil-
bene brightener Tinopal LPW-OB and clay significantly
enhanced the survival of conidia, and that neither formu-
lation tested was superior to the other (Inglis et al. 1995).
The adjuvants differed in function, Tinopal LPW absorbed
the UV, whereas clay blocked the UV radiation (Inglis et al.
1995). Accordingly, laboratory tests also reported that for-
mulation of L. lecanii (=Verticillium lecanii) with mont-
morillonite (1 %), SCPX-1374, which is a clay mineral
and a wetting agent [EM-APW#2 (1 %)], protected conidia
from UV-B, allowing conidial germination to reach 93 %
after 6 h exposure, whereas no survival was seen in irra-
diated suspensions without montmorillonite and wetting

agent; similar results were reported after a 30-min UV-C
(100-280 nm) exposure (Lee et al. 2006). Sunlight blockers
are reported as very effective in protecting organisms from
UV-B radiation, and the use of clay seems to be advanta-
geous because it is harmless to the environment (Inglis
et al. 1995). The ability to protect entomopathogenic fungi
from UV with clay associated with biodegradable biopoly-
mers and anionic dyes with suitable spectra has been inves-
tigated in laboratory tests (Cohen and Joseph 2009; Cohen
et al. 2003). Clay-chitosan-dye matrices were powerful
photostabilizers that protected conidia from UV radiation
at 5 % clay matrices based on montmorillonite, attapulg-
ite, and kaolinite (Cohen et al. 2003). The photoprotection
of fungal conidia is mostly involved with absorption of UV
radiation by the anionic dyes and attenuation of UV radia-
tion by the clay particles (Cohen et al. 2003). B. bassiana
conidia mixed with clay-chitosan-dye matrices (kaolinite or
bentonite) presented germination rates close to 80 % when
irradiated under artificial conditions that simulated sunlight
(at 108 J m_z) (Cohen and Joseph 2009).

Estimating field efficacy of formulated fungi is still a
challenging task. Poor efficacy of formulated fungi against
arthropod pests has been attributed to the influence of envi-
ronmental conditions, especially temperature and UV radi-
ation from sunlight (Inglis et al. 1997b, a). Dried conidia of
B. bassiana GHA (Mycotech, Butte, MT) formulated in 1.5
% (w/v) oil emulsion amended with 4 % clay applied in a
warm and sunny field did not reduce grasshopper popula-
tions, but some disease was observed in grasshoppers col-
lected within 5 d of conidial application and maintained
in cages adjacent to the field plots. Furthermore, in areas
of intense sunlight exposure, the phenomenon known as
behavioral fever or basking in sunlight to elevate grass-
hopper body temperature may negatively influence fun-
gal development in the arthropod host in the field. Also,
conidial survival on plant leaves can be low and decline
logarithmically over time. Poor efficacy of fungi also was
attributed to the fungal exposure to sunlight when field-
treated grasshoppers were held in cages shaded from sun-
light presented more rapid disease development and higher
prevalence of final mycosis than grasshoppers held in cages
receiving full-spectrum sunlight (Inglis et al. 1997a). Also,
B. bassiana (GHA) formulated with 10 % soyscreen oil in
sunflower oil did not extend persistence of conidia applied
to field-grown cabbage and bean plants, in comparison with
conidia suspended in water. In this case, the lower rate of
oil combined with the ability of leaves to absorb or spread
the oil is suspected to have resulted in conidia unprotected
from sunlight (Behle et al. 2009).

In addition to the protection of fungi against UV radiation,
fungal formulations should also consider many abiotic and
biotic factors that may influence their efficacy in the field. In
agricultural crops, entomopathogenic fungi applied to foliage
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may be affected not only by sunlight exposure but also by
rain, temperature variation, humidity, leaf surface chemistry,
and phylloplane microbiota (see Jaronski 2010). On parasite-
infested livestock, in addition to the environmental factors
noted above, the efficacy of topically applied fungal products
may challenge the host—skin environment, with special con-
sideration to the skin temperature, pH, secretions, sweat (with
many components such as a wide range of ions), and skin
microflora (Polar et al. 2008; Fernandes et al. 2012). There-
fore, screening for promising fungal strains and formulating
them for their tolerance to UV is just one of the basic impor-
tant factors to be considered before evaluating the efficacy of
the formulation in complex field experiments for pest control.

Conclusions

The search for promising biological control agents is a
complex mission. The exceptional UV tolerance of a prom-
ising candidate may be associated with its significant viru-
lence against the arthropod target, and tolerance to several
other adverse conditions imposed by the environment, such
as temperature and humidity variations. Fungal formula-
tions, on the other hand, may be connected with practical
application methods and other control strategies as part
of an integrated pest management system, and the effica-
cies of these formulations need to be monitored regularly.
Much is known, but there is much more to be discovered
regarding the circumstances that affect the UV tolerance of
entomopathogenic fungi. We expect that since tolerance of
fungi to UV may be physiologically manipulated in the lab-
oratory, such laboratory manipulations potentially may be
used to enhance the UV tolerance of promising fungal can-
didates during their mass production for field applications.
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