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Abstract Destruxins are among the most exhaustively

researched secondary metabolites of entomopathogenic

fungi, yet definitive evidence for their roles in pathoge-

nicity and virulence has yet to be shown. To establish the

genetic bases for the biosynthesis of this family of depsi-

peptides, we identified a 23,792-bp gene in Metarhizium

robertsii ARSEF 2575 containing six complete nonribos-

omal peptide synthetase modules, with an N-methyltrans-

ferase domain in each of the last two modules. This domain

arrangement is consistent with the positioning of the

adjacent amino acids N-methyl-L-valine and N-methyl-L-

alanine within the depsipeptide structure of destruxin. DXS

expression levels in vitro and in vivo exhibited comparable

patterns, beginning at low levels during the early growth

phases and increasing with time. Targeted gene knockout

using Agrobacterium-mediated transformation produced

mutants that failed to synthesize destruxins, in comparison

with wild type and ectopic control strains, indicating the

involvement of this gene in destruxin biosynthesis. The

destruxin synthetase (DXS) disruption mutant was as vir-

ulent as the control strain when conidial inoculum was

topically applied to larvae of Spodoptera exigua, Galleria

mellonella, and Tenebrio molitor indicating that destruxins

are dispensable for virulence in these insect hosts. The DXS

mutants exhibited no other detectable changes in mor-

phology and development.
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Introduction

Destruxins (DTX) are a family of cyclic depsipeptides

produced by multiple plant and insect fungal pathogens

(Pedras et al. 2002) (Fig. 1). The vast majority of the more

than 35 members of the destruxin family have been isolated

from strains belonging to the genus Metarhizium (Kodaira

1962; Pedras et al. 2002). These metabolites have been

linked to a plethora of biological activities. Exogenously

introduced DTX are highly toxic against a wide range of

insect species (Amiri et al. 1999; Sree et al. 2008) and have

been reported to accumulate in fungus-infected individuals

(Suzuki et al. 1971; Vey and Goetz 1986). Injection,

ingestion or topical application of purified DTX causes

tetanic and flaccid paralysis, an effect linked to their abil-

ities to depolarize Ca2? gradients across the muscle plasma

membrane (Samuels et al. 1988b; Dumas et al. 1996b;

Hinaje et al. 2002), and the one that closely resembles

symptoms observed in insects infected with destruxin-
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producing Metarhizium strains (Kodaira 1962; Samuels

et al. 1988a). Intriguingly, DTX injected into insects also

negatively impact both their cellular (Dumas et al. 1996b;

Vilcinskas et al. 1997; Vey et al. 2002) and humoral (Pal

et al. 2007) immune responses, which reinforces the notion

of their potential contribution to Metarhizium virulence.

These metabolites also induce oxidative stress (Sree and

Padmaja 2008), damage midgut epithelium, disrupt sali-

vary gland integrity (Sowjanya Sree and Padmaja 2008),

and have a powerful inhibitory effect on fluid secretion by

Malpighian tubules in various arthropods (James et al.

1993; Dumas et al. 1996b; Ruiz-Sanchez et al. 2010).

Reports of different levels of DTX production in vitro by

several Metarhizium strains and differential insect sensi-

tivity to the metabolites have provided correlative data to

explain the host range of those isolates, as well as their

rapidity of killing (Samuels et al. 1988a; Kershaw et al.

1999; Moon et al. 2008; Wang et al. 2009). All of these

results have contributed to the status of DTX as de facto

virulence factors for those fungi that produce them. How-

ever, definitive genetic proof of their contributions to vir-

ulence has been lacking. In this paper, we describe the

identification and inactivation by targeted gene knockout of

a nonribosomal peptide synthetase (NRPS) gene from

M. robertsii ARSEF 2575, demonstrate its role in DTX

biosynthesis, and show that abolition of DTX production

does not alter its virulence against larvae of the susceptible

insect hosts Spodoptera exigua, Galleria mellonella, and

Tenebrio molitor.

Materials and methods

Strains, culture conditions, and Agrobacterium

tumefaciens-mediated transformation (ATMT)

Metarhizium robertsii ARSEF 2575 (formerly known as

M. anisopliae) (Bischoff et al. 2009) and its derivatives

were grown on �-strength Sabouraud dextrose agar with

yeast extract (SDAY/4) as previously described (Moon

et al. 2008). For the analyses of destruxin production and in

vitro gene expression, cultures were started with

1 9 106 conidia/100 ml HB broth (Giuliano Garisto

Donzelli et al. 2010) and incubated in 250 ml flasks at

28�C in the dark on a rotary shaker at 150 rpm. ATMT and

subsequent transformant handling were carried out as

previously described, except that A. tumefaciens strain

EHA105 was used instead of GV3101 (Moon et al. 2008;

Giuliano Garisto Donzelli et al. 2010).

Cloning of the destruxin synthetase gene (DXS)

Based on the NCBI accession AJ273779 (Freimoser et al.

2003), we designed primers AJ273779F and AJ273779R

(Table 1) and PCR screened a bacterial artificial chromo-

some (BAC) library constructed using M. robertsii ARSEF

2575 genomic DNA. BAC DNA from the positive clone

11F5 was partially sequenced at the Cornell University

DNA Sequencing and Genotyping facility. The genomic

region harboring the partial BAC sequence was identified

using a draft of the M. robertsii ARSEF 2575 genome

(Donzelli et al., unpublished).

Construction of pBDU-NRPS4KO

The binary vector pBDU-NRPS4KO was designed to target

and disrupt the DXS gene. Two fragments from the DXS

coding region (NRPS4-A and NRPS4-B, Fig. 5a), located

157 bp apart, were PCR amplified with the primer pairs

NRPS4KO-A-F/NRPS4KO-A-R2 and NRPS4KO-B–F/

NRPS4KO-B-R, respectively (Table 1), using ARSEF

2575 total DNA as the template. The bar expression cas-

sette, which confers resistance to the drug bialaphos, was

PCR amplified from pBARKS1 (Pall and Brunelli 1993)

using the primers BarExprS-F and BarExprS-R-KS1

(Table 1). The binary vector pBDU-NRPS4KO was pro-

duced by assembling NRPS4-A, NRPS4-B, and bar into

the XbaI- and Nt.BbvCI-linearized vector pBDU in the

presence of the Uracil-Specific Excision Reagent or USER

enzyme as suggested by the manufacturer (NEB, Ipswich,

MA). pBDU is a pPK2 (Covert et al. 2001) derivative

modified as suggested by NEB (http://www.neb.com/

nebecomm/products/productN5504.asp.) to allow USER

cloning. PCR amplifications for USER-based cloning were

conducted as described (Nour-Eldin et al. 2006; Geu-Flores

et al. 2007; Frandsen et al. 2008).

Screening for homologous recombination events

at the DXS locus

Screening for homologous recombination events at the

DXS locus was conducted by PCR and subsequently con-

firmed by Southern analysis. Screening primers for primary

transformants were C6-ScreenF and Ptrpc80R (Table 1;Fig. 1 Chemical structure of destruxin A, B and E
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Fig. 5a). PCR confirmation of both the DXS knockout (KO)

event and purity of single conidial isolates made use of the

primers NRPS4KO-screen-F and NRPS4KO-screen-R

(Table 1; Fig. 5a). Southern analyses were carried out as

previously described (Moon et al. 2008; Giuliano Garisto

Donzelli et al. 2010) on SacI- or SalI-digested M. robertsii

ARSEF 2575 total DNA. A PCR DIG Probe Synthesis Kit

(Roche Applied Science, Indianapolis, IN), together with

the primer couples NRPS4KO-screen-F/NRPS4KO-screen-

R or BarF/BarR (Table 1), was used to synthesize DNA

probes specific for either the NRPS4 (Probe 1, P1, Fig. 5a)

or the bar (Probe 2, P2, Fig. 5a) coding regions,

respectively.

RT-PCR for DXS expression

In vitro DXS expression was evaluated during growth in

HB broth 19, 24, 48, 72, 96, 120, 168 and 240 h after

medium inoculation with 1 ml of 106 conidia/ml harvested

from 1-week-old cultures grown on SDAY/4. RNA

extraction and reverse transcription conditions were as

described (Giuliano Garisto Donzelli et al. 2010). Expres-

sion of DXS within fungus-infected S. exigua larvae at

post-inoculation times of 28, 52, 72, 98, and 122 h, and

122-h non-motile larvae (early stage mummies, M1), 172-h

non-motile larvae (late stage mummies, M2), and from

controls 72 h after a mock inoculation followed a method

previously described (Giuliano Garisto Donzelli et al.

2010). Primer couples used for the analyses were Baw-Act-

275F/Baw-Act-439R, Ma-Btub F1/Ma-Btub-R18, and

NRPS4KO-screen-F/NRPS4KO-screen-R, which anneal to

the S. exigua b-tubulin, M. robertsii b-tubulin, and DXS

genes, respectively (Table 1).

Detection of DTX

Production of DTX by the WT strain ARSEF 2575, the

DXS KO strains 2.1 and 4.1, and the ectopic integrants 1.1

and 5.1 was determined by quantitative HPLC analysis of

the major DTX components (A and B) in solid phase-

extracted culture filtrate. All samples analyzed were from

HB broth cultures grown for 5 days with rotary shaking

(150 rpm) at 28�C. Solid phase extraction (SPE) was

accomplished by loading 5 ml aliquots of culture filtrates

onto a C18-SPE cartridge (200 mg; Alltech #40515) con-

ditioned with 10 column volumes each of MeOH, and then

deionized H2O. The charged cartridges were rinsed with

10 ml water and then eluted with 2 ml MeOH. The MeOH

eluates were then dried under a nitrogen stream with gentle

heating and reconstituted for analysis in 10 ml of MeOH

for the positive controls (extracts from ARSEF 2575 and

ectopic integrants), and 1 ml for the DTX-deficient extracts

(DXS KO strains and uninoculated broth extracts). Thus,

extracts of the KO strains and culture medium alone were

Table 1 Primers used in this study

Name Sequence 50 ? 30 Remarks

AJ273779F AGT TAC TGG GCG ACT TTG GA Identification of BAC clone

AJ273779R CCA TGA GCG ATT GCA AAA TA Identification of BAC clone

NRPS4KO-A-F GGG AAA GdUG GCA TGG TAG TCT GTA TC pBDU-NRPS4KO construction

NRPS4KO-B-F ACT TGT GGdU CAA GCG GCT ACC CAC AA pBDU-NRPS4KO construction

NRPS4KO-B-R GGA GAC AdUC AAC CTT GCC ATT CTC GT pBDU-NRPS4KO construction

NRPS-KO-A-R2 ATC ATC CdUT CCG TGG TTC GTA AGC pBDU-NRPS4KO construction

BarExprS-F AGG ATG AdUA GAA GAT GAT ATT GAA GGA pBDU-NRPS4KO construction

BarExprS-R-KS1 ACC ACA AGdU CCA ATT CGC CCT ATA GT pBDU-NRPS4KO construction

C6-ScreenF GCG AGC TAC TTG CCG TCT ACT Initial transformant screening

Ptrpc80R CCG CCT GGA CGA CTA AAC C Initial transformant screening

NRPS4KO-screen-F GGA GCT TTT CGA TGC GGA CAC TTA KO and monoconidial purification confirmation; amplification

of DXS probe; RT-PCR

NRPS4KO-screen-R TGC TCT GCT GGC TTG GAA CTG TGT KO and monoconidial purification confirmation; amplification

of DXS probe; RT-PCR

BarF GTC TGC ACC ATC GTC AAC Bar-specific probe (Moon et al. 2008)

BarR CGT CAT GCC AGT TCC CGT Bar-specific probe (Moon et al. 2008)

Baw-Act-275F CCC CAT CGA GCA CGG TAT CAT CA S. exigua b-tubulin (Giuliano Garisto Donzelli et al. 2010)

Baw-Act-439R ACA TGG CGG GGG AGT TGA AGG TCT S. exigua b-tubulin (Giuliano Garisto Donzelli et al. 2010)

Ma-Btub-F1 CGT CGA CGA TAA TCC GCC AAC AT ARSEF 2575 b-tubulin (Giuliano Garisto Donzelli et al. 2010)

Ma-Btub-R18 TTC AGG TCA CCG TAC GAA GGG T ARSEF 2575 b-tubulin (Giuliano Garisto Donzelli et al. 2010)

dU deoxyuridine
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analyzed at a tenfold higher concentration (relative to the

culture filtrate volume) than those of the WT and ectopic

strains, to insure detection of trace amounts of DTX, if

present, in the former samples. The samples were analyzed

by two different HPLC methods: (1) a relatively insensitive

method using UV detection to estimate DTX production by

the WT and ectopic strains, and (2) a more sensitive

method using detection by MS–MS multiple reaction

monitoring (MRM) to establish a lower limit of detection

(LOD) for extracts of the KO strains.

In method 1, 10-ll aliquots of extract were injected onto

an RP C18-A column (Varian Polaris, 250 mm 9 4.6 mm,

5-lm particle, 180-Å pore), and eluted with acetoni-

trile:water (1:1) at a flow rate of 1 ml/min (Waters 600

pump), with detection by UV absorbance at 220 nm

(extracted from a 190–350 nm scan on a Waters 996 diode

array detector). DTX A and B were estimated using a

standard curve for each compound. The LOD (established

as S/N = 3) was 7- and 9-ng on-column, or 135- and

186-lg/L broth, for DTX A and B. DTX standards were

purified from WT culture filtrates, and their identities were

verified by 1H NMR on a Varian INOVA 600 spectrometer.

DTX E, the third major component of the M. robertsii

destruxin profile, has a labile epoxide group in the hydroxy

acid side chain. It appears to co-vary quantitatively with

DTX A and DTX B but, due to its instability, it was not

included in the quantitative analysis.

In method 2, 5-ll aliquots were injected onto an RP-C18

column (Phenomenex Prodigy ODS3, 150 9 2 mm, 5-lm

particle, 100-Å pore) eluted with acetonitrile:water:formic

acid (650:350:1) at 0.25 ml/min, with detection by low

resolution electrospray mass spectrometry on an ABI-Sciex

Q-Trap 2000 spectrometer operated in positive ion mode.

The pseudomolecular ions [M ? H]? of DTX A and B

were observed at m/z 578 and 594, respectively. Accord-

ingly, six MS–MS parent ion ? product ion transitions

were monitored, 578 ? 465, 437, and 342 for detecting

DTX A, and 594 ? 481, 453, and 368 for detecting DTX

B (as well as DTX E, which is isobaric to DTX B at unit

mass resolution). Declustering and collision voltages used

for all MS–MS experiments were 71 and 39 V, respec-

tively. The LOD (S/N = 3) for this method was 12- and

16-pg on-column, or 0.5- and 0.6-ng/L broth for DTX A

and B, respectively.

Insect virulence assays

Eggs of S. exigua were obtained from Benzon Research

(Carlisle, PA). Newly hatched larvae were reared on BAW

diet that contained chlortetracycline, methyl paraben and

potassium sorbate (product no. F9220B, Bio-Serv,

Frenchtown, NJ) at 25�C and 15:9 h light:dark regime until

reaching the 2nd instar. Larvae were then transferred to

Southland Beet Armyworm (BAW) diet containing chlor-

tetracycline (Southland Products Inc., Lake Village, AR) as

the only antibiotic until assay setup (Moon et al. 2008) and

then moved to Southland BAW diet without chlortetracy-

cline for the duration of the virulence assays.

Spodoptera exigua 2nd instar larvae were inoculated

immediately after molting. G. mellonella and T. molitor

larvae were purchased from Berkshire Biological (West-

hampton, MA) and 4th instar individuals were inoculated

within a few hours of arrival.

Conidia were harvested from 10-day-old cultures by

addition of 10 ml of 0.1% Silwet L-77 (Loveland Indus-

tries Inc., Greeley, CO) and gently scraping the surface

with a sterile inoculation loop to dislodge conidia. Conidial

suspensions were pipetted from the plate and filtered

through two layers of cheesecloth into sterile 50-ml tubes

(Becton–Dickinson Falcon, Sparks, MD) and vortexed for

5 min. All larvae were dipped for 10 s in conidia resus-

pended in 0.1% Silwet L-77 at 104–107 conidia/ml,

depending on the assay (Table 3). Larvae dipped in 0.1%

Silwet-L-77 alone were used as controls. In all instances,

24 larvae/treatment were assayed. Mortality and time-to-

death inflicted by the WT and the DXS KO strain 4.1 were

evaluated up to 7 days after inoculation. Two or three

independent assays were carried out for S. exigua (two),

G. mellonella (three) and T. molitor (three). After dipping,

larvae were placed individually in 24-well plates with diet

and incubated at 25�C with a 15:9 h light:dark photoperiod.

Larvae were subsequently transferred to clean plates and

provided fresh diet every day to avoid uncontrolled re-inoc-

ulation from fungus growing on diet, frass and exuviae.

Data analysis

Identification of functional domains in DXS and sur-

rounding genes was carried out using InterProScan

(Quevillon et al. 2005) and PFAM (Finn et al. 2010).

N-methyltransferase domains were identified using motifs

previously described (Weber et al. 1994; Ansari et al.

2008) and confirmed by comparing N-methyltransferase

domains extracted from NRPSs with known N-methylated

products to C- and O-methyltransferase domains from

other proteins. To this end, multiple sequence alignment

was carried out with Muscle (Edgar 2004), followed by

cluster analysis based on the Maximum Likelihood method

and WAG model, which assumed a Gamma distribution

calculated on five discrete categories and a shape parameter

of 4.3882, calculated using 180 positions in the available

dataset and 500 bootstrap replicates. Both steps were

conducted with the appropriate modules provided in

MEGA5 (Tamura et al. 2011).

Data from insect virulence assays were analyzed using

the survival analysis module provided with JMP 9.0.2

108 Curr Genet (2012) 58:105–116
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(SAS Institute Inc. Cary, NC). Survival curves calculated

for insects inoculated with either the DXS KO strain 4.1 or

the WT were compared with the Log-rank test.

Results

DXS gene isolation and structure

Initial cloning of the DXS gene was carried out using the

cDNA sequence of NCBI accession number AJ273779.

This clone was previously identified (Freimoser et al. 2003)

from M. anisopliae ARSEF 2575 grown for 24 h in mini-

mal medium containing 1% cockroach cuticles. Partial

sequencing of a BAC clone containing AJ273779 yielded a

*14,000-bp sequence, which included the 30 end of an

uncharacterized NRPS containing two N-methyltransferase

domains. Complete gene structure, determined using data

from an early draft of the M. robertsii ARSEF 2575 gen-

ome (Donzelli et al., unpublished data), revealed a 23,792-

nt ORF, likely interrupted by one intron, which encoded a

predicted 7,913 aa polypeptide (GenBank accession

JN805540). The gene (DXS) was located in a 107,640-nt

contig of the ARSEF 2575 genome in which a second,

2-module GliP-like NRPS and a polyketide synthase (PKS)

predicted to synthesize a reduced polyketide were also

present (Fig. 2a). BlastN similarity searches indicated that

the region is nearly perfectly conserved in M. anisopliae

ARSEF 23 (scaffold 50), while no significant matches were

detected in the M. acridum CQMa 102 genome (Gao et al.

2011).

DXS contains 6 complete NRPS modules, with an

N-methyltransferase domain in each of the last two

modules (Fig. 2b). Both domains were aligned with cor-

responding amino acid sequences retrieved from several

fungal NRPSs producing N-methylated products and with

C-methyltransferase domains from several hybrid PKS–

NRPSs. Similar to what has been described by others

(Ansari et al. 2008), both putative N-methyltransferase

domains from DXS clustered with their homologs in other

organisms and displayed motifs identified previously

(Weber et al. 1994; Ansari et al. 2008) (Fig. 3a). The

position of the N-methyltransferase domains and

the directionality of peptide synthesis were used to infer

Fig. 2 a Structure and

predicted specificity of each

module of DXS. A adenylation

domain, T thiolation domain,

C condensation domain, M N-

methyltransferase domain.

b Gene models identified in the

genomic region surrounding

DXS. For each predicted gene,

the putative protein product, its

predicted amino acid length,

and the best non-Metarhizium

BlastX match in the nr database

are reported

Curr Genet (2012) 58:105–116 109
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the specificity of each adenylation domain (Figs. 2b, 3b).

The assignment is further supported by the sequence

divergence of the putative hydroxy acid (hac) adenylation

domain (A2) from other typical amino acid-activating A

domains (Fig. 3b).

In vitro and in vivo expression of DXS

Expression of DXS was characterized by RT-PCR both in

vitro and during the interaction with the S. exigua host. In

both cases, the transcription pattern was relatively simple:

DXS expression was low during early growth phases (i.e.,

after the first 48 h in HB broth and 72 h into S. exigua

infection), increased with time under both conditions, and

reached a steady high level at later stages (Fig. 4a, b). RT-

PCR also indicated the presence of DXS transcripts in

conidia (Fig. 4a, time 0).

Identification of DXS knockout strains

Initial PCR-screening of bialaphos-resistant colonies and

subsequent confirmation of DXS disruption after selection

of single conidial progeny (Fig. 5a, b) lead to the identi-

fication of strains 2.1 and 4.1 as homologous integrants at

the DXS locus. The bialaphos-resistant strains 1.1 and 5.1,

in which DXS appeared to be intact, were retained as

phenotypic controls. Southern analysis confirmed the PCR

analysis demonstrating that 2.1 and 4.1 carried a single

Fig. 4 Detection of DXS expression by RT-PCR in Metarhizium
robertsii a conidia (time 0) or mycelia 19, 24, 48, 72, 96, 120, 168 and

240 h after inoculation into HB medium; and b in fungus-infected

motile Spodoptera exigua larvae 28, 52, 72, 98, and 122 h after

inoculation, and from fungus-infected non-motile larvae 122 h (M1)

and 172 h (M2) after inoculation. RNA extracted from mock-

inoculated larvae at 72 h was used as a control (C)

Fig. 3 a Cluster analysis of N-methyltransferase (NMet) domains

extracted from NRPSs having known N-methylated products, which

included destruxin, DXS, cyclosporine, CssA (Weber et al. 1994),

aureobasidin A, AbA (Slightom et al. 2009), enniatin, ESYN (Haese

et al. 1993), beauvericin, BEAS (Xu et al. 2008), and bassianolide,

BasSY (Jirakkakul et al. 2008); C-methyltransferase domains

extracted from several PKSs encoding C-methylated products (Skel-

lam et al. 2010), including compactin, mlcA and mlcB (Eisfeld 2009),

lovastatin, LNKS (Hendrickson et al. 1999) and LDKS (Kennedy

et al. 1999), fusarin C, FUSS (Song et al. 2004), cytochalasan, CheA

(Schumann and Hertweck 2007); and the O-methyltransferases

involved in the biosynthesis of gliotoxin, GliM (Gardiner and Howlett

2005), aflatoxin, stcP (Kelkar et al. 1996), and apicidin, APS6 (Jin

et al. 2010). Note that the four NMet domains in AbA are 100%

identical to each other at the amino acid level, so only one was used

for this analysis. The tree was inferred using the Maximum

Likelihood method based on the WAG model and 500 bootstrap

replicates. The bootstrap value (percentage of replicate trees showing

that same clade) is reported at each node of the tree. The GenBank

accession number and the protein segment used for the analysis are

reported at the end of each branch. b Comparison of the 10-aa code

(Stachelhaus et al. 1999) of the six DXS adenylation domains with

those from other fungal synthetases having known metabolites. CssA:

cyclosporine synthetase from Tolypocladium inflatum (CAA82227),

AbA: aurobasidin A from Aureobasidium pullulans (ACJ04424),

feESYN: enniatin synthetase from Fusarium equiseti (CAA79245.2),

fsESYN: enniatin synthetase from Fusarium sambucineum (Pieper

et al. 1992; Xu et al. 2009), and Ba1: bacitracin synthetase 1 from

Bacillus licheniformis (O68006). The 10-aa code was identified using

NRPSpredictor (Rausch et al. 2005)

b
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T-DNA insertion at the DXS locus (Fig. 5c). Southern

analysis also confirmed the integration of the T-DNA

outside the targeted region in strains 1.1 and 5.1 (Fig. 5c).

Phenotypic effects of the DXS knockout

DXS KO strains 2.1 and 4.1 were analyzed for production

of DTX and both failed to yield detectable amounts of the

metabolites (Fig. 6; Table 2). The ectopic integrants 5.1

and 1.1, on the other hand, retained the ability to synthesize

these metabolites at WT levels (Fig. 6; Table 2). No other

obvious phenotypic changes were observed in the mutants,

including pigmentation, growth rate, or morphology (data

not shown). Abolition of DTX biosynthesis had no sig-

nificant effect on virulence levels of M. robertsii ARSEF

2575 against larvae of S. exigua (2nd instar), G. mellonella

(4th instar) and T. molitor (4th instar) at any of the wide

range of inoculum concentrations tested and in indepen-

dently replicated assays with one exception. In assay #1

with T. molitor, the KO strain was significantly less viru-

lent than the WT when the lowest inoculum dose was

applied (Table 3), but this result was not repeated in the

following two assays (Table 3).

Discussion

Destruxins A, B and E are the primary constituents

reported from fermentation broths of M. robertsii, and they

are by far the most exhaustively researched toxins of

entomopathogenic fungi. Using targeted gene knockout, we

identified DXS as the primary gene responsible for DTX

biosynthesis. DXS encodes for an NRPS, a family of large

multifunctional, multimodular enzymes. Each NRPS

module contains domains needed for the activation (ade-

nylation domain), propagation (thiolation domain), and

incorporation (condensation domain) of one monomer

contained in the final metabolite. In some cases, the process

can be iterative and one module introduces an amino acid

multiple times in the final molecule but, in the most fre-

quent cases to date, fungal NPRSs assemble the peptide in

a linear fashion, adding one amino acid for each module in

the protein (Eisfeld 2009). Consistent with DTX structure,

DXS encodes for a large protein carrying six NRPS mod-

ules, where each module accounts for the incorporation of

one of the six monomers (five amino acids and one

hydroxy acid) constituting the DTX backbone structure

(Fig. 1). The presence of N-methyltransferase domains

in the last two DXS modules fits well with the presence of

N-methyl-L-valine and N-methyl-L-alanine in the DTX

molecule (Fig. 1), while their locations allow the putative

attribution of the amino acid specificity of each DXS

module, as shown in Fig. 2b. Heterogeneity in the DTX

family of cyclic depsipeptides is conferred by variation in

the hydroxy acid and the amino acid substitutions in

positions 1–4. We anticipate that fungi capable of pro-

ducing structural variants of DTX not found in M. robertsii

Fig. 5 a Recombination of the bar gene within the DXS gene to

create DXS knockout (KO) strains. Position of the primers used for

PCR identification and confirmation of the DXS KO events is marked

by small black arrows. Position of the probes used for Southern

analyses is also indicated and marked as P1 (DXS probe) or P2 (bar
probe). The predicted amino acid specificity of the depicted

adenylation domains is reported. b DXS disruption detected by PCR

in strains 2.1 and 4.1 using the primers NRPS4KO-screen-F and

NRPS4KO-screen-R (Table 1). Wild type (WT) strain ARSEF 2575

and ectopic integrants 1.1 and 5.1 were used as the negative controls.

T-DNA insertion within the DXS coding region is revealed by the

increased size to 2,242 bp due to the insertion of the 1,867-bp bar
expression cassette into the 2.1 and 4.1 amplicons compared to the

532-bp amplification product obtained from the wild type (WT) and

ectopic integrants. c Southern analyses comparing WT, the ectopic

integrant strains 1.1 and 5.1, and the homologous integrant strains 2.1

and 4.1. Genomic DNA of each strain (2 lg) was digested with either

SalI or SacI and hybridized with either the DXS or bar probe after gel

separation and transfer onto nylon membrane
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ARSEF 2575 will likely have slightly modified modules

that account for the reported amino acid substitutions

(Pedras et al. 2002).

The role of DXS in DTX biosynthesis is supported by

the absence of the metabolites in independently disrupted

mutants as compared to the WT and ectopic strains. In

addition, the genome of M. acridum, known to be a non-

producer of DTX (Kershaw et al. 1999; Moon et al. 2008),

does not contain any homologs of this gene and its sur-

rounding region (Gao et al. 2011).

The similarity of the in vivo and in vitro expression pat-

terns of DXS, as observed in Fig. 4, suggests a developmental

regulation of this gene, similar to what has been reported

with other secondary metabolites (Calvo et al. 2002; Kato

et al. 2003; Yu and Keller 2005; Fox and Howlett 2008)

including those from M. robertsii (Giuliano Garisto Donzelli

et al. 2010). DXS transcripts were also detected in conidia

produced on SDAY/4, hinting at either the presence of the

metabolites in these propagules or a possible accumulation

of transcripts during conidium formation.

Fig. 6 HPLC-MS–MS

analyses of culture filtrate

extracts from the wild type

(WT) ARSEF 2575 (2.5 ll

broth equivalent), the ectopic

integrants 1.1 and 5.1 (2.5 ll

broth equivalent), and the DXS
null mutants 2.1 and 4.1 (25 ll

broth equivalent), grown in HB

broth for 5 days; an extract of

the uninoculated broth was

included as a negative control

(25 ll broth equivalent). Note

that the KO strain samples and

the broth control were injected

at a tenfold higher concentration

relative to the extracted broth

volume than that of the WT and

ectopic samples. Also included

for comparison is a standard

composed of pure destruxins A

and B (500 pg each loaded onto

the column). Chromatograms

are summed ion traces from 6

MS–MS transitions

(594 ? 481, 453, 368 for

detecting DTX E and B;

578 ? 465, 437, 342 for

detecting DTX A). Peak

intensity is measured in ion

counts per second (cps). The

DTX A, B and E peaks are

marked with the corresponding

letters
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Loss of DTX production had no phenotypic effect in our

experimental settings. This included no stable changes in

virulence against any of the three insect species assayed,

which is surprising considering the existing body of work

supporting the insecticidal effects of DTXs. Others have

drawn a tentative link between the ability of some Meta-

rhizium strains to rapidly kill their hosts (Samuels et al.

1988a; Amiri-Besheli et al. 2000) and their production of

secondary metabolites, including DTX. However, the

relationship between fungal secondary metabolism and

pathogenicity is far from understood and, for the vast

majority of cases, the roles of small molecules in these

complex processes remain elusive. For instance, hybrid

PKS–NRPS pathways leading to the biosynthesis of ten-

ellin in Beauveria bassiana and the mutagenic fusarin-like

NG-39X compounds in M. robertsii were found not to

contribute significantly to virulence against G. mellonella

and S. exigua larvae, respectively (Eley et al. 2007; Giu-

liano Garisto Donzelli et al. 2010). Similarly, targeted gene

disruption experiments with M. robertsii ARSEF 2575 to

test the role of serinocyclin, a spore-derived peptide,

revealed that KO strains were as virulent as WT when

assayed on larvae of S. exigua or Leptinotarsa decemline-

ata, and no differences in morphology or physiology could

be demonstrated (Moon et al. 2008). In contrast, mutants of

B. bassiana with targeted disruptions of the peptide syn-

thetase genes responsible for the biosynthesis of beau-

vericin and bassianolide were morphologically

indistinguishable from WT, but the KO strains showed

decreased virulence when tested against S. frugiperda,

Helicoverpa zeae, and G. mellonella larvae (Xu et al. 2008,

2009). Similarly, targeted gene knockout of a geranylger-

anyl diphosphate synthase abolished the production of

helvolic acid and reduced virulence of M. anisopliae

NAFF635007 against two genera of insect larvae (Sing-

karavanit et al. 2010).

The finding that the genetic abolishment of DTX pro-

duction in M. robertsii had no measurable effect on the

virulence of the fungus when conidia were applied topi-

cally to S. exigua, G. mellonella or T. molitor larvae is in

stark contrast to the outcome predicted by a large body of

in vitro toxicological studies suggesting DTX are key vir-

ulence factors for Metarhizium invertebrate pathogens (Pal

et al. 2007; Sree and Padmaja 2008). Resolving this

incongruity will require further investigation. For instance,

some insects can recover from sub-lethal DTX applica-

tions, and sensitivity to DTX has been shown to vary with

the host species (Samuels et al. 1988a; Kershaw et al.

1999). However, little is known about possible detoxifi-

cation mechanisms of most arthropods and whether they

are constitutive or induced as part of the immune response

mounted by the insect after fungal infection (Rohlfs and

Churchill 2011). It is also possible that DTXs are con-

tributory virulence factors that affect only hosts carrying

specific-molecular targets, as seen for some secondary

metabolites produced by plant pathogenic fungi (Sindhu

et al. 2008; Sweat et al. 2008), or their presence may be

redundant for virulence because of the action of additional

unknown compounds produced in amounts sufficient to

ensure efficient killing, the effects of which mask a specific

role for DTX. This is supported by the occasional incon-

sistent correlation between strain virulence and in vitro

DTX production (Samuels et al. 1988a; Kershaw et al.

1999; Amiri-Besheli et al. 2000; Moon et al. 2008).

It has been reported that loss of a dispensable chromo-

some in M. anisopliae strain V275 resulted in several

biochemical changes including the inability to produce

DTX; the V275 strain showed reduced virulence on

T. molitor, but there were no differences against G. mello-

nella. However, the number of phenotypic changes asso-

ciated with dispensable chromosome loss does not allow

one to attribute the observed difference in virulence solely

to the loss of DTX production (Wang et al. 2003). Our data

suggest that the virulence changes observed in strain V275

were likely unrelated to the abolishment of DTX produc-

tion, since we report here no loss in virulence of a DTX-

deficient KO strain against T. molitor larvae. In addition,

there is an abundance of genes encoding potentially toxic

proteins and putative secondary metabolites predicted from

the recently sequenced M. anisopliae ARSEF 23 and

M. robertsii ARSEF 2575 genomes, many of which might

be new candidates for playing causal roles in virulence

(Gao et al. 2011; Donzelli et al., unpublished). Alterna-

tively, the relationship of DTX to virulence may be coin-

cidental, and the compounds may play roles in other

unknown functions, or cause subtle effects in the host, not

measurable with traditional pathogenicity assays. Our

study neither confirms nor refutes these hypotheses defin-

itively but clearly demonstrates the dispensability of DTX

Table 2 Dextruxin production in the wild type (WT) Metarhizium
robertsii ARSEF 2575, ectopic integrant controls (Ect), and DXS
knockout (KO) mutants

Sample DTX A DTX B

WT 64 ± 5 83 ± 4

1.1 (Ect) 56 ± 1 59 ? 2

5.1 (Ect) 55 ± 5 65 ± 4

2.1 (KO) n.d. n.d.

4.1 (KO) n.d. n.d.

HB medium control n.d. n.d.

Cultures were grown for 5 days in HB broth. Filtrates were processed

using C18-SPE, then analyzed on HPLC with UV detection at 220 nm

(Method 1 described in the ‘‘Materials and method’’ section). Values

are mean ± SEM in mg/L

n.d. not detected
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as virulence factors of M. robertsii ARSEF 2575 as a

pathogen of S. exigua, T. molitor, and G. mellonella.
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