RESEARCH ARTICLE

Marie-Pierre Oudot-Le Secq · Susan Loiseaux-de Goër Wytze T. Stam · Jeanine L. Olsen

Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) *Dictyota dichotoma, Fucus vesiculosus* and *Desmarestia viridis*

Received: 8 August 2005 / Revised: 21 September 2005 / Accepted: 25 September 2005 / Published online: 30 November 2005 © Springer-Verlag 2005

Abstract We report the complete mitochondrial sequences of three brown algae (Dictvota dichotoma, Fucus vesiculosus and Desmarestia viridis) belonging to three phaeophycean lineages. They have circular mapping organization and contain almost the same set of mitochondrial genes, despite their size differences (31,617, 36,392 and 39,049 bp, respectively). These include the genes for three rRNAs (23S, 16S and 5S), 25–26 tRNAs, 35 known mitochondrial proteins and 3-4 ORFs. This gene set complements two previously studied brown algal mtDNAs, Pylaiella littoralis and Laminaria digitata. Exceptions to the very similar overall organization include the displacement of orfs, tRNA genes and four protein-coding genes found at different locations in the D. dichotoma mitochondrial genome. We present a phylogenetic analysis based on ten concatenated genes (7,479 nucleotides) and 29 taxa. Stramenopiles were always monophyletic with heterotrophic species at

Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/10.1007/ s00294-005-0031-4 and is accessible for authorized users.

Communicated by Ralph Bock

Nucleotide sequence data reported are available in the GenBank databases under the accession numbers AY494079, AY500368 and AY500367.

M.-P. Oudot-Le Secq (⊠) · W. T. Stam · J. L. Olsen Department of Marine Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands E-mail: mpols@mac.com Tel.: +1-604-822-3613 Fax: +1-604-822-6089

S. Loiseaux-de Goër

Station Biologique, B.P. 74, 29682 Roscoff cedex, France

Present address: M.-P. Oudot-Le Secq Department of Botany, University of British Columbia, #3529-6270 University Boulevard, Vancouver, B.C. V6T 1Z4, Canada the base. Results support both multiple primary and multiple secondary acquisitions of plastids.

Keywords Brown algae · Evolution of mitochondria · Stramenopiles · Mitochondrial DNA · Secondary plastids

Abbreviation Mt: Mitochondrial

Introduction

The stramenopiles (section Heterokonta) encompass both unicellular, e.g., the Bacillariophyceae (diatoms), and multicellular lineages, e.g., the Phaeophyceae (brown algae). They also comprise both heterotrophic species such as Bicosoecida and Oomycetes and autotrophic species including the Bacillariophyceae, Chrysophyceae and Phaeophyceae (Leipe et al. 1994). The plastids of the photosynthetic species arose from a secondary endosymbiosis event involving algae related to extant red algae (Delwiche and Palmer 1997; Medlin et al. 1997). The origin of the host cell that originally acquired the plastid remains unclear. Two main hypotheses have been proposed: first that stramenopiles acquired their photosynthetic lineage late (Saunders et al. 1995; Leipe et al. 1996; Blackwell and Powell 2000); and second that chloroplast acquisition occurred earlier, in a common ancestor of alveolates and stramenopiles, and prior to the stramenopile divergence (Cavalier-Smith 1998; Fast and Keeling 2001; Yoon et al. 2004). This hypothesis implies subsequent multiple losses of chloroplasts within the heterotrophic lineage.

Phylogenetic relationships within the stramenopiles and/or within heterokont algae have been studied using different molecular markers and methods, such as the nuclear small subunit rDNA (e.g., Leipe et al. 1996; Van de Peer et al. 1996; Potter et al.1997; Guillou et al. 1999; Van de Peer et al. 2000), the chloroplast gene *rbcL* (Daugbjerg and Andersen 1997; Daugbjerg and Guillou 2001), or a combination of both (Sorhannus 2001; Goertzen and Theriot 2003). In these analyses, the nuclear data support the heterokont algae as monophyletic with generally the Bacillariophyceae (including Bolidophyceae) as the most basal group. Exceptionally Oomycetes have been included within the heterokont algae (Van de Peer et al. 2000). Based on further analyses using chloroplast genes, the monophyletic origin of heterokont algal plastids was confirmed with the Bacillariophyceae occupying an intermediate position, associated with the Chrysophyceae.

As the relationship between the photosynthetic and the heterotrophic stramenopiles is still unclear, we decided to reevaluate their phylogeny using a molecular marker common to all of them, e.g., a suite of ten genes from the mitochondrial (not plastidial) genome. Mitochondrial genes provide a valuable alternative to nuclear genes, since the origin of mitochondria is probably concomitant with that of the eukaryotic cell (Martin and Müller 1998; Vellai et al. 1998) and thus are more likely to reflect the evolutionary history of the original host cell. Two recent studies also utilized mitochondrial genes (four genes, 3,708 nucleotides: Sanchez Puerta et al. 2004; five proteins sequences, 1,791 amino acids: Armbrust et al. 2004) and were able to confirm monophyly of the stramenopiles. However, the focus of these studies was the phylogenetic placement of Emiliania huxleyi and Thalassiosira pseudonana, respectively. Neither of these studies addressed the late-early hypotheses of secondary chloroplast acquisition.

In addition to refining the stability of the broader phylogeny, we were also interested in the evolution of the brown algae and their mitochondrial genomes. The brown algae are characterized by diverse morphologies, ranging from microscopical filaments to huge kelps with complex fronds, tens of meters in length (Patterson 1999). In an earlier study, two brown algal mitochondrial genomes were sequenced, Pylaiella littoralis [Ectocarpales] (Oudot-Le Secq et al. 2001), which had been viewed as a representative of the brown algal ancestral condition, and Laminaria digitata [Laminariales] (Oudot-Le Secq et al. 2002), which was hypothesized to have evolved more recently. Both were found to be very similar in gene content as well as in gene arrangement, but were quite different with respect to the presence (in *P. littoralis* only) of group II introns and a large insertion of DNA of an unknown origin. In the present study, we sequence and analyze the complete mitochondrial sequences of three additional brown algae Dictyota dichotoma [Dictyotales], viewed now as the most ancestral brown algal lineage (Draisma et al. 2001; Rousseau et al. 2001), Fucus vesiculosus [Fucales] and Desmarestia viridis [Desmarestiales].

We characterize these three new phaeophycean mtDNAs in detail and reassess phylogenetic relationships within the stramenopiles.

Material and methods

Algal sources

Dictyota dichotoma (Hudson) J.V. Lamouroux was cultivated from an isolated individual collected in 1996 at the Pointe de Mousterlin, Brittany, France, by H. Pakker. *Fucus vesiculosus* Linnaeus was collected on 22 October 2001 in front of the Marine Biological Station, in Roscoff, Brittany, France, by M.-P. Oudot-Le Secq. *Desmarestia viridis* (O.F. Müller) J.V. Lamouroux was collected in 1978 in Helgoland by K. Lüning. Frozen tissue from the original algal culture was used.

DNA preparation and PCR procedures

Algal tissue was ground in liquid nitrogen and total DNA extracted in a buffer containing 100 mM Tris-HCl pH 8.0, 1.4 M NaCl, 20 mM EDTA, 0.1% (w/v) PVPP, 0.2% (v/v) β -mercaptoethanol and 2% (w/v) CTAB. After two chloroform-isoamyl alcohol (24:1, v/v) extractions, the aqueous DNA solution was purified with the Sephaglas BandPrep Kit (Pharmacia), following the manufacturer's instructions. These total DNAs were used as a template to amplify the mitochondrial DNAs. Primer design was based initially on Pylaiella littoralis and Laminaria digitata mitochondrial sequences and on multiple alignments of mitochondrial and bacterial sequences of homologous genes; and secondarily on the specific algal sequence under study. PCR experiments were performed either in a Cetus DNA thermo cycler (Perkin Elmer) or in a Mastercycler gradient cycler (Eppendorf) with Ready-to-Go beads (Tag, Amersham Pharmacia Biotech), 2 mM of each primer and 0.5–2 μ L of total DNA (1-20 ng). The reaction profile was as follows: initial denaturation at 95°C for 1-3 min; ten cycles of denaturation at 95°C for 30 s, annealing at 46-62°C (depending on primer sequences) for 1 min, and elongation step at 72°C for 20 s-3 min (depending on the expected size of the amplified fragment); followed by 20-30 cycles of denaturation at 95°C for 30 s, annealing step at 46-62°C for 30 s, and elongation at 72°C for 20 sec-3 min; and a final elongation at 72°C for 10 min. When the expected size of the amplified fragment was above 4 kb the Expand Long Template PCR System (Roche) was used, according to the manufacturer protocols. PCR products were loaded on 0.8-1.5% agarose gels; fragments were cut from the gel. The DNA was extracted from gel slices and was purified using the Wizard[®] PCR Preps DNA Purification System (Promega) following the manufacturer's directions.

DNA sequencing

Direct sequencing of PCR products was performed using the PCR primers and additional internal primers with the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (PE Applied Biosystems). Sequencing reactions were run on an ABI 377 automated sequencer (PE Applied Biosystems). Sequences, read on both strands, were assembled using the BioEdit Sequence Alignment Editor version 5.0.9 (Hall 1999).

Sequences and alignments

The complete sequences of the three mitochondrial genomes are available from GenBank under the following accession number: *F. vesiculosus*, AY494079; *D. dichotoma*, AY500368; and *D. viridis* AY500367. The three new mitochondrial sequences were manually aligned with those of *P. littoralis* and *L. digitata* using BioEdit Sequence Alignment Editor versions 5.0.9 and 6.0.7 (Hall 1999). The nucleotide sequences of the ten mitochondrial genes (*atp6*, *atp9*, *cob*, *cox1–3*, *nad1*, *nad3–4* and *nad4L*) from 22 selected organisms and the bacterial counterparts of these genes from two α -proteobacteria (Table 1) were aligned with those of the five brown algal mitochondrial sequences. Regions too ambiguous to align were excluded. The dataset is 7,479 nucleotide

 Table 1 Organisms included in the phylogenetic study

positions long with *atp6* (543), *atp9* (213), *cob* (1,083), *cox1* (1,437), *cox2* (726), *cox3* (780), *nad1* (906), *nad3* (339), *nad4* (1,200) and *nad4L* (252).

Phylogenetic analysis

Bayesian maximum likelihood analysis was performed using MrBayes version 3 (Ronquist and Huelsenbeck 2003). Models of DNA evolution were determined with Modeltest 3.06 (Posada and Crandall 1998) and PAUP (Swofford 2003), based on Hierarchical Likelihood Ratio Tests, run on each partition (e.g., individual gene alignment). Table 2 summarizes the models chosen. The following settings were used: nst (number of substitution types) = 6 (models TVM and GTR), with gamma-distributed rates across sites and proportion of invariable sites when required. We allowed the set of parameters to be different for each partition. Introduced gaps were treated as missing data in subsequent analyses. The different parameters from the phylogenetic models were estimated during the phylogenetic analysis. Four chains were run; trees were sampled every 100 of the 2,000,000 generations and the 1,000 first trees were discarded as burn-in.

Species ^a	Classification	Accession no. ^b
Desmarestia viridis	Stramenopiles, Phaeophyceae	AY500367
Dictyota dichotoma	Stramenopiles, Phaeophyceae	AY500368
Fucus vesiculosus	Stramenopiles, Phaeophyceae	AY494079
Laminaria digitata	Stramenopiles, Phaeophyceae	AJ344328
Pylaiella littoralis	Stramenopiles, Phaeophyceae	AJ277126
Thalassiosira pseudonana	Stramenopiles, Bacillariophyceae	DQ186202
Chrysodidymus synuroideus	Stramenopiles, Chrysophyceae	AF222718
Ochromonas danica	Stramenopiles, Chrysophyceae	AF287134
Cafeteria roenbergensis Thraustochytrium aureum Phytophthora infestans Saprolegnia ferax Emiliania huxleyi	Stramenopiles, Bicosoecida Stramenopiles, Labyrinthulida Stramenopiles, Oomycetes Stramenopiles, Oomycetes Haptophyceae, Isochrysidales	AF193903 AF288091 U17009 AY534144 AY342361
Rhodomonas salina	Cryptophyta, Cryptomonadaceae	AF288090
Cyanidioschyzon merolae Porphyra purpurea Chondrus crispus Nephroselmis olivacea Prototheca wickerhamii Chara vulgaris Marchantia polymorpha Malawimonas jakobiformis Reclinomonas americana Monosiga brevicollis Schizophyllum commune Allomyces macrogynus Acanthamoeba castellanii Mesorhizobium loti MAFF303099	Rhodophyta, Bangiophyceae Rhodophyta, Bangiophyceae Rhodophyta, Florideophyceae Viridiplantae, Chlorophyta, Prasinophyceae Viridiplantae, Chlorophyta, Trebouxiophyceae Viridiplantae, Streptophyta, Characeae Viridiplantae, Streptophyta, Marchantiaceae Malawimonadidae Jakobidae Choanoflagellida, Codonosigidae Fungi, Basidiomycota Fungi, Chytridiomycota Acanthamoebidae α-proteobacteria, Rhizobiales	D89861 AF114794 Z47547 AF110138 PWU02970 AY267353 M68929 AF295546 AF007261 AF538053 AF402141 U41288 U12386 BA000012
Rickettsia prowazekii str. Madrid E	α-proteobacteria, Rickettsiales	AJ235269

^aUnderlined species are photosynthetic with chloroplasts derived from primary endosymbiotic events; double underlined species have chloroplasts from secondary origin

^bNumbers in bold are those of the sequences obtained in this study

 Table 2 Evolutionary models chosen by Modeltest

Gene	Model
atp6 atp9 cob cox1 cox2 cox3 nad1 nad3 nad4	$\begin{array}{c} GTR + I + G\\ GTR + I + G\\ TVM + I + G\\ GTR + I + G\\ TVM + G\\ TVM + I + G\\ GTR + I + G\\ TVM + I + G\\ GTR + I + G\\ GTR + I + G\\ GTR + I + G\end{array}$

GTR General time-reversible model, I Proportion of invariable sites, G shape parameter of the gamma distribution, TVM Trans-Versional model.

Results and discussion

Characterization of mt genomes in *Dictyota dichotoma*, *Fucus vesiculosus* and *Desmarestia viridis*, with references to those of *Pylaiella littoralis* and *Laminaria digitata*

The *D. dichotoma*, *F. vesiculosus* and *D. viridis* mtDNAs have a circular mapping organization. The three mtDNA maps are depicted in Fig. 1. Their sizes are: 31,617 bp (*D. dichotoma*), 36,392 bp (*F. vesiculosus*) and 39,049 bp (*D. viridis*). Different characteristics of the genomes, such as their A + T content for different categories of sequences and figures about spacer sequences and overlaps are summarized in Table 3. All these values are in the same range as those of *P. littoralis* and *L. digitata* (Oudot-Le Secq et al. 2001, 2002).

Two of the overlapping regions are exactly conserved among the three mtDNAs described here, as well as in *P. littoralis* and *L. digitata*; these are found between the genes encoding the ribosomal proteins *rps8*, *rpl6* and *rps2*. Both involve the start codon ATG and a stop codon (TGA or TAA); the *rps8–rpl6* overlap is 4 bp long, ATGA, and the *rpl6–rps2* overlap is only 1 bp long, A (in the context: taAtg).

More than 60 putative coding regions were identified in each of the three mtDNAs (Table 4), basically the same as in *P. littoralis* and *L. digitata* mtDNAs. These are the genes for three rRNAs (23S, 16S and 5S), for 25 tRNAs in the case of D. dichotoma or 26 for F. vesiculosus and D. viridis, for 35 proteins identified by sequence homology, as well as for one common ORF (also encoded in P. littoralis and L. digitata mtDNAs). Fucus vesiculosus and D. viridis share another related ORF, despite its size difference (379 and 622 amino acids, respectively). Finally, D. dichotoma and D. viridis each encode one more unique unknown orf, orf54 and orf211, respectively. None of the three new mtDNAs contain introns, nor any insertion with a phage-like RNA polymerase gene as has been described in the P. littoralis genome (Costa et al. 1997; Rousvoal et al. 1998; Oudot-Le Secq et al. 2001). At present *P. littoralis* is the only known brown alga that shows these unusual features in its mitochondrial genome.

The gene order is very well-conserved between the three new brown algae mtDNAs and those of *P. litto-ralis* and *L. digitata*, although exceptions exist (Fig. 2). These are mainly due to *orfs* not present in all the mtDNAs (see gray triangles in Fig. 2), to tRNA genes (see dashed lines) and to a few genes coding for proteins (*atp8, atp9, rpl31* and *rps10*) in the *D. dichotoma* mtDNA compared to the other mtDNAs (see black lines).

In order to calculate pairwise identity scores, a nucleotide alignment of the five complete mitochondrial genomes was restricted to the genes, conserved *orfs* and corresponding spacers, found at the same location in all the brown algal mtDNAs (i.e., those that are found at the same horizontal level in the five maps, Fig. 2). The resulting alignment contains 34,501 positions. Four out of the five mtDNAs share from 69 to 75% identity (Table 5), whereas the *D. dichotoma* sequence is only 57–58% identical to the others. When the *cox2* insertion region, absent in *D. dichotoma* (see below), is removed from the alignment it reaches 64% identity with the others (not shown).

Genetic code

The universal genetic code seems to be used in all of these mtDNAs, based on protein sequence alignments. RNA editing does not appear to be necessary.

A gene, rps14 in *D. dichotoma* and a putative *orf*, *orf379* in *F. vesiculosus*, use GTG as initiation codon, and two other *orfs*, *orf211* in *D. viridis* and *orf37* in *D. dichotoma* use TTG. GTG and TTG are commonly used as alternative start codons in the mitochondrial genetic code of different animal groups (e.g., invertebrates, molds, protozoans and coelenterates), in the plant plastidial code and in the bacterial code (Elzanowski and Ostell 2000). All the codons are used to encode proteins (Supplementary material). Those ending in A or T outnumbered the synonymous codons ending in G or C, as expected for A+T rich genomes. All of the three stop codons are used (see Table 5), with a marked preference for TAA of 64% (*D. dichotoma*) and 83% (*F. vesiculosus* and *D. viridis*).

rRNA genes

The 5S rRNA gene is encoded in the three new mtD-NAs. These three genes share with the *L. digitata* 5S gene, a putative insertion between stems V and I that may form a hairpin that is absent in *P. littoralis* (a representation of the potential folding of the five *rrn5* is provided as Supplementary Material). Stems I are shorter and weaker than usual, as was the case for the *P. littoralis* and *L. digitata* genes. The *rns* genes are well conserved and their potential folding is in general

Fig. 1 Physical map and gene organization of the *Dictyota* dichotoma, Fucus vesiculosus and Desmarestia viridis mtDNAs (a color version is provided as supplementary data). Genes and orfs are depicted as blocks, with gene abbreviations listed in Table 4. The gene blocks shown outside and inside are transcribed clockwise and counter-clockwise, respectively. Transfer RNA genes (*trn*) are indicated as white boxes surrounded by black

lines, their names are indicated by the amino acid (one-letter code) they specify (see Fig. 3). *Thin black bars* between gene blocks indicate gene overlaps. The *three inner rings* show the restriction fragments generated by *Bam*H1, *Eco*R1 and *Sal*1, respectively. On the *black circle*, between genes and restriction maps, the scale size is shown (in kilobases)

Table 3 Characteristics of
Dictyota dichotoma, Fucus
vesiculosus and Desmarestia
<i>viridis</i> mtDNAs

Characteristic	D. dichotoma	F. vesiculosus	D. viridis
Size (bp)	31.617	36.392	39.049
Overall $A + T$ content (%)	63.5	65.6	63.4
Protein $A + T$ content (%)	65.4	66.7	64.0
Spacer $A + T$ content $(\%)$	76.5	77.3	74.1
rDNA A + T content (%)	58.9	57.8	55.7
Spacer content (%)	3.2	5.6	6.1
Spacer size (bp)	1–74	1-422	1-385
Avg. spacer size (bp)	18.8	35	43.8
Overlapping genes (bp)	12	9	13
Overlap size (bp)	1-30	1–66	1-60
Average overlap size (bp)	8.3	13.4	15.2

52

Table 4	Coding regi	ions id	lentified i	n <i>Dictyota</i>	dichotoma,	Fucus	vesiculosus	and	Desmarestia	viridis	mtDNA	s
---------	-------------	---------	-------------	-------------------	------------	-------	-------------	-----	-------------	---------	-------	---

Genes and <i>orfs</i>	D. dichotoma	F. vesiculosus	D. viridis
Ribosomal RNA genes: 3			
rnl (23S rRNA)	+	+	+
rns (16S rRNA)	+	+	+
rrn5 (5S rRNA)	+	+	+
Transfer RNA genes (See Figs. 3, 4)	25	26	26
Ribosomal protein genes			
Small subunit (rps): 11 (rps2–4, rps7, rps8, rps10–14, rps19)	+	+	+
Large subunit (<i>rpl</i>): 6 (<i>rpl2</i> , <i>rpl5</i> , <i>rpl6</i> , <i>rpl14</i> , <i>rpl16</i> , <i>rpl31</i>)	+	+	+
Complex I (NADH dehydrogenase genes): 10 (nad1-7, nad9, nad11)	+	+	+
Complex III (apocytochrome b): 1 (<i>cob</i>)	+	+	+
Complex IV (cytochrome oxidase genes): 3 (cox1, cox2, cox3)	+	+	+
Complex V (F_0 -ATPase genes): 3 (<i>atp6</i> , <i>atp8</i> , <i>atp9</i>)	+	+	+
Sec-independent protein translocation pathway gene: $1(tatC)^{a}$	+	+	+
Unidentified conserved <i>orfs</i>	orf37	orf43	orf39
v	orf111	orf131	orf143
	~	orf379	orf622
Unidentified unique orfs	orf54	~	orf211
Total	66	67	6 8

^aCorresponds to gene RP782 of unknown product of *Rickettsia prowazekii*; mitochondrial orfs homologous to the tatC gene, called also ymf16: ORF262 Chondrus crispus, ORFx angiosperm, ORF244 Marchantia polymorpha, ORF234.1 Prototheca wickerhamii, ORF260 Reclinomonas americana. Plastidial orfs homologous to the tatC gene: ycf43, ORF263 Odontella sinensis, ORF254 Porphyra purpurea

accordance with the eubacterial model (Wuyts et al. 2002). The same can be said about the *rnl* genes although some of their variable areas differ from one species to the other.

trn genes

The *D. dichotoma*, *F. vesiculosus* and *D. viridis* mtDNAs share 24 potential *trn* genes with *L. digitata* mtDNA (Fig. 3) that can fold, following the standard cloverleaf secondary structure (Sprinzl et al. 1998) and fit the L-shape, except in the tRNA^{Arg} [ucu] from *D. dichotoma*, where the position 48 is not a pyrimidine but an adenine (Zagryadskaya, Kotlova and Steinberg 2004). The tRNA^{Leu} [caa] gene cannot be depicted in the *P. litto-ralis* mtDNA (see the star in Fig. 2), though the region still shares high sequence homology with the *trn* sequence, it lacks the main conserved features (Oudot-Le Secq et al. 2002). Another region, common to the five mtDNAs, but labeled differentially in the different algal mtDNAs (Figs. 2 and 4a), "K?" in *D. dichotoma*, *D.*

viridis and L. digitata, "X?" in F. vesiculosus and L. digitata, or "F?" in P. littoralis, can fold according to the cloverleaf model. As shown in Fig. 4a, this region has a high similarity level with the trn Glu sequence, but some of the so-called invariant positions do not follow the consensus (gray shading in Fig. 4a). In addition, the anticodon positions are not the same in all the five mtDNAs. They are TTT for a trn Lys in D. dichotoma and D. viridis. The anticodon in F. vesiculosus mtDNA is TTA, which should "decode" the stop codon TAA (the most frequently used stop codon in the genome). It is even more complex in the P. littoralis and L. digitata cases; in the first, the anticodon loop is one nucleotide longer than usual, leading to "AAAA", the trn Phe (F), while one nucleotide is missing in the second, leading to two possibilities for the anticodon position: TTT (trn Lys) as in D. dichotoma and D. viridis or TTA as in F. vesiculosus. The P. littoralis and L. digitata sequences also have an insertion of 16 and 15 nucleotides, respectively, in the D loop (see Fig. 4). Finally, since the five mtDNAs encode well-conserved, canonical genes for both tRNA Lys and Phe, this noncanonical gene should

Table 5 Pairwise identities of mtDNA sequences

	P. littoralis	L. digitata	D. viridis	F. vesiculosus	D. dichotoma
P. littoralis	_				
L. digitata	73 % ^a	_			
D. viridis	71 %	75 %	-		
F. vesiculosus	69 %	70 %	72 %	_	
D. dichotoma	57 %	57 %	57 %	58 %	-

Pairwise identity between sequences were calculated in BioEdit v6.0.7 (Hall 1999)

The alignment of the five mtDNAs was restricted to genes and spacers found at the same location, e.g., all the genes, *orfs* and corresponding spacers that are highlighted in Fig.2 by any kind of line were excluded. This alignment totals 34,501 positions (32,599 nucleotides for *P. littoralis*, 33,355 for *L. digitata*, 33,407 for *D. viridis*, 32,353 for *F. vesculosus* and 29,684 for *D. dichotoma*)

^aIn Oudot-Le Secq et al. (2002), the alignment was less reduced, leading to 71% identity

not be necessary to encode a tRNA. On the other hand, the fact that the cloverleaf folding is conserved, when the other tRNA's mandatory positions are not, may suggest that this pseudogene has now gained a new function. It could serve as punctuation marks, for the process of a large mRNA encompassing the surrounding genes. It is known that *trns* play such a role in fungi mt genome (Burger et al. 1985) and animal mt genomes (Clayton 1984). The case of a pseudogene that could have gained

Fig. 2 Gene order comparison between the mtDNAs of Dictvota dichotoma (Dd), Fucus vesiculosus (Fv), Desmarestia viridis (Dv), Laminaria digitata (Ld) and Pylaiella littoralis (Pl) mtDNAs (colored version in supplementary material). On these linear representations of mtDNA gene contents, only the gene order is taken into account; spaces between two genes are there only to allow horizontal alignment and to help visual comparison. Genes on a same horizontal line are homologous. White blocks depict ribosomal protein encoding genes; light gray blocks (black writing) depict genes coding for proteins involved in respiratory chains; dark gray blocks (white writing) depict other protein encoding genes and orfs; black blocks depict RNA genes (tRNA and rRNA genes). Arrows indicate transcription direction. Gray triangles highlight presence/absence of a gene between two mtDNAs. Thick black lines highlight the different locations of protein encoding genes between D. dichotoma and other mtDNAs. Dashed black lines highlight trn different locations. The two asterisks in P. littoralis mtDNA indicate that although tRNA Leu and orf40 are not coded anymore, the corresponding regions still share high sequence homology with the L. digitata sequence

such a function has been described recently in the mt genome of a fish (Mabuchi et al. 2004). Furthermore, a long mRNA encompassing at least *cox2*, *nad4* and *nad5* genes has been evidenced by a northern experiment (M.-P. Oudot-Le Secq and Loiseaux-de Goër, unpublished data) in *P. littoralis*.

Fucus vesiculosus and D. viridis mtDNA share one additional putative tRNA gene (Fig. 4b), that of tRNA^{Tyr} [aua]. Both sequences display deviations from the consensus (gray shading). Another tRNA^{Tyr} gene, but with [gua] as anticodon, is shared by the five mtD-NAs. We do not know if these noncanonical trns are transcribed and used or if they are remains or intermediates of the evolutionary process. In the first case, the sequences seem to be related to those of trn Glu and could have gained a new function as a processing signal, but in the latter (trn Tyr), there is no such obvious origin (not shown). Since all the codons are necessary to code the protein genes, the *trn* set encoded in the brown algal mtDNAs is not sufficient to decode them all; the lacking tRNAs have to be imported from the cytosol to mitochondria, as it is the case in many organisms (Schneider and Maréchal-Drouard 2000).

Protein-encoding genes and orfs

The identified mitochondrial protein-encoding gene set is the same in the five mtDNAs studied so far (Table 4). These are: genes for the three first subunits of the cytochrome oxidase (cox1-3); *cob*, which encodes apocytochrome B; ten genes encoding ten subunits of the NADH dehydrogenase *nad1-7*, *4L*, *9* and a short *nad11* gene; three genes encoding three subunits of the ATPase, *atp6*, *8* and *9*; and seventeen ribosomal protein-coding genes. The *cox2* gene contains a large in-frame insertion of 2,994 bp in *D. viridis*, comparable in size and related to those found in the *cox2* genes of *P. littoralis* (2,973 bp) and *L. digitata* (2,979 nucleotides). The insert also exists in the *F. vesiculosus cox2* gene, with a slightly

+ DNA	Aminoacul			D			Anticod	22	Extra ar	m	ΨΨC		Aminoa	oul
URNA	stem	stem		loop	stem	stem	loop	stem	Extra an	m stem	loop	stem	stem	сут
Consens	sus			*			*							
	T	Y	AR/	GG/	AR- I	<u></u>	- YT R			/Y0	G TTCRA-Y	C		
A(ugc)	Dd GGGAATA T Dy GGGGATA T	A ACTC	AATT	GGT	A GAGT	TATGC	TT TGC A	A GCATG TG A GCATG AA	GG	TT GAGAC	TTCAAAT TTCAATT	CTCTC CTCTC	TATTTCC TATCTCC	72
A(ugc)	FV GGGGGTA T	A ACTC	AATT	GGC	A GAGT	GTGTGC	TT TGC A	A GCACA AA	G	TT GAGGO	TTCAAAI	CCCTC	TATCTCC	72
C(gca) C(gca)	<i>da</i> caongeg ii <i>dv</i> cgongca ii	A GTAT A GTAT	AAA AAA	GGT I GGT I	TA ATGC O	G GTGGG	TT GCA G TT GCA A	T TTCAT TA A CCCAC AA	A A	T GATGO T GAGGO	TTCGAAT TTCAAGT	CCGTC CCCTC	TOCGECC	72
C(gca)	FV GGCTAGA T	A GTAT	AAA	GGT I	TTA ATGC A		TT GCA A	A CCCGC AA	A	TGATGO	G TTCAAGI	CCTTC	TCTGCCT	72
D(guc)	Dv GAAAAAG T	A ACTC	AGTC	GGT	A GAGT (G TTGGI	TT GTC A	T GCCAA TG	G	TC GCGGG	TTCAAGI	CCCGT	CTTTTTC	72
D(guc)	FV GAGAAAG T Dd GTCTCTT T	A ACTC	AGT	GGT	A GAGT C	TTGG1	TT GTC A	T ATCAG TG	G		TTCAAAI	CCCGT	CTTTCTC ACCACAT	72
E (uuc)	DV GTOCTTT T	CGTCT	AAC	GGT	TA GGAC	TTGC	TT TTC A	C GGCAA AG	A	T ACGGO	TTCAATT	CCCGT	AAAGGAT	71
F(gaa)	Dd GTTTGGG T	AGCTC	ACCA	GGT	A GAGC	GAGGA	CT GAA A	A TCCTT AG	G	TC GTTG	TTCAAGI	CCAAC	TTCAGAC	72
F(gaa) F(gaa)	DV GTTTGGG T FV GTTTGGG T	A GCTC A GCTC	AGTT AGAT	GGT	A GAGT (A GAGT (G AAGGA	A CT GAA A CT GAA A	A TCCTT AG A TCCTT AG	GG	TC GTCGC TC GTTGC	TTCAAGC	CCGAT CCAAT	CCCAAAC	72 72
G(gcc)	Dd GCGAAAG T	AACTC	AAT	GGT	GA GAGT	TAAGO	TT GCC A	T GCTTG AA	G	TT GAGGO	TTCGAGT	CCCTT	TTTTCGC	72
G(gcc)	FV GCGTAAG T	A ACTC	AATT AATC	GGT	A GAGT C	TAAGC	TT GCC A	A GCTTA AA	G	TT GAGGO	TTCAAA1 TTCGAGT	CCCTT	CTTTCGC	72
H(gug)	Dd GCGGGTA T	AACTT	AGTT	GGT	TA GAGT	TCAGO	TT GTG A	T TCTGG AA	G C	CGGGGG	TTCGAAT	CCCCT	TATTCGC	73
H(gug)	FV GCGACCG T	AACTC	AGTT	GGT	TA GAGT	CCAGO	TT GTG G	C TCTGG AA	GA	CGGGGG	TTCAAGT	CCCCT	CGCCCCGC	73
I(cau) I(cau)	<i>Dd</i> CGGTTTG T <i>Dv</i> CGGTTC <mark>G T</mark>	A GTTT A GTTT	AATC AATT	GGT GGT	A AAAC (A AAAC A	A TAGTI	CT CAT G	A AGCTA AT A AGCTA AC	GT AA	T GTAGO T GTAGO	TTCAAGI TTCAAAI	CCTAC	CGAACCG CGAACTG	72 72
I(cau)	FV CGGTCTG T	AGTTT	AATT	GGT	AAAACA	TAGTI	CT CAT G	A AGCTA CC	AT	TGTAG	TTCAACI	CCTAC	CGGACTG	72
I (gau)		AACTC	AGT	GGT	AGAGI	TACGO	CT GAT A	A GCGTA AA	GC	CGATCO	TTCAAT	CGATC	CAGGCCC	71
I (gau). K (uuu).	Dd GGGGTATG T	A GCTC	AGT	GGT	A GAGT	A ATGGA	CT GAT A	A CCGTA AA	GG	TC TTGG	G TTCGAGI	CCCAA	TTTTCCC	72
K(uuu) K(uuu)	DV GGGCGTA T FV GGGTGTA T	A GCTC A ACTC	AGTT AGTT	GGT	TA GAGT (TA GAGT (G GTGGA	A CT TTT A	A TCCGA AA A TCCGA AG	G	TC TTGGO TC TTGGO	TTCAAAT TTCAAGT	CCCAA	TACGCCC TACGCCT	73
L(uaa)	Dd ACGACTT T	GGTGA	AATA	GGT A	TA CAC	TCAGA	CT TAA A	A TCTGT TT	CTATGT 7	AGAGT ATCG	TTCAAGT	CCGAT	AAGTCGT	83
L(uaa)	FV GCGACTT T	GGTGA	AATT	GGT A	AGA CAC	TCAGA	CT TAA A	A TCTGT TT	CTTT 7	GAGAGT ATCG	TTCAAGI	CCGAT	AAGTCGT	81
L(caa)	Dd GCTTCTA T Dy GCTTCCA T	G GTGG	AATT AATT	GGT A	AGA CAC	GCAGA	A TT CAA A	A TCTTT TG A TCTTT TG	TCTTTA	TGACGT ACTGO	TTCAAGT	CCAGT	TAGGGGT TGGAAGT	81 81
L(caa)	FV GCTTCCA T	GGTGA	AATT	GGT A	ATA CAC	GGAGA	TT CAA A	A TCTTT TG	TCTTT	TGATGT GCCGC	G TTCGAGI	CCGGC	TGGAAGT	81
L(uag)	DV GCCAGGG T	G GTGG G GTGA	AAAT AATT	GGT A	AGA CACO AGA CACO	G CTGGG	TT TAG G	T TCCAG TC	CTTAA	TGGGAT AGGGO	TTCAAGI TTCAACI	CCCCT	CCTTGGT	81
L(uag)	FV GCCAGAG T	G GTGG A GTTC	AATT	GGT A	TA CACO		TT TAG G	T TCCAG TT C CCCAA AA	CTTTT	GGGAAT AGGGG	TTCAACI TTCCAACI	CCCCT	TTCCGTT	81
eM(cau)	DV GGCGCTC T	A TTTC	AGT	GGT	TA GAAT	TTGGA	T CAT A	T CCCAA AT	000	TC AAGGO	TTCGAAT	CCCTT	CTCCCCT	72
fM(cau)	Dd TGCGTTG T	AGAGC	AGTTT	GGT I	TAA GC T A	TCAGO	CT CAT G	C CCTGA AG	G	AC ATAGO	TTCAAAT	CCTAT	CGACGCA	.75
fM(cau). fM(cau).	<i>Dv</i> tgcacta t <i>Fv</i> tgcgtta t	A GAGC A GAGC	AGTTA AGTAC	GGT GGT	CAGC CO TAGC CO	G TCAGO	CT CAT G	C CCTGA AG C CCTGA AG	G G	AC GCAGO TC GTAGO	TTCAAAT TTCAAAT	CCTGC CCAAC	TAGTGCT TGGCGCT	74
N(guu)	Dd TCCTTGG T	AGCTC	AGCA	GGT	A GAGC	AATGO	CT GTT A	A CCATT GG	G	TC GTTGC	TTCAATC	CCAAC	TTAAGGA	72
N (guu)	FV TCCTCAA T	AGCTC	AGTT	GGĈ	A GAGC	TGTGC	CT GTT A	A CCATA AA	G	CC GTTAC	TTCAAGT	CTAAC	TTGGGGA	72
P(ugg) P(ugg)	<i>Dd</i> CCAGAAG T <i>Dv</i> CCGGAGG T	G ACGT G ACGC	AGG AGC	GGT GGT	A GCGT (A GCGT (G TTCGC	TT TGG G TT TGG G	A GCGAA AA A GCGAG AA	G	TC ATAGO TC ATAGO	TTCGAAT	CCTAT CCTAT	TTTCTCG TCTCTTG	71 71
P(ugg)	FV CGGGAGA T	A ACGC	AGC	GGT	AGCGT	TTCGC	TT TGG G	A GCGAA AA	G	TC ATAGO	TTCAAAT	CCTAT	TCTCTTG	71
Q(uug)	Dv TGGAGTC T	AGCCA	AGTT	GGT	AAGGC	CCCGI	TT TTG G	T ACGGG GA	Ċ	CAGAGO	TTCGAGI	CCTTT	GACTCCA	71
Q(uug). R(ucu)	Dd ACATTCT T	A GCCA	AGTT	GGT	TA GAGC	A ATGGT	TT TTG G	T ACGGG GA A ACCGG CG	G		TTCGAGT	CCTAT	GACTCCA AGAATGT	71
R(ucu)	DV GCATTTT T FV GCATTTT T	A GCTC	AGT	GGA	TA GAGC	G TCGGI	CT TCT A	A ATCGT GG A ATCGT GG	G	TC GTAGO	TTCGAAT	CCTAT	AAAATGT AAAATGT	72
S(gcu)	Dd GGAGATG T	GGCTG	AGT	GGC 1	TA AAGC	TTGGT	TT GCT A	A ATCAA CC	TGTACG AC	TACAGC GTAG	TTCGAAT	CCTAC	CGTCTCT	84
S(gcu) S(gcu)	DV GGAGATG T FV GGAGATG T	GGCTG	AGT	GGC 1 GGC 1	IGA AAGC	TTGGT	TT GCT A	A ATCAA TC A ATCAA TC	TATGTTTTTA TATGTTTTTA	ATGTAGC GTAGC	G TTCGAAT G TTCGAAT	CCTAC	CATCTCC	87
S(uga)	Dd GGATAAG T	G GOTG	AGT	GGT C		A TCAGI	TT TGA A	A ACTGG CG	CAGTTA AA	AACTGTC GTGGC	TTCGAAT	CCTAT	CTTATCC CTTATCC	84
S(uga)	FV GGATAAG T	G ACCG	AGT	GGT C	TA AGGT	TCAGT	TT TGA A	A GCTGA CG	CAGCTA	AACTGCC GTGGO	TTCGAAT	CCTAC	CTTATCC	83
V(uac) V(uac)	<i>Da</i> AGGGGTG T <i>Dv</i> GGGAGCA T	A ACTC A ACTC	AGT	GGT	A GAGT A	TGTG1	CT TAC A	A ACACA AG A GCACG AA	G	TC GGGGC TC GGGA	TTCGAAC TTCAAGI	CCCTC CTCTC	TGCTCCC	71
V(uac). W(cca)	FV GGGAGCA T	AACTC	AGT	GGT	A GAGT C	TCGGT	CT TAC A	A GCACG AA	G		TTCGAGC	CTCTC CCCTC	TGGTCCC	71

Fig. 3 Nucleotide sequences of the 24 common tRNA genes found in the mitochondrial genomes of *D. dictyota* (*Dd*), *D. viridis* (*Dv*) and *F. vesiculosus* (*Fv*). Anticodons are shown in *bold. Black shading* highlights identities between the three sequences for each

W(cca)Dv W(cca)Fv Y(gua)Dd Y(gua)Dv Y(gua)Fv

smaller size (2,283 bp) but is absent in the *D. dichotoma* gene. The insert is also absent in *Sphacellaria* (unpublished data). These insertions show a conserved leucine-zipper-like region and may prove useful as phylogenetic markers within brown algae. Pearson et al. (2001) sequenced a 648 bp long fragment identical to part of the *F. vesiculosus cox2*-insertion, starting 61 bp after the beginning of the insertion (only the first 3 bp are not the

trn. The *upper line* (Consensus) shows the invariant and semiinvariant nucleotides found in tRNA genes, *gray shading* indicates positions that do not fit the consensus

same) and finishing just upstream from the leucine-zipper-like region. This fragment was found among the clones obtained by the screening of a cDNA library generated by suppression subtractive hybridization for *F. vesiculosus* undergoing mild desiccation stress. Northern analysis did not show a clear over-expression after desiccation (Pearson et al. 2001). This suggests a possible excision of the insertion in the cox2 mRNA, but

Fig. 4 Nucleotide sequences of two putative tRNA genes. **a** Comparison between the *trn* Glu (E) sequences of the five brown algal mtDNAs with a putative tRNA gene, found within the five genomes at a same location. **b** Sequence of an additional *trn* Tyr (Y) found in *D. viridis* and *F. vesiculosus* mtDNAs

would be in contradiction with the results obtained previously (Oudot-Le Secq et al. 2001). An AT-rich sequence downstream of the cloned fragment on the *F. vesiculosus* genome, i.e., AAAAAAAATTAGAAAAA could explain the presence of this clone after selection of full-length poly- A^+ mRNAs.

The gene encoding a protein transporter component of the secY-independent pathway, tatC (previously called *vmf16*), is present, always in the reverse transcriptional orientation, in the five brown algal mtDNAs. These genomes all encode one related orf, orf111 (D. dichotoma), orf131 (F. vesiculosus), orf143 (D. viridis), orf129 (L. digitata) and orf127 (P. littoralis), which seems specific to brown algal mtDNAs. No similarity with other orfs was found in other algae or other organisms that have been found up till now. Between the trn Trp and trn Ile, another small orf is present in four out of the five genomes. These orf43 (F. vesiculosus), orf39 (D. viridis) and orf40 (L. digitata), even if small, are very well conserved, while orf37 (D. dichotoma) is different. No similarity with other orfs has been found by Blast. In *P. littoralis* three longer orfs precede a region that could be a pseudogene of this ORF. F. vesiculosus and D. viridis share another common orf with L. digitata, despite size differences (379, 622 and 384 amino acids encoded, respectively). Finally, D. dichotoma and D. viridis each encode one more unique unknown orf, orf54 and orf211, respectively.

Repeats

Despite the great similarity between the brown algal mtDNAs, they do not share any common inverted repeats. The longest repeats found in each mtDNA are mutually different, both in size and location (not shown). Two of these harbor a different stem–loop of 23

nucleotides, one between *trn* Trp and *trn* Ile (in *orf37*) in *D. dichotoma*, with a eight nucleotide long loop, and the other between the *trn* Glu and *nad9* genes in the case of *D. viridis*, with a six nucleotide long loop. At the same location, *L. digitata* also has an imperfect inverted repeat (one bulge) of 15 nucleotides. But the largest inverted repeat is found at the end of the *D. dichotoma rps7* gene. This gene, which is about 100 nucleotide long stem-loop, covering the end of the gene in such way that the stop codon is located in the middle of the second repeat.

Phylogenetic relationships of stramenopiles based on mt genes

Phylogenetic reconstructions were carried out using a concatenation of ten mitochondrial protein-encoding genes (atp6, atp9, cob, cox1-3, nad1, nad3-4 and nad4L) from a set of 29 species (Table 1). The 12 stramenopiles comprise: four heterotrophs (one Bicosoecida, one Labyrinthulida and two Oomycetes), two Chrysophyceae, the Bacillariophyceae Thalassiosira pseudonana (Armbrust et al. 2004) and the five Phaeophyceae, D. dichotoma, F. vesiculosus, D. viridis, L. digitata and P. littoralis. These represent all of the complete stramenopile mtDNAs currently available. Other representatives from eukaryotic lineages included: the Haptophyceae Emiliania huxleyi (Sanchez Puerta et al. 2004), the Cryptophyceae Rhodomonas salina, three Rhodophyceae, two Chlorophyta, two Streptophyta, one Jakobidae, one Malawimonanididae, the Choanoflagellida Monosiga brevicollis (Burger et al. 2003), two fungi and the amoeboid protozoon Acanthamoeba castellanii (Burger et al. 1995); finally, two α -proteobacteria were used as outgroup.

Fig. 5 Phylogenetic tree constructed from mtDNA nucleotide sequences of ten genes (*atp6*, *atp9*, *cob*, *cox1-3*, *nad1*, nad3-4, nad4L, 7,479 positions) from 29 species, using Bayesian phylogenetic inference. Posterior probabilities are indicated at the nodes. The dataset was partitioned into genes, and each partition analyzed with the appropriate DNA evolutionary model, as determined by Modeltest (Table 2). The light gray area highlights the stramenopiles and the *dark gray* area the heterokont algae. Single and double underlinings highlight organisms with primary and secondary plastids, respectively

The overall topology of the tree (Fig. 5) is very well supported by posterior probabilities of 1.00 for a majority of nodes. The stramenopiles form a monophyletic group in which the photosynthetic species cluster together. The Chrysophyceae emerge first, followed by *T. pseudonana* and the Phaeophyceae (posterior probability = 0.92). The relationships between phaeophycean species are in accordance with previous studies based on nuclear rDNA data (Rousseau and de Reviers 1999; Rousseau et al. 2001) and on nuclear and plastidial combined data (Draisma et al. 2001).

Within the heterotrophic stramenopile species, *Cafeteria roenbergensis* (Bicosoecida) is the most basal followed by *Thraustochytrium aureum* (Labyrinthulida) and Oomycetes (posterior probability = 0.96) as a sister group of the algal species.

A complex sister lineage to that of the heterokonts comprises the "green" lineage (Viridiplantae) plus R. americana and M. jakobiformis on one hand, and the red algae plus the cryptophyte Rhodomonas salina on the other. The haptophyte Emiliania huxleyi diverges before these, with a posterior probability of 0.96, separated from the well-conserved fungi-choanoflagellate clade and A. castellanii (Acanthamoebidae). In this analysis, the association of R. americana and M. jakobiformis with the green lineage separated from the parallel association between the cryptophyte and the red lineage is an argument in favor of two primary endosymbiotic events at the origin of primary chloroplasts, since Viridiplantae and Rhodophyceae do not form a monophyletic group. The presence of this clade (Viridiplantae, R. Americana-M. jakobiformis, Rhodophyceae, Cryptophyceae) between stramenopiles and haptophytes does not support the single acquisition of secondary plastids by a common ancestor of these lineages. The monophyly of the heterokont algae also suggests a secondary endosymbiotic event, which would have occurred in a heterotrophic stramenopile.

Until additional mitochondrial genomic data become available for more stramenopiles—such as representatives from the labyrinthulid/thraustochytrid group, the opalinids or the free living *Developayella elegans*, which are supposed to be close to the Oomycetes (Massana et al. 2002), for the heterotrophic heterokonts, and the Synurophyceae, Eustigmatophyceae, Xanthophyceae, Raphidophyceae and Pelagophyceae, for the algae—this conclusion remains provisional.

Conclusion

Although brown algae display great morphological and physiological differences (e.g., diversity of life cycles), the brown algal mitochondrial genomes studied so far are similar and alignable. The main common features of P. littoralis and L. digitata mtDNAs are shared by the other brown algal mtDNAs. These are the presence of rare mitochondrial encoded genes, such as rrn5, the presence of many ribosomal protein subunit encoded genes, and the unusually short *nad11* gene, where only the first third, corresponding to the well-known Fe-S binding domain of the protein is encoded. A large in-frame insertion is found in the cox2 gene, although of variable size, in all but the D. dichotoma mtDNA. It will be interesting to investigate more species and determine if this insertion was acquired after the D. dichotoma divergence or earlier and lost secondarily.

Phylogenetic relationships based on a set of ten mitochondrial genes support previous analyses based on single and double-gene studies (Rousseau and de Reviers 1999; Draisma et al. 2001) that utilized nuclear and chloroplast loci. This result is also corroborated by Fig. 2, showing the rearrangements necessary to switch from one genome organization to the others and indicating that gene order may be a phylogenetically informative character (Boore and Brown 1998; Rokas and Holland 2000; Sankoff et al. 2000). Indeed the phylogenetic order of modifications implied by Fig. 2 is the same as that given by the trees, i.e., *D. dichotoma, F. vesiculosus, D. viridis* and *L. digitata–P. littoralis.*

As genome sequencing becomes faster and cheaper, the switch to longer alignments as well as the utilization of gene order and indels should provide greater resolution in deeper branches. Finally, the finding that phaeophycean mitogenomes are remarkably similar provides encouragement for the development of useful genetic markers for species and population-level studies.

Electronic supplementary material

An electronic appendix to this article provides color versions of Figs. 1 and 2, codon usage of mitochondrial encoded protein genes and the potential folding of 5S rRNAs, on the Current Genetics' web site.

Acknowledgements We thank S.A. Boele-Bos and J. Veldsink, for technical assistance, as well as G. Hoarau and M. Chevolot for helpful discussions. We also would like to thank two anonymous reviewers for useful comments to improve the manuscript. M.-P. O.-L.S. was supported by a Marie Curie Individual Fellowship (programme "Quality of Life and Management of Living Resources" QLK3-CT-2000-52053).

References

- Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, PutnamNH, Zhou, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, U. Hellsten M. Hildebrand, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom *Thalassiosira pseudonana*: ecology, evolution, and metabolism. Science 306:79–86
- Blackwell WH, Powell MJ (2000) A review of group filiation of Stramenopiles, additional approaches to the question. Evol Theor 12:49–88
- Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674
- Burger G, Citterich MH, Nelson MA, Werner S, Macino G (1985) RNA processing in *Neurospora crassa* mitochondria: transfer RNAs punctuate a large precursor transcript. EMBO J 4:197– 204
- Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci USA 100:892–897
- Burger G, Plante I, Lonergan KM, Gray MW (1995) The mitochondrial DNA of the amoeboid protozoon, *Acanthamoeba castellanii*: complete sequence, gene content and genome organization. J Mol Biol 245:522–537
- Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266
- Clayton DA (1984) Transcription of the mammalian mitochondrial genome. Ann Rev Biochem 53:573–594
- Costa M, Fontaine J-M, Loiseaux-de Goër S, Michel F (1997) A group II self-splicing intron from the brown alga *Pylaiella littoralis* is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. J Mol Biol 274:353–364
- Daugbjerg N, Andersen RA (1997) A molecular phylogeny of the heterokont algae based on analyses of chloroplast-encoded *rbcL* sequence data. J Phycol 33:1031–1041
- Daugbjerg N, Guillou L (2001) Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using *rbcL* gene sequences support their sister group relationship to diatoms. Phycologia 40:153–161
- Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary symbiosis. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer Verlag, pp 53–86

- Draisma SGA, Prud' homme van Reine WF, Stam WT, Olsen JL (2001) A reassessment of phylogenetic relationships within the Phaeophyceae based on rubisco large subunit and ribosomal DNA sequences. J Phycol 37:586–603
- Elzanowski AA, Ostell J (2000) The genetic codes. NCBI web site. http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
- Fast NM, Keeling PJ (2001) Alpha and beta subunits of pyruvate dehydrogenase E1 from the microsporidian *Nosema locustae*: mitochondrion-derived carbon metabolism in microsporidia. Mol Biochem Parasit 117:201–209
- Goertzen LR, Theriot EC (2003) Effect of taxon sampling, character weighting, and combined data on the interpretation of relationships among the heterokont algae. J Phycol 39:423–439
- Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Loiseaux-de Goër S, Vaulot D (1999) *Bolidomonas*: a new genus with two species belonging to a new algal class, the *Bolidophyceae* (Heterokonta). J Phycol 35:368–381
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp Ser 41:95–98
- Leipe DD, Tong SM, Goggin CL, Slemenda SB, Pieniazek NJ, sogin ML (1996) 16S-like rDNA sequences from *Developayella* elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group. Eur J Protistol 32:449–458
- Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Vlois F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from *Labyrinthuloides minuta* and *Cafeteria roenbergensis*. Phycologia 33:369–377
- Mabuchi K, Miya M, Satoh TP, Westneat MW, Nishida M (2004) Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol 59:287–297
- Martin WF, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41
- Massana R, Guillou L, Diez B, Pedros-Alio C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558
- Medlin LK, Kooistra WHCF, Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the "golden algae" (haptophytes, heterokont chromophytes) and their plastids. Pl Syst Evol Suppl 11:187–219
- Oudot-Le Secq M-P, Fontaine J-M, Rousvoal S, Kloareg B, Loiseaux-de Goër S (2001) The complete sequence of a brown algal mitochondrial genome, the Ectocarpale *Pylaiella littoralis* (L.) Kjellm. J Mol Evol 53:80–88
- Oudot-Le Secq M-P, Kloareg B, Loiseaux-de Goër S (2002) The mitochondrial genome of the brown alga *Laminaria digitata*: a comparative analysis. Eur J Phycol 37:163–172
- Patterson DJ (1999) The Diversity of Eukaryotes. Am Nat 154:S96–S124
- Pearson G, Serrão EA, Cancela ML (2001) Suppression subtractive hybridization for studying gene expression during aerial exposure and desiccation in fucoid algae. Eur J Phycol 36:359–366
- Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818
- Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as

inferred from nucleotide sequences of the 18S ribosomal RNA gene. Am J Bot 84:966–972

- Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572– 1574
- Rousseau F, Burrowes R, Peters AF, Kuhlenkamp R, de Reviers B (2001) A comprehensive phylogeny of the Phaeophyceae based on nrDNA sequences resolves the earliest divergences. CR Acad Sci III-Vie 324:305–319
- Rousseau F, de Reviers B (1999) Phylogenetic relationships within the Fucales (Phaeophyceae) based on combined partial SSU + LSU rDNA sequence data. Eur J Phycol 34:53–64
- Rousvoal S, Oudot M-P, Fontaine J-M, Kloareg B, Loiseaux-de Goër S (1998) Witnessing the evolution of transcription in mitochondria: the mitochondrial genome of the primitive brown alga *Pylaiella littoralis* (L.) Kjellm. encodes a T7-like RNA polymerase. J Mol Biol 277:1047–1057
- Sanchez Puerta MV, Bachvaroff TR, Delwiche CF (2004) The complete mitochondrial genome sequence of the haptophyte *Emiliania huxleyi* and its relation to heterokonts. DNA Res 11:1–10
- Sankoff D, Bryant D, Deneault M, Lang BF, Burger G (2000) Early eukaryote evolution based on mitochondrial gene order breakpoints. J Comput Biol 7:521–535
- Saunders GW, Potter D, Paskind MP, Andersen RA (1995) Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proc Natl Acad Sci USA 92:244–248
- Schneider A, Maréchal-Drouard L (2000) Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol 10:509– 513
- Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts
- Sorhannus U (2001) A "total evidence" analysis of the phylogenetic relationships among the photosynthetic stramenopiles. Cladistics 17:227–241
- Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26:148–153
- Van de Peer Y, Baldauf SL, Doolittle WF, Meyer A (2000) An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances. J Mol Evol 51:565–576
- Van de Peer Y, Van der Auwera G, De Wachter R (1996) The evolution of stramenopiles and alveolates as derived by "substitution rate calibration" of small ribosomal subunit RNA. J Mol Evol 42:201–210
- Vellai T, Takacs K, Vida G (1998) A new aspect to the origin and evolution of eukaryotes. J Mol Evol 46:499–507
- Wuyts J, Van de Peer Y, Winkelmans T, De Wachter R (2002) The European database on small subunit ribosomal RNA. Nucleic Acids Res 30:183–185
- Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818
- Zagryadskaya EI, Kotlova N, Steinberg S (2004) Key elements in maintenance of the tRNA L-shape. J Mol Biol 340:435–444