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Abstract Aspergillus nidulans produces two major sid-
erophores: it excretes triacetylfusarinine C to capture
iron and contains ferricrocin as an intracellular iron-
storage compound. Siderophore biosynthesis involves
the enzymatic activity of nonribosomal peptide synthe-
tases (NRPS). NRPS contain 4¢-phosphopantetheine as
an essential prosthetic group, which is attached by 4¢-
phosphopantetheinyl transferases. A. nidulans appears
to possess at least one gene, npgA, encoding such an
enzyme. Using a strain carrying a temperature-sensitive
allele, cfwA2, we showed that NpgA is essential for
biosynthesis of both the peptide bond-containing ferri-
crocin and the ester bond-containing triacetylfusarinene
C. The cfwA2 strain was found to be iron-starved at the
restrictive temperature during iron-replete conditions,
consistent with the siderophore system being the major
iron-uptake system—as we recently demonstrated.
Northern analysis indicated that, in contrast to other
genes which are involved in siderophore biosynthesis
and uptake, expression of npgA is not controlled by
the GATA-transcription factor SreA. It was shown
previously that NpgA is required for biosynthesis
of penicillin, pigment, and potentially lysine via the
a-aminoadipate pathway. Supplementation with lysine
plus triacetylfusarinine C restored normal growth of the
cfwA2 strain at the restrictive temperature, suggesting
that the growth defect of the mutant is mainly due to
impaired biosynthesis of siderophores and lysine.
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Introduction

Virtually all organisms require iron for their growth,
because this metal is used in many different types of
cofactors, e.g. heme moieties and iron-sulfur clusters.
Despite the fact that iron is the fourth most abundant
element in the earth¢s crust, the amount of bioavailable
iron is very limited, because this metal is most com-
monly found as an insoluble ferric oxyhydroxide. Thus,
microorganisms need specialized iron-mobilization sys-
tems (Guerinot 1994; Leong and Winkelmann 1998). In
order to solubilize environmental iron, most microor-
ganisms synthesize and excrete siderophores—low
molecular weight, Fe(III)-specific chelators—in iron-
depleted conditions. Subsequently, cells recover the iron
from the ferric-siderophore complexes via specific up-
take mechanisms (Winkelmann 2001; Haas 2003). Fur-
thermore, most fungi possess intracellular siderophores
as an iron-storage compound (Matzanke 1994). Sidero-
phores have often been suggested to function as viru-
lence factors, because the acquisition of iron is a key step
in the infection process of any pathogen, since this metal
is tightly sequestered by high-affinity iron-binding pro-
teins in mammalian hosts (Weinberg 1999). Siderophore
biosynthesis and uptake also represent possible targets
for antifungal chemotherapy, because the underlying
biochemical pathways are absent in human cells.

Various Aspergillus species are important pathogens
of immunocompromised hosts, causing pneumonia and
invasive disseminated diseases with high mortality
(Latge 1999). In contrast to A. fumigatus, which may be
regarded as the most important airborne pathogenic
fungus, A. nidulans is a much rarer cause of human
disease but represents a filamentous model fungus
(Brookman and Denning 2000). A. nidulans produces
two major siderophores: it excretes triacetylfusarinine C
(TAFC) and contains intracellular ferricrocin (FC)
(Charlang et al. 1981; Oberegger et al. 2001). Subsequent
to chelating Fe(III), the siderophore-Fe(III) complex is
taken up by MirB, a transporter belonging to the major
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facilitator protein superfamily (Haas et al. 2003). After
uptake, TAFC is cleaved by an esterase, the cleavage
products are excreted, and Fe(III) is transferred to FC
(Oberegger et al. 2001; Eisendle et al. 2003). TAFC is a
cyclic ‘‘tripeptide’’ consisting of three N2-acetyl-N5-cis-
anhydromevalonyl-N5-hydroxyornithine residues linked
by ester bonds; and FC is a cyclic ‘‘hexapeptide’’ with
the structure Gly-Ser-Gly-(N5-acetyl-N5-hydroxyorni-
thine)3 (Winkelmann 1993). Based on biochemical and
genetic studies of several microorganisms, biosynthesis
of FC and TAFC is assumed to proceed according to the
enzymatic steps depicted in Fig. 1 (Plattner and Diek-
mann 1994). Recently, we found that siderophore bio-
synthesis is essential for viability of A. nidulans (Eisendle
et al. 2003). In this study, two genes involved in sid-
erophore biosynthesis are characterized: sidA encoding
L-ornithine N5-monooxygenase, the first committed step
in siderophore biosynthesis, and sidC, which encodes a
nonribosomal peptide synthetase (NRPS) involved in
synthesis of ferricrocin. NRPSs are large multifunctional
enzymes with a modular construction able to assemble
compounds from a remarkable range of proteinogenic
and nonproteinogenic precursors (Kleinkauf and Von
Dohren 1996; Weber and Marahiel 2001). Each module
contains an adenylation domain, a condensation

domain, and a peptidyl carrier domain. Like the acyl
carrier domains in fatty acid and polyketide synthases,
the peptidyl carrier domain requires attachment of a
4¢-phosphopantetheine (Ppant) group by a dedicated
PPTase. It was anticipated that most organisms
employing more than one Ppant-dependent pathway
also have more than one 4¢-phosphopantetheinyl trans-
ferase (PPTase; Walsh et al. 1997). In contrast, it was
shown that Pseudomonas aeruginosa possesses merely a
single PPTase, which is required for both fatty acid and
siderophore synthesis (Finking et al. 2002). Primarily, it
was suggested that Neurospora crassa, A. fumigatus, and
A. nidulans possess only a single PPTase (Keszenman-
Pereyra et al. 2003). The encoding A. nidulans gene,
npgA, was isolated by complementation of a null-pig-
ment mutant (Han and Han 1993; Chung et al. 1996;
Kim et al. 2001). Subsequently, npgA was found to
complement a Saccharomyces cerevisiae strain defective
in lys5, which encodes a PPTase required for activation
of the a-aminoadipate semialdehyde reductase Lys2
(Ehmann et al. 1999; Mootz et al. 2002). Lys2 and
consequently Lys5 are essential for lysine biosynthesis in
this yeast. Utilizing a strain harboring a temperature-
sensitive allele of npgA, cfwA2 (Aguirre et al. 1993), it
was shown that NpgA is also required for synthesis of
penicillin, which involves a NRPS step (Keszenman-
Pereyra et al. 2003). Recently, a second putative PPTase-
encoding gene was identified in the genome sequences of
various fungi, including A. nidulans. However, its func-
tion remains unclear so far (D. Keszenman-Pereyra and
G. Turner, personal communication).

Here, we show that NpgA is essential for siderophore
biosynthesis and that the growth defect of the cfwA2
strain is mainly due to impairment of the biosynthesis of
siderophores and lysine.

Materials and methods

Strains, vectors, growth media, and general molecular techniques

The A. nidulans strains WGTRAN (argB2::argB bgA0, biA1),
SRKO1 (sreA::argB bgA0, biA1), and AJC12:36 (pabaA1, yA2,
cfwA2) are designated in the text as wt, DsreA, and cfwA2,
respectively. Construction of WGTRAN and SRKO1 was de-
scribed by Haas et al. (1999) and Haas et al. (2003); and cfwA2 was
isolated by Aguirre et al. (1993).

Fungal strains were grown at 25 �C, 37 �C, or 42 �C, as indi-
cated, in Aspergillus minimal medium (AMM) according to Pon-
tecorvo et al. (1953) containing 1% glucose as carbon source,
20 mM glutamine as nitrogen source, 10 lM FeSO4, 20 lg/l biotin,
and 4 mg p-aminobenzoic acid/l. For low-iron media ()Fe-AMM),
iron was omitted. Standard molecular techniques were performed
as described by Sambrook et al. (1989).

Identification, quantification, and purification of siderophores

TAFC and FC were isolated from A. nidulans as described by
Oberegger et al. (2001). Crude identification of extracellular sid-
erophore production was performed using the chrome azurol S
liquid assay (Payne 1994). Characterization and quantification
of extracellular and cellular siderophores were performed by

Fig. 1A, B Siderophores of Aspergillus nidulans. A Chemical
structure of ferricrocin (FC) and triacetylfusarinine C (TAFC),
adapted from Winkelmann (1993) with permission of the publisher.
B Biosynthetic pathway for FC and TAFC, according to Plattner
and Diekmann (1994)
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reversed-phase HPLC chromatography according to Konetschny-
Rapp et al. (1988), as described by Oberegger et al. (2001).
Extracellular siderophore production was normalized to the dry
weight of the mycelia; and the intracellular siderophore content was
normalized to the protein content of the cellular extract.

Northern analysis

Generally, 15 lg of total RNA were electrophoresed on 1.2%
agarose-2.2 M formaldehyde gels and blotted onto Hybond N
membranes (Amersham). The hybridization probes used in this
study were generated by PCR, using oligonucleotides 5¢-AGCC
CGGTGTGAAAAGAG-3¢ and 5¢-AACAGGAGGAGGATTG
CGCC-3¢ for mirA, 5¢-ACACCCGCCCTCTAACCG-3¢ and 5¢-CA
CACCCCAGTCGCACAG-3¢ for npgA, and 5¢-CGGTGATGAG
GCACAGT-3¢ and 5¢-CGGACGTCGACATCACA-3¢ for c-actin-
encoding acnA (Fidel et al. 1988).

Results and discussion

NpgA function is essential for biosynthesis of both
ferricrocin and triacetylfusarinine C

An A. nidulans strain harboring the temperature-sensi-
tive npgA allele cfwA2 did not grow at the restrictive
temperature of 42 �C using liquid or solid AMM.
Therefore, cfwA2 was grown at 37 �C, a temperature at
which cfwA2 displayed about 30% of the wt growth rate.
In order to analyze the influence of NpgA on sidero-
phore biosynthesis, cfwA2 and wt were grown for 24 h
during iron-depleted conditions. Subsequently, the pro-
duction of extracellular and intracellular siderophores
was quantified as described by Oberegger et al. (2001).
At the permissive temperature of 25 �C, cfwA2 showed
about 90% of the intracellular and extracellular sidero-
phore production of wt. In contrast, at 37 �C, the pro-
duction of TAFC and FC by cfwA2 decreased to 3%
and 2%, compared with wt (Fig. 2). These data

demonstrate that NpgA is essential for the biosynthesis
of both siderophores, ferricrocin and TAFC. As shown
in Fig. 1, FC synthesis involves the NRPS SidC—which
requires activation by a Ppant. In contrast to FC, the
modified ornithine residues of TAFC are linked by ester
bonds and the enzymatic steps involved are unclear so
far. On the one hand, the requirement of NpgA for
TAFC synthesis is therefore surprising. On the other
hand, it has been shown that some NRPS can also form
ester bonds—an example is Escherichia coli EntF, which
is involved in the synthesis of the catecholate-type sid-
erophore enterobactin (Crosa and Walsh 2002). Defi-
ciency in the TAFC biosynthesis of cfwA2 at the
restrictive temperature suggests that TAFC synthesis
involves a Ppant-dependent enzymatic step—most likely
an NRPS.

cfwA2 is iron-starved during iron-replete conditions

In A. nidulans, the siderophore system is the major iron-
uptake system (Eisendle et al. 2003). Impairment of
siderophore biosynthesis, e.g. deletion of the sidero-
phore-biosynthesis gene sidA causes iron starvation
during iron-replete conditions. Expression of genes in-
volved in siderophore biosynthesis and uptake is re-
pressed by iron; and this control is mediated in part by
the transcriptional repressor SREA (Haas et al. 1999;
Oberegger et al. 2001, 2002a). Northern analysis of
mirA, which encodes a siderophore transporter upregu-
lated under iron depletion (Oberegger et al. 2001; Haas
et al. 2003), displayed that, in contrast to wt, cfwA2 is
iron-starved during iron-replete conditions at 37 �C
(Fig. 3A). Therefore, with respect to iron homeostasis,
cfwA2 grown at 37 �C shows a similar phenotype to that
of strains with defects in siderophore-biosynthesis genes.

Northern analysis indicated that, in contrast to mirA
and numerous other genes which are involved in sid-
erophore biosynthesis and uptake (Oberegger et al.
2002a), expression of npgA is only slightly regulated by
iron availability. npgA transcript levels are about 2-fold
upregulated during iron-depleted conditions, compared
with iron-replete conditions (Fig. 3B). DsreA displays
the same npgA expression pattern as wt, indicating this
regulation is SreA-independent (Fig. 3B). In this respect,
it is interesting to note that we previously showed that
an iron-regulatory mechanism exists in A. nidulans
which does not involve SreA (Oberegger et al. 2002b).

The growth defect of cfwA2 is due to impaired
biosynthesis of siderophores and lysine

Like S. cerevisiae, A. nidulans synthesizes lysine via the
a-aminoadipate pathway (Arst et al. 1973; Weidner et al
1997; Busch et al. 2003). This pathway includes the
Ppant-dependent a-aminoadipate semialdehyde reduc-
tase. Consequently, cfwA2 is supposed to be auxotro-
phic for lysine at the restrictive temperature; but

Fig. 2 Reversed-phase HPLC analysis of intracellular and extra-
cellular siderophore production of A. nidulans wt and cfwA2 at
37 �C and 25 �C. The fungal strains were grown for 24 h in liquid
low-iron Aspergillus minimal medium (AMM); and the production
of extracellular (TAFC) and intracellular (FC) siderophore was
analyzed, as described in the Materials and methods. Columns
represent the siderophore production normalized to wt at the
respective temperature. Samples were prepared in triplicate, and
SD did not exceed 10%
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supplementation with lysine did not repair the growth
defect (Fig. 4). In A. nidulans, siderophore biosynthesis
is essential for viability; and the growth defect of mu-
tants defective in siderophore synthesis can be cured by
supplementation with TAFC or FC (Eisendle et al.
2003). However, supplementation with TAFC did not
cure the growth defect of cfwA2. In contrast, supple-
mentation with TAFC plus lysine led to a cfwA2 growth
rate similar to that of wt but did not compensate the
pigmentation defect (Fig. 4). Replacement of TAFC
with FC or performing the experiment at 42 �C yielded
the same results (data not shown). These data demon-
strate that the growth defect of cfwA2 at the restrictive
temperature is mainly due to impaired biosynthesis of
siderophores and lysine.

In all experiments comparingwt and cfwA2, it has to be
considered that these A. nidulans strains are not isogenic.
Nevertheless, this fact seems not to interfere with the
interpretation of the data because: (1) cfwA2 behaves like
wt at the permissive temperature of 25 �C, with respect to
siderophore biosynthesis and regulation of expression of
mirA and (2) the alleles yA2 and pabaA1, present in
cfwA2, do not interfere with the regulation of siderophore
biosynthesis in other genetic backgrounds at a growth
temperature of 37 �C (H. Haas, unpublished data).

In conclusion, NpgA seems to be a broad-range
PPTase required for the modification of at least five dif-
ferent enzymes involved in both primary and secondary
metabolism and, obviously, these functions cannot be

complemented by a putative second PPTase. It is
required for: (1) pigment synthesis, where the most likely
impaired enzyme is the polyketide synthase WA, which is
essential for pigment synthesis (Mayorga and Timberlake
1992), (2) lysine biosynthesis, with the enzyme most
probably affected being the a-aminoadipate semialde-
hyde reductase, (3) biosynthesis of the siderophores
TAFC and FC (in the latter case the putative enzyme
compromised is the NRPS SidC), and (4) penicillin bio-
synthesis, where the impaired enzyme is probably the
NRPS d-(L-a-aminoadipyl)-L-cysteinyl-D-valine synthe-
tase. Additionally, the cfwA2 allele might negatively
affect another enzyme involved in penicillin biosynthesis:
isopenicillin N synthase (IpnA). IpnA is a nonheme
iron(II)-dependent oxygenase (Schofield et al. 1997). The
cfwA2 strain is iron-starved, due to impaired siderophore
biosynthesis. Consequently, the iron-dependent IpnA
might be inactive due to lack of iron. Moreover, we
previously showed that various genes encoding proteins
in need of iron-containing cofactors—like aconitase

Fig. 3A, B Expression of mirA and npgA in A. nidulans.
A Expression of mirA in wt (left) and cfwA2 (center) at 37 �C
(top panel) and 25 �C (bottom panel). B Expression of npgA in wt
(left) and DsreA (right). Fungal strains were grown for 15 h in low-
iron AMM (top panel) or AMM with iron (middle panel). Total
RNA was isolated from the harvested mycelia and subjected to
Northern analysis. Hybridization with acnA served as a control for
the loading and quality of RNA (at right in A; bottom panel in B)

Fig. 4 Growth phenotypes of A. nidulans wt and cfwA2 at 37 �C
and 25 �C. Aliquots of 106 conidia of the respective fungal strains
were point-inoculated on AMM supplemented as indicated with
10 lM TAFC and/or 10 mM lysine (Lys) and incubated for 48 h.
Please note that cfwA2 has yellow conidia instead of the green wt
conidia, due to carrying the ya2 allele (O¢Hara and Timberlake
1989)
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(acoA), homoaconitase (lysF), and cytochrome c
(cycA)—are transcriptionally downregulated in response
to iron depletion (Oberegger et al. 2002b); and the same
might apply to ipnA.
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