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Abstract
We are concerned about a multi-period portfolio selection problem where the 
issue of parameter uncertainty for the distribution of risky asset returns should be 
addressed properly. For analysis, we first propose a novel dynamic portfolio selec-
tion model with an l

∞
 risk function, instead of the classic portfolio variance, used 

as risk measure. The investor in our model is assumed to choose the optimal portfo-
lio by maximizing the expected terminal wealth at a minimum level of cumulative 
risk, quantified by a weighted sum of the risks in subsequent periods. The proposed 
multi-period model has a closed-form optimal policy that can be constructed and 
interpreted intuitively. We introduce Bayesian learning to account for the uncer-
tainty in estimates of unknown parameters and discuss the impact of Bayesian learn-
ing on the investor’s decision making. Under an i.i.d. normal return-generating pro-
cess with unknown means and covariance matrix, we show how Bayesian learning 
promotes diversification and reduces sensitivity of optimal portfolios to changes in 
model inputs. The numerical results based on real market data further support that 
the model with Bayesian learning can perform much better than a plug-in model 
out-of-sample with the extent of performance improvement affected by the inves-
tor’s level of risk aversion and the amount of data available.
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1 Introduction

The seminal mean-variance model proposed by Markowitz (1952) lays down the 
foundation for the modern portfolio theory. As the name implies, expected returns, 
variances and covariances are the key input model parameters. In most real-world 
situations, these parameters are, nevertheless, not known a priori. Much work in this 
vein has to postulate that those unknown moments can be estimated precisely by 
sample averages, which is usually known as the plug-in approach. However, point 
estimates are subject to estimation errors and may result in portfolio allocations far 
from optimum. In fact, the problem of estimation risk will be even exacerbated in 
the mean-variance model as more and more researchers find the portfolios produced 
by the mean-variance model very sensitive to model parameters (see, e.g., Best and 
Grauer 1991a, b; Chopra et al. 1993; Chopra and Ziemba 1993), that is, a small fluc-
tuation in the estimate might be amplified to a dramatic change in portfolio weights. 
Thus, the mean-variance model without considering parameter uncertainty is often 
criticized for entailing extreme positions in the optimal portfolio and delivering poor 
out-of-sample performances (see Litterman et al. 2004).

There is an extensive literature devoted to applying Bayesian approaches to 
relieve the adverse impacts of parameter uncertainty in portfolio optimization. Given 
available data and a portfolio choice problem, an investor might be inclined to dis-
card potential features of uncertainties and make decisions based on nonparametric 
estimation methods (see Tsybakov 2008). The other extreme is the plug-in approach 
in which the investor is convinced about an underlying data-generating model that 
incorporates specific features for predicting the future, through a statistical test or 
a heuristic argument, assuming that the model parameters are exactly equal to the 
sample estimates and ignoring the estimation risk of unknown parameters. By con-
trast to the above two extremes, a Bayesian investor assumes a parametric return-
generating model and treats unknown model parameters as random variables with 
specified priors. A posterior/predictive probability distribution of asset returns, 
which depends only on the observation of data, can be obtained by integrating out 
the unknown parameters according to the Bayes’ rule and evolves automatically 
as new data released. The research work on this topic includes Frost and Savarino 
(1986), Aguilar and West (2000), Polson and Tew (2000), Pástor and Stambaugh 
(2000), Wang (2005), Black and Litterman (1992), Kolm and Ritter (2017), Zhou 
(2009), Bauder et al. (2021), Bodnar et al. (2017); Anderson and Cheng (2016) and 
Marisu and Pun (2023). The majority of the relevant literature is, however, limited 
in a static framework of the mean-variance model. One exception is Winkler and 
Barry (1975), who consider Bayesian inference and learning in a multi-period set-
ting, in which the investor is assumed to maximize a utility function of the termi-
nal wealth and the optimal strategy requires a case-by-case discussion. Their work 
first shows that even for the simple linear and quadratic utilities, the corresponding 
multi-period model with one risky asset and one risk-free asset involved can only be 
solved numerically rather than analytically in general.

As intuitively expected, especially for dynamic problems, it is important for 
the investor to exploit the data observed gradually, recognizing the updated 
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information about the unknown parameters and revising the portfolio accordingly. 
Nevertheless, as indicated in Winkler and Barry (1975), if the formulated sto-
chastic dynamic program cannot be solved analytically, the development of the 
optimal portfolio with information updating, which requires computation of con-
ditional expectations and optimization at each time period, will be of great com-
putational challenge even for simple investment cases. As a consequence, there 
have been few results in the literature on solutions for general dynamic portfo-
lio optimization problems with unknown parameters.1 On the other hand, recent 
studies achieve some progress by developing a variety of approximate solution 
methods. For instance, Barberis (2000) conducts backward induction through dis-
cretizing the state space. Brandt et al. (2005) take a Taylor series expansion over 
the expected utility to obtain an approximate closed-form solution. Soyer and 
Tanyeri (2006) adopt a surface fitting approach for a two-stage model. Skoulakis 
(2008) approximates the value functions using feedforward neural network. Jurek 
and Viceira (2010) obtain their approximate analytical solution by log-lineariz-
ing the budget constraint for the log-normal return distribution. Unfortunately, 
these papers suffer from several deficiencies. First, almost all the previous litera-
ture investigating Bayesian learning and dynamic portfolio choice relies on using 
utilities defined over terminal wealth as objective functions, e.g., the power util-
ity and the exponential utility. Although they are popular in economic studies, 
investors and portfolio managers may be concerned more about explicit measure-
ment of the investment risk, which cannot be easily seen and analyzed if a utility 
function of final wealth is used. Second, errors in the portfolios resulted from 
multi-period approximation and optimization are hard to detect and control, espe-
cially when the state variables are of a high dimension. Third, due to the absence 
of analytical solutions, the traditional models lack a clear interpretation of how 
Bayesian learning affects investors’ decision making. The role of Bayesian learn-
ing in forming optimal portfolio allocations is still obscure.

In this paper, we focus on the investment needs of long-term conservative inves-
tors who are particularly risk averse. To appropriately model the decision features 
of those investors, we adopt an l

∞
 risk function as the risk measure in our dynamic 

model formulation. Various risk measures have been proposed in the literature to 
capture the concerns of investors in different situations. These include, e.g., semi-
variance (see Markowitz 1959), value at risk (see Duffie and Pan 1997), CVaR (see 
Rockafellar et al. 2000), and l1 risk function (see Konno and Yamazaki 1991). Cai 
et al. (2000) propose a more conservative l

∞
 risk function to possibly reflect the risk 

attitude of those relatively conservative investors. Specifically, this l
∞

 risk measure 
can be defined mathematically as follows:

l
∞
(x) = max

1⩽j⩽p
𝔼
[|rjxj − 𝔼(rj)xj|

]
,

1 Li and Ng (2000), Yu et al. (2010) and Bodnar et al. (2015) present exact solutions for their dynamic 
portfolio selection models assuming no unknown parameters. In the continuous setting, Brennan (1998) 
and Xia (2001) possess analytical solutions in the context of Bayesian learning based on stylized mode-
ling of return process. The results however are hard to generalize to the multi-period setting with general 
return-generating processes.
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where rj denotes the return rate of asset j, xj is the amount of allocation of the fund to 
asset j, p is the total number of assets and x is a vector of the form x = (x1, ..., xp)

⊤ . 
It is clear that the risk of holding a portfolio in one period under l

∞
(x) is meas-

ured by the maximal expected absolute deviation of individual asset return from its 
expectation. Therefore, by minimizing the risk proxy l

∞
(x) function, an investor can 

set up a minimax rule to construct the optimal portfolio. In the original work of Cai 
et al. (2000), the authors introduce the l

∞
 risk function in a static portfolio setting 

and derive an analytical solution for a single-period model. By analyzing the feature 
of the optimal investment strategy, they show in theory that their model with l

∞
 risk 

function can exhibit some robustness to the errors in the problem inputs. The empir-
ical work in Cai et al. (2004) further supports that the portfolio derived from the l

∞
 

model is less sensitive to the input data compared with Markowitz’s mean-variance 
model. More studies on l

∞
 risk measure have been reported in the literature subse-

quently; see, e.g., Prigent (2007), Ryals et al. (2007), Park et al. (2019); Vercher and 
Bermúdez (2015); Sun et al. (2015) and Meng et al. (2022).

The contributions of this paper can be summarized as follows.
(1) We set up a novel dynamic portfolio selection framework in which the esti-

mates of unknown parameters can be updated via Bayesian learning and the l
∞

 
risk function is used as the risk measure. Specifically, the investor in our model is 
assumed to choose the optimal portfolio by (i) maximizing the expected terminal 
wealth; and (ii) minimizing the cumulative investment risk which is defined as a 
weighted sum of risks the investor will undertake in subsequent periods. We show 
that the proposed stochastic dynamic program has a closed-form optimal policy, 
independent of assumptions on the return-generating process. In contrast to previ-
ous studies relying on approximate solution methods, our work gives an analytical 
expression of the optimal portfolio allocation, making it possible to see clearly how 
the composition of the portfolio is determined and how Bayesian learning affects 
investor’s decision in a dynamic setting. The investment strategy in each period can 
be intuitively viewed as a three-step decision scheme. First, we rank the individ-
ual assets in terms of their expected returns adjusted by available information and 
anticipation of future decisions. Then, we select assets to be invested by checking 
a sequence of inequality rules that exploit the information contained in the adjusted 
expected returns and risks. Finally, the actual amount to be allocated to those 
selected assets are computed on the basis of the current wealth and their risks, i.e., 
the mean absolute deviations of individual asset returns. For implementation of the 
optimal policy, we introduce a least squares Monte Carlo method to approximate 
complex conditional expectations.

(2) Under an i.i.d. normal return-generating process with unknown means and 
covariance matrix, we find that, besides providing a formal way to accommodate 
new information from observed data, Bayesian learning can also help diversify2 
portfolio allocations and reduce sensitivity of optimal portfolios to changes in model 
inputs. The major insight behind the properties is that incorporating the estimation 

2 Throughout the paper, we will use portfolio size (the number of assets with positive weights) as the 
main criterion in the discussion of portfolio diversification level. That is, in our analysis, a portfolio is 
more diversified when it includes more assets with positive investment.
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risk of unknown parameters via Bayesian learning makes risky assets more risky, 
which leads to a more conservative and robust investment policy under our model 
framework. A typical message from the previous literature is that the use of Bayes-
ian learning induces a negative effect on portfolio weights of risky assets (see Bar-
beris 2000; Brandt et  al. 2005; Skoulakis 2008). Barberis (2000) also mentioned 
that in their case, Bayesian learning affects the sensitivity of the optimal allocation 
to state variables. However, these findings are mainly based on numerical observa-
tions, without clarifying the mechanism or the role of Bayesian learning in forming 
optimal portfolios. In contrast, our paper aims at interpreting the effects of Bayesian 
learning from the policy layer in multi-period portfolio selection problems. Our con-
clusions are consistent with numerical findings in related literature, but we enrich 
the understanding of Bayesian learning in a new dynamic model scheme.

(3) Our numerical results based on real market data indicate that compared with 
a plug-in model, using Bayesian learning to account for parameter uncertainty and 
estimation risk in dynamic portfolio selection problems is able to improve the pol-
icy’s out-of-sample performance. The performance gap between models with and 
without Bayesian learning is, however, affected by investor’s risk preference and 
the amount of data available. That is, we observe that the incorporation of Bayesian 
learning has a significant advantage in out-of-sample performance when the inves-
tor’s risk tolerance level is high or the amount of available data is small. As the 
investor becomes more conservative and more data are observed, the gap between 
the two models narrows. We believe that these findings are valuable in answer-
ing the questions on the performance of considering Bayesian learning in practical 
investments.

The remainder of this paper is organized as follows. In Sect. 2, we formulate the 
dynamic portfolio selection model with unknown parameters. We solve the proposed 
stochastic dynamic program in Sect.  3. A plug-in model without learning is dis-
cussed in Sect. 4. An empirical study is provided in Sect. 5. We conclude our work 
in Sect. 6. The proofs of theorems and propositions are included in the “Appendix”.

2  A multi‑period portfolio selection model under minimax rule

Assume that there is a capital market with p risky assets, S1, S2, ..., Sp . The decision 
time is discrete and indexed by {0, 1, ..., T − 1} . An investor joins this market with ini-
tial fund V0 and he can reallocate his fund among these p assets at the beginning of each 
of the following T consecutive time periods. The returns of risky assets are stochastic 
and denoted by rt = (r1

t
, r2

t
..., r

p

t )
⊤ , where rjt is the return for Sj in period t. Throughout 

the paper, we use boldface upper and lower case characters to denote vectors and matri-
ces, respectively. 1 is the vector of all ones. We use [t;  T] to denote an index set 
{t, t + 1, ..., T} for short. The monetary values of the risky asset holdings at the begin-
ning of period t are described by a vector xt = (x1

t
, ..., x

p

t )
⊤ . Let Vt be the wealth at the 

beginning of period t. Then, the budget constraint is 
∑p

j=1
x
j

t = Vt for all t ∈ [0;T − 1] . 
Short-selling and transaction cost are not considered.
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Uncertainty in risky asset returns is analyzed based on a probability space (Ω,F,P) 
where Ω is the set of possible outcomes with element � , F  is a �-algebra and P is a 
probability measure. The flow of information is modeled by a filtration {Ft}

T
t=0

 , where 
the �-algebra Ft describes the information available to the investor at the beginning of 
period t satisfying Ft ⊆ Ft+1 ⊆ FT = F  for all t < T . Therefore, the expectation oper-
ator conditional on available information can be formally defined as �(⋅|Ft) , abbrevi-
ated as �t(⋅).

In order to evaluate the risk of holding a portfolio xt in period t, we define a single-
period portfolio risk measure based on the l

∞
 risk function as

where we use mj

t = �t(r
j

t) and qjt = �t(|rjt − m
j

t|) to denote the (conditional) expected 
return and its mean absolute deviation (MAD), respectively. The corresponding vec-
tor forms are mt = �t(rt) and qt = �t(|rt −mt|) . Note that under our notation, rjt is 
Ft+1-measurable, and mj

t , q
j

t and lt(xt) are adapted to Ft . Strictly speaking, since mj

t , 
q
j

t and lt(xt) are measurable functions mapping from the sample space Ω to real line 
ℝ , their complete forms should be mj

t(�) , q
j

t(�) and lt(xt,�) . For expositional brev-
ity, we will suppress henceforth the dependency on the element � ∈ Ω for functions 
measurable with respect to {Ft}

T
t=0

 . Instead, we point out the measurability when 
necessary. Generally, the dependency could be inferred easily from the context.

By minimizing the risk lt(xt) and maximizing the one-period expected return, the so 
called minimax rule in the single-period model can be formulated as follows:

where Xt =

�
xt ∶

∑p

j=1
x
j

t = Vt, x
j

t ⩾ 0, j ∈ [1;p]
�

 and � ∈ (0, 1) represents the inves-
tor’s risk aversion level — the larger the � , the more conservative the investor is. In 
multi-objective optimization (to maximize the expected return and minimize the 
risk), the optimal solution of Problem (2) with respect to a given value of � corre-
sponds to an efficient solution point of the bi-criteria problem in (2) that considers 
both risk and return, and the set of optimal solutions with respect to all � ∈ (0, 1) 
correspond to the efficient frontier. Prior to solving the Problem (2), we first define 
an ancillary function G(a1, a2, k) with input vectors a1 , a2 and scalar k ∈ [0;p − 1] 
such that for all k ∈ [1;p − 1],

and specially G(⋅, ⋅, 0) = 0 , where the function ij(a1) outputs the index of the jth 
largest element of a given vector a1 = (a1

1
, ..., a

p

1
)
⊤ , i.e., ai1(a1)

1
⩽ a

i2(a1)

1
⩽ ... ⩽ a

ip(a1)

1
 . 

Then, the optimal portfolio allocation of Problem (2) can be presented in the follow-
ing lemma.

(1)lt(xt) = max
1⩽j⩽p

𝔼t(|rjt − 𝔼t(r
j

t)|)xjt = max
1⩽j⩽p

𝔼t(|rjt − m
j

t|)xjt = max
1⩽j⩽p

q
j

tx
j

t,

(2)min
xt∈Xt

�

(
max
1⩽j⩽p

q
j

tx
j

t

)
− (1 − �)

p∑
i=1

m
j

tx
j

t,

G(a1, a2, k) =

k−1∑
j=0

a
ip−j(a1)

1
− a

ip−k(a1)

1

a
ip−j(a1)

2
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Lemma 1 Given � ∈ (0, 1) , the optimal solution of Problem (2) is that

where the set of assets in which to invest A∗

t
 can be constructed by the following 

rule: If there exists an integer k ∈ [0;p − 2] such that

then A∗

t
= {ip(mt), ip−1(mt), ..., ip−k(mt)} . Otherwise, if the condition above is not 

satisfied by any integer k ∈ [0;p − 2] , then A∗

t
= [1;p].

Lemma  1 can be obtained by solving a set of equations from standard KKT 
conditions. Readers of interest could refer to the appendix in Cai et al. (2000) for 
more details. The primary difference between Problem (2) and the original model in 
Cai et al. (2000) is that Problem (2) considers estimation risk and uses conditional 
expectations to highlight the value of information flow, while the original model 
only focuses on point estimates and assumes that the unknown parameters can be 
estimated precisely.

Despite the wide popularity of single-period models, this static paradigm is 
known to be difficult to apply to the long-term investors such as pension planners 
and insurance companies (Mulvey et al. 2003). Moreover, like a wise chess player, 
it is reasonable to suggest that a successful manager or investor always think ahead 
and contemplate the inter-temporal effect of multi-period decisions. We next formu-
late a dynamic model considering both portfolio optimization and Bayesian learn-
ing. Let lt(xt) in (1) quantify the portfolio risk in period t. We then define the cumu-
lative risk during the investment horizon as follows:

where �k ⩾ 0 is the weight for each period risk lk(xk) . By tuning the values of 
{�k}

T−1
k=t

 , one can distinguish the importance of risks in different periods.
Analogous to the single-period model (2), we now extend the minimax rule to the 

multi-period case and propose the dynamic model as follows:

Several clarifications on Problem (6) are in order. First, the cumulative risk defined 
in (5) is a natural way to evaluate the total risk the investor undertakes during T peri-
ods, and it is widely acceptable in multi-period portfolio optimization literature, see, 

(3)x
j∗

t =

⎧
⎪⎨⎪⎩

Vt

q
j

t

� �
j∈A∗

t

1

q
j

t

�−1

, j ∈ A
∗

t
,

0, j ∉ A
∗

t
,

(4)G(mt, qt, k) <
𝜆

1 − 𝜆
and G(mt, qt, k + 1) ⩾

𝜆

1 − 𝜆
,

(5)Lt∶T = 𝔼t

[
T−1∑
k=t

�klk(xk)

]
= 𝔼t

[
T−1∑
k=t

�k max
1⩽j⩽p

q
j

k
x
j

k

]
, t = 0, 1, ..., T − 1,

(6)
min
x0∈X0

�0

[
min
x1∈X1

�1

[
... min

xT−1∈XT−1

�T−1

[
𝜆L0∶T − (1 − 𝜆)VT

]
...
]]

s.t. Vt+1 = Vt + r⊤
t
xt, t ∈ [0;T − 1].
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e.g., Calafiore (2008), Liu and Zhang (2015) and Boyd et  al. (2017). Second, the 
modeling of (6) indicates that the optimal policy should be derived by maximizing 
the expected final wealth at a minimum level of cumulative risks. Hence, our model 
formulation is appropriate for the investors who care both final wealth at the expira-
tion and the risks they will undertake during the investment process. The non-nega-
tive weights considered {�t}T−1t=0

 provide extra model flexibility for users in practice. 
Third, in Problem (6), the investor chooses the optimal portfolio at each decision 
point with the possibility of rebalancing portfolios in future periods and recognizes 
that data realizations during the investment horizon contain useful information for 
updating beliefs on unknown parameters. This decision making process with learn-
ing can be described intuitively as follows:

Prior to solving Problem (6), we further investigate the time-consistency property 
from the perspectives of the multi-period risk measure Lt∶T and the problem’s opti-
mal policy, respectively.

Let Xk = �k max1⩽j⩽p q
j

k
x
j

k
 . The sequence X̄t = {Xk}

T−1
k=t

 can be viewed as the loss 
process with Xk ’s realization the lower the better, and each Xk is adapted to Fk . Then, 
Lt∶T (X̄t) = �t(

∑T−1

k=t
Xk) , that is, a conditional expectation of a sum of future losses. 

Given 0 ≤ t1 < t2 ≤ T − 1 and loss processes X̄t1
 and X̄′

t1
 , if Xk = X�

k
 , ∀k = t1, ..., t2 − 1 , 

and Lt2∶T (X̄t2
) ≤ Lt2∶T (X̄

�

t2
) , where the equality and inequality between random varia-

bles are understood in the almost surely sense, then, given the conditional expectation 
in Lt1∶T , it is straightforward to have Lt1∶T (X̄t1

) ≤ Lt1∶T (X̄
�

t1
) . Therefore, the multi-period 

risk measure Lt∶T is time consistent in the sense that if a position is riskier than another 
one at some future time ( t2 ), then the position should also be riskier from the perspec-
tive today ( t1 ). For more discussion on time consistent dynamic risk measures, see 
Ruszczyński (2010) and references therein.

For the multi-period stochastic programming Problem (6) with further terminal 
wealth considered, we follow the concept in Shapiro (2009) and time-consistency 
means that any optimal policy specified today would imply its optimality in future 
stages. By expanding VT and L0∶T , Problem (6) can be reformulated as

where V0 is known at the beginning of period 0 and 
gt(xt) = 𝜆𝛾t max

1⩽j⩽p q
j

tx
j

t − (1 − 𝜆)𝔼t[r
⊤
t
xt] is Ft-measurable. According to Example 2 of 

Shapiro (2009), we can conclude that Problem (6) is time consistent.

Decision(x∗
0
) ⇝ Observation(F1) ⇝ Learning ⇝ Decision(x∗

1
) ⇝

⋯ ⇝ Observation(FT−1) ⇝ Learning ⇝ Decision(x∗
T−1

).

min
x0∈X0

−(1 − �)V0 + g0(x0) + �0

[
min
x1∈X1

g1(x1) + �1

[
... + �T−2

[
min

xT−1∈XT−1

gT−1(xT−1)
]
...
]]
,
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3  Optimal investment policy with learning

In this section, we first solve the Problem (6) and give some structural results on 
the optimal policy. Then, we set up a Bayesian learning framework under an i.i.d. 
normal return-generating process with unknown means and covariance matrix. We 
finally introduce a least squares Monte Carlo method to estimate complex condi-
tional expectations for implementation of the optimal policy.

3.1  An optimal investment policy

It turns out the optimal policy of Problem (6) can be solved analytically. We directly 
give results in Theorem 1 and defer its proof in “Appendix A”.

Theorem 1 Given non-negative {�t}T−1t=0
 and � ∈ (0, 1) , the optimal policy of Problem 

(6) is such that for each t ∈ [0;T − 1],

where the set of assets in which to invest A∗

t
 is determined by the following rule: 

When 𝛾t > 0 , if there exists an integer k ∈ [0;p − 2] such that

then A∗

t
= {ip(vt), ip−1(vt), ..., ip−k(vt)} ; otherwise, A∗

t
= [1;p] . When �t = 0 , A∗

t
= {ip(vt)} . 

The vector vt is recursively defined as: For t = T − 1 , vT−1 = �T−1(rT−1) and 
cT−1 = −(1 − �) . For t ∈ [0;T − 2] , vt = −�t[(ct+1 + ��t+1zt+1 − (1 − �)yt+1)rt]∕(1 − �) 
and ct = �t[ct+1 + ��t+1zt+1 − (1 − �)yt+1] where in each stage t ∈ [0;T − 1],

The optimal policy derived in Theorem 1 is nonanticipative in that Vt , vt and qt 
are Ft-measurable and decisions in A∗

t
 and x∗

t
 depend only on what is known at the 

beginning of period t. Moreover, the given policy can be intuitively viewed as a 
three-step decision scheme. First, we rank the p risky assets in terms of their values 
in the vector vt . Then, we select a set of assets to be included in the portfolio A∗

t
 by 

checking a sequence of inequalities based on their values in vt and qt . The actual 
amount allocated from Vt to those selected assets depends on the MADs of their 
returns in qt following Eq. (7). Structurally, the policy in Theorem 1 can be decom-
posed into a selection rule in (8) and an allocation rule in (7), and it has a connection 
with the single-period solution in Lemma 1. To be specific, regarding the selection 
rule to determine A∗

t
 , the inequalities in (4) shows that an asset with a high expected 

(7)x
j∗

t =

⎧
⎪⎨⎪⎩

Vt

q
j

t

� �
j∈A∗

t

1

q
j

t

�−1

, j ∈ A
∗

t
,

0, j ∉ A
∗

t
,

(8)G(vt, 𝛾tqt, k) <
𝜆

1 − 𝜆
and G(vt, 𝛾tqt, k + 1) ⩾

𝜆

1 − 𝜆
,

(9)yt = zt

∑
j∈A∗

t

v
j

t

q
j

t

and zt =

( ∑
j∈A∗

t

1

q
j

t

)−1

.
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return is always considered prior to an asset with a low expected return and the asset 
with the highest value in mt is always included in A∗

t
 (but the actual allocation to 

the selected asset may be close to zero if its risk is high). The policy in Theorem 1 
acts in a similar way, but the selection criterion now depends on the comparison of 
values in vt instead of the simple expected asset returns and the MADs in function G 
are weighted by {�t}T−1t=0

.
As shown in Theorem 1, the vector vt is the crux to implement the optimal pol-

icy. The calculation of vt , however, is far from straightforward. We will introduce a 
least squares Monte Carlo method in Sect. 3.3 to approximate its value. For now, we 
deviate and give the following proposition to better understand the meaning of vt in 
Theorem 1.

Proposition 1 For t ∈ [0;T − 2] , let

where x∗
s
 denotes the optimal asset holdings at the beginning of period s. Let ΔT = 0 . 

Then, for all t ∈ [0;T − 1] , vt can be written as

An important observation in (11) is that the vector vt can be regarded as adjusted 
expected returns (AERs) of risky assets because it is composed of expected returns 
and adjusted in two perspectives: (i) It is adjusted by the anticipation of future deci-
sions. This type of adjustment is reflected in Δt+1 which is obtained by anticipating 
the performance of the optimal portfolios {x∗

s
}
T−1
s=t+1

 in future periods. Precisely, in 
(10), zs , as defined in (9), generally measures the overall risk of investing the assets 
in A∗

s
 , while v⊤

s
x∗
s
∕Vs represents the generalized return rate in period s, evaluated in 

terms of AERs vs . Thus, this anticipation effect takes account of both risk and return, 
and it accumulates across all future periods. (ii) It is adjusted by new observed data. 
This adjustment involves the calculation of conditional expectation �t(⋅) . When new 
data are released, the distribution of rt as well as future prospects in Δt+1 will be 
updated accordingly in a Bayesian fashion. Therefore, the impact of future moves 
from dynamic programming and the role of learning can be well reflected given vt 
presented in (11).

Special care should also be paid to the choice of the weights {�t}T−1t=0
 . Investors 

are allowed to impose personal preference on risks in different periods by setting 
{�t}

T−1
t=0

 properly. For example, if the final period risk really matters, a portfolio 
manager may raise the value of �T−1 . Increasing �T−1 alone will make A∗

T−1
 include 

more assets since G function is decreasing in �T−1 given vT−1 , qT−1 and k. Moreover, 
for all previous stages t ∈ [0;T − 2] , the weight of zT−1 will be increased accord-
ingly as shown in (10). As another extreme, if one totally ignores the risk in period 
T − 1 , he could set �T−1 = 0 . Theorem 1 tells us that in this case, the optimal deci-
sion for stage T − 1 is to invest all the fund VT−1 in the asset with the highest value 
in expected returns mT−1 , which is not surprising for such a risk-seeking investor. 

(10)Δt+1 =

T−1∑
s=t+1

v⊤
s
x∗
s

Vs

−

𝜆𝛾s
1 − 𝜆

zs,

(11)vt = �t[(1 + Δt+1)rt].
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Similarly, for all previous stages t ∈ [0;T − 1] , the effect of zT−1 would be removed 
by setting �T−1 = 0 in (10).

Note that Theorem 1 solves a general stochastic dynamic programming problem 
proposed in (6) and thus the derived nonanticipative policy in Theorem 1 is optimal 
with respect to arbitrary probability measure P that dominates the return process 
{rt}

T−1
t=0

 . That is, Theorem  1 provides a general optimal policy without specifying 
how to compute the conditional expectations and how to update the information. For 
practical implementation of the policy, we need to further introduce some necessary 
assumptions on returns and unknown parameters, and develop procedures to learn 
from data. Next, we will restrict our attention to a parameterized return-generating 
process and introduce unknown parameters as well as Bayesian learning.

3.2  Bayesian learning framework

In this section, we specify a parameterized return-generating process and further 
show how the unknown parameters are updated in a Bayesian fashion.

For concentration on parameter uncertainty and estimation risk, we conduct our 
analysis based on a popular i.i.d. normal return-generating process.3 Specifically, we 
assume that the return rates of p risky assets in period t, t ∈ [0;T − 1] , follow a lin-
ear model given by

where �0 , �1,..., �T−1 are i.i.d. noises. Given true parameters � and � , the returns 
{rt}

T−1
t=0

 are independently and identically distributed as N(�,�) . In most realistic 
situations, however, the investor cannot know the exact true values of parameters 
(�,�) . In spirit of Bayesian learning, we first suppose that the unknown parameters 
are random and follow a specified prior distribution, then according to Bayesian 
rule, the posterior beliefs on probability distributions of unknown parameters could 
be updated gradually as new data are observed.

To start up, suppose there are h data points before the investment horizon 
denoted as {r

−h, ..., r−1} . The information set Ft now can be formally defined as the 
�-algebra generated by returns up to time t, that is, Ft = �({r

−h, ..., r−1, r0, ..., rt−1}) . 
Denote the set of return data by Dt = {r

−h, ..., r−1, r0, ..., rt−1} . Thus, the condi-
tional expectation �(⋅|Ft) can be written as �(⋅|Dt) . This transition facilitates us 
to deal with conditional expectations defined directly in terms of data process 
rather that the sequence of �-algebras. The computation work of Bayesian updat-
ing is presented in what follows.

Suppose that the mean vector � is unknown while the covariance matrix � is known. 
The uncertainty about � is further assumed to be described by a multi-variate nor-
mal prior, i.e., � ∼ N(�

−1,�−1) . According to Bayesian rule, it can be verified that 

(12)rt = � + �t with �t ∼ N(0,�),

3 Our proposed dynamic model can be easily adapted to more complex considerations, such as return 
predictability (Barberis 2000), time-varying volatility (Lan 2014; Johannes et  al. 2014) or even model 
uncertainty (Tu and Zhou 2004), with the nice property of analytical solutions maintained.
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rt|Dt ∼ N(�t,�t + �) , where �t = �t(�
−1rt−1 + �

−1
t−1

�t−1) and �t = (�
−1

+ �
−1
t−1

)
−1 

for t > 0 . Specially, �0 = �0(�
−1 ∑−1

s=−h
rs + �

−1
−1
�
−1) and �0 = (h�−1

+ �
−1
−1
)
−1.

A more general case is that both � and � are unknown. To express some general and 
objective information on (�,�) before the realization of data, we assume a conventional 
“uninformative” prior for (�,�) , namely,

where |�| is the determinant of the matrix � . At the beginning of period 0, one can 
obtain the posterior distribution after observing h historical data, following the anal-
ysis in Zellner (1996). That is, given D0 , we have

where IW(h − 1,�0) is a inverse Wishart distribution with degree of freedom 
(h − 1) and scale matrix �0 , �0 =

∑
−1

s=−h
rs∕h , �0 = (R0 − 1�⊤

0
)
⊤
(R0 − 1�⊤

0
) and 

R0 = (r
−h, ..., r−1)

⊤ . It is well-known that the normal-inverse-Wishart is a conjugate 
prior with respect to the normally distributed data. At the beginning of period t > 0 , 
we take the posterior in stage t − 1 as the new prior for (�,�) and solve the updated 
posterior as follows:

where

For posterior marginal distribution of � , according to the results in Zellner (1996), 
one can further obtain that

which turns out to be a multivariate t-distribution with degree of freedom (h + t − p) , 
location vector �t and shape matrix �t∕[(h + t)(h + t − p)] . The predictive distribu-
tion of rt is then given by

Based on posterior marginal distributions of unknown parameters (�,�) in (15) and 
(17), one can compute the first and second moments of �j|Dt and (�)jj|Dt for each 
j ∈ [1;p] as follows,

(13)f (�,�) ∝ |�|−(p+1)∕2.

(14)�|�,D0 ∼ N
(
�0,�∕h

)
and �|D0 ∼ IW

(
h − 1,�0

)
,

(15)�|�,Dt ∼ N
(
�t,�∕(h + t)

)
and �|Dt ∼ IW

(
h + t − 1,�t

)
,

(16)
�t =

h + t − 1

h + t
�t−1 +

1

h + t
rt−1, �t = �t−1 +

h + t − 1

h + t
(rt−1 − �t−1)(rt−1 − �t−1)

⊤.

(17)�|Dt ∼ Th+t−p

(
�t,

1

(h + t)(h + t − p)
�t

)
,

(18)rt|Dt ∼ Th+t−p

(
�t,

h + t + 1

(h + t)(h + t − p)
�t

)
.

(19)�t(�
j
) = �

j

t , �t((�)jj) =
1

h�
(�t)jj,
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where (⋅)jj denotes the jth diagonal element of the given matrix and h� = h + t − p − 2.

To implement the policy with Bayesian learning, we need the following proposi-
tion to update mt and qt as new data released.

Proposition 2 Suppose both � and � are unknown and the initial prior follows (13). 
At the beginning of period t ∈ [0;T − 1] , we have

where diag(⋅) is the operator that takes diagonal elements from the given matrix and 
B(⋅, ⋅) is a beta function.

According to the definition of lt(xt) in (1) and the result in (21), it is clear that 
the optimal portfolio of our proposed model dose not depend on the covariances 
between assets. Interestingly enough, the total portfolio variance, x⊤

t
�xt , can be 

related to our model, albeit in an implicit way. The formal statement is presented in 
the following proposition.

Proposition 3 Suppose rt|Dt ∼ N(�,�) for all t ∈ [0;T − 1] . For arbitrary 𝜉 > 0 
and xt ∈ Xt , it holds that

where Φ(⋅) denotes the cumulative density function of standard normal distribution 
and lt(xt) is defined in (1).

The inequality in Proposition 3 shows that under the given assumptions, the total 
portfolio variance, x⊤

t
�xt , that explicitly contains the covariance matrix of asset 

returns, will be small if lt(xt) is kept small (nevertheless, it may not be true the other 
way around).

As pointed out by Best and Grauer (1991a), the more highly correlated the asset 
returns, the more sensitive the portfolio holdings from the mean-variance model are 
to expected returns. Hence, although it is intuitive to consider covariances in making 
portfolio decisions, an investment policy that removes the explicit dependence on asset 
covariances in the allocation part, such as the dynamic model proposed in this paper, 
may benefit from this “counter-intuitive” property in out-of-sample performance. We 
will provide more numerical evidence later to confirm the potential benefits of this 
property. It should be noted that the purpose of this paper is not to show whether the 

(20)Var(�j|Dt) =

(�t)jj

(h + t)h�
and Var((�)jj|Dt) =

2(�t)
2
jj

(h� − 2)h�2
,

(21)mt = �t and qt =
2
√
(h + t + 1)diag(�t)√

h + t(h + t − p − 1)B
�

h+t−p

2
,
1

2

� ,

2

⎡
⎢⎢⎢⎣
1 − Φ

⎛
⎜⎜⎜⎝

𝜉�
x⊤t �xt

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
⩽

p

𝜉
lt(xt),
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l
∞

 risk function is universally better than variance. Instead, we aim to offer alterna-
tive investment models different from the traditional mean-variance and utility-based 
models for heterogeneous users, especially for those relatively long-term conserva-
tive investors, and also to provide some insights for handling parameter uncertainty in 
multi-period problems via incorporating Bayesian learning.

3.3  Least squares Monte Carlo method

According to the analysis in previous subsections, the adjusted expected return vec-
tor vt is one of the keys to obtaining the optimal policy. However, with learning in the 
dynamic model, its value involves conditional expectations of quantities in future peri-
ods and cannot be computed directly. Instead, we introduce a least squares Monte Carlo 
method to obtain an estimate of vt . This numerical method is first proposed for pric-
ing American options in Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy 
(2001). Recently, it has been applied to dynamic portfolio selection problems to esti-
mate complex conditional expectations, e.g., Brandt et al. (2005), van Binsbergen and 
Brandt (2007), Diris et al. (2014), Lan (2014), Denault and Simonato (2017) and Zhang 
et al. (2019). For convergence analysis of this approach, one can refer to Clément et al. 
(2002), Stentoft (2004) and Tsitsiklis and Van Roy (2001).

Briefly speaking, the least squares Monte Carlo method is composed of two parts: 
(i) replace the conditional expectation by projection on a finite set of basis functions of 
state variables; (ii) use Monte Carlo simulation and least squares regression to compute 
the estimated values with the replacement in (i) recursively starting from the terminal 
stage. We now give more details on the implementation.

First, note that vt is an expectation conditional on data Dt . According to the update 
rules in (14)–(16), it is clear that (�t,�t) are the sufficient state variables to describe the 
probability distributions. Denote the set of elements in �t and unique elements in �t by 
�t . The evolution of �t depends on the newly observed returns, their squares, and cross-
products. For t ∈ [0;T − 2] and j ∈ [1;p] , we can write

and

which are the two types of conditional expectations we have to estimate in order to 
obtain x∗

t
 . Essentially, the conditional expectations vjt and ct can be viewed as some 

functions of �t . The theory on Hilbert spaces tells us that any function belonging to 
this space can be represented as a countable linear combination of basis vectors for 
the space (see Royden and Fitzpatrick 1988). Therefore, it is reasonable to approxi-
mate vjt and ct by a set of basis functions as follows,

(22)v
j

t =
−1

1 − �
�

[(
ct+1 + ��t+1zt+1 − (1 − �)yt+1

)
r
j

t

|||�t

]

(23)ct = �

[
ct+1 + ��t+1zt+1 − (1 − �)yt+1

|||�t

]
,
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where {�m(�t)}
M
m=1

 are the M basis functions, and {ajmt}Mm=1 and {ac
mt
}
M
m=1

 are 
the coefficients for vjt and ct , respectively. Specially, vj

T−1
= �

j

T−1
 , j ∈ [1;p] , and 

cT−1 = −(1 − �) are obviously simple functions of �T−1 . Note that we do not need to 
estimate qt since given �t , one can directly compute it following (21).

We next employ Monte Carlo simulation and least squares regression to esti-
mate {ajmt}Mm=1 and {ac

mt
}
M
m=1

 . Consider a set of N simulated return paths, denoted as 
{r

(n)
t }

N
n=1

 , t ∈ [0;T − 1] , following the Bayesian update rules in Sect. 3.2 with both � 
and � unknown. Denote the realized values of state variables in path n as {�(n)

t
}
T−1
t=1

 and 
the MADs of returns are {q(n)t }

T−1
t=1

 , n ∈ [1;N] . The algorithm works backwards from 
t = T − 1 to the current decision point t = 0 . At the beginning of period T − 1 , given 
�
(n)

T−1
 , one can easily solve a single-period last stage problem following Theorem 1 and 

obtain the estimated values v̂(n)
T−1

=

∑T−2

s=−h
r(n)
s
∕(T − 1 + h) , ĉ(n)

T−1
= −(1 − 𝜆) , ẑ(n)

T−1
 and 

ŷ
(n)

T−1
 in each path. At the beginning of period t < T − 1 , we should already know the 

estimated values v̂(n)
t+1

 , ĉ(n)
t+1

 , ẑ(n)
t+1

 and ŷ(n)
t+1

 , n ∈ [1;N] . Then, the realized values of vjt and 
ct in path n are

and

On the other hand, we have the basis function values {�m(�
(n)
t
)}

M
m=1

 . Therefore, the 
estimated coefficients {âjmt}Mm=1 , j ∈ [1;p] , and {âc

mt
}
M
m=1

 could be obtained by regres-
sions, that is, they are the solutions of the following minimization problems:

and

The fitted values of the regressions, denoted as {v̂j(n)t }
p

j=1
 and ĉ(n)t  , n ∈ [1;N] , consti-

tute the estimates of conditional expectations in (22) and (23). These estimates of 
the conditional expectations, in turn, yield estimates of ẑ(n)t  and ŷ(n)t  for each path n 
following the results in Theorem 1. At the decision point t = 0 , since the state varia-
ble is fixed on �0 for all paths, the fitted value from the regression simply reduces to 
v̂
j

0
=

∑N

n=1
v
j(n)

0
∕N , j ∈ [1;p] ( ̂c0 now is irrelevant to portfolio decision). Based on v̂0 

and q0 , the investor can optimally allocate his fund among the assets following 
Theorem 1.

(24)v
j

t =

M∑
m=1

a
j

mt�m(�t) and ct =

M∑
m=1

ac
mt
�m(�t),

(25)v
j(n)

t =

−1

1 − 𝜆

(
ĉ
(n)

t+1
+ 𝜆𝛾t+1ẑ

(n)

t+1
− (1 − 𝜆)ŷ

(n)

t+1

)
r
j(n)

t

c
(n)
t = ĉ

(n)

t+1
+ 𝜆𝛾t+1ẑ

(n)

t+1
− (1 − 𝜆)ŷ

(n)

t+1
.

min
{a

j
mt}

M
m=1

N∑
n=1

[ M∑
m=1

a
j

mt�m(�
(n)
t
) − v

j(n)

t

]2
,

min
{acmt}

M
m=1

N∑
n=1

[ M∑
m=1

ac
mt
�m(�

(n)
t
) − c

(n)
t

]2
.
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There are many basis functions we can use for evaluating the conditional 
expectations, including Hermite, Legendre, Chebyshev, Laguerre polynomials 
among others. A number of numerical evidence in, e.g., Longstaff and Schwartz 
(2001), Brandt et al. (2005) and van Binsbergen and Brandt (2007) indicates that 
the order of the polynomial is not necessary to be very high for obtaining reli-
able estimates and even the first order (linear) polynomial of state variables is an 
effective choice in practice.

For path simulation, it should be noted that the sample paths of asset returns 
are simulated in a Bayesian context to perform learning. In each path n, once new 
data are revealed, we can compute the updated state variables in �(n)

t
 . Given �(n)

t
 , 

we can go on to simulate a new return data point along the path according to the 
multivariate t-distribution derived in (18). More simulation paths of course will 
improve the regression fitting, but at the expense of more computational time as 
the number of portfolio selection problems the algorithm needs to solve increases 
linearly with the number of simulated paths. The complete implementation pro-
cess is presented in Algorithm 1.

Algorithm 1  The Optimal Investment Policy with Bayesian Learning
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4  Plug‑in model

4.1  Model formulation

Unlike the Bayesian portfolio selection model, the plug-in model solves the multi-
period investment problem believing that the unknown parameters could be esti-
mated precisely by sample estimates given historical data. Let m̃0 = (m̃1

0
, ..., m̃

p

0
)
⊤ 

and q̃0 = (q̃1
0
, ..., q̃

p

0
)
⊤ denote the point estimates of unconditional expected returns 

and MADs, respectively, at the beginning of period 0. Given h historical data points 
in D0 and the assumption on the normal distribution of asset returns, we have

where �0 has been defined in (14). Consistent with the Bayesian model, the cumula-
tive risk during the investment horizon in this case is defined as

where q̃0 is used for all future periods t ∈ [0;T − 1] , which implies the ignorance 
of parameter uncertainty and estimation risk in decision making under the plug-in 
model.

Accordingly, we set up the following multi-period optimization problem for the 
plug-in model,

The policy is self-financing, so we have �(VT ) = V0 +
∑T−1

t=0
�(rt)

⊤xt . Again, in 
plug-in model, we replace the uncondtional expected returns �(rt) with known sam-
ple estimate m̃0 for all t ∈ [0;T − 1] to emphasize that this model ignores parameter 
uncertainty.

4.2  The optimal policy

Problem (28) is a standard dynamic program and its solution could be obtained by 
backwards induction. We present the optimal policy in the following proposition.

Proposition 4 Given non-negative {�t}T−1t=0
 and � ∈ (0, 1) , the optimal policy of Prob-

lem (28) is such that for each stage t ∈ [0;T − 1] , if j ∉ Ã
∗

t
 , then x̃j∗t = 0 ; if j ∈ Ã

∗

t
 , 

then x̃j∗t = Vt∕(q̃
j

0

∑
j∈Ã

∗

t
1∕q̃

j

0
) , where Ã∗

t
 can be determined by the rule: When 

𝛾t > 0 , if there exists an integer k ∈ [0;p − 2] such that G(ṽt, 𝛾tq̃0, k) < 𝜆∕(1 − 𝜆) and 

(26)m̃0 =
1

h

−1∑
s=−h

rs and q̃0 =

√
2

𝜋(h − 1)
diag(�0),

(27)L̃T =

T−1∑
t=0

𝛾t max
1⩽j⩽p

q̃
j

0
x
j

t,

(28)
min

x0∈X0,⋯,xT−1∈XT−1

�

[
𝜆L̃T − (1 − 𝜆)VT

]

s.t. Vt+1 = Vt + r⊤
t
xt, t ∈ [0;T − 1].
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G(ṽt, 𝛾tq̃0, k + 1) ⩾ 𝜆∕(1 − 𝜆) , then Ã∗

t
= {ip(ṽt), ..., ip−k(ṽt)} ; otherwise, Ã∗

t
= [1;p] . 

When �t = 0 , Ã∗

t
= {ip(ṽt)} . The vector ṽt is recursively defined as: For t = T − 1 , 

ṽt = m̃0 and c̃t = −(1 − 𝜆) . For t ∈ [0;T − 2] , ṽt = −c̃tm̃0∕(1 − 𝜆) and 
c̃t = c̃t+1 + 𝜆𝛾t+1z̃t+1 − (1 − 𝜆)ỹt+1 where for each t ∈ [0;T − 1] , z̃t = 1∕(

∑
j∈Ã

∗

t
1∕q̃

j

0
) 

and ỹt = z̃t
∑

j∈Ã
∗

t
ṽ
j

t∕q̃
j

0
.

Similar to the case with Bayesian learning, we can further rewrite the AER vector 
ṽt in Proposition 4 as ṽt = (1 + Δ̃t+1)m̃0 where

In addition, notice that given sample estimates m̃0 and q̃0 , the optimal portfolio 
weights in percentage of wealth {x̃∗

t
∕Vt}

T−1
t=0

 can be exactly known at the beginning 
of period 0. Therefore, the plug-in investor can choose to follow the determinis-
tic policy {x̃∗

t
∕Vt}

T−1
t=0

 to allocate his fund at each decision point, ignoring the new 
released data. A “wiser” alternative may be that the plug-in investor only uses x̃∗

0
 

to decide the portfolio at time point 0 and updates the sample estimates with new 
observed returns for decisions in future periods. Specifically, according to (26), the 
update rule is simply that, for t ∈ [0;T − 1],

where �t is defined in (16). Then, at the beginning of period t, the plug-in investor 
solves Problem (28) with updated point estimates m̃t and q̃t , and only x̃∗

t
 is used to 

construct the portfolio in stage t. We will present the performance of the above two 
decision approaches for the plug-in investor in our numerical study.

In financial economics literature, the difference in optimal portfolios between a 
long-term and a short-term investor is often identified as the hedging demand whose 
theoretical foundation can be dated back to Merton (1969). Here, we compare the 
multi-period (dynamic) and single-period (myopic) solutions under the plug-in 
model and the following four cases are considered. 

 (a): Δ̃t+1 > 0 . Because G(ṽt, q̃0, k) ⩾ G(m̃0, q̃0, k) for all k ∈ [0;p − 1] , the dynamic 
solution is more aggressive than the myopic solution under a positive future 
prospect. Precisely, the dynamic solution tends to select less assets and focuses 
on choosing assets with high expected returns to increase portfolio value.

 (b): Δ̃t+1 = 0 . The dynamic solution degenerates to the myopic solution.
 (c): −1 ⩽ Δ̃t+1 < 0 . Because G(ṽt, q̃0, k) ⩽ G(m̃0, q̃0, k) for all k ∈ [0;p − 1] , the 

dynamic solution performs more conservatively than the myopic solution by 
selecting more assets to diversify4 the portfolio under a poor future prospect.

(29)Δ̃t+1 =

T−1∑
s=t+1

ṽ⊤
s
x̃∗
s

Vs

−

𝜆𝛾s
1 − 𝜆

z̃s.

m̃t =
1

h + t

t−1∑
s=−h

rs and q̃t =

√
2

𝜋(h + t − 1)
diag(�t),

4 text.
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 (d): Δ̃t+1 < −1 . The plug-investor has an extremely poor future prospect and the 
ordering of elements in ṽt is reversed. Suppose that the MADs in q̃0 are ordered 
in the same way as their expected returns in m̃0 . In this case, the dynamic solu-
tion prefers investing in assets with low expected returns (e.g., some bonds or 
treasury bills instead of stocks) to possibly control risk.

4.3  Comparison with Bayesian model

For now, we have shown the optimal policies under Bayesian and plug-in model in 
Theorem 1 and Proposition 4.1 respectively. Then, we discuss the impact of incorporat-
ing Bayesian learning on investor’s decision making by comparing these two policies.

Given ṽt and vt , we see that ṽt is a deterministic function that relies on the sample 
estimates of historical returns, as shown in m̃0 and q̃0 , while vt is a conditional expecta-
tion adapted to the available information Ft in a Bayesian fashion. Particularly, for each 
j ∈ [1;p] , vjt can be understood as an expected value across different realizations of 
future returns and state variables based on the observed data at the beginning of period 
t. That is, given �t , the evaluation of vt has an anticipation that the future prospect may 
deviate from what has been revealed by historical information in �t . In contrast, ignor-
ing parameter uncertainty, the plug-in model fully “trusts” the historical information 
and believes that risky assets in future would perform the same as in history, which 
may lead to extreme AER values especially under some poor parameter estimates with 
large errors.

On the other hand, as a consequence of considering extra sources of uncertainty 
in unknown parameters, accounting for parameter uncertainty via Bayesian learning 
makes the risky assets more risky in the sense that the MADs estimated in the Bayesian 
model are larger than those of plug-in model. Specifically, we can rewrite q0 and q̃0 as 
q0 = �L(h)

√
diag(�0) and q̃0 = 𝛽P(h)

√
diag(�0) according to (21) and (26) where

Both �L(h) and �P(h) are functions of the amount of historical data h. A more 
straightforward and quantitative description of these two functions is provided in 
Fig. 1 where it can be easily observed that 𝛽L(h) > 𝛽P(h) especially when h is small. 

�L(h) =
2
√
h + 1√

h(h − p − 1)B
�

h−p

2
,
1

2

� and �P(h) =

�
2

�(h − 1)
.

Fig. 1  Comparison of �
L
(h) and 

�
P
(h)
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As time passes and more data are revealed, the issue of parameter uncertainty is 
relieved and thus �L(h) gradually approaches to �P(h) in Fig.  1. Moreover, with 
larger MADs q0 evaluated, more assets are likely to be selected for investment in the 
Bayesian model than the case of plug-in model because G(v0, q0, k) ⩽ G(v0, q̃0, k) for 
all k ∈ [0;p − 1] and any given v0.

5  Numerical study

In this numerical study, we first investigate the role of Bayesian learning in the opti-
mal portfolio decision. Then, an out-of-sample performance test is provided for 
models with and without Bayesian learning based on real market data.

5.1  Data

The market data used in this study consist of monthly return data of 17 industry 
portfolios from August 1989 to July 2019, that is, we have p = 17 and 30-year 
monthly return data in this experiment. These data are accessible on the website of 

Table 1  Data description ( ×10−2)

This table presents the expectation (EX) and standard deviation (SD) 
of unknown parameters in � and � conditional on D0

Assests Name � (�)jj

EX SD EX SD

S1 Food 0.718 0.210 0.158 0.012
S2 Mines 0.666 0.426 0.653 0.050
S3 Oil 0.616 0.295 0.313 0.024
S4 Clths 0.877 0.323 0.375 0.029
S5 Durbl 0.520 0.300 0.324 0.025
S6 Chems 0.681 0.307 0.339 0.026
S7 Cnsum 0.800 0.222 0.178 0.014
S8 Cnstr 0.937 0.308 0.342 0.026
S9 Steel 0.502 0.443 0.706 0.054
S10 FabPr 0.833 0.290 0.303 0.023
S11 Machn 0.992 0.373 0.501 0.039
S12 Cars 0.598 0.350 0.440 0.034
S13 Trans 0.870 0.268 0.259 0.020
S14 Utils 0.468 0.209 0.157 0.012
S15 Rtail 0.892 0.252 0.229 0.018
S16 Finan 0.790 0.296 0.316 0.024
S17 Other 0.729 0.261 0.245 0.019
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Ken French.5 In Table 1, we list the industry portfolio names and report the expecta-
tions and standard deviations of posterior distributions of unknown parameters in � 
and � given full data sample. Particularly, in Table 1, we compute �0(�

j
) , �0((�)jj) , √

Var(�j�D0) and 
√

Var((�)jj|D0) , j ∈ [1;17] , following equations in (19) and (20) 
with D0 containing the full data sample from August 1989 to July 2019. The results 
in Table 1 show that the expectations of {�j

}
17
j=1

 conditional on D0 range from 0.468 
to 0.992% with standard deviations {

√
Var(�j�D0)}

17
j=1

 varying from 0.209 to 
0.443%. Compared to the standard deviations of return variances 
{

√
Var((�)jj|D0)}

17
j=1

 which possess the range from 0.012% to 0.054%, it appears 
that the uncertainty in return means is a dominated source of parameter uncertainty 
for investors.

5.2  The role of Bayesian learning

As analyzed in Sect. 4.3, the Bayesian model is likely to produce a more diversified 
portfolio than the plug-in model. We show this phenomenon by designing an experi-
ment with results presented in Table 2 where we report the conditional expectations 
�0(�) , their standard deviations 

√
Var(��D0) , the MADs from two investors and 

portfolio positions under two scenarios, i.e. “Normal” and “High”, with monthly 
return data from February 2017 to July 2019 (i.e., h = 30)6 contained in D0 . We use 
the least squares Monte Carlo method to estimate AERs in v0 with N = 20000 and 
basis functions including the state variables and their quadratic values, that is, we 
have M = 341 and

In Table 2, the “Normal” scenario means that the results are obtained under the real 
estimates �0 = m̃0 =

∑
−1

s=−h
rs∕h , while “High” corresponds to the outcomes with 

𝜇
j

0
= m̃

j

0
=

∑
−1

s=−h
rs∕h +

√
Var(𝜇j�D0) , j ∈ [1;17] . In other words, we add a per-

turbation (plus one standard deviation) on the sample average of historical returns 
in D0 and want to see the responses of v0 , ṽ0 and the optimal portfolio allocations 
given new mean estimates in the “High” scenario. The investment horizon is set to 
be T = 6 months with � = 0.4 and �t = 1 , ∀t ∈ [0;5].

According to Table 2, the results in “High” scenario show that vH
0
 is uniformly 

lower than ṽH
0
 , with a smaller range ( 1.713 × 10−2 in vH

0
 versus 1.938 × 10−2 in ṽH

0
 ) 

such that G(vH
0
, q0, 16) < G(vH

0
, q̃0, 16) < G(ṽH

0
, q̃0, 16) . It is thus reasonable to 

(30)

(�1(�0), ...,�341(�0)) =

(
1,�1

0
, ...,�17

0
, (�0)1,1, ..., {(�0)i,j}i≤j, ..., (�0)17,17,

(�1
0
)
2, ..., (�17

0
)
2, (�0)

2
1,1
, ..., {(�0)

2
i,j
}i≤j, ..., (�0)

2
17,17

)
.

5 http:// mba. tuck. dartm outh. edu/ pages/ facul ty/ ken. french/ datal ibrary. html.
6 With a relatively short length historical data, the issue of parameter uncertainty could be severe, which 
is beneficial for observing the differences between the cases with and without learning. More discussions 
on the length of historical data will be presented in the later subsection.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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expect a more diversified portfolio in Bayesian model than in plug-in model. Con-
sistent with our analysis, we note that in “High” scenario, the plug-in investor selects 
6 assets whereas the Bayesian investor selects 8 assets with their portfolio weights 
denoted by x̃∗H

0
 and x∗H

0
 , respectively.

On the other hand, incorporating Bayesian learning to account for parameter 
uncertainty can also reduce the sensitivity of optimal portfolios to changes in model 
inputs. To show this, we follow the procedures similar to Best and Grauer (1991a) 
and focus on the results under the “Normal” scenario in Table 2 where v0 and ṽ0 
are close to each other and x∗

0
 is the same as x̃∗

0
 . Among the selected 8 assets, for 

both Bayesian and plug-in investors, asset S15 and asset S16 feature the maximal and 
the minimal AER values, respectively. We present the model sensitivity by com-
paring the sizes of the shifts in the largest AER ( ̃v15

0
 and ṽ15

0
 ) required to drive S16 

from the original optimal portfolio ( x∗
0
 and x̃∗

0
 ). It turns out that, when S16 is driven 

from x∗
0
 , v15

0
 should increase at least by 132.6% (from 1.688 × 10−2 to 3.926 × 10−2 ). 

On the contrary, the required increase in ṽ15
0

 is by 16.1% (from 1.669 × 10−2 to 
1.938 × 10−2 ). Similar results can also be obtained by decreasing q15

0
 and q̃15

0
 to drive 

asset S16 from x∗
0
 and x̃∗

0
 (decrease by 78.2% in q15

0
 versus 29.4% in q̃15

0
 ). The above 

results provide the evidence to support that the model with Bayesian learning is 
more robust to changes in model inputs than the plug-in model that ignores parame-
ter uncertainty and estimation risk. Technically, the robustness gained by the Bayes-
ian model comes from the higher estimates in MADs qt which could attenuate the 
impact of changes in vt and qt to the variation of function G. Again, consistent with 
our analysis, we observe that x∗

0
 remains unchanged in “High” scenario, whereas, 

the plug-in investor selects less assets in “High” scenario with 8 assets in x∗
0
 versus 

6 assets in x̃∗H
0

.

5.3  Out‑of‑sample performance

In this section, we provide the out-of-sample performance of policies with and with-
out Bayesian learning to further support our findings and analysis.

5.3.1  Models

Six models are considered in this out-of-sample test. We use BL to refer to the 
model with Bayesian learning with the policy derived by solving Problem (6). Two 
models for the plug-in investor based on Problem (28) are included, denoted as PI-1 
and PI-2. PI-2 follows a deterministic policy solved at the beginning of period 0, 
ignoring the newly released data. PI-1 keeps updating the point estimates in m̃t and 
q̃t , and only x̃∗

t
 is used for constructing the optimal portfolio in period t. Although 

both BL and PI-1 can utilize the new released data, the difference is that BL incor-
porates estimation risk and Bayesian learning while PI-1 does not. We also intro-
duce two single-period models denoted as SP-1 and SP-2. SP-1 is a single-period 
model with l

∞
 risk measure,
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where X =

�
x ∶

∑p

j=1
xj = V0, x

j ⩾ 0, j ∈ [1;p]
�

 . SP-2 is a mean-variance type 
model. To make SP-1 and SP-2 comparable, we use portfolio standard deviation, 
instead of variance, as the risk measure in SP-2, that is, we solve the following prob-
lem in SP-2,

where �̃0 is the sample covariance matrix given D0 ; �̃
1∕2

0
 is the matrix square root 

and ‖ ⋅ ‖2 is the 2-norm. The naive equally weighted portfolio denoted as 1/p is 
included as well.

For BL, the AER vector vt is estimated by the least squares Monte Carlo method 
with settings the same as those used in Table 2. The SP-2 model (32) is solved by 
CPLEX. Solutions of other models follow Lemma  1, Theorem  1 and Proposition 
4.3.

5.3.2  Setup

The out-of-sample test follows a rolling-horizon procedure. We first choose an 
estimation window with h data points as training data. We set the investment hori-
zon as T, so the following T data points are used as out-of-sample test data. Every 
month, BL and PI-1 are allowed to use all available data to update model inputs and 
rebalance their portfolio holdings. The parameter estimates of PI-2, SP-1 and SP-2 
depend only on the h training data. During the investment horizon, PI-2 follows its 
deterministic policy solved at the beginning of period 0. SP-1 and SP-2 repeat using 
their myopic solutions solved at the beginning of period 0. At the end of the terminal 
stage, this investment process produces exactly T out-of-sample monthly portfolio 
return rates for the six models. Then, we repeat the test for the next investment hori-
zon and move the data window by T months, again taking the first h data points 
as training data and the left T points as test data, until the end of the data set is 
reached. In this test, we set T = 6 , V0 = 1 , � ∈ {0.2, 0.8} , �t = 1 for all t ∈ [0;T − 1] 
and h = 30.

Based on the selected real data sequence from August 1989 to July 2019 (360 
months), we further randomly generate nine time permuted return sequences. Note 
that we focus on the performance of the terminal portfolio return over the T-period 
investment. Since we set T = 6 , for each return sequence, we will have 360/6 = 60 
terminal portfolio returns, and, in total, we can collect 60 ∗ 10 = 600 terminal port-
folio returns over the 10 monthly return sequences. The T-period investment test 
will be repeated for 600 times. For ease of reference, we call the kth T-period invest-
ment test the kth iteration where k = 1, 2, ..., 600.

(31)min
x∈X

𝜆 max
1⩽j⩽p

q̃
j

0
xj − (1 − 𝜆)m̃⊤

0
x,

(32)min
x∈X

𝜆‖�̃1∕2

0
x‖2 − (1 − 𝜆)m̃⊤

0
x,
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5.3.3  Metrics

The performance metrics for the models include mean (MEAN), standard 
deviation (STD), Sharpe ratio (SR) and value-at-risk at 95% and 99% levels 
(VaR95%,VaR99%) of the 600 out-of-sample terminal portfolio returns. Besides 
these, we also report the portfolio turnover which is defined as

where ‖ ⋅ ‖1 denotes 1-norm, xk,t is the desired portfolio weight vector in iteration 
k at the beginning of period t and xk,t− is the portfolio weight before rebalancing 
but after the realization of the actual asset returns based on xk,t−1 . We set xk,0− = 0 . 
The metric PDM, short for portfolio diversification measure, documents the average 
number of assets with positive weights in one period, which can be mathematically 
defined as

PTO =

1

600

600�
k=1

T−1�
t=0

‖xk,t − xk,t−‖1,

Table 4  p values of differences 
in SR and NSR ( p = 17)

BL is the benchmark in the statistical test

BL PI-1 PI-2 SP-1 SP-2 1/p

� = 0.2 SR – 0.015 0.045 0.040 0.012 0.312
NSR – 0.015 0.092 0.093 0.021 0.214

� = 0.8 SR – 0.517 0.392 0.604 0.620 0.000
NSR – 0.455 0.410 0.639 0.624 0.000

Table 3  Out-of-sample performance ( p = 17)

*p value<0.1, **p value<0.05, ***p value<0.01. The statistical results show the significance of the per-
formance differences between BL and other models. For detailed p values, see Table 4

� Models MEAN STD SR VaR95% VaR99% PDM SSQ PSM PTO NSR

0.2 BL 0.046 0.118 0.395 − 0.132 − 0.260 5.036 2.838 2.536 2.155 0.390
PI-1 0.045 0.123 0.367∗∗ − 0.148 − 0.261 3.812 3.301 3.060 2.197 0.362∗∗

PI-2 0.045 0.122 0.369∗∗ − 0.141 − 0.280 3.719 3.356 3.130 0.416 0.368∗

SP-1 0.045 0.122 0.370∗∗ − 0.139 − 0.270 3.812 3.303 3.072 0.230 0.370∗

SP-2 0.041 0.121 0.341∗∗ − 0.152 − 0.235 2.817 4.618 4.609 0.230 0.341∗∗

1/p 0.045 0.110 0.413 − 0.137 − 0.225 17.000 1.455 0.000 0.208 0.413
0.8 BL 0.045 0.104 0.433 − 0.126 − 0.213 16.710 1.508 0.228 0.281 0.432

PI-1 0.045 0.105 0.431 − 0.130 − 0.221 15.639 1.561 0.434 0.450 0.430
PI-2 0.045 0.105 0.430 − 0.132 − 0.220 15.488 1.570 0.464 0.223 0.429
SP-1 0.045 0.105 0.431 − 0.132 − 0.220 15.493 1.570 0.463 0.201 0.430
SP-2 0.038 0.089 0.421 − 0.114 − 0.181 5.348 3.581 2.493 0.173 0.420
1/p 0.045 0.110 0.413∗∗∗ − 0.137 − 0.225 17.000 1.455 0.000 0.208 0.413∗∗∗
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where 1{⋅} is an indicator function and it equals one if xj
k,t

> 0 and zero other-
wise. Moreover, we also compute the sum of squares of portfolio weights (SSQ) as 
another index for observing the fund distribution, with its definition follows that

where Vk,t is the initial wealth at the beginning of period t in iteration k. Finally, the 
portfolio sensitivity measure (PSM) (see Palczewski and Palczewski 2014) is given 
by

where w∗

t
 contains the optimal percentage portfolio weights at the beginning of 

period t with full knowledge of the return distribution. For BL, PI-1 and PI-2, w∗

t
 is 

approximated by the optimal policy of a plug-in model with the full data samples. 
For SP-1 and SP-2, w∗

t
 is approximated by the solution from (31) and (32), respec-

tively, given the full data samples.
Following DeMiguel et al. (2009), we also consider transaction costs in an ex 

post way. Specifically, the transaction cost arises from the portfolio turnover at 
the beginning of period t is quantified by �‖xk,t − xk,t−‖1 where we set � = 0.002 . 
After deducting the total transaction costs in T periods, we can obtain a net termi-
nal portfolio return for each iteration and then we can compute the Sharpe ratio 
net of the transaction costs (NSR) based on the 600 net terminal portfolio returns. 
To test whether the Sharpe ratios (SR/NSR) of two models are statistically dis-
tinguishable, we also compute the p value of the difference following Jobson and 
Korkie (1981) and Memmel (2003).7

5.3.4  Results

Table  3 contains the out-of-sample performance of the six models in terms of 
ten metrics and Table 4 reports the p values of differences in SR and NSR with 
benchmark being BL. In Table  3, we see that under � = 0.2 , BL outperforms 
PI-1 and PI-2 in SR with the performance gaps both significant at 5% level, and 
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the better performance of BL persists even after the consideration of transac-
tion costs (see NSR and p values). Meanwhile, BL has larger MEAN, smaller 
STD, larger VaR95% and VaR99% than do PI-1 and PI-2, which apparently con-
firms the superiority of our proposed BL model. BL also has the largest PDM 
and smallest PSM compared to other models except 1/p under both � = 0.2 and 
� = 0.8 , and these observations are consistent with our analysis in the previous 
section where we show that Bayesian learning can promote diversification and 
reduce sensitivity to data changes. Note that, under � = 0.2 , the metric results 
of PI-1, PI-2 and SP-1 are close to each other. The similar performance between 
PI-1 and PI-2 suggests that simply updating point estimates with new data may 
not improve the quality of the resulted portfolio. While, the similar performance 
between PI-2 and SP-1 implies that the advantage of dynamic models can be 
diminished with the existence of parameter uncertainty. The above observa-
tions together demonstrate the positive effect and the necessity of incorporating 
Bayesian learning procedure in dynamic portfolio optimization problems. On the 
other hand, the positive effect of using l

∞
 risk function instead of portfolio vari-

ance can be observed from the comparison of models SP-1 and SP-2. Clearly, 
for both � = 0.2 and � = 0.8 , SP-1 leads to better Sharpe ratios, SR and NSR, 
and notice that SP-2 has the smallest PDM and the largest SSQ and PSM in 
Table 3, which is aligned with the criticism on the classic mean-variance model 
that its solution is sensitive to model parameters and usually concentrates on a 
few assets (Litterman et al. 2004).

We have seen that BL can outperform PI-1 significantly under � = 0.2 . When 
� = 0.8 , their difference in SR narrows, e.g., 0.433 vs. 0.431 with p value 0.517 
in Table 3. We know that the portfolio selection models with l

∞
 risk function first 

select assets to invest according to (adjusted) expected returns and then deter-
mine the weight of each selected asset according to risks. So, when the investor 
is risk-seeking with a small � , the resulting policy only focuses on several assets 
with large historical returns and consideration of extra parameter uncertainty 
can have a noticeable impact on portfolio choice by making the model include 
more assets than the case without considering parameter uncertainty and reduc-
ing sensitivity to input changes as shown in Table 2. On the contrary, when � is 
close to 1, the resulting policy will almost invest on all the available assets and 
in such a case, considering parameter uncertainty cannot affect much the deci-
sion on the wealth weights of the selected assets, which causes the similar of BL 
and PI-1 under � = 0.8.

Another interesting observation is that in contrast to the comparison of BL 
and PI-1, our proposed BL model significantly outperforms 1/p under � = 0.8 
(0.433 vs. 0.413 in SR with p value 0.000), even after the consideration of trans-
action costs (0.432 vs. 0.413 in NSR with p value 0.000), but their differences 
in SR and NSR are not significant under � = 0.2 . The reason is that when � is 
large, BL will invest on most of the assets and actively distribute the fund over 
the selected assets, making use of the risk information, and thus it can have a 
significant advantage over 1/p, while, when � is small, BL that considers only 
several assets with high historical returns pursues high expected return in the 
cost of high volatility, which results in a higher out-of-sample return (0.046 vs. 
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0.045 in MEAN) but possibly with a statistically insignificant lower Sharpe ratio 
than 1/p.

5.3.5  Additional tests

To check the robustness of our findings, we reimplement the experiments 
on another real market data set with monthly returns of 12 risky assets,8 i.e., 
p = 12 . The settings are the same as those in Sects. 5.3.1, 5.3.2 and 5.3.3 and 
the out-of-sample performance results are presented in Table 5 (ten metrics) and 
Table  6 (p values). The numerical results in Tables  5 and 6 still support our 
findings stated in Sect. 5.3.4, that is, (i) our proposed dynamic portfolio selec-
tion model with Bayesian learning BL is able to significantly outperform the 
plug-in models, PI-1 and PI-2, and the equally weighted portfolio 1/p. (ii) The 
significance of the performance gap is affected by the risk preference level � . 
(iii) Compared to the mean-variance model, the use of l

∞
 risk function can lead 

to better out-of-sample performance.
In addition, we also test the effect of Bayesian learning when more data are avail-

able with out-of-sample results presented in Table  7 where we set the historical 
data length h = 120 instead of h = 30 used in Tables 3 and 5. In Table 7, for both 
data sets p = 17 and p = 12 , BL, PI-1 and PI-2 have a similar performance under 
� = 0.2 , which is in contrast to the observations in Tables 3 and 5. As predicted by 

Table 5  Additional out-of-sample test on 12-asset data set ( p = 12)

*p value<0.1, **p value<0.05, ***p value<0.01. The statistical results show the significance of the per-
formance differences between BL and other models. For detailed p values, see Table 6

� Models MEAN STD SR VaR95% VaR99% PDM SSQ PSM PTO NSR

0.2 BL 0.045 0.108 0.415 − 0.128 − 0.225 4.153 3.113 2.723 1.968 0.411
PI-1 0.044 0.112 0.396∗∗ − 0.126 − 0.237 3.465 3.448 3.098 1.897 0.391∗∗

PI-2 0.044 0.112 0.393∗∗ − 0.133 − 0.234 3.356 3.517 3.196 0.355 0.392∗

SP-1 0.044 0.111 0.390∗∗ − 0.133 − 0.234 3.415 3.480 3.156 0.214 0.390∗∗

SP-2 0.044 0.116 0.361∗∗∗ − 0.135 − 0.238 2.702 4.761 4.630 0.218 0.361∗∗∗

1/p 0.044 0.100 0.441 − 0.130 − 0.202 12.000 1.732 0.000 0.194 0.440∗

0.8 BL 0.044 0.097 0.450 − 0.125 − 0.192 11.960 1.772 0.213 0.235 0.450
PI-1 0.044 0.098 0.449 − 0.123 − 0.192 11.784 1.785 0.273 0.278 0.448
PI-2 0.044 0.097 0.450 − 0.118 − 0.191 11.739 1.789 0.295 0.200 0.449
SP-1 0.044 0.097 0.450 − 0.118 − 0.191 11.728 1.790 0.297 0.188 0.450
SP-2 0.037 0.087 0.422 − 0.109 − 0.184 5.150 3.617 2.340 0.170 0.421
1/p 0.044 0.100 0.441∗∗∗ − 0.130 − 0.202 12.000 1.732 0.000 0.194 0.440∗∗∗

8 This new data set is also accessible on the website http:// mba. tuck. dartm outh. edu/ pages/ facul ty/ ken. 
french/ datal ibrary. html. To be consistent with the case of the 17-asset data set, for the new 12-asset data 
set, we also choose the monthly return sequence from August 1989 to July 2019 (360 months) in the out-
of-sample test.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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the trend in Fig. 1, Table 7 numerically shows that the importance of incorporating 
Bayesian learning decreases as more data are available and the severity of parameter 
uncertainty reduces.

In Table 8, we report the new out-of-sample results of BL with AERs estimated 
by a linear basis, that is, we remove the quadratic terms in (30) and again run the 
regression following Algorithm 1. Compared to the results in Tables 3 and 5 which 
use the basis vector (30), the performance results in Table 8 with less regressors are 
almost the same as those listed in Table 3 and Table 5, suggesting that our numerical 
findings are robust to the setting in least squares Monte Carlo method.

Table 6  p values of differences 
in SR and NSR ( p = 12)

BL is the benchmark in the statistical test

BL PI-1 PI-2 SP-1 SP-2 1/p

� = 0.2 SR – 0.015 0.041 0.018 0.005 0.133
NSR – 0.017 0.090 0.047 0.009 0.083

� = 0.8 SR – 0.511 0.879 0.970 0.191 0.002
NSR – 0.481 0.912 0.984 0.192 0.002

Table 7  More historical data ( h = 120)

The results are obtained under h = 120 , � = 0.2 for both p = 17 and p = 12 data sets

p Models MEAN STD SR VaR95% VaR99% PDM SSQ PSM PTO NSR

17 BL 0.047 0.115 0.405 − 0.141 − 0.225 6.220 2.508 1.922 1.586 0.401
PI-1 0.047 0.116 0.403 − 0.149 − 0.241 5.921 2.573 2.000 1.032 0.401
PI-2 0.046 0.115 0.403 − 0.145 − 0.236 5.870 2.584 2.016 0.325 0.402

12 BL 0.046 0.105 0.433 − 0.133 − 0.210 5.457 2.654 1.879 1.354 0.430
PI-1 0.045 0.105 0.430 − 0.129 − 0.199 5.278 2.701 1.928 0.873 0.428
PI-2 0.046 0.105 0.437 − 0.129 − 0.198 5.254 2.706 1.948 0.307 0.436

Table 8  Out-of-sample results of BL under linear basis

p � MEAN STD SR VaR95% VaR99% PDM SSQ PSM PTO NSR

17 0.2 0.046 0.118 0.395 − 0.133 − 0.260 5.054 2.833 2.529 2.145 0.390
0.8 0.045 0.104 0.433 − 0.126 − 0.213 16.712 1.508 0.228 0.281 0.432

12 0.2 0.045 0.108 0.415 − 0.128 − 0.225 4.159 3.110 2.720 1.958 0.411
0.8 0.044 0.097 0.450 − 0.125 − 0.192 11.960 1.772 0.213 0.235 0.450
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6  Concluding remarks

The issue of parameter uncertainty and estimation risk has been long recognized as a 
crucial problem in portfolio management. In this paper, we incorporate Bayesian learn-
ing to deal with this issue in the framework of a proposed dynamic portfolio selection 
model where an l

∞
 risk function is used as risk measure. The investor in our model is 

assumed to make decisions by maximizing expected terminal wealth at a minimal level 
of total risk, quantified by a weighted sum of the risks during the investment horizon. 
We show that the proposed stochastic dynamic program has a closed-form optimal pol-
icy that can be constructed intuitively. For implementation, we introduce a least squares 
Monte Carlo method to approximate the complex conditional expectations in AERs. 
We discuss the impact of Bayesian learning on investor’s decision making and show 
how it promotes diversification and reduces sensitivity of optimal portfolios to changes 
in model inputs under an i.i.d. normal return-generating process with unknown means 
and covariance matrix. The numerical results based on real market data show that our 
proposed dynamic portfolio selection model with Bayesian learning can significantly 
outperform the plug-in models and the equally weighted portfolio with the performance 
gaps affected by the risk preference level and the amount of data available.

For future research, one can discard the assumption that the return-generating pro-
cess is known and study the effect of model ambiguity based on the dynamic portfolio 
selection model developed in this paper. Another direction is to consider transaction 
costs in an ex ante way. As an important element for practical portfolio selection mod-
els, it is interesting to investigate how the investment strategy of our dynamic model 
would change if the transaction costs are included in model formulation. Finally, intro-
ducing other advanced Bayesian learning techniques with side information could also 
be a meaningful way to extend our work.

Appendix A: proofs

A.1. Proof of Theorem 1

Given xt , max1⩽j⩽p q
j

tx
j

t is Ft-measurable. Hence, we can split the total risk LT and 
reformulate Problem (6) as follows:
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Since VT = VT−1 + r⊤
T−1

xT−1 , we have

where vT−1 = �T−1(rT−1) and cT−1 = −(1 − �) . Two cases need to be discussed: 
𝛾T−1 > 0 and �T−1 = 0 . Assume that 𝛾T−1 > 0 . Applying Lemma 1, the optimal allo-
cation x∗

T−1
 is that for j ∈ A

∗

T−1
 , xj∗
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j
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the rule: If there exists an integer k ∈ [0;p − 2] such that 
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A

∗
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FT−1-measurable and it could be written more explicitly as QT−1(VT−1(�),�) . The 
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When �t = 0 , let A∗

t
= {ip(vt)} . Taking the optimal solution x∗

t
 into Problem (35), we 

have the value function such that Qt(Vt) = Vt[ct + ��tzt − (1 − �)yt] with

which completes the proof. Thus, the optimal policy of Problem (6) is that for each 
t ∈ [0;T − 1] , one should choose x∗

t
 , the optimal solution of Problem (35).   ◻

A.2. Proof of Proposition 1

Note that ct+1 is Ft+1-measurable. According to the law of total expectation, we have
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and finally obtain that:
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A.3. Proof of Proposition 2

According to (18), we know that rjt|Dt , j ∈ [1;p] , follows a t-distribution. The probabil-
ity density function is given by
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which completes the proof.   ◻

A.4. Proof of Proposition 3
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where Φ(⋅) denotes the cumulative density function of standard normal distribution, 
which finally completes the proof.   ◻

A.5. Proof of Proposition 4

This proof mimics the proof of Theorem 1. The terminal stage problem is given by

where ṽT−1 = m̃0 and c̃T−1 = −(1 − 𝜆) . We solve it using Lemma 1 and obtain the 

value function Q̃T−1(VT−1) = VT−1[c̃T−1 + 𝜆𝛾T−1z̃T−1 − (1 − 𝜆)ỹT−1], where 

ỹT−1 = z̃T−1
∑

j∈Ã
∗

T−1
ṽ
j

T−1
∕q̃

j

0
 and z̃T−1 = 1∕(

∑
j∈Ã

∗

T−1
1∕q̃

j

0
) . When �T−1 = 0 , set 

Ã
∗

T−1
= {ip(ṽT−1)} . Next, we use mathematical induction to show that 

Q̃t(Vt) = Vt[c̃t + 𝜆𝛾t z̃t − (1 − 𝜆)ỹt] for all t ∈ [0;T − 1] and give the optimal policy.

min
xT−1∈XT−1

𝜆

(
max
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𝛾T−1q̃
j

0
x
j

T−1

)
− (1 − 𝜆)m̃⊤

0
xT−1 + c̃T−1VT−1,

Table 10  p values of differences 
in SR and NSR ( � = 0.5)

BL is the benchmark in the statistical test

BL PI-1 PI-2 SP-1 SP-2 1/p

p = 17 SR – 0.226 0.795 0.766 0.487 0.563
NSR – 0.199 0.980 0.971 0.544 0.731

p = 12 SR – 0.163 0.437 0.608 0.052 0.612
NSR – 0.137 0.615 0.839 0.062 0.760

Table 9  Additional Out-of-Sample Tests under � = 0.5

*p value < 0.1, **p value < 0.05, ***p value < 0.01. The statistical results show the significance of the 
performance differences between BL and other models. For detailed p-values, see Table 10

p Models MEAN STD SR VaR95% VaR99% PDM SSQ PSM PTO NSR

BL 0.045 0.108 0.419 − 0.130 − 0.232 11.482 1.830 1.091 1.102 0.416
PI-1 0.045 0.110 0.409 − 0.126 − 0.239 8.787 2.114 1.517 1.455 0.406

17 PI-2 0.045 0.109 0.416 − 0.123 − 0.236 8.462 2.158 1.578 0.304 0.416
SP-1 0.045 0.109 0.416 − 0.123 − 0.234 8.558 2.144 1.560 0.209 0.416
SP-2 0.039 0.098 0.402 − 0.123 − 0.190 4.760 3.718 3.125 0.186 0.401
1/p 0.045 0.110 0.413 − 0.137 − 0.225 17.000 1.455 2.648 0.208 0.413
BL 0.045 0.100 0.445 − 0.119 − 0.221 9.061 2.049 1.019 0.855 0.443
PI-1 0.044 0.101 0.439 − 0.123 − 0.212 7.995 2.188 1.281 1.036 0.436

12 PI-2 0.045 0.101 0.440 − 0.122 − 0.213 7.789 2.221 1.335 0.272 0.440
SP-1 0.045 0.101 0.442 − 0.122 − 0.206 7.858 2.209 1.318 0.194 0.441
SP-2 0.037 0.091 0.404* − 0.115 − 0.195 4.815 3.714 2.872 0.176 0.404*
1/p 0.044 0.100 0.441 − 0.130 − 0.202 12.000 1.732 2.548 0.194 0.440



Bayesian learning in dynamic portfolio selection under a minimax…

Suppose for period t + 1 ≤ T − 1 , it holds that 
Q̃t+1(Vt+1) = Vt+1[c̃t+1 + 𝜆𝛾t+1z̃t+1 − (1 − 𝜆)ỹt+1] . At the beginning of period t, we need to 
solve the following problem,

Given �(Vt+1) = Vt + m̃⊤
0
xt , we have the following equivalent problem

where c̃t = c̃t+1 + 𝜆𝛾t+1z̃t+1 − (1 − 𝜆)ỹt+1 and ṽt = −c̃tm̃0∕(1 − 𝜆) . According to 
Lemma 1, one can easily obtain the optimal solution of Problem (B1) as in Proposi-
tion 4.1. Then, the value function in stage t is Q̃t(Vt) = Vt[c̃t + 𝜆𝛾t z̃t − (1 − 𝜆)ỹt], 
where ỹt = z̃t

∑
j∈Ã

∗

t
ṽ
j

t∕q̃
j

t and z̃t = 1∕(
∑

j∈Ã
∗

t
1∕q̃

j

t) , which completes the proof.   ◻

A.6. Supplementary numerical results

We further provide the out-of-sample test results for both cases p = 17 and 
p = 12 under the risk parameter � = 0.5 . The other settings are the same as those 
in Tables 3 and 5. Specifically, Table 9 reports the models’ metric values on both 
p = 17 and p = 12 data sets and Table 10 shows the statistical results. We see that 
although BL still performs better than the benchmark models in various metrics, 
many performance gaps are not statistically significant for the 0.1 p value threshold. 
This is because the middle risk preference level � = 0.5 is not risk-seeking enough 
for BL to exhibit the advantage of using Bayesian learning to account for parameter 
uncertainty over the plug-in models, and � = 0.5 is also not risk-averse enough for 
BL to exhibit the advantage of using l

∞
 risk function over the equal weight model.
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