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Abstract
The planning of efficient shift schedules is a key challenge for many service 
companies whose economic success heavily relies on the efficient employment 
of personnel. In spite of the recent advances in autonomous driving, mobility 
services, such as ride pooling, still heavily rely on the use of human drivers and 
will presumably remain in this category in the near to midterm. As a consequence, 
shift scheduling of drivers is one of the key success factors in the current industry 
environment. Determining appropriate shifts that minimize an under- and 
oversupply of vehicles for all planning periods is a challenging task, since demand 
can vary heavily over time and the assignment flexibilities are limited due to driver 
preferences and regulations. In this work, we present a shift scheduling model for 
ridepooling services. Moreover, we introduce a data generator for instances with 
realistic properties of a ridepooling service. Using it, we study the effect of different 
kinds of flexibilities on solution quality.

Keywords Shift planning · Ridepooling · On-demand transportation · Mixed-integer 
programming

1 Introduction

Ridepooling is an emerging market in the mobility sector, especially as it allows 
to address three dimensions of sustainability. Ridepooling providers usually 
operate with emission-free electric vehicles (ecological responsibility). Moreover, 
their on-demand character can allow for an efficient implementation (economic 

 * Malte Fliedner 
 malte.fliedner@uni-hamburg.de

 Arne Schulz 
 arne.schulz@uni-hamburg.de; arne.schulz@hsu-hh.de

1 Institute of Operations Management, Universität Hamburg, Moorweidenstraße 18, 
20148 Hamburg, Germany

2 Institute of Quantitative Logistics, Helmut Schmidt University, Holstenhofweg 85, 
22043 Hamburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-024-00784-w&domain=pdf
http://orcid.org/0000-0003-1275-0493


 L. Berthold et al.

performance) in regions which are not well-connected to the public transport 
network such that mobility becomes more available to all persons (social equity). 
Ridepooling services typically employ small vans with up to six seats. A customer 
books its ride using an app, where the user also sees the starting time and an 
arrival interval (arrival times may vary if the trip is combined with other customers 
later on) for the ride. Due to the small vehicles and the flexible character of the 
service, ridepooling services allow to address all three mentioned dimensions of 
sustainability if the service is well-planned. In the current industry environment, 
there are two main planning problems that service providers need to master. In the 
short term, incoming customer requests need to be efficiently assigned to vehicles 
to increase the utilization of shared resources. This problem is known as the dial-a-
ride problem (see Ho et al. (2018) for a survey). Methods to solve the problem for 
the application of a ridepooling service can be found in Pfeiffer and Schulz (2022a) 
(heuristic) and Schulz and Pfeiffer (2024) (exact). Before the vehicle scheduling can 
take place however, the service provider needs to make sure that a sufficient number 
of vehicles and drivers are in the field to service customer demand.

Although ridepooling services plan to operate with autonomous vehicles in the 
long term, it is currently unclear when autonomous vehicles will be used on public 
roads in large quantities. Hence, ridepooling providers face the challenging task to 
schedule divers’ shifts covering the demand while being attractive for drivers. There 
are three main reasons making it difficult to schedule attractive shifts while fulfilling 
the demand: First, larger providers work with several hundreds of drivers leading 
to instances of significant size. Second, demand is highly fluctuating (see (Kuehnel 
et al. 2021,especially Figure 6) for a typical demand curve), as ridepooling services 
are particularly used in rush hours and leisure times in the evening or at night 
(Kostorz et al. 2021). Third, service times vary over the week. As an example some 
providers like HolMichApp in the middle-sized German city Wuppertal vary their 
service times by a later start on Sundays (6am – 10pm on every day but on Sundays 
from 8am on) as well as an extended service on Fridays and Saturdays (until 
3am).1 Other providers like hvv hop in the small city Ahrensburg, which is close 
to Hamburg in Germany, vary their starting times stronger (4:30am on Mondays to 
Fridays, 5:15am on Saturdays, and 8am on Sundays) and also have different closing 
hours (0:30am on Mondays to Saturdays and 11pm on Sundays).2 Although different 
starting and closing hours lead already to difficulties for shift scheduling, it becomes 
even more challenging if the service operates on some days around-the-clock but 
is closed over night on other days. An example is MOIA which operates amongst 
others in Hamburg. Their service operates on Mondays to Wednesdays from 5am to 
1am as well as from Thursdays 5am until next Sunday 6am and from Sundays 8am 
until midnight.3 It is intuitive that it is challenging to schedule regular shifts of five, 
seven or eight hours without a too large variation in working times over the week 
such that demand in the nights between Thursday and Sunday can be covered while 

1 https://www.holmich-app.de/, last acces on July 21st 2023 (in German)
2 https://vhhbus.de/hop/on-demand-shuttle-kreis-stormarn/, last access on July 21st 2023 (in German)
3 https://www.moia.io/en/cities, last access on July 21st 2023.
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the service does not operate on the other weekdays’ nights—especially as there is 
a high demand in late evening and night hours on weekends (Kostorz et al. 2021, 
Figure 5).

To the best of our knowledge this paper describes for the first time a shift 
scheduling model solving this challenging task of ridepooling providers. Kuehnel 
et al. (2021) found out that in a comparison with a setting with autonomous vehicles 
26% less rides could be served with working shifts. This indicates that an optimal 
shift planning is crucial for a ridepooling service because the difference between 
manually driven vehicles and autonomous vehicles is that autonomous vehicles can 
be used completely flexible.

Beside the introduction of a basic mixed-integer programming model for the shift 
scheduling of a ridepooling service, we develop two extensions to the base model, 
in order to implement different degrees of flexibility in the shift’s starting times over 
the week and to include additional shifts from a working-time account, to face the 
aforementioned challenges. Furthermore, we use the demand curve representing 
the demand of the ridepooling service MOIA as presented in Kostorz et al. (2021) 
to develop a data generator for the demand on vehicles in a ridepooling service. 
This generator allows us and other researchers to evaluate shift scheduling models 
for ridepooling services facing all three challenges mentioned above on realistic 
instances. We use it to evaluate our model and its extensions.

The paper is constructed as follows: In Sect. 2, we review the relevant literature 
before the problem setting is described in detail in Sect. 3. Afterwards, we present 
our mixed-integer programming solution approach for the shift scheduling problem 
as well as the aforementioned extensions (Sect. 4). In Sect. 5, we introduce the data 
generator and conduct a computational study to analyze the model performance and 
the effect of the introduced kinds of flexibility on the solution quality. The paper 
closes with a conclusion in Sect. 6.

2  Literature review

Personnel scheduling has been one of the central applications of operations research 
methods for many decades now and there is a plethora of proposals for a vast 
amount of differing problem settings (e.g. see the review of Van den Bergh et  al. 
(2013)). Planning models are developed for long term workforce planning which 
typically considers time-spans of up to a single or several years as well as for short 
term planning of daily shifts and their assignment to the workforce. With respect 
to long term planning, Azmat and Widmer (2004), for instance, developed a shift 
scheduling model for workforce planning on the annual level. They assumed that 
workers can perform all activities in their sector and that demand has to be satisfied. 
Moreover, they included holiday weeks. Hertz et al. (2010) considered annualized 
working hours in their workforce planning model using flexibility to respond to 
demand fluctuations. Moreover, they allowed gradual hiring of workers.

Short term planning approaches rather focus on an appropriate scheduling of 
existing employees and often seek to consider the preferences of employees in the 
decision making. They are often further subdivided into single-day shift scheduling 
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(or time of day scheduling), which seeks to find an acceptable combination of shift 
patterns for a single working day, days-off scheduling (also day-of-week scheduling), 
which seeks to cover an operating week of a production or service facility by several 
overlapping working weeks of employees, and tour scheduling, which constitutes a 
combination of the two aforementioned problems and seeks to find an appropriate 
set of consecutive daily shifts and days-off for each employee (Van den Bergh 
et  al. (2013)). This last class of problems is considered the most complex of the 
personnel scheduling models and is the subject of this paper. Since the terminology 
employed in the literature somewhat varies (other terms sometimes employed for 
tour scheduling are for instance staff scheduling or rostering), we will simply use the 
term shift scheduling to refer to all of these approaches.

The exact structure of planning models can differ significantly with respect to 
the field of application. A plurality of shift scheduling approaches is devoted to 
hospitals to schedule physicians or nurses. Typical in this environment is that the 
service is never interrupted by planned downtime, shift lengths and patters are often 
standardized and heterogeneous skills of employees need to be taken into account 
(see the surveys of Erhard et al. (2018) and Burke et al. (2004)). Further important 
factors that are addressed in planning approaches is the minimization of overtime 
(e.g., see Brunner et  al. (2009)) or the inherent trade-off between service quality 
and working conditions. El-Rifai et al. (2015), for instance, balance this trade-off by 
optimizing the shift distribution among personnel and minimizing patients’ expected 
waiting time.

From the methodical point of view, mixed-integer programming is an often used 
method in shift scheduling. Amongst other topics it is applied to problems from the 
area of transportation planning like our shift scheduling problem for drivers of a 
ridepooling service. Carotenuto et al. (2019) developed a mixed-integer program for 
employee scheduling in aircraft refueling. Cavada et al. (2020) used mixed-integer 
programming for workforce planning in the outbound baggage loading area of an 
international airport. Moreover, Horn et  al. (2021) used a mixed-integer program 
for a daily driver shift scheduling problem for an online store. A review on staff 
scheduling and rostering in transportation systems can be found in Ernst et  al. 
(2004).

Ladier et  al. (2014) solved the weekly timetabling and daily rostering problem 
of a logistics company with a three step mixed-integer programming model. First, 
the workforce is dimensioned. Second, tasks are allocated on a weekly level and 
third, the detailed daily rostering is determined. An integrated problem in logistics 
was also investigated by Restrepo et al. (2019). They engaged in an integrated shift 
scheduling and load assignment problem with an application in attended home 
delivery. The relation between customer demand and shift planning was included 
by Kabak et al. (2008). For a setting in the retail sector they first determined staff 
demand in the store and then optimized the shift scheduling.

A large number of shift scheduling approaches optimizes staffing cost, which 
makes sense whenever staffing levels are part of the decision problem. However, 
once staffing levels are fixed, in particular in service systems, it might make 
more sense to focus on an ideal demand coverage which avoids undersupply and 
oversupply of staff in the planning periods. Several approaches sought to consider 
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worker flexibility in order to avoid over-/undersupply. For instance, Topaloglu 
and Ozkarahan (2004) developed an implicit goal programming approach for shift 
scheduling considering flexible start times, shift lengths, breaks, and days-off as 
well as worker preferences in the context of nurse scheduling. Henao et al. (2010) 
investigated the inherent flexibility provided by multi-skilled workers on shift 
scheduling in the retail sector. More recently, Álvarez et al. (2020) optimized over- 
and undersupply of staff in retailing and made use of the flexibility of scheduling 
multiple breaks per shift to achieve this goal.

Beside the mentioned flexibilities of starting times and breaks, working-time 
accounts with additional shifts and additional days-off are a further option to react 
on fluctuating demand. Pandey et  al. (2021) considered days-off scheduling and 
used deterministic finite automata to generate a set of promising shift profiles for 
later optimisation. A linear programming model comprising working-time accounts 
was introduced by Corominas et  al. (2010). Sillekens et  al. (2011) used a linear 
approximation to represent the working-time account. Corominas et  al. (2012) 
developed an aggregated planning model including hiring, firing, overtime, and 
working-time accounts. Pastor and Olivella (2008) investigated the case of a retail 
clothing chain. In their working-time accounts, a certain limit cannot be exceeded. 
Otherwise, the company has to pay for all positive hours in the working-time 
account such that it is set back to 0.

Compared with the vast majority of approaches considered in the literature, 
the highly fluctuating demand in ridepooling services makes very small planning 
intervals of 15 min necessary. In contrast to that, the planning horizon is quite long 
and lasts up to 4 weeks. The demand pattern has an observable and repeatable 
weekly structure (see Sect. 5.1), so that in principle cyclic approaches, such as the 
one presented in Aykin (2000), might be suitable to capture a large portion of the 
demand structure. Yet, the planning needs to also consider expected deviations 
from the general demand pattern (e.g. due to weather influences or special events). 
Furthermore, there are additional organisational restrictions which need to be 
observed. We thus set out to develop a new base model for this problem setting 
and additionally consider the flexibility of starting times as well as the option of 
additional shifts. Even though we will discuss shift planning mainly in the context 
of a ride pooling service operator, the model is sufficiently general to be of interest 
for ride hailing services as well, as long as the drivers are employed at the service 
operator and the operator seeks to optimize service coverage over a given planning 
horizon. A detailed description of our problem setting is presented in the following 
section.

3  Problem description

We consider a given time horizon |T| distinguished in equal-sized periods t = 1,… , |T| 
of 15  min length and a given number of drivers. Our model periodically repeats a 
weekly schedule. Thus, we assume that the time horizon |T| is a multiple of a week. 
Each driver has a pattern describing its general working structure. The pattern indicates 
the number of hours ĥ the driver works in a shift and the number of days d̂ the driver 
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works consecutively per week. Thus, the driver’s pattern is described by s = (ĥ, d̂) . The 
set of all shift patterns is given by S. Shifts are connected and only interrupted by a 
30 min break after half of the shift if the shift is at least six hours long. In line with 
the practice, we assume that no further stops are necessary during the shift to refuel or 
charge the vehicle.

The demand dt is the demand of drivers/vehicles in period t, which we assume to 
be given. This means that we assume a further planning step to be done beforehand 
to determine the demand curve for the required vehicles. In this planning step, the 
provider uses the expected demand of rides to determine the number of required 
vehicles per time period. Note that our demand curve for the required vehicles depends 
on the solution of this challenging previous planning step distributing the expected 
customer demand to vehicles and thereby decide on the routing of the vehicles. The 
demand curve for the required vehicles also depends on the investigated setting. In 
the case of ridepooling, rides can be shared such that the number of required vehicles 
is reduced in comparison to a taxi setting where no sharing is allowed (Pfeiffer and 
Schulz (2022b)).

The ridepooling provider operates with depots b ∈ B . The capacity of each depot is 
bounded by capb , i.e. at most capb drivers are assigned to depot b ∈ B . Moreover, we 
restrict the number of shifts starting in each time period to tmax . This is an organizational 
constraint, as starting drivers are concentrated around the depots and need some time to 
be distributed over the service area to be deployed optimally.

The objective is to schedule the shifts’ starting times such that the demand of 
vehicles is approximated as good as possible given the drivers of different shift types 
over all time periods. Thus, we minimize the deviation of the demand curve, which 
expresses the number of required vehicles in every period, by excess supply as well 
as undersupply. Note that a perfect approximation of the vehicles’ demand curve does 
not mean that all customer requests can be served, as the vehicles’ demand curve is an 
approximation determined given the expected customer demand.

In the basic model (Sect.  4.1), we require that each driver starts all its shifts at 
the same time of the day. Later, we allow a restricted variation of the starting times 
of a driver’s shifts during the week (Sect.  4.2). Moreover, we extend the model to 
integrate additional shifts (Sect. 4.3). Thus, the weekly schedule of a driver can vary 
over different weeks. Although we do not assign drivers directly to shifts, we outline in 
Sect. 4.5 how shifts can be distributed fairly amongst drivers.

The next section introduces our mixed-integer programming model.

4  Mixed‑integer programming model

The following table summarizes the notation used in the mixed-integer program 
(Table 1).

If a shift is at least six hours long, we schedule a break of 30 min after half of the 
shift’s duration, i.e. with q = Td∕48
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As 2q = Td∕24 is the number of periods per hour and ĥ the shift’s duration, 
time interval [t, t + 2q ⋅ ĥ] starts in t and ends ĥ hours later at the end of the shift. 
Analogously, q = Td∕48 equals the number of periods in 30 min. Thus, time interval 
[t, t + q ⋅ ĥ] comprises the first half of the shift while [t + q ⋅ ĥ + q, t + 2q ⋅ ĥ + q] 
starts half an hour after the first interval ended and ends at the shifts end, i.e. ĥ hours 
plus q periods later than the shift’s start.

Is
tt�
=

⎧⎪⎨⎪⎩

1, if t� ∈ [t, t + q ⋅ ĥ] ∪ [t + q ⋅ ĥ + q, t + 2q ⋅ ĥ + q]

and s = (ĥ, d̂) ∶ ĥ ≥ 6, t ∈ {1,… , �T� − 2q ⋅ ĥ − q},

1, if t� ∈ [t, t + 2q ⋅ ĥ] and s = (ĥ, d̂) ∶ ĥ < 6, t ∈ {1,… , �T� − 2q ⋅ ĥ},

0, else.

Table 1  Notation

Indices
b ∈ B Depot
d Day
s ∈ S s = (ĥ, d̂) shift pattern with ĥ working hours on d̂ consecutive days
t ∈ T time periods with T = {1,… , |T|}
Parameters and scalars
capb Maximal number of tours assigned to depot b
co
t

Weight for excess supply in period t
cu
t

Weight for undersupply in period t
dt Demand in period t
hs Maximal number of cancelled or added shifts per month and driver (used 

to model additional shifts)
Is
tt′

Is 1 if a driver with shift pattern s starting in period t is active in period t′

qs Maximal number of tours, i.e. number of drivers, with shift pattern s
tmax Maximal number of shifts starting in one period t ∈ T

Td Number of periods per day
Tw Number of periods per week
v Permitted deviation of starting time (one direction)
Integer variables
ast Number of tours of shift pattern s scheduled to start in period t
f −
st

Number of shifts of shift pattern s starting in period t with an extra 
day before the tour starts (used to model additional shifts)

f +
st

Number of shifts of shift pattern s starting in period t with an extra day 
after the tour ends (used to model additional shifts)

gb
st

Number of tours of shift pattern s starting in period t which are assigned 
to depot b

xst Number of shifts of shift pattern s active in period t
yst Number of shifts of shift pattern s starting in period t
Continuous variables
ot Excess capacity in period t
ut Undersupply in period t



 L. Berthold et al.

4.1  Basic model

With the above notation the model formulation is as follows:

(1)
min

∑
t∈T

co
t
⋅ ot + cu

t
⋅ ut

with the constraints

(2)
∑
s∈S

xst − dt ≤ ot ∀t ∈ T

(3)dt −
∑
s∈S

xst ≤ ut ∀t ∈ T

(4)
∑
s∈S

xst = 0 ∀t ∈ T ∶ dt = 0

(5)xst =
∑

t�∶Is
t� t
=1

yst� ∀t ∈ T , s ∈ S

(6)yst =

d̂∑
d=1

as,t−(d−1)⋅Td ∀t ∈ T , s ∈ S

(7)
Tw∑
t=1

ast ≤ qs ∀s ∈ S

(8)ast = as,t+Tw ∀t = 1,… , |T| − Tw
, s ∈ S

(9)
∑
b∈B

gb
st
= ast ∀t = {1,… , Tw}, s ∈ S

(10)
∑
s∈S

Tw∑
t=1

gb
st
≤ capb ∀b ∈ B

(11)
∑
s∈S

yst ≤ tmax ∀t ∈ T

(12)ot, ut ≥ 0 ∀t ∈ T
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Objective function (1) minimizes the deviation between supply and demand. 
Thereby, the deviation can be weighted individually for over- and undersupply as 
well as for each period by choosing parameters co

t
 and cu

t
 . Over- and undersupply 

are determined by (2) and (3) with the total supply 
∑

s∈S xst in period t ∈ T  . Periods 
with a demand of 0 are considered as a special case because a demand of 0 means 
that we are in a closing hour. Thus, the supply has to be 0 as well (compare (4)). 
Constraints (5) determine the supply by summing up all active tours. A tour is active 
if the shift does not start later than t, does not end before t, and has no break in 
t (compare choice of Is

tt′
 ). Besides, a tour is active if it started on an earlier day, 

was active in the time period representing the same time on that day, and has no 
day-off on the day of period t (compare (6)). Due to Constraints (7) the number 
of started tours over all time periods is restricted by the total number of drivers 
employed with the corresponding shift pattern. We only need to consider the first Tw 
periods here, as every driver has a positive working time in a week and thus needs 
to be scheduled within the first week. The remaining weeks of the time horizon are 
reflections of the first week, i.e. all drivers have the same schedule in each week. 
Constraints (8) ensure this point. Constraints (9) and (10) view the assignment of 
drivers to depots. While Constraints (9) take care that all shifts/drivers are assigned 
to a depot, Constraints (10) guarantee that the depot’s capacity is held. Constraints 
(11) are an organizational restriction. It restricts the number of shifts starting in a 
single time period. This is a useful restriction, as starting drivers are concentrated in 
the neighbourhood of the depots directly after their shift’s start. Thus, we restrict the 
number of simultaneously starting shifts to ensure that not a large amount of drivers 
cannot be deployed to satisfy customer demand because they are clustered. Finally, 
Constraints (12)–(14) are the non-negativity and integer constraints. Note that there 
is an upper bound on ast and gb

st
 by Constraints (7) and Constraints (9)–(10) and xst 

as well as yst are implicitly integer due to Constraints (5) and Constraints (6).

4.2  Flexible starting times

The basic model only allows fixed starting times. A single driver starts all its shifts 
at the same time of the day. Although having the same starting time at each day is 
beneficial for drivers, it makes the schedule inflexible. Consider the demand at a cer-
tain point in time of the week over all weeks of the planning horizon. If the demand 
at this time of the week varies over the different weeks, we cannot meet the demand 
exactly in every week. To face this issue we allow slightly varying starting times in 
this section.

Figure 1 gives an example for a driver’s week schedule with fixed and varying 
starting times. While the driver starts its shift every day at 9am on the left side, 
starting times vary in a time interval of two hours around 9am on the right side. 

(13)gb
st
∈ ℕ

0
∀t ∈ T , s ∈ S

(14)ast ∈ ℕ
0

∀t ∈ T , s ∈ S
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We set the allowed starting time deviation in one direction (in the figure one hour) 
around the scheduled starting time as parameter v. Thus, manager and drivers can 
reach an agreement on the extent of starting time deviations.

To integrate starting time deviations into the model, we replace (6) by

where 11{⋅} is the indicator function, i.e.

In the basic model, all tours which are scheduled to start in period t start in period 
t ( ast ). Now, Constraints (15) and (16) restrict the number of started shifts of shift 
pattern s in both directions like the following reformulation (for any t ∈ T  and 
s ∈ S ) shows

On the one hand, the number of starting shifts of pattern s in period t has to be 
at least as large as the number of shifts of pattern s scheduled until period t − v . 
Hence, no shift is postponed more than v periods. On the other hand, no shift is 
allowed to be pushed up by more than v periods. Thus, the number of shifts of pat-
tern s started until period t cannot exceed the number of shifts of the pattern sched-
uled until period t + v . The concrete assignment of shifts to drivers can be done in a 

(15)
t∑

t�=1

yst� ≥

t−v∑
t�=1

d̂∑
d=1

11{(d−1)⋅Td+t�≤t−v}ast� ∀t ∈ T , s ∈ S

(16)
t∑

t�=1

yst� ≤

t+v∑
t�=1

d̂∑
d=1

11{(d−1)⋅Td+t�≤t+v}ast� ∀t ∈ T , s ∈ S

(17)yst ∈ ℕ
0

∀t ∈ T , s ∈ S

11{(d−1)⋅Td+t�≤t−v} =

{
1, if (d − 1) ⋅ Td + t� ≤ t − v,

0, else.

t−v∑
t�=1

d̂∑
d=1

11{(d−1)⋅Td+t�≤t−v}ast� ≤

t∑
t�=1

yst ≤

t+v∑
t�=1

d̂∑
d=1

11{(d−1)⋅Td+t�≤t+v}ast� .

6am 9am 12am 3pm 6pm

Friday

Thursday

Wednesday

Tuesday

Monday

6am 9am 12am 3pm 6pm

Friday

Thursday

Wednesday

Tuesday

Monday

Fig. 1  Example for a week schedule of a driver with fixed (left) and varying (right) starting times
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post-processing step by assigning the next shift starting to the next unassigned shift 
of a driver with the corresponding shift pattern. Thanks to Constraints (15) and (16) 
the number of starting shifts of pattern s is not fixed any more but inside a corridor. 
This is also the reason why yst has to be defined as an integer variable now (compare 
Constraints (17)).

Figure 2 gives an example for the cumulative starting times with v equals 30 min. 
The figure shows that the real starting times do not have to be equal to the scheduled 
ones. For example at 6:30am all drivers scheduled at 7am, who have to start latest at 
7:30am, are already in action.

4.3  Additional shifts

A month’s demand structure can change significantly in comparison of two months. 
Reasons are public holidays or a general higher transportation demand in leisure 
times in summer in comparison to winter. Our so far constructed model cannot cope 
with this issues because the total amount of shifts is constant in each month. Thus, 
this section introduces the usage of working-time accounts to allow further shifts 
for drivers within a month. Therefore, we need to adapt Constraints (6) to adapt the 
number of active shifts xst of shift pattern s in period t. We replace Constraints (6) 
by

While the first part ( 
∑d̂

d=1
as,t−(d−1)⋅Td ) counts the number of scheduled shifts of 

pattern s starting in period t (compare Constraints (5)), the second part ( f −
s,t+Td

 ) adds 

(18)yst =

d̂∑
d=1

as,t−(d−1)⋅Td + f −
s,t+Td + f +

s,t−(d̂+1)⋅Td
∀t ∈ T , s ∈ S.

Fig. 2  Example for cumulated 
starting times

5am 6am 7am
time

50

100

cumulated starts
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additional shifts on the day before the first scheduled shift in the week and the third 
on the day after the last scheduled shift in the week ( f +

s,t−(d̂+1)⋅Td
 ). The sum of all of 

them equals the number of starting shifts yst of pattern s in period t.
Constraints (18) do not restrict the extent of added shifts. Thus, they allow a driver 

who works on five days a week to work the entire week with one additional shift on the 
day before and one on the day after its regular working days. Therefore, the following 
constraints restrict the number of changes in the tour of a driver to hs

Thereby, mod is the modulo function such that all periods are pictured on their 
reference period in the first week of the time horizon. The left side counts all added 
shifts of pattern s starting the tour in period t. The right side bounds these shift 
changes to the number of started tours of the pattern in the period ( ast ) times the 
number of allowed changes per driver ( hs).

However, if hs ≥ 2 a driver who works on five days a week can still have 12 working 
days in a row. The following constraints ensure that there is a solution with at least one 
day-off a week for each driver by restricting the number of added shifts by the number 
of scheduled shifts

Thus, we can easily distribute the additional shifts to drivers in a post-processing 
step to ensure that each driver has not more than one additional shift per week by 
assigning at most one of the additional shifts f −

st
 and f +

st
 to a driver.

In a practical application, there must be a balance in the working-time account over 
a year. As mentioned at the beginning of the section, ridepooling providers observe an 
increased transportation demand in leisure times in summer in comparison to winter 
and a varying customer behaviour on public holidays. Knowing these aspects makes 
it easy for the provider to identify days/months of higher or lower demand such that 
the usage of additional shifts can be steered by fixing f −

st
 as well as f +

st
 variables to 0 if 

a lower demand is expected. Moreover, hs can be set accordingly to steer the usage of 
additional shifts. We do not include the option to omit shifts to balance the working-
time account in months with lower demand, as a shift of a full-time employed driver 
on a given day can be omitted for a driver starting its tour on this day or for a driver 
starting its tour on one of the last four days. Thus, a lot of symmetries accrue, which 
make the problem harder to solve. Instead, we suggest to define shifts with additional 
days-off in months with lower demand, which are assigned to drivers with a positive 
working-time account, or to omit shifts in a post-processing step in these months.

If we combine flexible starting times with the additional shifts, we add (17), 
(19)–(20), and the following two sets of constraints, which replace (6), (15), (16), and 
(18) to the basic model

(19)
∑

t�∶t=(t�+Td) mod Tw

f −
st�
+

∑
t�∶t=(t�−Td

⋅d̂) mod Tw

f +
st�

≤ hs ⋅ ast ∀t = 1,… , Tw
, s ∈ S

(20)f −
st
+ f +

st
≤ ast ∀t ∈ T , s ∈ S.
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4.4  Model improvement

In this section, we present techniques to improve the formulation of the basic model 
by reducing the number of integer variables.

Having a closer look on Constraints (5) and (6), which determine xst variables in 
dependency of ast variables, and Constraints (4), which fix xst variables and therefore 
the supply to 0 in closing hours, indicates that also some ast variables can be fixed to 
0. If period t′ is in a closing hour and Is

tt�
= 1 , (4)–(6) lead to ast = 0 . Thus, we can 

fix ast = 0 if the shift would be active in a closing hour.
Furthermore, Constraints (9) and (10) ensure a correct assignment of tours and 

therefore drivers to depots. In Constraints (9), the drivers of shift s starting in period 
t are split across the depots. Constraints (10) ensure that the depots’ capacity is hold. 
Note that the model only generally restricts the number of drivers per depot, not 
their distribution over shift patterns. However, if we sum up all Constraints (9), we 
get

If we do the same with Constraints (10), we get

Combining both leads to

(21)

t�
t�=1

yst� ≥

t−v�
t�=1

⎛
⎜⎜⎝

d̂�
d=1

11{(d−1)⋅Td+t�≤t−v}ast�

⎞
⎟⎟⎠

+ 11{t�≤t−v+Td}f
−
st�
+ 11{t�≤t−v−(d̂+1)⋅Td}f

+
st�

∀t ∈ T , s ∈ S

(22)

t�
t�=1

yst� ≤

t+v�
t�=1

⎛
⎜⎜⎝

d̂�
d=1

11{(d−1)⋅Td+t�≤t+v}ast�

⎞
⎟⎟⎠

+ 11{t�≤t+v+Td}f
−
st�
+ 11{t�≤t+v−(d̂+1)⋅Td}f

+
st�

∀t ∈ T , s ∈ S.

(23)
∑
b∈B

∑
s∈S

Tw∑
t=1

gb
st
=
∑
s∈S

Tw∑
t=1

ast.

(24)
∑
b∈B

∑
s∈S

Tw∑
t=1

gb
st
≤

∑
b∈B

capb.
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which has to be fulfilled, as otherwise (23) and (24) cannot have a feasible solution. 
But if (25) is fulfilled, we can easily find a solution fulfilling (13), (23), and (24) by 
applying the procedure in Algorithm 1.

Algorithm 1 Assignment of tours to depots

1: Set gb
st
= 0 for all s ∈ S, t = 1,… ,Tw, and b ∈ B

2: for all t = 1,… ,Tw  do
3:        for all b ∈ B  do
4:             Set gb

st
=

capb∑
b�∈B capb�

⋅ ast

5:        end for
6:  end for

Note that Algorithm 1 assigns the tours evenly to the depots both in total and for 
each time period. Although this is not directly required, access roads to depots are 
typically restricted in practice such that it is beneficial to have smoothed departure 
times. This is also in line with Constraints (11). Note, however, that it might also be 
beneficial to use another distribution in Line 4 of Algorithm 1 for example if there is 
a higher demand to be expected in the vicinity of a depot at a certain time. Then, we 
could adapt the factor capb∑

b�∈B capb�
 to change the assignment in the corresponding 

periods.
If we insert gb

st
=

capb∑
b�∈B capb�

⋅ ast on the left side of (23), we get

Thus, (23) is fulfilled and (24) is fulfilled if (25) is. However, the left side of (25) 
comprises all drivers of all shifts and is fulfilled (compare (6)) if

is fulfilled, which is a restriction to data. Indeed, it would not be useful to have 
in total over all shifts more active drivers (excluding those on holidays or being 
certified unfit for work) than the whole capacity of depots because not all of them 
could be deployed. Hence, we can assume that our data fulfils (27). Thus, we can 
assume that (25) is fulfilled such that we apply Algorithm 1 in the post-processing 
to find an assignment of drivers to depots (round accordingly if gb

st
 is not integer in 

Line 4). Therefore, we can exclude Constraints (9), (10), and (13) from the model.

(25)
∑
s∈S

Tw∑
t=1

ast ≤
∑
b∈B

capb

(26)
�
b∈B

�
s∈S

Tw�
t=1

capb∑
b�∈B capb�

⋅ ast =
�
s∈S

Tw�
t=1

∑
b∈B capb∑
b�∈B capb�

⋅ ast =
�
s∈S

Tw�
t=1

ast.

(27)
∑
s∈S

qs ≤
∑
b∈B

capb,
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4.5  Post‑processing steps

Beside the already mentioned points there are further questions which can be 
solved in post-processing steps. The model does not assign shifts to concrete drivers 
within the planning horizon. Variables ast lead in combination with Constraints (8) 
to driver tours for the whole planning horizon. Hence, we only have to assign one 
driver to each tour at the beginning of the planning horizon. If flexible starting times 
are possible, concrete starting times can be determined as described in Sect.  4.2 
(shift with the next scheduled starting time ( ast variables) is assigned to the next 
unassigned shift of a driver with the same pattern s). This assignment is fair, as it 
minimizes the total starting time variation over the planning horizon for all drivers.

Additional shifts with impact on the working-time account can also be distributed 
fairly within the planning horizon by assigning the next additional shift to the driver 
of the corresponding shift pattern and starting time with the smallest number of 
added shifts so far. As an alternative the next additional shift can be assigned to the 
driver with the most missing hours or the least overtime (historical), respectively.

Furthermore, our model does not include a transition between a scheduled time 
horizon and the next (e.g. months). Given the scheduled shifts of the first time 
horizon and those of the second, a minimum weight matching problem can be 
solved for each shift pattern to minimize the total variation of starting times over all 
drivers between two consecutive planning horizons by using the absolute difference 
between the scheduled starting times of the corresponding shifts of both planning 
horizons as weights.

5  Computational study

In this section, we first describe our instance generation by a cubic spline 
interpolation between peak and low points (Sect. 5.1). Then, we use the generator to 
evaluate our model on realistic instances in Sect. 5.2.

5.1  Generation of problem instances

The purpose of the computational study is to analyse the effectiveness of additional 
scheduling flexibility on the background of typical demand data for ridepooling 
services in Germany. Given that ridepooling is comparatively young and might 
have just left the "early adoption" stage (for a discussion see Kostorz et al. (2021)), 
demand structures can be bounded to change, so that such an analysis can only 
ever be temporarily. In what follows, we will first seek to capture a characteristic 
demand profile and then subject it to stochastic perturbation to generate a set of test 
instances. In deriving the demand profile, we will rely on observations published in 
a survey on Europe’s leading ridepooling provider MOIA (see Kostorz et al. (2021)) 
and enrich it with some assumptions about relative demand between weekdays.

From a theoretical point of view, the operational utilization of capacity in service 
systems can be modelled as an inhomogeneous poisson process where an intensity 
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function describes the expected value of vehicle requests over time and thus of uti-
lized vehicles per period. Given that operational shift planning is typically carried 
out on demand forecasts, the process of finding appropriate demand estimates can be 
understood as capturing the intensity function of vehicle requests which will depend 
on aggregate client preferences and behaviour as well as external influences such as 
weather conditions, holidays, events, etc. In modern theoretical contributions and 
practical applications, demand estimates are often derived using machine learning 
techniques on the basis of past data on client behaviour. It is beyond the scope of 
this work to replicate such a demand forecast for a given period of time, nonetheless 
such an effort might also not be necessary as long as a characteristic profile can be 
identified that will tend to be predicted by any machine learning technique.

For instance, Kostorz et al. (2021) report the results of a survey with over 6000 
respondents and derive several general insights about the client behaviour which 
drives hourly demand. In particular, the demand function on the weekdays (Mo-Fri) 
will typically be defined by three distinct peaks, one in the morning around 8am, 

Table 2  Expected peak and low times

Time Mo Tu We Thu Fri Time Sa Time Sun

04:15am 0 0 0 0 25 06:15am 45 02:00pm 120
08:00am 135 135 135 135 135 03:00pm 160 12:00pm 50
11:30am 90 90 90 90 110 03:30pm 150
05:45pm 165 190 205 220 270 06:45pm 280
08:30pm 100 115 115 130 160 09:00pm 205
10:15pm 130 170 180 200 220 00:30am 400

Fig. 3  Example for weekly demand profile
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another one in the evening around 6pm, and one in the night time around 10pm 
(compare with Kostorz et al. (2021)). The extent of the peaks will depend on vari-
ous factors such as the market penetration, the month, weather conditions, etc., but 
service demand tends to increase towards the end of the week, in particular for even-
ing and night time use. Demand on Saturday is also characterized by three peaks, 
which occur much later on the day, starting at around 3pm and then at around 7pm 
and 0:30am where demand typically reaches its maximum over the week. Service 
demand will generally be lower on Sundays and less pronounced, while demand typ-
ically peaks in the afternoon around 2pm.

In order to determine a characteristic demand profile, we first seek to 
approximately capture the (local) peak and low points of the demand function and 
will then use a cubic spline interpolation to derive demand values for all other 
periods. For this purpose the month (four weeks) is divided into 15 min intervals. 
We model the demand function for a service provider who has a peak demand 
of approximately 400 vehicles which is reached on in the night on Saturday. For 
the typical local minima and maxima of the weekly demand the maximum is 
proportionally decreased as given in Table 2.

In order to derive varying problem instances the peak demand values are sub-
jected to random perturbation with a random normal variable with mean 0 and a 
coefficient of variation (CV) which we set to 0.1, 0.2, and 0.3, respectively. We then 
use cubic spline interpolation to determine demand estimates for all values in the 
service time frame. We derive in total 30 planning instances in this way. A charac-
teristic example profile is provided in Fig. 3. 

For the supply side we assume three types of workers: Full time workers who 
work a shift of eight hours a day for five consecutive days a week. Part time workers 
who can work either four hours daily for five consecutive days a week, or five hours 
daily for four consecutive days a week and floaters who work a single seven hours 
on a given day. We distinguish three supply scenarios with 150, 175, and 200 part 
time drivers and floaters, respectively, to investigate the effect of different staffing 
mixes (compare Table 3). As our instances have a strongly varying demand due to 
the different CV, we do not restrict the number of full time drivers. Thus, Constraint 
(7) is omitted for s = (8, 5).

In order to capture floaters and part time workers, the model has to be slightly 
adapted. Constraint (7) is only enforced for floaters. For part time workers it holds:

(28)
∑

s=(4,5) or (5,4)

Tw∑
t=1

ast ≤ p

Table 3  Capacity scenarios Scenario (4, 5) and (5, 4) (7, 1)

300 150 150
350 175 175
400 200 200
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where p is the number of part time workers. The remaining model parameters were 
set to: co

t
= 1 , cu

t
= 2 , hs = 2 , tmax = 50 , Td = 96 , Tw = 672 , v = 4 , and |T| = 3072 

whereat the first 384 periods ensure a rolling horizon and are not counted in the 
objective function. The remaining 2688 periods picture a four week time horizon. 
All computational experiments were performed by GAMS-CPLEX (version 42) 
executed on a single AMD EPYC 7542 32 core with 2.90GHz. The maximum 
allowed runtime was 7200 CPU seconds per instance.

In order to study the influence on flexibility, we test three model variants. The 
basic model represents a planning approach without flexibility in the start times 
of shifts or working time accounts. It is comprised of the following constraint set: 
(1)–(6), (7) (only for floaters), (8), (11)–(12), (14), (28). The flex model allows for a 
variation of daily start times of shifts within certain limits and is comprised of the 
following constraints: (1)–(5), (7) (only for floaters), (8), (11)–(12), (14)–(17), (28). 
The working time model (wTime) introduces the possibility to work on additional 
shifts if the demand requires it and makes use of the following constraints: (1)–(5), 
(7) (only for floaters), (8), (11)–(12), (14), (18)–(20), (28).

Finally, the combined model wTimeFlex allows both flexible start times of shifts 
between days and an additional shift for working-time accounts: (1)–(5), (7) (only 
for floaters), (8), (11)–(12), (14), (17), (19)–(22), (28).

5.2  Discussion of results

In a first experiment, we seek to study the impact of start time flexibility on the 
solution performance. Table  4 shows the computational results for each of the 
capacity scenarios and compares the basic model without flexibility against an 
increasing possibility to vary daily start times of shifts by up to v = 4 (an hour), 
v = 8 (two hours), and v = 12 periods (three hours) in each direction. For basic 
all instances were solved to optimality in less than 120  s. For flex4, flex8, and 
flex12 some instances could not be solved to optimality within 7200  s. However, 
optimality gaps are extremely low for the most part (less than 0.01% on average). It 
can be clearly seen that adding start time flexibility allows for a considerably better 
matching of supply and demand with relative oversupply cut from 15.5% to 12.2% 
for flex12 on average and even more importantly undersupply being cut from 20.5% 
for basics model to 12.6% for flex4 to 6.6% for flex8 and to only 5.0% for flex12, 
even though there are clearly diminishing returns since flex8 manages to come quite 
close to the results of flex12 with only two third of the allotted flexibility.

If a more flexible mix of shift profiles is supplied as in the scenarios with 350 and 
400 part time drivers, all approaches benefit in their solution quality even though 
computational effort continuously increases.

In order to investigate the potential of additional flexibility even further, Table 5 
shows the performance of the model with working time accounts (wTime) and the 
combined models which include both, working time accounts and starting time 
flexibility (wTimeFlex4, wTimeFlex8, and wTimeFlex12). While near optimal 
solutions can be found for all instances of the working time model wTime within 
7200 s, the combined models struggle more and more with increasing flexibility.
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The consideration of extra shifts in working time accounts decreases under-
supply considerably by 4.5 percentage points with respect to the base model, but 
when compared with starting time flexibility, the solution quality of wTime is con-
siderably worse. Among the combined models, the optimality gaps of wTimeFlex4 
and wTimeFlex8 are still acceptable, whereas wTimeFlex12 leads to higher gaps. 
Because of that the average performance of wTimeFlex12 deteriorates and wTime-
Flex8 provides the best average performance. In comparison to the flex models in 
Table 4, additional working time helps to improve the results for v = 4 and v = 8 . 
For v = 12 the results are worse due to the significant gaps for wTimeFlex12.

Given that the combined models could not reliably be solved to optimality, we 
conducted a final set of experiments where we used a step-wise method to attain 
shift schedules. In the first step, we used one of the core models (basic, flex12, and 
wTime), to find suitable columns for the shift plan and then in the next step these 
columns ( ast variables) were fixed and variable starting times ( v = 12 ) and extra 
shifts were planned for these fixed columns. The results of these experiments are 
shown in Table 6. All instances could be solved to near optimality within 7200  s 
of CPU time (only second step). The use of flex12 columns leads to the highest 
computation times in the second stage, but this additional computation time pays 
off, since these columns by far lead to the best solution performance. Keep in mind 
that undersupply is penalized twice as strong as oversupply and flex12 columns 
achieve an average undersupply of only 3.4% compared to 9.4% and 9.5% for the 
basic and the wTime columns, respectively. As before a more flexible shift profile 
mix improves the performance of all approaches consistently, in particular for basic 
columns and wTime columns.

Over all three experiments we could see that an increased number of part 
time drivers improves the solution quality with the exception of wTimeFlex8 and 
wTimeFlex12 in Table  5 for which we could not close the gap sufficiently within 
the time limit of 7200 s. In the same way, solution performance decreases for all our 
models if the coefficient of variation increases (with the same exceptions). To give 
a visual impression of the solution quality, Figs. 4 and 5 display the coverage of the 
demand curve for an instance with a low CV of 0.1 (Fig. 4) and with a high CV of 
0.3 (Fig. 5) and with 400 part time drivers. In both figures, the results of the basic 
model are compared with the best result (flex12 columns). As can be seen in Fig. 4 
the inflexible basic model cannot cover the demand on the highest peaks and night 
times on weekends while there is noteworthy oversupply on Mondays to Fridays. 
In contrast, the flex12 columns model can cover the demand on weekends almost 
perfectly. However, the flexibility of the driver mix is still not sufficient, as there is 
some oversupply on the remaining days.

For the higher CV of 0.3 Fig. 5 presents the results. Demand varies a lot more 
over the days and reaches a higher maximum and lower minimum (over 700 vs. 
under 450 in Fig.  4). Here the basic model struggles even more with the high-
est peaks and, moreover, leads to undersupply on other days as well as significant 
oversupply at some times on the other days. Although the coverage can strongly 
be improved by using the flex12 columns model, the highest peaks can still not be 
covered and there is still significant oversupply on the remaining days. Thus, the 
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flexibility (additional shifts, start time flexibility as well as shift mix) is not suffi-
cient to face the strong demand variation.

6  Conclusion

This paper develops a shift scheduling model for ridepooling services which face 
strongly fluctuating demand over the week as well as between weeks. Therefore, 
small time periods (15 min) as well as flexible shifts are necessary to cover the 
demand. The proposed model uses flexibility in starting times and extra shifts, 
the extent of which both can be set by the operator weighing preferences between 
company and drivers. Moreover, the provider can evaluate different contract 
structures to determine the optimal shift mix for the company’s needs. Finally, 
the model can be used to schedule shift patterns that approximate the varying 
demand. The computational study demonstrates that the model is able to provide 
near optimal solutions for practice relevant sizes of large ridepooling services 
within two hours of computation time.

In future research, the introduced flexibility measures could be further extended 
for instance by considering shift extensions and omissions or break scheduling. A 
further interesting research direction is to incorporate the relationship between the 
availability of vehicles in the field and the demand for the service. In this work, 
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Fig. 4  Supply for an instance with low CV (0.1) and 400 part time drivers

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

59
5

62
8

66
1

69
4

72
7

76
0

79
3

82
6

85
9

89
2

92
5

95
8

99
1

10
24

10
57

10
90

11
23

11
56

11
89

12
22

12
55

12
88

13
21

13
54

13
87

14
20

14
53

14
86

15
19

15
52

15
85

16
18

16
51

16
84

17
17

17
50

17
83

18
16

18
49

18
82

19
15

19
48

19
81

20
14

20
47

20
80

21
13

21
46

21
79

22
12

22
45

22
78

23
11

23
44

23
77

24
10

24
43

24
76

25
09

25
42

25
75

26
08

26
41

26
74

Floater

PartTime
5x4
PartTime
4x5
FullTime

Demand

(a) basic

0

100

200

300

400

500

600

700

800

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

59
5

62
8

66
1

69
4

72
7

76
0

79
3

82
6

85
9

89
2

92
5

95
8

99
1

10
24

10
57

10
90

11
23

11
56

11
89

12
22

12
55

12
88

13
21

13
54

13
87

14
20

14
53

14
86

15
19

15
52

15
85

16
18

16
51

16
84

17
17

17
50

17
83

18
16

18
49

18
82

19
15

19
48

19
81

20
14

20
47

20
80

21
13

21
46

21
79

22
12

22
45

22
78

23
11

23
44

23
77

24
10

24
43

24
76

25
09

25
42

25
75

26
08

26
41

26
74

Floater

PartTime
5x4
PartTime
4x5
FullTime

Demand

(b) best

0

100

200

300

400

500

600

700

800

Fig. 5  Supply for an instance with high CV (0.3) and 400 part time drivers
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vehicle demand was considered an exogenous value, in line with the standard 
assumptions of ride pooling operators. In reality, additional available capacity 
can make the service more attractive, for instance due to lower response and 
waiting times, and thus lead to increased demand for service. The relationship 
between capacity availability and demand in service systems has for instance been 
investigated by incorporating queuing models with abandonment in shift scheduling 
models, see Defraeye and Van Nieuwenhuyse (2016). In the case of ride pooling 
services, this relationship is even more complex, since the ability to pool customer 
requests makes an estimation of required vehicles for increasing demand quite 
challenging (e.g. see the extensive study of Shulika et al. (2024)). Modeling demand 
endogeneity for ride pooling services might therefore constitute a formidable 
research project that can further improve decision support in shift scheduling.
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