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Abstract
We present new formulations for the robust vehicle routing problem with time 
windows (RVRPTW) under cardinality- and knapsack-constrained demand and travel 
time uncertainty. They are the first compact models to address the RVRPTW under 
travel time uncertainty while considering the knapsack uncertainty set. Moreover, 
our models employ different types of constraints to control time propagation based 
on Miller–Tucker–Zemlin and single commodity flow constraints, which are derived 
from the linearization of recursive equations. We develop branch-and-cut methods 
based on the proposed formulations, leveraging a dynamic programming algorithm 
to verify the robust feasibility of solutions concerning both demand and travel 
time uncertainty, in addition to specific and standard separation procedures from 
the literature. We present detailed computational results on RVRPTW benchmark 
instances to compare the performance of our models and algorithms. Furthermore, 
we evaluate the impact and advantages of implementing each studied uncertainty 
set.
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1  Introduction

In distribution problems, it is often assumed that all parameters are known 
and deterministic when solving a vehicle routing problem (VRP). In reality, 
however, these problems are associated with significant uncertainties, such as on 
travel times or on each customer’s demand (Boysen et al. 2021; Gendreau et al. 
2014). If their probability distributions are known, one can resort to stochastic 
optimization (De  La  Vega et  al. 2023; Hoogendoorn and Spliet 2023). When 
these are unknown, or one wants to ensure that a feasible solution is guaranteed 
for all scenarios, robust optimization (RO) is often more appropriate (Ordonez 
2010; Munari et al. 2019; Caunhye and Alem 2023).

Moreover, to avoid overly conservative solutions with excessive costs due 
to overprotection against uncertainty, different uncertainty sets can model 
the realization of uncertain parameters whose worst-case behavior can be 
controlled by the decision maker. The definition of an appropriate uncertainty 
set is a critical step when using RO, as different sets often result in solutions 
with different costs and robustness levels (Subramanyam et  al. 2020; Bartolini 
et al. 2021). From a decision maker’s perspective, these different characteristics 
are attractive since they can choose the one that best suits their strategy. Some 
examples of uncertainty sets used in the literature are the cardinality-constrained 
uncertainty set, in which the decision maker limits the number of parameters that 
simultaneously attain their worst case value, and the knapsack uncertainty set, in 
which the total deviation of a set of parameters is limited instead (Bertsimas and 
Sim 2004; Minoux 2009; Gounaris et al. 2013).

In the VRP literature, the use of different uncertainty sets has been little 
explored in the context of travel time uncertainty, as it appears in the robust VRP 
with time windows (RVRPTW). While there are studies on different uncertainty 
sets for the VRP under uncertain demand (Gounaris et  al. 2013; Subramanyam 
et al. 2020; Wang et al. 2021), the vast majority of RVRPTW studies under travel 
time uncertainty have considered only the cardinality-constrained uncertainty set 
(Agra et al. 2012; Lee et al. 2012; Munari et al. 2019; De La Vega et al. 2020). 
Wang et al. (2021) addressed the RVRPTW considering multiple uncertainty sets, 
but representing travel time deviations using only the discrete and the cardinality-
constrained sets.

Bartolini et al. (2021) were the first to consider travel time uncertainty with a 
knapsack uncertainty set, but for the robust traveling salesman problem with time 
windows (i.e., considering a single vehicle). Hence, to the best of our knowledge, 
we are the first to address the RVRPTW under demand and travel time uncertainty 
using a knapsack uncertainty set. This set provides more flexibility in modeling 
uncertain parameters compared to the cardinality-constrained uncertainty set by 
limiting total deviation considering a subset of uncertain parameters, instead of 
assuming a fixed number of parameters attaining their worst case. In the VRP 
context, for example, it is often more natural to estimate how late a route usually 
is, rather than specifying how many roads or streets will experience their worst-
case traffic delays. Moreover, as pointed out by Bartolini et al. (2021), a knapsack 
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uncertainty set can be parameterized to yield richer tradeoffs, in addition to 
providing more precise insights into the resilience to delays.

The main contributions of this paper are as follows:

•	 We introduce new compact formulations for the RVRPTW under demand 
and travel time uncertainty, using both cardinality-constrained and knapsack 
uncertainty sets. Notably, we consider single and multiple knapsack sets, and our 
formulation for the multiple knapsack uncertainty set does not require subsets to 
be disjoint, which distinguishes it from previous approaches. We are not aware of 
any paper that considers the knapsack uncertainty set for uncertain travel times 
in the RVRPTW;

•	 We show how to derive robust counterparts based on the well-known Miller–
Tucker–Zemlin (MTZ) constraints (Miller et  al. 1960) and single commodity 
flow (CF) constraints for both the cardinality-constrained and knapsack 
uncertainty sets. This involves the linearization of recursive equations that 
calculate the worst-case realizations of the uncertain parameters. Previous 
applications of the linearization technique have focused only on MTZ-based 
formulations and the cardinality-constrained set;

•	 We design tailored branch-and-cut (BC) algorithms based on the proposed 
formulations. These algorithms use a polynomial-time dynamic programming 
(DP) algorithm to verify the robust feasibility of integer solutions, for both the 
cardinality-constrained and knapsack uncertainty sets.

We perform detailed computational analyses on RVRPTW instances and show that, 
although harder to solve, instances considering the knapsack uncertainty set can 
provide solutions with a similar level of robustness as some configurations of the 
cardinality-constrained set while costing less, highlighting some advantages of its 
use. The BC algorithm also showed positive results, solving almost twice as many 
instances to optimality as a commercial solver applied to the compact models.

The remainder of this paper is organized as follows. In Sect. 2, we introduce some 
definitions and concepts, while in Sect. 3, we present a compact formulation based 
on CF constraints for the deterministic VRPTW and derive robust counterparts for 
demand and travel time uncertainty, considering the cardinality-constrained and 
knapsack uncertainty sets. In Sect. 4, we propose tailored BC algorithms. In Sect. 5, 
we present the results of computational experiments with benchmark instances. 
Finally, the concluding remarks are discussed in Sect. 6.

2 � Background and literature review

In this section, we start with some background definitions and in Sect.  2.1 we 
describe the two uncertainty sets used in this paper. Section 2.2 reviews the existing 
compact formulations developed for the RVRPTW.

The notation used is as follows. Let C = {1,… , n} be the set of n customers; 
N = C ∪ {0, n + 1} be the set of nodes including two copies of the depot; and 
A = {(i, j) ∣ i, j ∈ N, i < n + 1, j > 0, i ≠ j} be the set of arcs. For each arc (i, j) ∈ A , 
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we define cij as the travel cost from i to j and assume they satisfy the triangle inequality. 
The set of homogeneous vehicles is K, each with capacity Q. Each customer i ∈ C has 
a demand di ≤ Q , and we assume d0 = dn+1 = 0.

The incorporation of time windows also requires parameters [ai, bi] , which indicate 
the earliest and latest times a vehicle may start serving customer i ∈ C , respectively; 
si is the service time of node i ∈ C ; and tij is the travel time of arc (i, j) ∈ A . For the 
sake of notation, we set s0 = sn+1 = 0 and define time windows [a0, b0] = [an+1, bn+1] 
representing the earliest and latest times a vehicle can depart from and return to the 
depot. To account for these new characteristics, in compact models one often resorts to 
the use of constraints inspired by the MTZ formulation.

2.1 � Uncertainty sets

In this section, we review the cardinality-constrained and the knapsack uncertainty sets.

2.1.1 � Cardinality‑constrained set

The cardinality-constrained set works with a budget Γ representing the threshold 
of the total scaled variation of the uncertain parameters (Bertsimas and Sim 
2004). Particularly, if Γ is integer, we can interpret it as the number of worst-case 
realizations that can simultaneously occur in a route. A solution is considered robust 
feasible for a budget Γ if it is feasible when up to any Γ uncertain parameters assume 
their worst-case value simultaneously. For the sake of clarity, we differentiate the 
budget associated with the demand and the one associated with the travel time using 
parameters Γd and Γt , respectively. For example, under demand uncertainty, this 
means the solution does not violate the vehicle capacity when the demands of any 
Γd customers assume their largest values. Likewise, if travel time is the uncertain 
parameter, the solution is robust feasible if all time windows are satisfied for any 
combination of Γt arcs attaining their worst-case travel times.

In the cardinality-constrained set, travel time uncertainty is modeled with random 
variables � t

ij
 , 0 ≤ � t

ij
≤ 1 , which indicate the normalized scale deviation for the travel 

time of arc (i, j). The sum over these random variables is limited by the travel time 
budget Γt . Thus, the uncertainty set designed for travel times, Ut , is represented by:

where the travel time tij for each arc (i, j) ∈ A ranges from its nominal value t̄ij up 
to t̄ij + t̂ij , with t̂ij being its maximum deviation. A similar idea applies for demand 
uncertainty, using a demand budget Γd and random variables �d

i
 , which leads to the 

uncertainty set:

Note that the worst-case values of the demand and travel time parameters occur 
when they assume their highest possible value since this impairs the feasibility of 

Ut = {t ∈ ℝ
|A| ∣ tij = t̄ij + t̂ij𝛾

t
ij
,∀(i, j) ∈ A;

∑
(i,j)∈A

𝛾 t
ij
≤ Γt; 0 ≤ 𝛾 t

ij
≤ 1,∀(i, j) ∈ A},

Ud = {d ∈ ℝ
|N| ∣ di = d̄i + d̂i𝛾

d
i
, i ∈ N;

∑
i∈N

𝛾d
i
≤ Γd; 0 ≤ 𝛾d

i
≤ 1, i ∈ N}.
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the route the most. Although a realization of an uncertain parameter could theo-
retically be lower than the nominal value, from the perspective of RO optimization, 
negative deviations can always be disregarded. This is because the worst-case sce-
nario of an uncertainty set will never utilize negative deviations on parameters, as 
this would consume part of the budget and yield a lower total deviation than if no 
deviation were considered. This is consistent with other works in RVRP literature 
(Agra et al. 2012; Munari et al. 2019; Subramanyam et al. 2020). The same assump-
tion also applies to the knapsack uncertainty set, which will be further discussed in 
the next topic.

2.1.2 � Knapsack set

Unlike the cardinality-constrained set, the knapsack uncertainty set does not limit 
the number of worst-case realizations. Instead, it limits the total absolute deviation 
on a route, considering one or more knapsacks. Each knapsack l involves a subset 
of nodes for demands or arcs for travel times, with its own budget of uncertainty Δl . 
Usually, the RVRP literature models these knapsacks by relating the realizations to 
geographic regions (Gounaris et al. 2013; Subramanyam et al. 2020; Pessoa et al. 
2021). For example, one may group the nodes/arcs into four different quadrants 
(NE, SE, NW, SW) and set a budget for each quadrant based on its characteristics. 
A quadrant with higher variability in demand may have a larger budget than others. 
Additionally, one usually builds the multiple knapsacks as disjoint sets, meaning 
that their nodes/arcs do not overlap.

Let Lt be the set of knapsacks and St
l
 the set of arcs in each knapsack l ∈ Lt , 

regarding travel time uncertainty. We define Δt
l
 as the budget of uncertainty for 

travel times in knapsack l ∈ Lt . Then, we can model this set for travel time, Ut
L
 , using 

the following expression:

In this definition, the travel time realization tij ranges from t̄ij to t̄ij + t̂ij , and the 
sum of all deviations in knapsack l is limited by Δt

l
 . A similar expression can be 

generated for problems under demand uncertainty, using a budget Δd
l
 , and defining 

Sd
l
 as the set of nodes in each knapsack l ∈ Ld:

In practical settings, this type of representation might be more appropriate than the 
cardinality-constrained set, especially regarding time uncertainty. It is often easier 
for drivers to estimate how late they are when traveling to a specific region than to 
tell how many streets or roads usually achieve their worst-case traffic.

A variant of this uncertainty set we study in this work is the single knapsack 
uncertainty set, in which a single knapsack encompasses every arc/node for each 
uncertain parameter (i.e., |Lt| = 1 ). Thus, budget Δt limits the total deviation in 

Ut
L
= {t ∈ ℝ

|A| ∣ t̄ij ≤ tij ≤ t̄ij + t̂ij,∀(i, j) ∈ A;
∑

(i,j)∈St
l

(tij − t̄ij) ≤ Δt
l
, l ∈ Lt}.

Ud
L
= {d ∈ ℝ

|N| ∣ d̄i ≤ di ≤ d̄i + d̂i,∀i ∈ N;
∑
i∈Sd

l

(di − d̄i) ≤ Δd
l
, l ∈ Ld}.
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travel times in a route. This set is most appropriate in systems where there is no 
clear distinction of behavior among customers, or if the decision-maker wants to 
introduce a limitation for each vehicle that is independent of the route. As mentioned 
before, we are not aware of any paper considering the knapsack uncertainty set for 
uncertain travel times in the RVRPTW.

2.2 � Compact formulations for RVRPs

To the best of our knowledge, Sungur et  al. (2008) were the first to use RO to 
incorporate uncertainty into VRPs. Specifically, they proposed compact models 
based on convex hull, box, and ellipsoidal uncertainty sets for the capacitated VRP 
(CVRP) under demand uncertainty. These, however, simply replaced the nominal 
demand of the deterministic formulation with an augmented modified demand, 
resulting in overly conservative solutions when compared to stochastic programming 
approaches.

To avoid this overconservatism, some resorted to the cardinality-constrained set 
introduced by Bertsimas and Sim (2003), using the dualization scheme to derive 
robust counterparts. This scheme consists of replacing the protection function of 
each constraint with its corresponding dual problem, ensuring the robust counterpart 
remains linear. More specifically, each constraint with an uncertain parameter has 
a protection function that consists of a continuous linear optimization problem 
that determines the worst-case realization for the uncertain parameters in that 
constraint. This subproblem is then replaced by its dual problem, which introduces 
new (continuous) variables and constraints to the robust counterpart. We refer to 
Bertsimas and Sim (2004) for further details.

Agra et  al. (2012) used the dualization scheme based on the so-called layered 
formulation to derive a robust counterpart for the VRPTW under travel time 
uncertainty. The authors considered uncertainty on travel times only, inspired 
by a maritime transportation problem with no capacity constraints. The layered 
formulation is based on creating a flow problem where a graph is defined for every 
vehicle, and each one of them has n layers. Each l-th layer represents the node where 
the vehicle is after visiting l − 1 nodes on a path from the origin. For each layer, there 
is a set of possible arcs that the vehicle can traverse, based on the feasibility of the 
time window constraints and the nodes previously visited on the route. The authors 
reported computational results for the obtained robust counterpart considering 
small-scale instances with 10 to 20 cargoes and 1 to 5 vehicles. These instances 
were all solved to optimality when using an additional strategy that reduces the 
maximum number of layers. Munari et  al. (2019) tested the same formulation on 
instances from Solomon’s benchmark set with 25 customers to compare it with their 
own formulation (that is not based on the dualization approach). They observed 
that the layered formulation could not prove optimality for any instance and found 
feasible solutions or proved infeasibility for only 59.48% of them within the time 
limit of 3600 s.

The same problem was later revisited by Agra et al. (2013), who proposed two more 
efficient robust approaches, albeit not compact, capable of solving instances with up 
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to 50 customers. The first extends the so-called resource inequalities formulation by 
employing adjustable robust optimization techniques, whereas the second approach 
implicitly considers uncertainty in a path inequalities formulation. Both strategies 
presented similar computational performance and were more efficient than the layered 
formulation of Agra et al. (2012).

Gounaris et al. (2013) used the dualization scheme to obtain robust counterparts of 
several traditional formulations of the CVRP. The proposed modeling approach was 
able to introduce any convex uncertainty set into the problem. Additionally, they also 
introduced a robust extension for the traditional rounded capacity inequalities (RCI) 
widely used in the CVRP literature. To assess their method, the authors ran experiments 
with a commercial solver, in which the robust RCI were introduced globally through 
user-defined callbacks, considering the knapsack and the factor models uncertainty 
sets. The most efficient formulations were able to solve most benchmark instances with 
fewer than 50 customers, but struggled on larger instances.

Recently, Munari et al. (2019) proposed an alternative for the dualization scheme 
when using cardinality-constrained sets in the context of RVRP variants. This approach 
is based on the linearization of recursive equations that model the worst-case 
realizations of the uncertain parameters. This linearization results in constraints that 
guarantee a robust feasible solution in a compact model. Their work considers the 
cardinality-constrained uncertainty set only and assumes that the budget of uncertainty 
is integer and thus defined as the maximum number of worst-case values taken 
simultaneously by the uncertain parameters. For instance, consider the budget Γt for 
travel time uncertainty and a given route r = (v0, v1,… , vh) . Let wvj�

 be a variable 
representing the worst case for service start time at node vj , when the travel times at any 
� ≤ Γt arcs up to this node attain their worst-case values simultaneously. The worst 
case for service start time at node vj is the latest between its opening time window ( avj ) 
and the worst-case arrival time. Recall that t̄vj−1vj is the nominal travel time on arc 
(vj−1, vj) ; t̂vj−1vj represents the corresponding maximum deviation; and svj is the service 
time at node vj . Then, the value of wvj�

 can be computed using the following recursive 
equation (Agra et al. 2013; Munari et al. 2019):

for all j = 0,… , h and � = 0,… ,Γt . We can convert these equations into the following 
linear constraints for a two-index compact formulation, which guarantee a robust feasible 
solution with respect to time propagation and time window satisfaction:

(1)wvj𝛾
=

⎧
⎪⎪⎨⎪⎪⎩

av0 , if j = 0,

max{avj ,wvj−1𝛾
+ t̄vj−1vj + svj−1}, if 𝛾 = 0,

max{avj ,wvj−1𝛾
+ t̄vj−1vj + svj−1 ,

wvj−1(𝛾−1)
+ t̄vj−1vj + t̂vj−1vj + svj−1}, otherwise ,

(2)wj𝛾 ≥ wi𝛾 + (si + t̄ij)xij −Mij(1 − xij), (i, j) ∈ A, 𝛾 = 0,… ,Γt,

(3)wj𝛾 ≥ wi(𝛾−1) + (si + t̄ij + t̂ij)xij −Mij(1 − xij), (i, j) ∈ A, 𝛾 = 1,… ,Γt,



	 R. Campos et al.

1 3

where xij is the commonly used binary variable that assumes the value of 1 if, and 
only if, a vehicle traverses arc (i, j) ∈ A , and Mij is a sufficiently large number that 
can be set as max{0, bi − aj} , for each (i, j) ∈ A . For each � = 0,… ,Γt , constraints 
(2) and (3) guarantee that, if xij = 1 for a given (i, j) ∈ A , the service starting time at 
node vj when � travel times attain their worst-case values is computed by choosing 
the largest between two possibilities: � worst-case realizations already happened in 
arcs that precede arc (i, j), as represented by constraints (2); or � − 1 worst-case real-
izations happened before (i, j) and, thus, the travel time on arc (i, j) attains its worst-
case value, as represented by constraints (3). Constraints (4) impose the satisfaction 
of the time windows. We can apply the same strategy to derive similar constraints 
for demand uncertainty. Because this robust counterpart yields fewer constraints and 
variables than those derived using the dualization approach (Munari et  al. 2019), 
it performs significantly better on general-purpose linear optimization solvers. Yu 
et al. (2022) also report superior results when using this approach to model a robust 
variant of the team orienteering problem. For this reason, besides the difficulties of 
extending dualization methods to problems with travel time variability, the models 
introduced in this work are based on the linearization approach.

3 � New compact formulations for the RVRPTW

We develop novel RO models for the RVRPTW that use the linearization technique 
of recursive equations. First, we present in Sect.  3.1 a CF formulation for the 
deterministic VRPTW. Then, we derive its robust counterpart using the cardinality-
constrained uncertainty set to obtain a new compact RO model for the RVRPTW 
in Sect. 3.2. Recall that an MTZ-based formulation already exists for this problem 
(Munari et al. 2019), but no CF-based formulation has been proposed thus far. Then, 
in Sect. 3.3, we propose the first CF- and an MTZ-based models for the single and 
multiple knapsack uncertainty sets.

3.1 � CF formulation for the VRPTW

While there are formulations based on CF constraints for several VRP variants in 
literature (Gouveia 1995; Letchford and Salazar-González 2006, 2015), we did not 
find any compact formulation explicitly defined for the VRPTW in which both load 
and time propagation are modeled using this type of constraints. There is, however, 
one for the TSP with time windows (Langevin et al. 1993) and another for the split 
delivery VRPTW (Bianchessi and Irnich 2019; Munari and Savelsbergh 2022), both 
in a deterministic context, but none of them models the two types of propagation 
using CF constraints. In what follows, we present our developments to introduce 
time windows and time flow constraints.

Let xij be the binary variable that assumes the value of 1 if, and only if, a vehicle 
traverses arc (i, j) ∈ A , which is commonly used to define two-index vehicle flow 

(4)ai ≤ wi� ≤ bi, i ∈ N, � = 0,… ,Γt,
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formulations. We define a continuous variable fij to represent the load of the vehicle 
that traverses arc (i, j) ∈ A , inspired by the variables introduced by Gavish (1984). 
To adapt this model to the VRPTW, we treat time as a second commodity. Thus, we 
introduce continuous variables gij that represent the elapsed time of a route when the 
vehicle enters arc (i, j) after serving node i. The model is then given by:

The objective function (5) consists of minimizing the total traveling costs. Constraints 
(6) ensure that each customer is visited only once, whereas (7) guarantee the cor-
rect vehicle flow through the nodes. Constraints (8) ensure the load flow propaga-
tion, enforcing that the load on the vehicle that leaves node i increases by its demand 
di . These constraints also forbid subtours. Constraints (9) prevent the vehicle from 
exceeding its capacity. Constraints (10) act similarly to (8) and guarantee the time flow 
propagation through the visited nodes of a route. Constraints (11) ensure that time 
windows are met. They also guarantee that the variable gij is non-negative if arc (i, j) is 
traversed. Finally, constraints (12) define the binary domain of variables xij.

3.2 � CF formulation for the cardinality‑constrained RVRPTW

We obtain the robust counterpart of model (5)–(12) following the idea of the 
linearization technique (Munari et  al. 2019). Similarly to the steps performed 
in the MTZ-based formulation, we add an index � to the variables that control 
the load and time propagation. Hence, let variable fij� represent the load carried 

(5)min
∑
(i,j)∈A

cijxij,

(6)s.t.
∑

i∶(i,j)∈A

xij = 1, j ∈ C,

(7)
∑

h∶(h,i)∈A

xhi =
∑

j∶(i,j)∈A

xij, i ∈ C,

(8)
∑

j∶(i,j)∈A

fij = di +
∑

h∶(h,i)∈A

fhi, i ∈ C,

(9)dixij ≤ fij ≤ (Q − dj)xij, (i, j) ∈ A,

(10)
∑

j∶(i,j)∈A

gij ≥ si +
∑

h∶(h,i)∈A

(
ghi + thixhi

)
, i ∈ C,

(11)(ai + si)xij ≤ gij ≤ (bi + si)xij, (i, j) ∈ A,

(12)xij ∈ {0, 1}, (i, j) ∈ A.
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on arc (i, j) ∈ A considering that � customers attained their worst-case demand; 
and gij� represent the earliest elapsed time of the route that traverses arc (i, j) ∈ A , 
after serving node i, considering that � arcs attained their worst-case travel time 
simultaneously. With these variables, we can redefine the load and time flow 
propagation constraints of the model. First, constraints (8) and (9) are replaced 
with:

Constraints (13) and (14) guarantee the propagation of the worst-case vehicle load, 
according to the following two cases: the demand of � nodes attained their worst-
case previously, and then only the nominal demand of node i happens, as computed 
in the right-hand side of (13); or � − 1 worst-case realizations occurred previously 
and then the demand of node i also attains its maximum deviation (hence, one 
more worst-case value considered), as calculated in the right-hand side of (14). 
Constraints (15) ensure that the vehicles’ capacity is satisfied for all possible number 
of worst-case realizations. Note that, in the deterministic case ( Γd = 0 ), constraints 
(14) are not defined and constraints (13) and (15) are the same as (8) and (9).

Likewise, we can apply the same process to the constraints associated with 
time flow and, then, we obtain the following RO model for the RVRPTW with 
uncertainty on demands and travel times. The model consists of the objective 
function (5) subject to (6), (7), (12)–(15), and to:

Constraints (16) and (17) act similarly to (13) and (14) but for time load propagation. 
Constraints (18) ensure that the time windows are respected.

Thanks to the capacity and time windows constraints (15) and (18), only one 
variable related to load ( fij� ) and time ( gij� ) propagation are allowed to have a 
non-null value for each i and � , specifically the one related to arc (i,  j) where 
xij = 1 . Thus, suppose that in an optimal solution, we have xi1j1 = 1 and xj1k1 = 1 . 
Then, time constraints (16) and (17) related to node j1 , for any � = 1,… ,Γt , can 
be simply represented as follows:

(13)
∑

j∶(i,j)∈A

fij𝛾 ≥ d̄i +
∑

h∶(h,i)∈A

fhi𝛾 , i ∈ C, 𝛾 = 0,… ,Γd,

(14)
∑

j∶(i,j)∈A

fij𝛾 ≥ d̄i + d̂i +
∑

h∶(h,i)∈A

fhi(𝛾−1), i ∈ C, 𝛾 = 1,… ,Γd,

(15)d̄ixij ≤ fij𝛾 ≤ (Q − d̄j)xij, (i, j) ∈ A, 𝛾 = 0,… ,Γd.

(16)
∑

j∶(i,j)∈A

gij𝛾 ≥ si +
∑

h∶(h,i)∈A

(ghi𝛾 + t̄hixhi), i ∈ C, 𝛾 = 0,… ,Γt,

(17)
∑

j∶(i,j)∈A

gij𝛾 ≥ si +
∑

h∶(h,i)∈A

(ghi(𝛾−1) + (t̄hi + t̂hi)xhi), i ∈ C, 𝛾 = 1,… ,Γt,

(18)(si + ai)xij ≤ gij� ≤ (bi + si)xij, (i, j) ∈ A, � = 0,… ,Γt.
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Conversely, in the MTZ-based model for the RVRPTW (Munari et  al. 2019), the 
time constraints related to node j1 in path (i1, j1, k1) can be written as follows:

where wj1�
 is a continuous variable that represents the departure time from node 

j1 considering that up to � nodes attained their worst-case value. Given that 
variables gj1k1� and wj1

 have the same meaning, it is possible to see that constraints 
(19)–(20) are equivalent to (21)–(22). A similar conclusion can be drawn for the 
load constraints. Hence, both models have equivalent load and time propagation 
constraints in an integer solution. However, our CF-based formulation avoids 
the weak big-M constraints presented in the MTZ-based models. Indeed, as the 
computational results presented in Sect.  5 indicate, our new formulation yields a 
much tighter linear programming (LP) relaxation. Finally, it is worth mentioning 
that model (5)–(7), (12)–(15) is a valid RO formulation for the RCVRP under the 
cardinality-constrained uncertainty set.

3.3 � Formulations for the knapsack‑constrained RVRPTW

We can also derive MTZ- and CF-based formulations for the RVRPTW under single 
and multiple knapsack uncertainty sets using the linearization approach. Recall that 
Δd and Δt are the budgets of uncertainty in demand and travel times, respectively, 
used in the definition of the single knapsack uncertainty sets in Sect. 2.1.2. Similarly, 
we have Δd

l
 and Δt

l
 for the multiple knapsack uncertainty sets.

3.3.1 � MTZ‑based formulation for the single knapsack uncertainty set

To generate the MTZ-based formulation for the RVRPTW under the single knapsack 
uncertainty set, we define the following decision variables:

•	 ui� : represents the load on the vehicle up to and including node i ∈ N , consider-
ing up to a total deviation of � ∈ {0, 1,… ,Δd} units over the demands’ nominal 
values for all nodes previously visited;

•	 wi� : indicates the earliest time that a vehicle can start the service at node i ∈ N , 
considering up to a total deviation � ∈ {0, 1,… ,Δt} time units over the travel 
times’ nominal values for all arcs previously traversed.

In these definitions, the index � represents the total load/time over their nominal values 
accumulated in the route up to the current node. This interpretation requires integer 

(19)gj1k1𝛾 ≥ gi1j1𝛾 + t̄i1j1 + sj1 ,

(20)gj1k1𝛾 ≥ gi1j1(𝛾−1) + t̄i1j1 + t̂i1j1 + sj1 .

(21)wj1𝛾
≥ wi1𝛾

+ t̄i1j1 + sj1 ,

(22)wj1𝛾
≥ wi1(𝛾−1)

+ t̄i1j1 + t̂i1j1 + sj1 ,
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budget and deviations, since an index is used to represent the deviations. Moreover, 
for large budgets, the number of variables and constraints becomes large as they grow 
pseudopolynomially. Later in this section we discuss some strategies to address these 
issues.

To derive constraints based on variables ui� and wi� , we rely on the following 
interpretation based on DP, inspired by the discussion presented in Sect. 2.2 for the 
cardinality-constrained uncertainty set. Let r = (v0, v1,… , vh) be a route visiting 
h − 1 customers. For this route, we can compute the values of wvj�

 for j = 0,… , h 
and � = 0, 1,… ,Δt as follows:

The first case in (23) is a boundary condition for the first node in the route, the 
depot, and defines the starting time of the route. The second computes the worst-
case starting time of the service at node vj , considering that the travel time deviation 
in arc (vj−1, vj) , represented by � , may attain any value from 0 to the minimum 
between the total budget � and the maximum deviation t̂vj−1vj . Notice that this expres-
sion encompasses the deterministic cases for � = 0 and � = 0 . Additionally, this cal-
culation accounts for the opening of the time window. To check the feasibility of the 
route with respect to time windows, we need to verify after each iteration of the DP 
algorithm if wvj�

≤ bvj for each node vj and � = 0, 1,… ,Δt . In the compact model, 
these verifications are introduced as the upper bound of the time windows 
constraints.

It is possible to derive a similar expression for computing the values of variables 
uvj� . However, since the vehicle load is not subject to a behavior analogous to the 
opening of the time windows, the worst-case load at a given node can be computed 
by filling the knapsack with as much demand deviations as possible in the order they 
appear in the route. Hence, we use the following improved equation:

for j = 0,… , h and � = 0, 1,… ,Δd . The first two cases define boundary conditions: 
one sets the total load in the first node in the route, which is usually the depot; 
whereas the other applies when the total deviation considered in the route is lower 
than d̂vj , thus resulting in adding only the nominal demand of node vj to the total 
load. We do not introduce any deviations in the variables with small � because the 
algorithm focuses on finding uvjΔd , which is properly calculated by the remaining 
cases. The third case corresponds to whether or not we consider the full deviation of 

(23)wvj𝛿
=

{
av0 , if j = 0,

max
𝜆=0,…,min{𝛿,t̂vj−1vj

}
{avj ,wvj−1(𝛿−𝜆)

+ t̄vj−1vj + svj−1 + 𝜆}, otherwise.

(24)uvj𝛿 =

⎧
⎪⎪⎨⎪⎪⎩

d̄v
0
, if j = 0,

uvj−1𝛿 + d̄vj , if 𝛿 < d̂vj ,

max {uvj−1𝛿 + d̄vj , uvj−1(𝛿−d̂vj )
+ d̄vj + d̂vj}, if d̂vj ≤ 𝛿 < Δd,

max
𝜆=0,…,min{d̂vj

,Δd}
{uvj−1(Δd−𝜆) + d̄vj + 𝜆}, otherwise ,
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the demand on node vj , with the largest between both values being chosen. Finally, 
the last case corresponds to � = Δd , and involves using the remaining budget of the 
knapsack. It considers all the possible deviations from 0 to d̂vj , denoted as � , as long 
as this value does not exceed the budget Δd . The value � represents the deviation 
added to the knapsack to fill it up.

With this interpretation of the variables and relying on the linearization 
approach to convert the recursive equations (23) and (24) to linear constraints, 
we developed the following model for the RVRPTW under the single knapsack 
uncertainty set:

The objective function (25) is the same as in the other formulations presented in this 
work. Constraints (26)–(28) determine the worst-case load at node j considering a 
non-negative integer budget � ≤ Δd , and they are the linear counterpart of the recur-
sive equations (24). Constraints (29) ensure that the vehicle capacity is respected. 
Notably, we just need to verify the upper bound for � = Δd . If we consider only 
these constraints and the ones related to the variable’s domain, we formulate the 
RCVRP. Constraints (30) compute the worst-case service starting time using the 
same strategy as in the recursive equations (23). They compute the arrival time in 
node j considering the route’s total deviation of � . The right-hand side evaluates the 
quantity � of time deviation that should be considered for that particular node, while 
the remaining � − � units of deviation happened in previous nodes of the route, 
thus wj� is determined by the choice of � that results in the worst-case arrival time. 
Finally, constraints (31) ensure the time windows are respected.

(25)min
∑
(i,j)∈A

cijxij,

(26)
s.t. (6), (7), (12), and to

uj𝛿 ≥ ui𝛿 + d̄j + Q(xij − 1), (i, j) ∈ A, 𝛿 = 0,… ,Δd,

(27)uj𝛿 ≥ ui(𝛿−d̂j)
+ d̄j + d̂j + Q(xij − 1), (i, j) ∈ A, 𝛿 = d̂j,… ,Δd,

(28)ujΔd ≥ ui(Δd−𝜆) + d̄j + 𝜆 + Q(xij − 1), (i, j) ∈ A, 𝜆 = 0,… , min{d̂j,Δ
d},

(29)0 ≤ uj� ≤ Q, j ∈ N, � = 0,… ,Δd,

(30)
wj𝛿 ≥wi(𝛿−𝜆) + t̄ij + 𝜆 + si +Mij(xij − 1),

(i, j) ∈ A, 𝛿 = 0,… ,Δt, 𝜆 = 0,… , min{𝛿, t̂ij},

(31)aj ≤ wj� ≤ bj, j ∈ N, � = 0,… ,Δt.
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3.3.2 � CF formulation for the single knapsack uncertainty set

To derive a robust counterpart of the deterministic CF model (5)–(11) considering 
knapsack-uncertainty on demand and travel time, we define the following load and 
time variables:

•	 fij� : the load carried on arc (i, j) ∈ A with a total deviation of � ∈ {0, 1,… ,Δd} 
units over the nominal demand;

•	 gij� : earliest elapsed time of a route when the vehicle begins to traverse arc 
(i, j) ∈ A after serving node i with a total deviation of � ∈ {0, 1,… ,Δt} units 
over nominal travel times.

Using a similar interpretation as that presented in the previous section, we can 
derive CF-based constraints from the recursive equations (23) and (24), resulting in 
the following new CF formulation for the RVRPTW.

The objective function (32) is the same as in the previous formulations. Con-
straints (33)–(35) are based on the recursive equations (24) and work similarly to 
(26)–(28), forbidding subtours and computing the worst-case load values using the 
CF variables. Capacity constraints are imposed via (36). Constraints (37) compute 
the elapsed time based on the idea of equations (23), and constraints (38) enforce the 
time windows.

(32)min
∑
(i,j)∈A

cijxij,

(33)
s.t. (6), (7), (12), and to∑
j∶(i,j)∈A

fij𝛿 ≥ d̄i +
∑

h∶(h,i)∈A

fhi𝛿 , i ∈ N, 𝛿 = 0,… ,Δd,

(34)
∑

j∶(i,j)∈A

fij𝛿 ≥ d̄i + d̂i +
∑

h∶(h,i)∈A

fhi(𝛿−d̂i)
, i ∈ N, 𝛿 = d̂i,… ,Δd,

(35)
∑

j∶(i,j)∈A

fijΔd ≥ d̄i + 𝜆 +
∑

h∶(h,i)∈A

fhi(Δd−𝜆), i ∈ N, 𝜆 = 0,… , min{Δd, d̂i},

(36)d̄ixij ≤ fij𝛿 ≤ (Q − d̄j)xij, (i, j) ∈ A, 𝛿 = 0,… ,Δd,

(37)

∑
j∶(i,j)∈A

gij𝛿 ≥ si +
∑

h ∶ (h, i) ∈ A

𝜆 ≤ t̂hi

(ghi(𝛿−𝜆) + (t̄hi + 𝜆)xhi), i ∈ N, 𝛿 = 0,… ,Δt
, 𝜆 = 0,… , 𝛿,

(38)(ai + si)xij ≤ gij� ≤ (bi + si)xij, (i, j) ∈ A, � = 0,… ,Δt.
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We mention a few difficulties that the models based on single knapsack uncer-
tainty sets might face and some possible solutions. The first issue regards the 
large number of variables when the budgets are large. However, budget values in 
real contexts are typically not large. For instance, Bartolini et al. (2021) consider 
Δd = 100 minutes of deviation as an extreme case. This would be considered a 
volatile environment since the delay would take roughly 20% of a worker’s day. 
Hence, smaller values of Δd are usually reasonable in practice. Another possi-
ble workaround is to change the order of magnitude of � ; for instance, instead of 
using the unit of � as 1 min, one can use it in units of 5 min. This strategy may 
reduce the model to a tractable size. Another limitation of the proposed formula-
tions is the impossibility of using non-integer units for � . The mentioned worka-
round may be used in this case as well, by multiplying the non-integer unit by a 
constant that turns it into an integer number, possibly at the cost of worsening the 
computational performance. Nonetheless, we believe the proposed approaches are 
still of theoretical and practical value, and may benefit researchers and practition-
ers interested in formulations for RVRP variants.

3.3.3 � Formulations for the multiple knapsack uncertainty set

In the multiple knapsack uncertainty set, we consider a set L of knapsacks and 
subsets of nodes (or arcs) associated with each knapsack ( Sl , l ∈ L ) with its own 
budget Δl . To extend the previous formulations to a multiple knapsack frame-
work, we redefine the continuous variables related to demand ( ui� and fij� ) and 
time ( wi� and gij� ) to consider an index �l representing the total deviation in the 
route for each knapsack l. An interesting aspect of our formulation is that, unlike 
previous studies (Gounaris et  al. 2013; Subramanyam et  al. 2020), it does not 
require the knapsacks to be disjointed (i.e., non-overlapping). Thus, without 
sacrificing formulation correctness, we can model problems where nodes/arcs 
belong to several knapsacks simultaneously. For the sake of conciseness, we pre-
sent these formulations in the appendix.

4 � Branch‑and‑cut algorithm for the RVRPTW

In addition to the compact formulations, we designed a tailored BC algorithm to 
obtain better computational performance for the studied models. The cut separation 
is performed using a combination of strategies: a DP-based algorithm, a heuristic 
algorithm proposed for the RCVRP (Gounaris et al. 2013), and the CVRPSep pack-
age (Lysgaard et al. 2004). We use the latter to generate rounded capacity inequali-
ties (RCI) only, which are stated as follows for a given set of nodes VS:
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These cuts ensure that the number of vehicles entering set VS offer enough capac-
ity to serve all the nodes in VS . Since enumerating every possible set VS requires a 
long computational time, CVRPSep uses an efficient heuristic algorithm to generate 
a limited number of sets and relevant cuts.

Other than that, for instances with uncertainty on demand we also use the Robust 
RCI (RRCI) introduced by Gounaris et al. (2013). These cuts are a robust extension of 
the capacity cut previously explained, represented by the following inequalities:

Note that these are almost identical to the deterministic version (39), the main dif-
ference being that, in the robust case, we consider the maximum possible demand 
inside the uncertainty set instead of the nominal demand. Since enumerating 
every possible RRCI would be impractical, we implemented a heuristic algorithm 
to dynamically separate and insert these cuts as needed, as proposed by Gounaris 
et  al. (2013). We start with a solution and a randomly generated set of customers 
VS ; then, we iteratively perturb this set by inserting or removing a node from it. In 
each attempt of adding/removing a node to/from VS , we analyze every potential cus-
tomer and remove or insert the one with the highest impact in the difference between 
the right-hand side and the left-hand side of the corresponding RRCI constraint. We 
also maintain a tabu list of recently added/removed customers that are not allowed to 
be moved in or out of the set for some iterations, to avoid cycles. We stop the algo-
rithm when we do not improve the difference between the right- and the left-hand 
sides of the inequality for a given number of iterations.

An important factor in this algorithm is the need to efficiently compute the right-
hand side of the inequality since this value must be frequently checked. To assist in 
this calculation, we create an auxiliary data structure that reduces the number of steps 
required. For the cardinality-constrained uncertainty set, we define an auxiliary vector 
Q ∈ ℝ

|VS|,Q = (d̂[1],… , d̂[|VS|]) , containing the demand deviations of all nodes in VS 
in non-increasing order, i.e., d̂[j−1] ≥ d̂[j] , where d̂[j] is the demand deviation in the jth 
position of this vector. We then compute DVS

 , the maximum demand of this set, using

 Then, for each iteration when we check the possibility of insertion/removal of a 
given node j ∈ VS , we take the total demand of the current set VS (DVS

) and compute 
the new right-hand side for that particular node ( RSj ) using the following expression:

(39)
�

i∈N�VS

�
j∈VS

xij ≥

�∑
j∈VS

d̄j

Q

�
, VS ⊂ C.

(40)
∑

i∈N�VS

∑
j∈VS

xij ≥

⌈
1

Q
max
d∈Ud

∑
j∈VS

dj

⌉
, VS ⊂ C.

(41)DVS
=

∑
j∈VS

d̄j +

min{Γd ,|VS|}∑
𝛾=0

Q𝛾 .
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After determining which node j will be inserted/removed from set VS , we update 
DVS

 , which takes the value of RSj , and insert/remove its deviation from Q . Note that 
we did not need to compute DVS

 again with the equation (41), we only need to use it 
in the first iteration, reducing the number of operations in the procedure.

For the single and multiple knapsack uncertainty sets, we used the formulas 
proposed by Gounaris et  al. (2013) to calculate the maximum demand deviation, 
which is done in O(|VS|) . Let L be the set of knapsacks and Sl the subset of nodes 
inside each knapsack l ∈ L . The right-hand side of the RRCI is then given by:

Since we use a heuristic algorithm to generate subset VS , this separation procedure 
might miss a violated constraint. Thus, for integer solutions we also use a DP 
algorithm based on the recursive equations (23), which can be executed in 
O(�N�∏l∈L Δ

d
l
) . Whenever the heuristic is unable to find a new violated cut, this 

algorithm checks if the solution is feasible and inserts additional feasibility cuts if 
needed. If for a given route r = (v0, v1,… , vh) the infeasibility is detected in node vj 
for a given j ∈ {1,… , h} the following inequality is inserted into the problem:

We use a different approach for time uncertainty. For the cardinality-constrained and 
single knapsack uncertainty sets we initialize the model with only the deterministic 
time flow propagation constraints and dynamically insert the robust constraints 
(16) and (17) whenever they are violated. For the two-knapsack uncertainty set, 
preliminary results showed that the introduction of the robust constraints slowed 
down the model significantly, as a considerable number of constraints are usually 
introduced into the model on each cut, and thus we decided to use feasibility cuts 
(44) instead. This proved to be more effective for this particular uncertainty set. 
To efficiently check the feasibility of a solution, we use DP algorithms based on 
equations (1) and  (23) to compute the worst-case elapsed times and then identify 
whether time windows are violated in the route. These algorithms have complexity 
O(|N|Γt) for the cardinality-constrained uncertainty set and O(�N�∏l∈L Δ

t
l
) for the 

knapsack set.

5 � Computational experiments

In this section, we present the results of extensive computational experiments 
performed to assess the proposed compact models and BC algorithms for the 
cardinality-constrained and knapsack uncertainty sets, using benchmark instances 
from the literature. We consider two versions of the knapsack uncertainty set, 

(42)RSj =

{
DVS

+ d̄j + max (d̂j −QΓd , 0), if j ∉ VS;

DVS
− d̄j − max (d̂j −QΓd+1, 0), otherwise ,

(43)
∑
i∈VS

d̄i +
∑
l∈L

min{Δd
l
,
∑

i∈VS∩S
l

d̂i}.

(44)
∑
0<i≤j

xvi−1vi ≤ j − 1.
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one with a single knapsack and the other with two knapsacks. We compare the 
computational performance of these approaches against the MTZ-based formulation 
of Munari et  al. (2019) for the cardinality-constrained set, which is the state-of-
the-art compact model for the RVRPTW. Additionally, we analyze the impact of 
robustness regarding the different uncertainty sets.

All models and algorithms were coded in C++ using the Concert library of 
IBM CPLEX Optimization Studio version 20.1 with default parameters. The 
computational experiments were conducted on a computer cluster with 2 x AMD 
Rome 7532 @ 2.40 GHz processor and 64GB of RAM. We set a time limit of 3600 s 
for each run.

We use the same benchmark instances of the RVRPTW with 25 customers intro-
duced by Munari et  al. (2019), who adapted the VRPTW instances of Solomon 
(1987) to include uncertainty in demands and travel times. Each uncertain param-
eter is defined in terms of its nominal value and maximum deviation. The maximum 
deviations for demand ( Devd ) and travel time ( Devt ) are defined as 10%, 25%, and 
50% of the nominal value, truncated to the first decimal place. In the experiments 
with the cardinality-constrained uncertainty set, the budgets for demand ( Γd ) and 
travel time ( Γt ) assume the values of 0, 1, 5, and 10, where 0 is the determinis-
tic case. We run experiments with three different configurations of these parame-
ters: uncertainty on demand only ( Γd > 0,Γt = 0 ), uncertainty on travel time only 
( Γd = 0,Γt > 0 ), and uncertainty on both demand and travel times ( Γd > 0,Γt > 0 ). 
For the latter, the budgets for both parameters are the same, i.e., Γd = Γt . Simi-
lar configurations are used for the single and two-knapsack uncertainty sets, with 
budgets Δd,Δt ∈ {0, 20, 40, 60} . For the two-knapsack uncertainty set we assume 
that Δd = Δd

1
= Δd

2
 and Δt = Δt

1
= Δt

2
 for any budget. The nodes were divided into 

two groups, namely north and south, based on their geographical position in relation 
to the depot. In all experiments, if the budget of uncertainty for a specific param-
eter (demand or travel time) in the instance is zero, the maximum deviation for 
that parameter ( Devd or Devt ) will also be zero. These combinations of budget and 
deviations result in 56 instances for the deterministic cases (i.e., when Γd = Γt = 0 
and Δd = Δt = 0 ) and 168 instances for each configuration of budgets with positive 
values. However, for experiments with the cardinality-constrained RVRPTW having 
positive Γt , five instances became infeasible and were discarded (hence, we have 163 
instances in experiments with configurations in which Γt > 0 ). The detailed results 
are available online at www.​dep.​ufscar.​br/​munari/​rvrptw.

5.1 � Computational performance of the compact formulations

5.1.1 � Cardinality‑constrained uncertainty set

Table 1 summarizes the results obtained with the MTZ-based and the CF formula-
tions for the cardinality-constrained RVRPTW. We performed two experiments with 
both models: solving their LP relaxations only and solving them using the general-
purpose MIP solver. For the first experiment, the table presents the average objective 
value (Obj), the quality of the LP relaxation as a percentage (QLR), and the average 

http://www.dep.ufscar.br/munari/rvrptw
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computation time in seconds (T). QLR is the percentage of the LP relaxation value 
relative to the obtained integer solution value. For the MIP solver results, in addition 
to the average objective values and computation times, the table shows the average 
optimality gap as a percentage (Gap), as provided by the solver at the end of the 
execution, and the number of instances solved to optimality (Opt). The results are 
grouped according to different configurations of Γd and Γt.

Regarding the LP relaxation of the formulations, we observe that CPLEX was 
considerably faster with the MTZ model, whereas the CF model resulted in stronger 
LP bounds. On average, the value of the LP relaxation for the CF model is 78.3% 
of the integer solution against 65.1% for the MTZ formulation. This behavior was 
expected since the CF formulations in the literature are known for having tighter LP 
relaxations than those based on big-M parameters (Letchford and Salazar-González 
2015).

For the MIP formulations, while the MTZ model yielded shorter run times and 13 
more instances solved to optimality, the CF presented lower average optimality gaps 
in all combinations of Γd and Γt , better ensuring the quality of the solution obtained. 
Hence, when the use of the MTZ model does not lead to proven optimality, the gaps 
are considerably larger than those of the CF formulation, which is usually closer 
to proving optimality given its stronger LP relaxation. Furthermore, with the CF 
formulation, CPLEX solved more instances to optimality in the deterministic case 
( Γd = Γt = 0 ) in about half the time on average. The CF model was also superior 
in terms of computation times and number of optimal solutions in instances where 
the uncertainty budgets ( Γd and Γt ) are less than or equal to 1. Moreover, using the 
CF model resulted in more instances solved to optimality than the MTZ model in 
instances with Γd = 5 and Γt = 0 and in all instances under uncertainty exclusively 
on travel time ( Γd = 0 and Γt > 0 ). These results suggest that the CF formulation 
should be the preferred choice for solving instances involving travel time uncertainty 
and for instances with demand uncertainty when the budget is sufficiently small.

We also identified the traditional behavior found in the RO literature (Ordonez 
2010; Agra et al. 2013; Munari et al. 2019) where increasing the budget also tends 
to increase the time it takes to solve the problem for both formulations. This is 
expected since the budget directly impacts the number of variables and constraints 
of the formulations. This behavior is noticeable in both formulations and for any 
combination of Γt and Γd.

5.1.2 � Knapsack uncertainty set

Table 2 follows a similar structure to Table 1, but for different configurations of the 
knapsack set budgets Δd and Δt . Similar conclusions as with the previous uncer-
tainty set can be drawn from Table 2 regarding the quality of the LP relaxation and 
computational performance of the models. Particularly, the CF formulation pre-
sented stronger LP relaxations overall, with a QLR of 77.8%, but as a MIP model 
it resulted in fewer instances solved to optimality (461) than the MTZ-based model 
(1013), in longer running times (2576.13 seconds against 1494.33 seconds from the 
MTZ model, on average), and in larger average gaps (38.7% versus 10.1%). This is 
a consequence of the CF model requiring longer running times when solving the LP 
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relaxation for instances with larger Δ values (e.g., 1558.49 seconds for Δd = 0 and 
Δt = 60 , and 1909.10 seconds for Δd = Δt = 60 , on average), hindering the solver 
efficiency. Notably, instances with positive travel time deviation were harder to solve 
than those with deviation exclusively on demand, which is a consequence of the 
models having more constraints related to time flow propagation, as we cannot apply 
the constraint reduction strategy used for the demand uncertainty.

5.1.3 � Two‑knapsack uncertainty set

We now present the results of experiments conducted using the two-knapsack uncertainty 
set. We note that the models designed for this set were particularly challenging to solve. 
This is because they contain considerably more decision variables and constraints than 
the models based on the single knapsack uncertainty set, as the load variables are indexed 
based on the budgets of the two knapsacks. Consequently, the solver tends to use more 
memory to store and process the model and branch-and-bound tree.

The results obtained with the CF and MTZ-based compact formulations using the two-
knapsack uncertainty set are summarized in Table 3. Similarly to other uncertainty sets, 
we performed experiments based on the LP relaxations and the full MIP formulations. 
The table has the same structure as Tables 1 and 2. The QLR values were computed based 
on the best results obtained by the BC algorithm presented in the next section.

The first conclusion we can draw from these results is the increased difficulty in 
solving the formulations, as the solver presented considerably larger optimality gaps 
and longer computation times when compared to the use of other uncertainty sets. 
Additionally, fewer instances were solved to optimality overall. This is intensified 
in instances with larger uncertainty budgets, as the size of the problem significantly 
increases with the increase in budget.

Comparing the formulation based on MTZ constraints to that based on CF 
constraints, we get similar conclusions to the single knapsack uncertainty set. The 
MTZ formulation performed generally better, with lower average gaps. However, 
the LP relaxation of the model based on the MTZ constraints is generally weaker 
than that obtained with the model based on CF constraints. Notably, the CF-based 
formulation was particularly affected by the increase in problem size, where in some 
configurations, namely Δd = 0 and Δt = 60 , and Δd = 60 and Δt = 60 , the solver 
was unable to even find an optimal solution for the LP relaxation of the model, for 
any instance in these groups.

5.2 � Computational performance of the BC algorithms

5.2.1 � Cardinality‑constrained uncertainty set

In this section, we analyze the results of the BC algorithms developed in Sect. 4, 
considering the cardinality-constrained uncertainty set. Table  4 summarizes the 
results using a similar structure to that of Table 1. We do not show results for the LP 
relaxation, as they are similar to those presented in Table 1.
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As expected, the BC algorithms outperformed their corresponding compact 
models as they start with a model having considerably fewer constraints and add 
cuts to ensure robustness as they are needed. The average solution times and gaps 
decreased, while the number of optimal solutions increased in all budget configura-
tions. For example, the average solution time for the MTZ-based model decreased 
from 694.93 seconds to 277.13 seconds, the average gap reduced from 4.8% to 0.8%, 
and the number of instances solved to optimality increased from 1306 to 1449. 
Similarly, the average time for solving the CF model was almost halved, decreas-
ing from 790.87 to 430.88 seconds. The average gap decreased from 2.1% to 0.8%, 
and 114 more instances were solved to optimality compared to solving the compact 
formulation.

The BC method with the MTZ-based formulation performed better than that with 
the CF formulation, taking less computation time to solve the instances (277.13 
seconds against 430.88) and finding more optimal solutions (1449 against 1407). 
Additionally, this method was slightly superior even when solving most instances 
where the compact formulation had some advantage, namely the instances under 
uncertainty exclusively on travel time. The CF model had a better performance in 
terms of optimality gaps in instances under uncertainty exclusively on demand and 
Γd ≤ 5 , but both formulations solved the same number of instances to optimality in 
these configurations.

There are two main reasons for these superior results of the MTZ-based BC 
algorithm. The RCI generated using the CVRPSep package strengthen the LP 
relaxation of the model, which is still quicker to solve than the LP relaxation of the 
CF model. Indeed, strengthening the LP relaxation is particularly more helpful to the 
MTZ-based formulation, as it has a weak LP relaxation. Consequently, this reduces 
one advantage of the CF model over the MTZ-based model. Moreover, since the 
solver usually obtains the optimal solution of the LP relaxation faster with the MTZ-
based formulation, the search tree explores more nodes quicker and, hence, finds an 

Table 4   Average objective values and computation times of the BC algorithm for the cardinality-con-
strained RVRPTW

Γq Γt MTZ CF

Obj Gap T Opt Obj Gap T Opt

0 0 331.27 0.6 222.90 53 331.27 0.6 272.67 53
1 0 334.72 0.6 178.37 159 334.72 0.5 224.40 159
5 0 351.63 0.5 159.69 159 351.62 0.4 230.77 159
10 0 355.13 0.7 316.31 151 355.12 0.7 438.40 145
0 1 330.91 0.6 228.38 159 330.91 0.6 346.03 156
0 5 337.01 0.9 316.87 155 337.03 1.2 529.30 150
0 10 338.63 1.1 354.34 154 338.64 1.4 537.79 148
1 1 334.30 0.7 248.18 158 334.30 0.7 360.40 154
5 5 352.25 0.8 323.58 154 352.48 1.0 622.94 144
10 10 356.06 1.1 422.73 147 356.19 1.3 746.08 139
All 342.19 0.8 277.13 1449 342.23 0.8 430.88 1407
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optimal solution before the BC algorithm based on the CF model. Even when the 
BC algorithms do not prove optimality within the time limit, the MTZ-based BC 
algorithm usually shows a superior performance, as it tends to explore more nodes.

5.2.2 � Knapsack uncertainty set

Table 5 summarizes the results of the BC algorithms for the knapsack-constrained 
RVRPTW for different budget configurations. Most of the inferred conclusions for 
the cardinality-constrained uncertainty set also hold for the single knapsack set. 
The BC algorithms improved the computational performance compared to solving 
the compact models, indicated by the lower average running times and the larger 
number of solved instances. More specifically, the BC algorithm with MTZ-based 
formulation solved 1456 instances compared to only 1013 solved by the general-
purpose MIP solver with the compact formulation, and the BC with the CF 
formulation solved 1318 instances to optimality compared to 461 instances with the 
compact model. Additionally, the better performance of the BC algorithm with the 
MTZ-based model is noticeable regarding computation times, number of instances 
solved to optimality, and optimality gaps. This behavior is a consequence of the 
strengthening of the LP relaxation in the BC algorithms, further assisted by the 
reduced size of the MTZ-based model compared to the CF model.

While algorithms with the knapsack uncertainty set proved to be more challenging to 
solve than their deterministic counterparts, their performance was comparable to those 
with the cardinality-constrained uncertainty set. Notably, the best-performing configu-
ration with the knapsack uncertainty set, which is the BC algorithm based on an MTZ 
formulation, solved more instances than the best configuration of the BC algorithm 
for the cardinality-constrained uncertainty set. To help visualize this behavior, Fig.  1 
shows the number of instances solved to optimality for each pair of demand and travel 
time deviations (Devd,Devt) , base models (MTZ and CF), and uncertainty sets (Card: 

Table 5   Average objective values and computation times of the BC algorithm for the single knapsack-
constrained RVRPTW

Δd Δt MTZ CF

Obj Gap T Opt Obj Gap T Opt

0 0 331.27 0.6 222.46 53 331.27 0.5 240.42 53
20 0 341.27 0.9 361.43 156 341.23 1.0 511.19 155
40 0 349.38 0.9 440.79 155 349.67 1.3 818.14 145
60 0 351.63 1.1 536.45 152 351.79 1.5 1030.92 142
0 20 332.23 0.7 232.59 159 332.23 0.7 300.11 156
0 40 334.77 0.5 176.67 159 334.97 0.9 618.26 144
0 60 335.39 1.0 331.58 159 336.95 1.8 876.51 143
20 20 342.33 0.9 331.45 157 342.30 1.0 532.20 152
40 40 352.99 1.0 492.62 154 353.57 1.9 1338.81 127
60 60 355.57 1.1 638.08 152 359.90 4.3 1800.41 101
All 342.68 0.9 376.41 1456 343.39 1.5 806.70 1318
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cardinality-constrained; or Knap: single knapsack). The horizontal green line over the 
bars shows the number of instances for that combination of Devd and Devt . As the chart 
suggests, the BC algorithms with the cardinality-constrained uncertainty set solved a sim-
ilar number of instances to optimality to the knapsack uncertainty set. Thus, the strategy 
of relaxing the RO constraints and reintroducing them only if violated proved to be ben-
eficial for both uncertainty sets.

5.2.3 � Two‑knapsack uncertainty set

Table 6 summarizes the results of the computational experiments with the BC algo-
rithm using the two-knapsack uncertainty set. This table follows a similar struc-
ture to that of Tables  4 and 5. The results indicate that the BC algorithm vastly 

Fig. 1   Number of instances solved to optimality by the BC algorithms for each pair of demand and travel 
time budgets ( Devd,Devt ) for the cardinality- and knapsack-constrained RVRPTW

Table 6   Average objective values and computation times of the BC algorithm for the two-knapsack 
RVRPTW

Δd Δt MTZ CF

Obj Gap (%) T (s) Opt Obj Gap (%) T (s) Opt

0 0 331.27 0.5 226.08 53 331.27 0.6 246.36 53
20 0 343.06 4.9 623.94 142 343.05 1.3 504.55 148
40 0 349.81 5.5 683.05 142 350.40 1.9 597.13 145
60 0 351.92 5.8 687.60 141 352.07 2.4 699.77 140
0 20 332.87 0.7 266.84 159 332.87 0.6 268.74 159
0 40 334.37 0.9 490.64 155 334.34 0.6 317.67 157
0 60 336.57 1.5 762.74 149 336.32 0.8 396.81 156
20 20 344.81 5.8 735.35 141 344.64 1.4 546.15 148
40 40 353.56 8.2 1165.81 128 353.19 2.5 799.32 140
60 60 357.70 10.3 1562.15 114 357.14 3.4 993.78 132
All 343.59 4.41 720.42 1324 343.53 1.54 537.03 1378
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outperforms the compact formulations in terms of optimality gap, the number of 
instances solved to optimality, and the average computation times for this uncer-
tainty set. This improvement is mainly because the base model of the BC algorithm 
is considerably smaller in terms of decision variables and constraints when com-
pared to the compact formulations. Notably, the algorithm based on the CF formula-
tions solves nearly 19 times more instances than its respective compact formulation.

One interesting observation is that the results of the two-knapsack uncertainty set 
show a notable discrepancy compared to the other sets studied: the BC algorithm 
based on the CF formulation consistently outperformed the algorithm based on the 
MTZ formulation, on average. This discrepancy can be attributed to the absence of 
(a large number of) robust time flow constraints, as they were replaced by feasibility 
cuts, in instances under travel time uncertainty. Additionally, this formulation has 
a stronger LP relaxation and generally better performance in the deterministic case 
compared to the MTZ-based formulation. This stronger LP relaxation helped the BC 
method to lift the lower bound more quickly, thus reducing the average optimality 
gap compared to the method with the MTZ-based formulation.

5.3 � Robustness analysis

We analyze the impact of the proposed RO approach regarding the objective 
function value and robustness of the solutions. The robustness of a solution is an 
important information in the decision-making process, as it can be used to evaluate 
the trade-off between cost and its risk, which is represented by the chance of a 
solution becoming infeasible in practice. To estimate this, we applied a Monte 
Carlo simulation with 1000 scenarios in which the uncertain parameters follow 
a continuous uniform distribution from their nominal value to their maximum 
realization for a given Devd (or Devt).

5.3.1 � Cardinality‑constrained uncertainty set

Table 7 shows the average results for each budget configuration of the cardinality-
constrained set, considering maximum deviations of 10%, 25%, and 50%. For each 
combination of budgets ( Γd and Γt ) and deviations (Dev), the table shows the average 
price of robustness (PoR), which constitutes the percentage increase in costs of the 
robust solution over the deterministic one, and the average percentage of infeasible 
scenarios in the Monte Carlo simulation (Risk). Furthermore, regarding the PoR, the 
table shows the minimum (Best) and maximum (Worst) values obtained among all 
instances under that combination, and the normalized standard deviation (SD). All 
values are presented as percentages. The SD values help us evaluate the solutions’ 
variability because, although the average robust solution among the instances might 
be good, there is a risk of the worst-case performance being considerably more 
expensive.

We note that, by construction, greater budgets ( Γd and Γt ) enlarge the uncertainty 
sets, and therefore, the probability of infeasibility decreases, but the cost increases 
accordingly. This can be identified by comparing the PoR and the Risk values 
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between solutions with same deviation but different budgets. The probability of con-
straint violation, on the other hand, tends to decrease for large uncertainty budgets 
Γ . It is up to the decision-maker to select the most appropriate level of robustness. 
Regarding the impact of the deviations (Dev), we observe an increase on the PoR as 
they increase (positive budgets only), as the robust solutions become more conserva-
tive to account for these additional deviations. Furthermore, the deviation strongly 
impacts the Risk, especially when considering smaller budgets, as the solutions are 
more likely to violate the capacity or time windows constraints.

Interestingly enough, the SD values of the cost increase for the robust solutions 
are relatively small. Hence, the differences in terms of PoR among solutions within 
an instance class are not particularly large. From a decision-maker’s standpoint, 
this means that using the RO approach usually results in solutions with similar 
cost increment over the deterministic solution, with relatively low chances of large 
variability. This is particularly good for planning because, once the appropriate 
uncertainty budgets are set, there is little need to test different RO parameters for the 
new data when working with a given cost target.

Figure 2 shows the plots of the PoR versus the Risk for instances in classes C1, 
R1, and RC1, considering different deviations (0, 10, and 25%) and uncertainty 

= 25%
= 25%

Fig. 2   Trade-off between price of robustness (PoR) and probability of constraint violation (Risk) for the 
instances in classes C1, R1, and RC1
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budgets ( Γ ∈ {0, 1, 5, 10} and Δ ∈ {0, 20, 40, 60} ) for both uncertainty sets. The 
more convex the curve is, the better the trade-off between PoR and Risk is because 
the robust solution effectively reduces the risks with a slight cost increase. Thus, 
some of the solutions with the most expensive trade-off are those from instance class 
RC1 in Fig. 2c and f, where an increase of more than 30% in the costs is needed to 
neutralize the risks. We also note that in some configurations, namely in class C1 in 
Fig. 2a, c, d, and f; in class R1 in 2(b); and class RC1 in 2(c), increasing the budget 
also increases the solution costs with no impact in the risks. These cases occur when 
the solution with a smaller budget already had a null risk, and thus using a more 
conservative choice only increases the cost of the solution. From a decision-maker 
perspective, there is no reason to use these over-conservative solutions over the ones 
with zero risk and lower costs. On the other hand, some robust solutions, particu-
larly those with deviation in time, greatly improve the robustness with an excellent 
trade-off, voiding all risks with a worst-case deviation of 10% with an increase in 
costs of as little as 0.5%.

In summary, the results of the cardinality-constrained RVRPTW suggest that the 
RO approach can provide relevant solutions to support the decision-making process 
of choosing vehicle routes. The decision-maker can obtain solutions with different 
trade-offs regarding risks and costs. With this data, they can make an informed 
choice and opt for a more robust solution, which deteriorates the costs but ensures a 
better service level, or take a cheaper solution but accept more risks.

5.3.2 � Knapsack uncertainty set

Table 8 summarizes the PoR and Risk values for the single knapsack-constrained 
RVRPTW according to each combination of budgets ( Δd and Δt ) and deviations 
(Dev). Similarly to the previous uncertainty set, as the budgets Δd and Δt increase, 
the solutions become more conservative, and thus the PoR tends to increase while 
the risks tend to lower. The increase in the deviation values (Dev) also significantly 
affects the PoR and Risk. For a given combination of Dev and Δ , the robust solutions 
have a similar increment in the PoR for all instances of the group. This is a positive 
behavior, as the decision-maker can have prior insight into the cost of the solution 
for that combination before running a new instance, allowing them to better direct 
computational efforts.

The results indicate that the solutions obtained for the single knapsack-constrained 
uncertainty set resemble those obtained for the cardinality-constrained uncertainty 
set, when considering the same deviation level (Dev), particularly for those 
under with smaller deviation levels (10% or 25%). This is confirmed in the charts 
presented in Fig.  3, which show the average Risk and PoR for each combination 
of ( Devd , Devt ) of the solutions obtained considering the cardinality-constrained 
and the knapsack uncertainty sets. In particular, there are some configurations 
where both uncertainty sets yield similar solutions in terms of cost and risk, such 
as Γd = 5, Γt = 0 and Δd = 40, Δt = 0 with Dev = 10% ; Γd = 1, Γt = 0 and 
Δd = 20, Δt = 0 with Dev = 50% ; and Γd = 10, Γt = 0 and Δd = 60, Δt = 0 with 
Dev = 50%.
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It is worth noting, however, that several configurations provided unique solu-
tions that could not be achieved by the other uncertainty sets. Some of these solu-
tions offer interesting trade-offs or a strictly superior performance in terms of cost 
and risk to those offered by the other sets. For example, the solutions using the 
knapsack uncertainty set with Δd = 0 and Δt = 20 with Dev = 10% are on average 
strictly better than those obtained with the cardinality-constrained set with Γd = 0 
and Γt = 1 , as they have lower risk and cost. A similar behavior can be observed 
in the solutions with Dev = 25% with Δd = 40 and Δt = 0 , which have the same 
zero risk but a slightly lower cost compared to the solutions obtained with the 
cardinality-constrained uncertainty set with Γd = 10 and Γt = 0 . Conversely, there 
are some solutions where the cardinality-constrained set presents more competi-
tive solutions, such as instances under demand and travel time uncertainty with 
Dev = 50% , where solutions with Γd = Γt = 1 are superior to those obtained with 
Δd = Δt = 40.

Γ = 1 Γ = 5 Γ = 10 Δ = 20 Δ = 40 Δ = 60

Γ = 1 Γ = 5 Γ = 10 Δ = 20 Δ = 40 Δ = 60

(a) Average risk for solutions considering the cardinality-constrained and
knapsack sets for different budgets and deviation levels

(b) Average price-of-robustness for solutions considering the cardinality-
constrained and knapsack sets for different budgets and deviation level

Fig. 3   Average Risk and PoR for different budget values and deviation levels
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A particularity of the knapsack uncertainty set is that the robustness of the 
solution does not increase as much as the cardinality-constrained uncertainty set 
for instances with larger deviations. For example, for instances with travel time 
uncertainties of Dev = 25% and Dev = 50% , we were unable to obtain null-risk 
solutions using the chosen budgets for the knapsack uncertainty set. This is because, 
unlike the cardinality-constrained set, the budget of the knapsack set is independent 
of the deviation, and once the knapsack is completely filled, the solution may not 
change even in scenarios with larger deviations. Nevertheless, these results show 
that the knapsack uncertainty set might be useful from the decision-maker’s 
point of view, as it can provide different and competitive solutions that may 
outperform solutions related to the cardinality-constrained uncertainty set in some 
configurations. Moreover, this uncertainty set is often more intuitive to design in 
real-world systems as estimating the total deviation in a route is easier than the 
number of arcs/nodes attaining their worst-case value.

5.3.3 � Two‑knapsack uncertainty set

Table 9 summarizes the PoR and risk of the solutions obtained for the two-knapsack 
uncertainty set for each combination of budgets ( Δd and Δt ) and deviation (Dev). 
We also present the best, worst, and standard deviation (SD) values for the PoR. The 
solution behavior for this uncertainty set is similar to the others. The risk decreases 
and the cost increases as higher budgets of uncertainty are considered. Conversely, 
the risks and costs tend to increase for scenarios with larger deviations. Regardless, 
the solutions obtained with this set were unique compared to the other sets in terms 
of risk and cost, presenting distinct trade-offs not achievable by other uncertainty 
sets. For example, this is the only uncertainty set able to provide solutions that 
offer trade-offs with non-zero risks of less than 5% in instances with 10% deviation 
( Δd = 0 and Δt = 20 ; Δd = 0 and Δt = 40 ; Δd = 20 and Δt = 20 ; and Δd = 40 
and Δt = 40 ). This type of solution may appeal to decision-makers who accept the 
relatively low risk of infeasibility in exchange for a small reduction in cost.

In the experiments, the two-knapsack uncertainty set was, by construction, 
more conservative than the knapsack uncertainty set with the same budget Δd and 
Δt . This is because the least conservative scenario for a route in the two-knapsack 
uncertainty set, where each customer visited in the route is in the same knapsack, is 
equivalent to the single knapsack uncertainty set with the same budget. Moreover, 
in the cases where customers from different knapsacks are visited on the route, the 
total budget in the route increases because the deviation of a node in one knapsack 
can be considered even if the other knapsack is completely filled.

5.4 � Solution characteristics and managerial insights

Finally, we analyze the behavior of robust solutions and provide some managerial 
insights related to different uncertainty sets. For this purpose, we define and compute 
the customer-per-route ratio metric that can be used to describe the characteristics of 
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the solutions for different configurations in terms of deviation and budget. The table 
showing the average value for this parameter, considering each budget configuration 
and deviation level, is presented in “Appendix 3”.

The customer-per-route ratio is calculated by finding the average number of cus-
tomers visited in each route for a given solution. It can provide a general understand-
ing of the structure of the routes and help assess the number of vehicles used in a 
solution. Figure 4 presents three charts showing the average customer-per-route ratio 
for each budget configuration, considering the three studied uncertainty sets. The 
blue lines represent results with the cardinality-constrained set (Card), gray lines 
represent results with the single-knapsack uncertainty set (Sing Knap), and orange 
lines represent the results with the two-knapsack set (Two-Knap). Each chart repre-
sents the average results for each deviation level (10%, 25%, and 50%). The budgets 
are displayed on horizontal axes in format [Γd,Γt] or [Δd,Δt] according to the uncer-
tainty set.

The charts show that as the deviation increases, there is a tendency to reduce 
the number of customers visited per route. This trend is more pronounced for 
larger deviations (25% and 50%). With all instances having 25 customers, it also 
means an increase in the number of vehicles. When comparing the individual 
behavior of uncertainty sets, we observe that scenarios with larger deviation lead 
to more intense changes in solutions based on the cardinality-constrained set with 
budget increases. However, this behavior reflects the tendency of this set to provide 
zero risk at a higher cost compared to both knapsack sets in instances with small 
deviation levels, and to be the only set capable of finding risk-free solutions in 
instances with larger deviation parameters. In several cases, the knapsack sets were 
able to provide solutions with similar risk levels at lower costs and smaller changes 

Fig. 4   Average number of customers per route for each budget configuration and uncertainty set
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from the deterministic solution in terms of customer-per-route ratio. Therefore, from 
a decision-maker’s perspective, it may be advantageous to evaluate and implement 
solutions based on a knapsack uncertainty set over a cardinality-constrained set. 
Additionally, even when solutions provided by a knapsack uncertainty are not 
strictly superior to those obtained using a cardinality-constrained set they often offer 
interesting trade-offs better matching the decision maker’s strategy.

Figure  4 also illustrates the generally more conservative results of the two-
knapsack uncertainty set compared to the single knapsack set, when they are 
defined using the same budget values. This can be seen from the consistently lower 
customer-per-route ratio of the two-knapsack uncertainty set in most configurations. 
The reason for this is that for a given budget Δd∕Δt , the total deviation on a route 
in the single knapsack set is limited by this budget, while in the two-knapsack set it 
may be limited by twice that value because each knapsack has its own budget Δd∕Δt . 
Regarding the difference in behavior patterns between the cardinality-constrained 
and knapsack uncertainty sets, it is because the budgets for both knapsack sets 
are fixed amounts that do not depend on the deviations; whereas, with cardinality-
constrained sets, the total deviation absorbed depends on both budget size and 
deviation level.

6 � Conclusions

We proposed new compact models for the RVRPTW with variability in demand and 
travel time by considering the cardinality-constrained and knapsack uncertainty sets. 
We are not aware of any other compact model that considers a knapsack uncertainty 
set. The compact models were formulated using MTZ-based and CF constraints, 
and we exploited the linearization technique to model uncertainty. Additionally, we 
proposed tailored branch-and-cut algorithms based on these formulations, resulting 
in more efficient approaches.

Computational results with the proposed compact models using benchmark instances 
from the literature suggest that the MTZ-based formulation yields the best overall perfor-
mance for both uncertainty sets, even though the CF model exhibits stronger LP relaxa-
tions and promotes a better performance of the solver on the deterministic case. An excep-
tion to this behavior is the solution of instances under uncertainty exclusively on travel 
times considering the cardinality-constrained uncertainty set, in which the CF leads to a 
better performance in terms of number of instances solved to optimality and optimality 
gaps, thus its use is recommended in this case.

The tailored branch-and-cut algorithms considerably improve the computational 
results of the proposed models, especially the one that relies on the MTZ-based 
formulation. When comparing the results of the two types of uncertainty sets, we 
observe that the use of a knapsack uncertainty set provides interesting solutions that 
can present a robustness level similar to the cardinality-constrained set, traditionally 
used in literature, but with lower costs. Based on our experiments, this uncertainty 
set may be easier to use in a practical setting, since it requires only the estimation of 
the maximum expected deviation, a more realistic requirement than the number of 
parameters attaining their worst-case value.
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There are interesting directions for future work. One would be to develop branch-
price-and-cut algorithms for the knapsack-constrained RVRPTW, which would allow 
us to solve larger instances of the problem. These algorithms may be combined with 
heuristic approaches, leading to an effective exact hybrid method for this variant. 
Another interesting topic would be to extend the proposed compact models and branch-
and-cut algorithms to other types of uncertainty sets used in the RO literature, such as 
the ellipsoidal and factor models, which may show more suitable features in a decision-
making process.

Appendix 1: MTZ‑based formulation for the RVRPTW 
under a multiple knapsack uncertainty set

To adapt the previous MTZ-based model to the multiple knapsack uncertainty set, we 
need new load and time variables and budget parameters. Each knapsack has a budget 
Δd

l
 (demand) or Δt

l
 (time). We provide the model for two knapsacks, and the extension 

to more knapsacks is trivial. The variables are now ui�1�2 to represent accumulated load 
of the vehicle up to node i, with a total deviation �1 over the demand’s nominal value 
for the first knapsack and �2 for the second one; likewise, time variables are now wi�1�2

 
representing the earliest possible time to start the service at node i, considering a total 
deviation of �1 over the travel time’s nominal value for the first knapsack and �2 for the 
second one. The model is then:

(45)min
∑
(i,j)∈A

cijxij,

(46)
s.t. (6), (7), (12), and to

uj𝛿1𝛿2 ≥ ui𝛿1𝛿2 + d̄j + Q(xij − 1), (i, j) ∈ A, 0 ≤ 𝛿1 ≤ Δd
1
, 0 ≤ 𝛿2 ≤ Δd

2
,

(47)
uj𝛿1𝛿2 ≥ ui(𝛿1−d̂j)𝛿2

+ d̄j + d̂j + Q(xij − 1), (i, j) ∈ A, j ∈ Sd
1
, j ∉ Sd

2
, d̂j ≤ 𝛿1 ≤ Δd

1
, 0 ≤ 𝛿2 ≤ Δd

2
,

(48)
uj𝛿1𝛿2 ≥ ui𝛿1(𝛿2−d̂j)

+ d̄j + d̂j + Q(xij − 1), (i, j) ∈ A, j ∉ Sd
1
, j ∈ Sd

2
, 0 ≤ 𝛿1 ≤ Δd

1
, d̂j ≤ 𝛿2 ≤ Δd

2
,

(49)
uj𝛿1𝛿2 ≥ ui(𝛿1−d̂j)(𝛿2−d̂j)

+ d̄j + d̂j + Q(xij − 1), (i, j) ∈ A, j ∈ Sd
1
, j ∈ Sd

2
, d̂j ≤ 𝛿1 ≤ Δd

1
, d̂j ≤ 𝛿2 ≤ Δd

2
,

(50)
ujΔd

1
𝛿2
≥ ui(Δd

1
−𝜆)𝛿2

+ d̄j + 𝜆 + Q(xij − 1), (i, j) ∈ A, j ∈ Sd
1
, j ∉ Sd

2
, 0 ≤ 𝜆 ≤ d̂j, 0 ≤ 𝛿2 ≤ Δd

2
,
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Similarly to the previous models, the objective function (45) seeks to minimize 
the total traveling costs. Constraints (46)–(52) compute the demand for the worst 
case and forbid subtours. The vehicle capacity is ensured by constraints (53). Con-
straints (54)–(56) are similar to (50)–(52), but for the travel time. The time win-
dows constraints are imposed by (57) and the domains of the variables are defined 
in (58)–(59). Note that we can easily extend this model for k knapsacks by adding 
indices from �1 to �k.

Appendix 2: Commodity‑flow formulation for the RVRPTW 
under a multiple knapsack uncertainty set

Similarly to how it was done for the MTZ-based model, we extend formulation 
(32)–(38) to consider multiple knapsacks. Again, we present a formulation containing 
two knapsacks as the extension to k knapsacks is trivial, but the number of constraints 
grows quickly. This formulation uses the same sets and parameters as the MTZ-based 

(51)
uj𝛿1Δd

2

≥ ui𝛿1(Δd
2
−𝜆) + d̄j + 𝜆 + Q(xij − 1), (i, j) ∈ A, j ∉ Sd

1
, j ∈ Sd

2
, 0 ≤ 𝜆 ≤ d̂j, 0 ≤ 𝛿1 ≤ Δd

1
,

(52)
uj𝛿1Δd

2
≥ ui(𝛿1−𝜆)(Δd

2
−𝜆) + d̄j + 𝜆 + Q(xij − 1), (i, j) ∈ A, j ∈ Sd

1
, j ∈ Sd

2
, 𝜆 ≤ d̂j,

(53)ujΔd
1
Δd

2
≤ Q, j ∈ N,

(54)
wj𝛿1𝛿2

≥ wi(𝛿1−𝜆)𝛿2
+ t̄ij + si + 𝜆 + bn+1(xij − 1),

(i, j) ∈ A, (i, j) ∈ St
1
, (i, j) ∉ St

2
, 0 ≤ 𝜆 ≤ min{t̂ij, 𝛿1} ≤ Δt

1
, 0 ≤ 𝛿2 ≤ Δt

2
,

(55)
wj𝛿1𝛿2

≥ wi𝛿1(𝛿2−𝜆)
+ t̄ij + si + 𝜆 + bn+1(xij − 1),

(i, j) ∈ A, (i, j) ∉ St
1
, (i, j) ∈ St

2
, 0 ≤ 𝛿1 ≤ Δt

1
, 𝜆 ≤ min{t̂ij, 𝛿2} ≤ Δt

2
,

(56)
wj𝛿1𝛿2

≥ wi(𝛿1−𝜆)(𝛿2−𝜆)
+ t̄ij + si + 𝜆 + bn+1(xij − 1),

(i, j) ∈ A, (i, j) ∈ St
1
, (i, j) ∈ St

2
, 0 ≤ 𝜆 ≤ t̂ij, 𝜆 ≤ 𝛿1 ≤ Δt

1
, 𝜆 ≤ 𝛿2 ≤ Δt

2
,

(57)aj ≤ wj�1�2
≤ bj, (i, j) ∈ A, 0 ≤ �1 ≤ Δt

1
, 0 ≤ �2 ≤ Δt

2
,

(58)ui�1�2 ≥ 0, i ∈ N, 0 ≤ �1 ≤ Δd
1
, 0 ≤ �2 ≤ Δd

2
,

(59)wi�1�2
≥ 0, i ∈ N, 0 ≤ �1 ≤ Δt

1
, 0 ≤ �2 ≤ Δt

2
.
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model, while the load and time variables are now fij�1�2 and gij�1�2 with similar interpre-
tations. The resulting model is given by:

(60)min
∑
(i,j)∈A

cijxij,

(61)
s.t. (6), (7), (12), and to∑
j∶(i,j)∈A

fij𝛿1𝛿2 ≥ d̄i +
∑

h∶(h,i)∈A

fhi𝛿1𝛿2 , i ∈ N, 0 ≤ 𝛿1 ≤ Δd
1
, 0 ≤ 𝛿2 ≤ Δd

2
,

(62)

∑
j∶(i,j)∈A

fij𝛿1𝛿2 ≥ d̄i + d̂i +
∑

h∶(h,i)∈A

fhi(𝛿1−d̂i)𝛿2
, i

∈ N, i ∈ Sd
1
, i ∉ Sd

2
, d̂i ≤ 𝛿1 ≤ Δd

1
, 0 ≤ 𝛿2 ≤ Δd

2
,

(63)

∑
j∶(i,j)∈A

fij𝛿1𝛿2 ≥ d̄i + d̂i +
∑

h∶(h,i)∈A

fhi𝛿1(𝛿2−d̂i)
, i ∈ N,

i ∉ Sd
1
, i ∈ Sd

2
, 0 ≤ 𝛿1 ≤ Δd

1
, d̂i ≤ 𝛿2 ≤ Δd

2
,

(64)

∑
j∶(i,j)∈A

fij𝛿1𝛿2 ≥ d̄i + d̂i +
∑

h∶(h,i)∈A

fhi(𝛿1−d̂i)(𝛿2−d̂i)
,

i ∈ N, i ∈ Sd
1
, i ∈ Sd

2
, 0 ≤ 𝛿1 ≤ Δd

1
, d̂i ≤ 𝛿2 ≤ Δd

2
,

(65)

∑
j∶(i,j)∈A

fijΔd
1
𝛿2
≥ d̄i + 𝜆 +

∑
h∶(h,i)∈A

fhi(Δd
1
−𝜆)𝛿2

, i ∈ N,

i ∈ Sd
1
, i ∉ Sd

2
, 0 ≤ 𝛿2 ≤ Δd

2
, 0 ≤ 𝜆 < d̂i,

(66)

∑
j∶(i,j)∈A

fij𝛿1Δd
2

≥ d̄i + 𝜆 +
∑

h∶(h,i)∈A

fhi𝛿1(Δd
2
−𝜆), i ∈ N,

i ∉ Sd
1
, i ∈ Sd

2
, 0 ≤ 𝛿1 ≤ Δd

1
, 0 ≤ 𝜆 < d̂i,

(67)

∑
j∶(i,j)∈A

fijΔd
1
Δd

2
≥ d̄i + 𝜆 +

∑
h∶(h,i)∈A

fhi(Δd
1
−𝜆)(Δd

2
−𝜆), i ∈ N, i ∈ Sd

1
, i ∈ Sd

2
, 0 ≤ 𝜆 < d̂i,

(68)dixij ≤ fij�1�2 ≤ (Q − dj)xij, (i, j) ∈ A, 0 ≤ �1 ≤ Δd
1
, 0 ≤ �2 ≤ Δd

2
,
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The interpretation of this model is similar to the previous one, but the variables are 
related to the arcs and not the nodes.

Appendix 3: Results for customer‑per‑route ratio

In this section, we present the average results for the customer-per-route ratio 
discussed in Sect.  5.4. The results are summarized in Table  10, which shows the 
average ratio for each budget and deviation (Dev) configuration for each uncertainty 
set. The budgets are displayed in the format [Γd,Γt] / [Δd,Δt] according to the 
uncertainty set.
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(69)

∑
j∶(i,j)∈A

gij𝛿1𝛿2 ≥
∑

h ∶ (h, i) ∈ A

𝜆 ≤ t̂hi

(ghi(𝛿1−𝜆)𝛿2 + (t̄hi + 𝜆)xhi) + si,

i ∈ N, (i, j) ∈ St
1
, (i, j) ∉ St

2
, 0 ≤ 𝜆 ≤ 𝛿1 ≤ Δt

1
, 0 ≤ 𝛿2 ≤ Δt

2
,

(70)

∑
j∶(i,j)∈A

gij𝛿1𝛿2 ≥
∑

h ∶ (h, i) ∈ A

𝜆 ≤ t̂hi

(ghi𝛿1(𝛿2−𝜆) + (t̄hi + 𝜆)xhi) + si,

i ∈ N, (i, j) ∉ St
1
, (i, j) ∈ St

2
, 0 ≤ 𝛿1 ≤ Δt

1
, 0 ≤ 𝜆 ≤ 𝛿2 ≤ Δt

2
,

(71)

∑
j∶(i,j)∈A

gij𝛿1𝛿2 ≥
∑

h ∶ (h, i) ∈ A

𝜆 ≤ t̂hi

(ghi(𝛿1−𝜆)(𝛿2−𝜆) + (t̄hi + 𝜆)xhi) + si,

i ∈ N, (i, j) ∈ St
1
, (i, j) ∈ St

2
, 0 ≤ 𝜆 ≤ 𝛿1 ≤ Δt

1
, 0 ≤ 𝜆 ≤ 𝛿2 ≤ Δt

2
,

(72)(aj + sj)xij ≤ gij�1�2 ≤ (bj + sj)xij, (i, j) ∈ A, 0 ≤ �1 ≤ Δt
1
, 0 ≤ �2 ≤ Δt

2

(73)xij ∈ {0, 1}, (i, j) ∈ A,

(74)fij�1�2 ≥ 0, (i, j) ∈ A, 0 ≤ �1 ≤ Δd
1
, 0 ≤ �2 ≤ Δd

2
,

(75)gij�1�2 ≥ 0, (i, j) ∈ A, 0 ≤ �1 ≤ Δt
1
, 0 ≤ �2 ≤ Δt

2
.
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