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Abstract
To optimize their order fulfillment processes, many e-commerce warehouses employ 
a storage assignment strategy known as scattered or mixed-shelves storage. Under 
this approach, unit loads of homogeneous products are divided, and individual 
pieces are stored in various shelves throughout the warehouse. This arrangement 
ensures that products that appear together on unpredictable pick lists are stored in 
close proximity somewhere in the huge warehouses, reducing the travel distance for 
pickers. Despite these advancements, efficiently guiding pickers through the ware-
house remains a significant planning challenge. Since the same products can be 
found in multiple storage positions, the traditional picker routing problem becomes 
more complex, as an additional selection task arises regarding which shelf to retrieve 
each requested product from. While previous research has developed several tailor-
made solution algorithms, we demonstrate that known transformation schemes used 
for different variants of the well-known Traveling Salesman Problem (TSP) can be 
utilized to convert the single picker routing problem with scattered storage (SPRP-
SS) into a classical TSP. This approach enables us to leverage the extensive array of 
state-of-the-art TSP solvers. The purpose of this paper is to explore the performance 
of these solvers when applied to solving the SPRP-SS. Through our computational 
study, we found that existing TSP solvers exhibit good performance, allowing near-
optimal solutions to be obtained in less than a second for real-world scale SPRP-SS 
instances. Moreover, the efficiency of these TSP solvers remains unaffected by the 
number of cross aisles in the warehouse. Consequently, we exploit this flexibility to 
investigate the impact of cross aisles on picking performance in scattered storage 
warehouses.
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1 Introduction

For years, the retail sector has been undergoing a structural transformation. Most 
recently, driven by the pandemic, e-commerce has been experiencing steady growth, 
which is expected to continue in the future (see, e.g., Lone et al. 2021). As a result, 
online retailers of all sizes are facing the challenge of managing an increasing num-
ber of small and heterogeneous orders, putting increased pressure on their supply 
chains. Marketing-induced trends such as next-day or same-day deliveries further 
amplify this effect, making warehouse operations highly time-critical (Boysen et al. 
2019). Consequently, efficient order fulfillment processes play a crucial role in the 
success of e-commerce.

Accordingly, novel warehousing systems have been developed and implemented 
for e-commerce operations. Among these, scattered storage (also known as mixed-
shelves storage) has emerged as a highly successful and widely adopted approach, 
suitable for picker-to-parts warehouses of all sizes due to its low investment costs 
and high scalability. In these facilities, batched orders are picked by human pickers 
who traverse the warehouse, following a similar approach to classical picker-to-parts 
warehousing. However, the key distinction lies in the storage strategy. Unlike the 
traditional setup, stock keeping units (SKUs) are not assigned to specific dedicated 
storage positions; instead, they are scattered in small quantities throughout the ware-
house. The fragmentation of trading units and the distribution of single pieces lead 
to a more work-intensive replenishment process. However, it ensures that a piece 
of any demanded SKU is always within proximity, regardless of the picker’s cur-
rent position within the warehouse. For small, heterogeneous, and hardly predictable 
orders, as commonly occurring in e-commerce, this storage scheme significantly 
reduces the length of picking tours (see, e.g., Weidinger 2018). Considering the high 
time pressure during order picking in comparison to restocking, the additional effort 
during replenishment is a price gladly paid by e-commerce retailers, as can be seen 
in the broad acceptance of scattered storage in practice. Further, this concept fits 
seamlessly into the tradition of warehouse optimization, as classical storage assign-
ment strategies, for example, are based on the same principle.

Regardless of its numerous advantages in e-commerce warehousing, scattered 
storage has a significant drawback: its higher reliance on human labor compared 
to other warehousing strategies often applied in this area. Compared to robotic 
mobile fulfillment systems, picking assisted by automated guided vehicles, and 
advanced picking stations, for example, scattered storage makes little use of mod-
ern automation technologies, such that labor costs constitute a substantial portion 
of operational expenses in direct comparison (see Boysen et al. 2019). To reduce 
these expenses, one crucial aspect is optimizing the order picking process (De 
Koster et al. 2007), during which pickers traverse the warehouse and visit storage 
positions to retrieve the demanded SKUs. Although the concept of scattered stor-
age aims to reduce unproductive picker travel, it is still worthwhile to optimize 
the route taken by pickers. This not only maximizes the potential benefits of the 
overall concept, thereby reducing costs, but also accelerates order assembly, ena-
bling the fulfillment of short-term delivery promises. The problem of determining 
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the shortest route through the warehouse, starting and ending at a depot while 
visiting a given set of storage positions, is widely known as the picker routing 
problem (see, e.g., Boysen et al. 2019). In traditional picker-to-parts warehouses, 
this problem is equivalent to the well-known Traveling Salesman Problem (TSP). 
However, in scattered storage warehouses, an additional selection problem arises, 
as pickers must decide from which alternative storage positions a demanded prod-
uct should be obtained (Daniels et  al. 1998). In the following, we refer to this 
problem as the single picker routing problem with scattered storage (SPRP-SS).

In recent years, several solution algorithms have been proposed for the SPRP-
SS (e.g., Weidinger 2018; Weidinger et al. 2019; Heßler and Irnich 2023). How-
ever, in this paper, our objective is not to develop a new tailor-made algorithm. 
Instead, we leverage the solution power of existing state-of-the-art TSP solvers. 
To achieve this, we utilize known transformation schemes that reduce various 
extended TSP variants to the standard TSP. Specifically, we apply transformations 
from the generalized TSP to the clustered TSP, then to the asymmetric TSP, and 
finally to the symmetric TSP, and show that they are also applicable to the SPRP-
SS. By employing generic TSP solvers, we gain the following main advantages:

(i) Previous tailor-made solution approaches for the SPRP-SS exploit that the 
routing subproblem can efficiently be solved once all storage positions to be vis-
ited are fixed. They utilize the dynamic program of Ratliff and Rosenthal (1983), 
or one of its extensions developed over the years, to solve the TSP within the 
parallel-aisle structure of a warehouse in polynomial time. This allows for an 
extremely fast solution of the routing subproblem, but it restricts the applicabil-
ity of the tailor-made algorithms to warehouses with a given parallel-aisle struc-
ture. However, some e-commerce warehouses deviate from this standard and, 
for instance, allow pickers to change levels in their multi-level mezzanine ware-
houses (Boysen et al. 2019; Tadumadze et al. 2023) or store products also within 
cross aisles (Jang and Sun 2011). Generic TSP solvers are not bound to specially 
structured distance matrices, induced by the parallel-aisle structure, and can also 
handle non-standard warehouse layouts.

(ii) Additionally, an extension of the algorithm proposed by Ratliff and Rosenthal 
(1983), developed by Pansart et al. (2018), enables the solution of the TSP within 
parallel-aisle structures with an arbitrary (yet fixed) number of cross aisles in poly-
nomial time. However, the runtime of this algorithm is heavily influenced by the 
number of cross aisles. In contrast, generic TSP solvers are not affected by the num-
ber of cross aisles, allowing us to leverage their capabilities to investigate the impact 
of different numbers of cross aisles on picking performance in scattered storage 
warehouses.

(iii) Being one of the classics of operations research, extensive research efforts 
have been devoted to the TSP over several decades (for a survey, e.g., refer to 
Laporte 1992). As a result, the research community has developed highly efficient 
exact and heuristic TSP solvers. By utilizing these solvers, we can effectively 
solve the SPRP-SS with good performance without any implementation effort 
and, additionally, link the research stream of the SPRP-SS with that of the TSP, so 
that novel methods for solving the TSP can also be applied to the SPRP-SS. Our 
computational study demonstrates that, while being outperformed by tailor-made 
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SPRP-SS solvers, current TSP solvers derive near-optimal solutions for real-world 
scale SPRP-SS instances in less than a second.

Therefore, this paper is dedicated to examining the performance of state-of-the-
art TSP solvers when applied to the SPRP-SS. In this context, the paper makes the 
following key contributions:

• Transformation of SPRP-SS into TSP: We demonstrate how to transform the 
SPRP-SS into the TSP. This transformation is straightforward and based on 
known schemes for cases where each order line on a pick list corresponds to 
a unique SKU and requires only a single piece. For scenarios involving multi-
piece demands and storage positions with multiple pieces of the same SKU in 
stock, new transformation schemes are proposed and evaluated.

• Performance evaluation of TSP Solvers: We evaluate the performance of state-
of-the-art TSP solvers when solving the SPRP-SS. The experimental results 
show that these solvers can efficiently handle real-world-sized instances of the 
problem, yielding near-optimal solutions.

• Impact of cross aisles: By leveraging the flexibility of generic TSP solvers, 
which are not affected by the number of cross aisles in a warehouse, we investi-
gate the optimal number of cross aisles for scattered storage warehouses.

The remaining sections of the paper are organized as follows: Sect.  2 provides a 
summary of the related literature. The formal definition of the problem and the pro-
posed solution approach based on transformation schemes are presented in Sects. 3 
and  4, respectively. In Sect.  5, we conduct a computational study to evaluate the 
solution procedure and address managerial aspects such as determining the optimal 
number of cross aisles in scattered storage warehouses. Finally, Sect. 6 concludes 
the paper.

2  Literature review

The field of e-commerce warehousing has received significant attention in recent 
years due to the growing importance of e-commerce. In this literature overview, we 
will focus on works closely related to our approach. For a comprehensive review of 
the warehousing literature, we recommend referring to the following in-depth litera-
ture reviews: De Koster et al. (2007); Gu et al. (2007, 2010); Van Gils et al. (2018); 
Azadeh et al. (2019); Boysen et al. (2019); Masae et al. (2020a). Plenty of recent 
research addresses the storage assignment in scattered storage warehouses, deciding 
on the placement of products in the shelves (e.g. Weidinger and Boysen 2018; Xu 
and Ren 2022; Albán et al. 2024). We, however, assume a given storage assignment 
and concentrate our literature survey on related routing research.

Many studies have addressed the picker routing problem (without scattered 
storage), which is one of the key operational planning problems in traditional 
warehousing research. Several rule-based heuristics have been proposed for this 
problem, including the traversal, midpoint, and largest gap strategies (Hall 1993), 
which have been further expanded with the return and composite heuristics 
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(Petersen 1997). As the picker routing problem is a special case of the TSP, algo-
rithms developed for the TSP, such as the procedure introduced by Lin and Ker-
nighan (1973), can also be applied. Their performance in the warehousing context 
has, for instance, been explored by Theys et  al. (2010). Extensions of the basic 
problem have been studied to address additional challenges, such as congestion 
(Chen et al. 2013) or precedence constraints, e.g., induced by fragility of products 
(Chabot et al. 2017).

An exact optimization approach for the picker routing problem (without scattered 
storage) within the parallel-aisle structure of warehouses with cross aisles at the 
front and back has been provided by Ratliff and Rosenthal (1983). Their dynamic 
program solves the resulting special case of the TSP, which is well-known to be 
strongly NP-hard for generals graphs, in polynomial time. Several extensions of this 
algorithm have been developed, including decentralized handover of picked prod-
ucts onto conveyors in the cross aisles (De Koster and Van der Poort 1998), handling 
precedence constraints (Žulj et  al. 2018), incorporating turn penalties (Çelik and 
Süral 2016), and accommodating dynamic order picking (Lu et al. 2016). The algo-
rithm of Ratliff and Rosenthal (1983) has also been extended to warehouses with an 
additional middle aisle (Roodbergen and De Koster 2001b), middle aisles containing 
storage positions (Jang and Sun 2011), and arbitrary start- and endpoints (Masae 
et  al. 2020b). Pansart et  al. (2018) demonstrate that the TSP in the parallel-aisle 
structure can still be solved in polynomial time for an arbitrary (but fixed) number 
of cross aisles. A recent extension focuses on incorporating four attributes present in 
modern warehouses, namely multi-block layouts, multiple depots, dynamic batch-
ing policies, and cartless subtours (Schiffer et  al. 2022). Furthermore, other exact 
approaches have been developed using techniques such as branch-and-bound (Rood-
bergen and De Koster 2001a), branch-and-cut (Chabot et al. 2017), and adapted TSP 
formulations (Scholz et al. 2016; Goeke and Schneider 2021). However, all of these 
approaches address traditional picker routing, where each SKU is located at a unique 
storage position.

Daniels et  al. (1998) introduce the concept of picker routing where SKUs can 
be available at multiple storage positions, thus modeling the single picker routing 
problem with scattered storage (SPRP-SS). They propose heuristic approaches based 
on nearest neighbor, shortest arc, and tabu search. Building upon this work, Weidinger 
(2018) proves the NP-hardness of the problem, even for the special case of parallel-
aisle warehouses, and proposes a decomposition heuristic based on the approach of 
Ratliff and Rosenthal (1983). An exact solution approach based on a mixed integer 
programming (MIP) model is suggested by Goeke and Schneider (2021). Also 
exploiting the structural properties proven by Ratliff and Rosenthal (1983) in a network 
flow model, Heßler and Irnich (2023) provide an exact solution approach for SPRP-SS, 
which is even faster than the one of Goeke and Schneider (2021) in most cases. While 
the aforementioned approaches are tailored for warehouses with cross aisles at the front 
and back, Su et al. (2023) suggest a MIP that can accommodate an arbitrary number 
of cross aisles. Finally, an integration of non-disjunct batching and multiple depots is 
investigated by Weidinger et al. (2019), while the combined problem of batching orders, 
batch assignment to pickers, and picker routing is tackled by Rasmi et al. (2022), both 
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focusing on heuristic solutions. However, all of these approaches are either restricted to 
parallel-aisle warehouses or rely on complex MIP formulations.

In conclusion, none of the three main contributions of this paper, as outlined in the 
introduction, have been previously addressed in the literature. Specifically, no prior 
research has focused on the transformation of SPRP-SS into the TSP, the exploration of 
state-of-the-art TSP solvers for solving SPRP-SS, or the determination of the optimal 
number of cross aisles in scattered storage warehouses.

3  The single picker routing problem with scattered storage

This section is devoted to defining the SPRP-SS, which is a combined selection and 
sequencing problem (Weidinger 2018). Among the storage positions that hold a 
requested SKU, a subset of positions to be visited must be selected to satisfy the total 
demand of the SKU. Additionally, the selected storage positions for all SKUs must be 
sequenced to create the shortest feasible picking tour, wherein all selected positions are 
visited, and a closed tour without any subtours is constructed.

This problem setting can be modeled as a MIP (quoted from Weidinger 2018), con-
sisting of objective function (3.1) and constraints (3.2) to (3.8), based on the symbols 
defined in Table 1.

(3.1)SPRP - SS MIP: Min. Z(�) =
∑

i∈N

∑

j∈N

di,j ⋅ xi,j

(3.2)subject to
∑

i∈N

xi,j = 1 ∀j ∈ N

Table 1  Notation for SPRP-SS MIP

Symbol Description

N Index set of warehouse positions (indices i, j, with i > 0 for storage positions and i = 0 for the 
depot)

M Index set of SKUs (index: k)
Nk Index set of storage positions containing a piece of SKU k (with ∪k∈MNk = N and 

Nk ∩ Nk� = ∅ ∀k, k� ∈ M ∶ k ≠ k� and i > 0 ∀k ∈ M, i ∈ Nk)
di,j Distance from position i to position j
qi Quantity of pieces stored at storage position i
Ik Total stock of SKU k (with 

∑

i∈Nk
qi = Ik)

rk Quantity of SKU k to be picked
xi,j Binary Variable: 1, if position j is visited consecutive to position i; 0, otherwise; if storage 

position i is not visited, xii = 1 is true
vi Integer variable: auxiliary variable for subtour elimination
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Objective function (3.1) minimizes the total travel length of the picking tour, by 
summing up the individual distances between selected and successively visited posi-
tions. Constraints (3.2) and (3.3) make sure that each position, represented by a node 
of the graph, has an input and output degree of one. This is either because it is part 
of the tour and therefore visited exactly once, or because it is not visited at all. In 
the latter case, the node is connected to itself by a loop. Constraints (3.4) ensure that 
the storage positions visited hold a sufficient number of pieces for each SKU to be 
picked. In contrast, optional constraints (3.5) guarantee that the picker does not visit 
more storage positions than needed to fulfill the demand of each SKU, as they make 
sure that demand cannot be fully satisfied if any selected storage position is deleted 
from the tour. Constraints (3.6) and (3.7) are subtour elimination constraints similar 
to the approach of Miller et al. (1960), but extended by the fact that not all storage 
positions must be part of the tour. Constraint (3.8), finally, defines the domain of 
binary variables x . Recall that strong NP-hardness has been proven by Weidinger 
(2018), even if the parallel-aisle structure of warehouses holds.

Note that scattered storage warehouses in general hold multiple SKUs per storage 
position. If more than one demanded SKU is stored within the same storage posi-
tion, the presented model and all following solution procedures are still applicable 
by introducing a position for each demanded SKU representing the same real-world 
storage position. By setting the distance between these newly introduced storage 
positions to zero, instances with the described setup can be solved without introduc-
ing additional complexity.

Several assumptions commonly made in the context of the single picker routing 
problem are also incorporated in this model formulation. These assumptions are as 
follows: 

1. Tours start and end at a depot: It is assumed that the picking tour starts and ends 
at a depot. Hereby, start and end depot do not have to be identical if the distance 
matrix is adapted accordingly such that this assumption results in little limitation.

(3.3)
∑

j∈N

xi,j = 1 ∀i ∈ N

(3.4)
∑

i∈Nk

qi ⋅ xi,i ≤ Ik − rk ∀k ∈ M

(3.5)
∑

i∈Nk⧵{j}

qi ⋅ xi,i + Ik ⋅ xj,j ≥ Ik − rk − qj + 1 ∀k ∈ M, j ∈ Nk

(3.6)vi − vj + |N| ⋅ xi,j − |N| ⋅ (xi,i + xj,j) ≤ |N| − 1 ∀i, j ∈ N ⧵ {0}

(3.7)vi ≥ 0 ∀i ∈ N

(3.8)xi,j ∈ {0, 1} ∀i, j ∈ N
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2. Order batching not considered: It is assumed that order batching has either 
already occurred, and the batches are fixed and unchangeable, or solving the 
picker routing problem is a subroutine of the order batching process, used to 
evaluate the quality of the batching decision. In both cases, the batches cannot 
be altered, and the demand to be picked remains fixed.

3. No interference between pickers: In a typical warehouse setting, multiple pickers 
work in parallel. However, for wide aisle warehouses where pickers can pass each 
other, it is generally assumed that pickers do not impede each other’s progress. 
Additionally, conflicts among pickers competing for the same SKUs are assumed 
to have been resolved during the upstream batching planning stage.

4. No impact of picking times: It is assumed that once the demand for SKUs on 
a pick list is determined, the picking times for those SKUs remain fixed. This 
implies that the picking times for a specific product do not vary across alterna-
tive picking positions. In the absence of varying picking times, minimizing the 
total travel time becomes the primary lever to influence picking performance (De 
Koster et al. 2007). However, if some positions provide significantly more SKUs 
than others, increased search time for the demanded product might occur. To 
avoid this, many warehouses restrict the maximum number of different SKUs per 
position in business practice. Alternatively, one could still interpret the distance 
parameter as a time value and summarize picking and travel times in d.

5. Deterministic data: It is assumed that distances and inventory values are static 
and known with certainty.

On top of these widely applied picker routing assumptions, a further critical 
assumption is the following: 

6. Sufficient inventory per storage position: Since most online orders are small and 
demand only one or two pieces (Boysen et al. 2019), it often occurs that the entire 
demand for each SKU can be fulfilled by visiting a single storage position that 
provides that SKU. Using the notation introduced in Table 1, this means that 
condition qi ≥ rk ∀i ∈ Nk, k ∈ M holds. Naturally, this assumption holds for pick 
lists which demand just a single piece per SKU. Thus, we refer to this case and 
the SPRP-SS instances where this assumption holds as the single-demand case 
and instances, respectively. However, there may still be instances where orders 
demand multiple pieces of some SKU that exceed the quantity of pieces stored 
at certain storage positions. In this case, it depends on the number of pieces per 
SKU stored at the single storage positions, which and how many positions must 
be visited to satisfy a multi-demand.

Whether or not this assumption holds (and whether we are in the single-demand 
or multi-demand case) strongly affects the TSP transformation. We will discuss 
this differentiation in the following section.
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4  A solution approach for the SPRP‑SS based on TSP transformations

If the single-demand assumption holds, then only one of the storage positions that 
store a demanded SKU needs to be visited by the picker. As a result, single-demand 
SPRP-SS instances can be directly transformed into the well-known generalized 
TSP (GTSP). Therefore, existing transformation schemes from the literature can be 
applied to convert this problem into the TSP. This approach is explained in detail 
in Sect.  4.1. For multi-demand cases, i.e., multiple storage positions holding a 
demanded SKU may need to be visited, the direct translation into the GTSP becomes 
more complex. In such cases, modified transformation schemes are required, which 
we discuss in Sect. 4.2.

4.1  Single‑demand case

The SPRP-SS under the single-demand assumption, as described in the previous 
section, is an extension of the classical TSP, which is one of the most extensively 
studied problems in optimization (see, e.g., Flood 1956). Consequently, there exists 
a vast body of literature and proposed solution approaches for the TSP, all aiming to 
find the shortest connected circular tour through a set of nodes in a weighted graph. 
Recall that, unlike the SPRP-SS, the classical TSP requires visiting all nodes in 
the tour. The proposed solution approach for the SPRP-SS builds upon the existing 
research on the TSP by transforming SPRP-SS instances into TSP instances. This 
approach has been mentioned in the literature (Heßler and Irnich 2023) but has not 
been thoroughly pursued yet. By leveraging this transformation, we can take advan-
tage of the established TSP research stream to address the SPRP-SS.

In the subsequent sections, we first demonstrate that, under the single-demand 
assumption, the SPRP-SS is equivalent to GTSP. We then proceed to transform the 
GTSP into the Clustered TSP (CTSP), which is further converted into an Asym-
metric TSP (ATSP). Although these transformation techniques have been previously 
presented by Noon and Bean (1993), we have made adaptations specific to our prob-
lem. The resulting ATSP can be addressed using various established TSP solvers. 
However, we go on to present a translation of the ATSP into the Symmetric TSP, 
which is the typical version referred to when discussing the TSP (as we do in this 
paper). Notably, the widely acclaimed Concorde solver (Applegate et al. 2003) spe-
cializes in solving TSP instances but is unable to handle ATSP instances.

4.1.1  SPRP‑SS to GTSP

For the GTSP, it is not necessary to visit all nodes. Instead, the set of nodes V 
is partitioned into |C| disjoint subsets Vc ⊆ V ∀c ∈ C (with ∪c∈CVc = V and 
Vc ∩ Vc� = � ∀c, c� ∈ C ∶ c ≠ c� ), and exactly one node per subset must be part of 
the tour (Gutin and Punnen 2006). Under the single-demand assumption, a one-to-one 
mapping exists between GTSP and SPRP-SS, as each storage position that provides 
a demanded SKU is sufficient to fulfill the total demand for that SKU. This mapping 
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involves introducing a partition for each demanded SKU and the depot. Each storage 
position that provides a specific SKU, represented by partition c ∈ C , is assigned to set 
Vc setting up a corresponding node. The depot itself forms its own dedicated partition. 
It is important to note that storage positions not supplying any demanded SKU should 
not be visited and are therefore eliminated from the problem data. As a result, a one-to-
one mapping between GTSP and SPRP-SS instances is established, provided that the 
single-demand assumption is valid.

Example: Fig. 1 illustrates an instance of the SPRP-SS (a), where one storage posi-
tion each for SKU A and SKU B needs to be visited. The proposed transformation 
scheme results in the GTSP instance shown in subfigure (b), where storage positions 
are indexed from left to right and distances are measured by counting squares. Note 
that, for simplicity, only edges incident to vertices A1 and A2 are displayed in the fig-
ure. As an example, the edge {D,A2} is assigned a weight of 6, representing the dis-
tance between the depot and the central storage position A2 of SKU A.

4.1.2  GTSP to CTSP

For the CTSP, the set of nodes V is still divided into disjoint subsets, referred to as 
clusters ( Vc ). In this variation of the TSP, all nodes must be included in the tour, and 
nodes within the same cluster must be visited consecutively. Given binary variables xi,j , 
where xi,j equals one iff node j directly follows node i in the current tour (as discussed 
in Sect. 3), the following constraint must be satisfied for the CTSP:

xi,k ⋅ xk,j ⋅ 1Vc
(i) ⋅ 1Vc

(j) ≤ 1Vc
(k) ∀i, j, k ∈ V , c ∈ C,

Fig. 1  Transformation schemes from SPRP-SS to TSP (only edges incident to A1 and A2 are depicted)
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where 1Vc
(i) represents the indicator function, which equals 1 if i ∈ Vc . Note that 

there are linear formulations available for this constraint, but for the sake of brevity, 
we opt not to present them here.

Different transformations schemes for different TSP variants have previously 
been addressed in literature (Chisman 1975; Noon and Bean 1993). In the fol-
lowing, we outline the procedure proposed by Noon and Bean (1993). The gen-
eral idea of the transformation is to construct zero-weighted Hamilton paths 
for each cluster by adding edges such that visiting all nodes within the cluster 
incurs no additional cost. Let �c be an ordering of the nodes belonging to clus-
ter c, and let �c(n) be the n-th node in that order. By adding zero-weighted edges 
(�c(n),�c(n + 1)) ∀n = 1,… , (|Vc| − 1) as well as edge (�c(|Vc|),�c(1)) , it is possi-
ble to visit all nodes of a cluster cost-neutrally in the predefined sequence, after hav-
ing entered via a cluster-node (see Fig. 1c). As each node can be visited only once, 
however, cluster c visited at node n will be left at node mod(n − 2, |Vc|) + 1 , with 
mod being the modulo function. In consequence, weights leaving the cluster must 
be adapted such that the updated weight for edge (�c(n), v) is identical to the initial 
weight of edge (�c(mod(n, |Vc|) + 1), v) ∀c ∈ C;n = 1,… , |Vc|;v ∈ V⧵Vc . Note that 
the transformation described introduces directed edges, regardless of whether the 
original problem was symmetric or asymmetric. As a result, the distance matrices to 
be considered become asymmetric. However, while the zero-weighted edges allow 
to visit all nodes of a cluster in direct succession without additional cost under the 
CTSP, this means that only the node where a cluster is entered is actually visited 
under the GTSP. The result is a polynomial-time transformation scheme between 
GTSP and CTSP.

Example (cont.): In the transformation from GTSP to CTSP, the nodes within 
a cluster are connected by circular directed edges (Fig.  1c). For simplicity, only 
the additional edges incident to nodes A1 and A2 are shown. Concerning the inter-
cluster edges, undirected edges are divided into two opposing directed edges. The 
weights of incoming edges, originating from clusters with only one node (e.g., the 
depot cluster), remain unchanged. For instance, the weight of the edge from D to 
A2 is still weighted by 6. However, for outgoing edges, the weights are adjusted 
according to the aforementioned procedure. As a result, the edge from A1 to D is 
assigned a weight of 6, resembling the weight of the edge {A2,D} in the GTSP 
instance (see Fig. 1b). It is important to mention that the weights of incoming edges 
might also change if they originate from a cluster with more than one node. For that 
cluster, the edges are outgoing and therefore require weight adaptation. This is the 
case for edge (B2, A2). Being an incoming edge for cluster A, it is not affected by the 
transformation regarding cluster A. However, as cluster B has more than one node, 
the weight of edge (B2, A2) needs to be set to 12, representing edge {B1,A2} of the 
GTSP instance.

4.1.3  CTSP to ATSP

In contrast to the CTSP, nodes can be sequenced in an arbitrary order in the ATSP 
(Asymmetric Traveling Salesman Problem), requiring a complete graph. However, 
when transforming a CTSP instance into an ATSP instance, it is necessary to ensure 
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that the optimal solution for the ATSP is feasible for the CTSP, meaning that nodes 
within a cluster are visited consecutively. By slightly modifying the transformation 
proposed by Noon and Bean (1993), the weights of inter-cluster edges in the CTSP 
are adjusted, and intra-cluster edges with prohibitively high weights are introduced 
to connect nodes within each cluster. Clearly, inter-cluster edges need to be selected 
for a feasible solution without subtours. However, by increasing the weights of the 
inter-cluster edges by a sufficiently large value � (see Fig. 1d), they become com-
paratively costly, ensuring that inter-cluster edges are selected only when necessary. 
This guarantees that the cluster condition of the CTSP is satisfied in the ATSP ver-
sion of the instance for any near-optimal solution. To determine an appropriate value 
of � , it is sufficient to set it equal to the sum of the weights of the most expensive 
(outgoing) inter-cluster edge per cluster, that is, � =

∑

c∈C maxv∈Vc,v
�∈V⧵Vc

{dv,v� } . 
Preliminary tests have shown that the exact value of � does not significantly affect 
the performance of standard solvers like Gurobi, as long as it is small enough to 
ensure computational stability. Since there are |C| inter-cluster edges in a feasible 
solution, the objective value achieved by the ATSP is increased by |C| ⋅ � compared 
to the CTSP, making |C| ⋅ � a lower bound for the objective value of the ATSP. With 
the definition provided for � above, an upper bound for the objective value achieved 
by the ATSP can be determined as (|C| + 1) ⋅ � . As a result, intra-cluster edges, 
which should be assigned prohibitively high weights, can be assigned a weight of � , 
effectively excluding them from the range of near optimal solutions.

Example (cont.): Given our previous example, the transformation to ATSP 
(see Fig.  1d) results in additional edges per cluster, all weighted by � (e.g., edge 
(A2, A1)). Additionally, the weights of inter-cluster edges are increased by �.

4.1.4  ATSP to TSP

In contrast to the ATSP, the distance matrix of an TSP instance is symmetric, i.e., 
dv,v� = dv�,v ∀v, v

� ∈ V ∶ v ≠ v� . Nevertheless, a symmetric instance can be obtained 
from an asymmetric instance by doubling the number of vertices. Based on Kumar 
and Li (1996), a transformation can be executed as follows: An auxiliary distance 
matrix D′ is created by adapting the edge weights:

with dmin = minv,v�∈V∶v≠v� {dvv� } and dmax = maxv,v�∈V∶v≠v� {dvv� } denoting the mini-
mum and maximum edge weight between two nodes and 𝜖 > 0 representing a small 
positive number. To abbreviate formulations, we substitute (3dmax − 4dmin + �) by � 
in the following. For every (so-called) real node v ∈ V  of the asymmetric instance, 
a corresponding virtual node v̄ is created, resulting in node set V̄  with cardinality 
|V̄| = 2 ⋅ |V| . By defining

(4.1)d′v,v′ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if v = v′,

dv,v′ , if (4 ⋅ dmin − 3 ⋅ dmax) > 0 and v ≠ v′,

dv,v′ + (3dmax − 4dmin + �) = dv,v′ + �, otherwise,

d̄v,v� = d̄v̄,v̄� = ∞, d̄v,v̄� = d̄v̄,v� = d�
v,v�

, d̄v,v̄ = d̄v̄,v = 0 ∀v, v� ∈ V
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with v̄ being the virtual node corresponding to real node v, a symmetric distance 
matrix D̄ of dimension |V̄| × |V̄| is created. Based on distance matrix D̄ , for any near 
optimal solution to the TSP problem in graph Ḡ = (V ∪ V̄ , Ē) real and complemen-
tary virtual nodes are visited alternately, as ∞ represents a prohibitively high edge 
weight. Note that |V̄| ⋅maxv,v�∈v̄{d̄v,v� } is a sufficiently large edge weight for this pur-
pose. By combining real and corresponding virtual nodes, these solutions also repre-
sent feasible solutions to the corresponding ATSP instance. However, the objective 
value of the TSP instance is higher, due to the transformation scheme. By inverting 
the above-mentioned equation (4.1) the objective value of the corresponding ATSP 
solution can be derived, i.e., in case (4 ⋅ dmin − 3 ⋅ dmax) > 0 , we subtract |V| ⋅ �.

Example (cont.): The TSP instance resulting from the final transformation is 
presented in Fig. 1e for our example. Again, only edges incident to nodes A1 and 
A2 are depicted. For all edges connecting two real or two virtual nodes, prohibi-
tively high weights are applied (e.g., {A1,A2} ). Edges connecting a real and the 
corresponding virtual node are weighted by zero (e.g., {A1, Ā1} ). For all remain-
ing edges, � is added in line with Formula (4.1).

With the described transformations, it becomes possible to convert any 
instance of the SPRP-SS into an (A)TSP instance. This allows for the utiliza-
tion of a wide range of state-of-the-art TSP solvers. The transformations are not 
restricted to a particular warehouse layout and are further suitable for non-stand-
ard warehouses violating the parallel-aisle structure such that a highly flexible 
solution approach for the SPRP-SS with single-demand is at hand.

4.2  Multi‑demand case

In this section, we adapt the transformation-based solution approach from the 
previous section to address the multi-demand case. In the multi-demand case, 
pick lists may require multiple pieces of a SKU, and the number of pieces avail-
able at a storage position influences which and how many positions holding the 
demanded SKU need to be visited.

Example: In Fig. 2a, an example for the multi-demand case is displayed. The 
warehouse contains five storage positions holding SKU A with the supply at the 
different positions being one, two, or three.

Unfortunately, under the multi-demand case, equivalence between 
SPRP-SS and GTSP no longer holds. Unlike the single-demand case where the 
transformation from SPRP-SS to TSP is exact, we now encounter a modeling gap. 
Our approximate transformation schemes from SPRP-SS lead to GTSP instances 
with a more constrained solution space. Therefore, the subsequent chain of 
transformations from GTSP to TSP ultimately yields only a heuristic solution for 
SPRP-SS. In the following, we present four different approximate transformation 
schemes from SPRP-SS, assuming the multi-demand scenario, to GTSP:

• No-split: Only storage positions holding a sufficient number of pieces to com-
pletely satisfy the demand of the respective SKU on the pick list are considered 
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in the transformation. All other storage positions with a lower stock level than 
the demanded quantity are deleted from the instance. Applying the notation of 
Table 1, this approach results in a reduction of sets Nk for all k ∈ M ∶ rk > 1 dur-
ing preprocessing such that Nk ∶= {i ∈ Nk ∶ qi ≥ rk} . If no such positions exist 
for at least one demanded SKU, i.e., if ∃k ∈ M ∶ {i ∈ Nk ∶ qi ≥ rk} = � , this 
transformation scheme returns infeasibility, although a feasible solution for the 
actual SPRP-SS instance may exist.

  Example (cont.): Referring to the example depicted in Fig. 2, transformation 
scheme No-split only considers the three storage positions holding more than the 
demanded rA = 2 pieces of SKU A, and ignores all the remaining positions (see 
Fig. 2b).

• SKU-split: Under this transformation scheme, each unit of demand rk of a SKU k 
is represented individually by one of rk virtual SKUs, whose single-unit demand 
on the pick list must be satisfied by visiting one of the storage positions of SKU 
k, which are partitioned among the virtual SKUs. The picker must then visit one 
storage position of each virtual SKU in order to collect rk pieces of original SKU 

Fig. 2  Different transformation schemes for multi-demand SPRP-SS instances. The stock level of a 
storage position is given at the bottom right
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k. If less than rk storage positions contain a demanded SKU, this transformation 
scheme returns infeasibility, although a feasible solution for the actual SPRP-
SS instance may exist. There are various ways to partition the storage positions 
among the virtual SKUs. We apply the following straightforward approach: stor-
age positions are indexed from bottom to top along the aisle, iterating through 
the aisles from left to right, before being assigned to partition i′ mod rk based on 
index i′.

  Example (cont.): To fulfill a demand of rA = 3 pieces of SKU A, SKU-split: 
introduces three virtual SKUs A1, A2, and A3 to the pick list each having a 
demand of one. The actual storage positions are partitioned among these virtual 
SKUs as depicted in Fig. 2c and their stock level is set to one.

• Position-split: For this approach, storage positions providing the same SKU are 
divided into subsets, similarly than for the SKU-split approach. However, here, 
the subsets � are built according to the current stock of the single storage posi-
tions, enabling the procedure to consider all pieces of a SKU stored at a specific 
storage position. Formally, with q(�l) being a function determining the minimum 
supply of a SKU within all storage positions assigned to subset �l , each storage 
position i gets assigned to a preliminary subset �l such that qi = q(�l) . The set of 
preliminary partitions K is then ordered in a descending way regarding the sup-
ply such that K = {�1, �2,… , �z} with q(𝜅1) > q(𝜅2) > … > q(𝜅z) . To determine 
the final subsets, which are aligned to the demand of the considered SKU, the 
supply values of the preliminary subsets are summarized in the previously 
defined order until the demand is met, i.e., � is minimized considering 
q(�1) + q(�2) +… + q(�� ) ≥ rk such that �� is the subset that is critical to fulfill 
the demand. If this method leads to overpicking, i.e., 

∑𝜓

j=1
q(𝜅j) > rk , it is evalu-

ated whether, instead of visiting a position of subset �� , the demand could also 
be fulfilled by visiting a position of another partition �� with a smaller supply. It 
is searched for the largest � for which 

∑�−1

j=1
q(�j) + q(��) ≥ rk still holds. Since 

demand can be satisfied irrespective if a position in �� or, if existent, in 
��+1,… , �� is visited, those subsets can be united. By neglecting all remaining 
subsets ��+1,… , �z and uniting the subsets �� ,… , �� , a final partition is deter-
mined by K̄ = {𝜅1, 𝜅2,… , 𝜅𝜓 ∪ 𝜅𝜓+1 ∪… ∪ 𝜅𝜉−1 ∪ 𝜅𝜉} . Again, a virtual SKU 
with a demand of one is introduced for each partition such that our transforma-
tion scheme ends in a picking tour visiting one storage position of each subset 
and hereby is able to collect a sufficient number of pieces per SKU.

  However, there are cases for which such a partition does not exist. Then, the 
approach subdivides partitions by additionally splitting �l into sl subsets, start-
ing with l = 1 and s1 = 2 . If the demand still cannot be satisfied, sl is iteratively 
incremented by one, creating additional partitions, until a sufficient number of 
pieces is available. If |�l| partitions are created, i.e., every storage position of 
subset �l needs to be visited by the picker, but the demand still cannot be met, 
l is incremented by one and sl is reset to two, i.e., the next subset is split. It is 
worth mentioning that this method can ultimately result in a dedicated parti-
tion for each storage position, and therefore always finds a feasible solution 
for a feasible initial SPRP-SS instance.
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  Example (cont.): Fig.  2d shows the transformation of Position-split for a 
demand of rA = 4 . Since storage positions holding SKU A with a supply of 
three, two, and one exist, Position-split creates three preliminary subsets, the 
first one containing the two storage positions with qi = 3 , the second one the 
position with qi = 2 , etc. The demand is attempted to be fulfilled by sorting 
the subsets in descending order such that the second subset is critical, i.e., 
�� = �2 with q(�2) = 2 because 

∑�

j=1
q(�j) = 3 + 2 ≥ 4 = rA . Clearly, visiting a 

position of subset �3 (with q(�3) = 1 ) instead of �2 would be sufficient to fulfill 
the demand of four as well such that �2 and �3 can be united. Eventually, the 
final partition in this example can be expressed by K̄ = {𝜅1, 𝜅2 ∪ 𝜅3} , i.e., the 
picker needs to visit one storage position containing three pieces and one stor-
age position containing either two pieces or one piece to fulfill the demand. 
An example in which a further subdivision of the subsets is necessary can be 
created by increasing the demand for SKU A to nine (see Fig. 2e). Since the 
preliminary division can only fulfill a demand of q(�1) + q(�2) + q(�3) = 6 , �1 
is further split into two subsets containing one position with a supply of three 
each. Since q(�(1)

1
) + q(�

(2)

1
) + q(�2) + q(�3) ≥ 9 = rA , the demand is met after 

one subdivision and the procedure terminates. As a result, the partition 
K̄ = {𝜅

(1)

1
, 𝜅

(2)

1
, 𝜅2, 𝜅3} contains two subsets each providing three pieces, as 

well as one subset providing two pieces and one piece respectively.
• Full-split: Our fourth transformation scheme extends the SKU-split as well 

as the Position-split scheme. Again, we introduce rk virtual SKUs with sin-
gle-unit demands for each unit of demand of the original SKU k. However, 
we also introduce virtual storage positions whenever a position holds more 
than a single piece of stock, and partition all resulting virtual storage posi-
tions among the virtual SKUs. Thus, we introduce a set Ñi of qi virtual storage 
positions for every position i where a demanded SKU is located. By defining 
the distances as dĩ,j̃ = 0 ∀ĩ, j̃ ∈ Ñi and dĩ,j = dj,ĩ = di,j ∀ĩ ∈ Ñi, j ∈ N⧵Ñi , it is 
made sure that visiting a virtual storage position ĩ induces the same costs as 
visiting the corresponding real storage position i. These storage positions are 
sequenced by the same pattern applied for SKU-split and the virtual SKUs 
are assigned to the sequence in alternating order with a stock of one per stor-
age position. Note that this scheme always leads to a feasible solution (if one 
exists for the original SPRP-SS instance), but is still heuristic and comes at 
the price of many virtual SKUs that may need to be added.

  Example (cont.): As depicted in Fig.  2f, Full-split transforms the multi-
demand instance by introducing virtual storage positions with zero distance 
among each other for each position containing more than one piece of SKU 
A. Furthermore, virtual SKUs A1,...,A5 are created and assigned in alternat-
ing order to the virtual positions each having a stock level of one. The pick 
demand for A1,...,A5 is set to one as well. This way, the picker has to visit as 
many (virtual) storage positions as pieces demanded by the original pick list 
such that full demand is met.
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5  Computational study

This section presents our computational study. First, we introduce its setup in 
Sect. 5.1. Then, we compare the performance of state-of-the-art TSP solvers for 
SPRP-SS under the single- and multi-demand cases in Sects. 5.2 and 5.3, respec-
tively. Finally, we apply the best performing TSP solver, which is unaffected by 
the number of cross aisles in the warehouse, to explore the optimal warehouse lay-
out concerning the number of cross aisles used in scattered storage warehouses.

All computational experiments were implemented using C# (Visual Studio 
2022) and executed on a 64-bit computer with an Intel Core i7–8700K (12 x 3.70 
GHz) CPU and 64 GB main memory using Windows 10 Professional.

5.1  Setup of study

Our computational tests are based on the data instances provided by Heßler and 
Irnich (2023). Specifically, we use those instances that represent warehouses with 
cross aisles at the front and back and five (ten) picking aisles each with a length 
of 30 (60) equally sized storage positions. For these two warehouse dimensions, 
pick lists with 3, 7, 15, and 30 SKUs were created. The total number of SKUs 
was determined such that each SKU occurs twice on average within the ware-
house (scatter factor of two), considering a skewed demand where A-, B-, and 
C-products account for 80%, 15%, and 5% of the demand, respectively. Hereby, 
20% of the SKUs were defined as A-, 30% as B-, and the remaining 50% as 
C-products. The storage positions are then assigned as follows: First a demand 
class is randomly chosen based on the demand pattern, then a SKU is selected 
with equal distribution from the chosen demand class. For a detailed description 
of these instances, please refer to Heßler and Irnich (2023). By combining all 
parameters in a full factorial approach and generating 50 instances per param-
eter combination, Heßler and Irnich (2023) provide a test bed of 400 instances 
for the described configuration. Note that proven optimal solutions are known for 
all instances, provided by the tailor-made SPRP-SS solver of Heßler and Irnich 
(2023), limited to the parallel-aisle structure.

Using these basic SPRP-SS instances, we apply the transformation schemes 
detailed in Sect. 4. The resulting ATSP and TSP instances are then solved with 
the following state-of-the-art TSP solvers:

• Off-the-shelf solver Gurobi (2023, version 9.5.2,) solving the MIP of Miller 
et al. (1960) for the ATSP. We dub this exact solution approach GurobiATSP.

• Exact TSP solver Concorde in version 03.12.19 (see Applegate et  al. 2003) 
solving the TSP. We denote this exact solution method ConcordeTSP.

• The Lin–Kernighan–Helsgaun (LKH) heuristic (Helsgaun 2017) solving the 
ATSP (dubbed LKHn

ATSP
 ). As the LKH heuristic has a stochastic component, it 

is repeatedly executed in a best-of-n approach, with the number of iterations n 
given in superscript.
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Additionally, we provide solutions attained from Gurobi solving the SPRP-SS 
MIP model presented in Sect. 3 and cited from Weidinger (2018). We refer to this 
approach by GurobiMIP . All solution approaches have been executed with a time 
limit of one hour per instance.

5.2  Benchmark results for the single‑demand case

The section presents the benchmark results for the single-demand case. In this case, 
we assume that each storage position contains sufficient inventory to fulfill the entire 
demand for the corresponding SKU. Consequently, only one storage position needs 
to be selected for each SKU, and the transformation from SPRP-SS to (A)TSP is 
exact. Thus, provided that the transformed (A)TSP instance is solved to proven opti-
mality, we obtain an exact solution for SPRP-SS.

First, we compare the performance of the three exact approaches: GurobiATSP , 
ConcordeTSP , and GurobiMIP . Table 2 presents the average runtimes in seconds ( �t ) 
and the standard deviation of runtimes ( �t ) for these approaches. Additionally, the 
table provides information about the average gap to the optimal solution (‘gap’) and 
the percentage of proven optimal solutions (‘% opt’). The results are differentiated 
based on warehouse dimensions (i.e., the number of picking aisles ‘#aisles’ and 
the length of aisles measured in storage positions ‘sp/aisle’) as well as the pick list 
length (‘picks’). Each row in Table 2 represents aggregations over 50 instances.

The results show that the approaches based on transforming the instances into 
an TSP, i.e., GurobiATSP and ConcordeTSP , are able to provide more proven optima 
in less average time. Only for the smallest instances with a pick list length of 
three, GurobiMIP was able to outperform the other two opponents. Regarding the 
transformation-based procedures, it can be observed that GurobiATSP outperforms 
ConcordeTSP for 3 and 7 picks, with lower mean runtimes and smaller standard 
deviations. GurobiATSP provides proven optimal solutions in less than 15.67 s for all 
instances of this size. However, this performance trend reverses for 15 and 30 picks. 
In these cases, ConcordeTSP outperforms GurobiATSP , despite solving a symmetric 
problem with twice the number of vertices compared to the asymmetric version 
solved by GurobiATSP . Interestingly, both approaches perform better for larger ware-
houses. Although the average number of storage positions to be selected remains 
the same for different warehouse sizes according to the instance generation scheme 
(see Sect. 5.1), larger warehouse dimensions result in the same number of vertices 
on average for the (A)TSP, but with a higher variance in edge weights. Both solvers 
appear to exploit this higher variance to find better bounds.

For 10 aisles and 15 picks, ConcordeTSP can find and prove all optimal solutions 
in approximately four minutes on average. However, for smaller warehouse 
dimensions and/or longer pick lists, the performance in finding proven optimal 
solutions significantly decreases. In the case of pick lists with a length of 30 picks, 
ConcordeTSP can only prove 4% of optimal solutions, while GurobiATSP cannot prove 
optimality for any of the instances. All three exact approaches exceed runtimes of 
1000  s for these instance sizes, making them impractical for use in a productive 
setting. For instances where all solvers fail to prove optimality, GurobiMIP delivers 
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the lowest optimality gaps. However, if proven optimality is no longer required, other 
(heuristic) (A)TSP solvers might be preferable. Finally, note that there is a trend of 
decreasing runtimes of all exact solvers if the size of the warehouse increases (for a 
constant number of picks). A reason for this (on first sight counterintuitive) behavior 
of the black-box solvers could be the following: Any additional picking aisle adds 
distance among subsets of picking positions (i.e., among those of different aisles), 
which adds information to solvers to prefer picking positions of the same aisles as 
potential successors. Seemingly, this allows the solvers to reduce the solution space.

We conclude that seeking exact SPRP-SS solutions via state-of-the-art (A)TSP 
solvers is not competitive with tailor-made SPRP-SS solvers. They only solve 
instances with up to 10 aisles and 15 picks to proven optimality. On the positive 
side, these (A)TSP solvers are readily available without additional implementation 
effort.

Next, we demonstrate that the previous conclusion does not hold for state-of-the-
art heuristic ATSP solvers. To achieve significantly faster solutions of good qual-
ity, a heuristic approach can be employed to solve the transformed ATSP instances. 
Table 3 presents average runtimes and optimality gaps, as defined above, for apply-
ing the LKH heuristic ( LKHn

ATSP
 ) in a best-of-n approach for the same instances 

used in the previous test. Recall that LKHn
ATSP

 cannot prove optimality, which is why 
the respective columns are not included in Table 3.

These results show that even with a single iteration ( LKH1
ATSP

 ), LKH is capable 
of finding near-optimal solutions with an average optimality gap of only 0.22% in 
approximately 0.17 s on average. For 376 out of a total of 400 instances, optimal 
solutions are found. If a higher solution quality is desired, several repetitions of 
LKH can be performed in a best-of-n approach. With ten repetitions ( LKH10

ATSP
 ), 

all but four instances are solved optimally, with only a slight increase in runtime 
to a still reasonable average of 0.97  s. By performing even more iterations, all 
instances can be solved optimally ( LKH100

ATSP
 ). Note that Appendix  1 provides 

detailed performance data for LKH on a larger instance set of Heßler and Irnich 
(2023) including 2400 instances and even larger warehouses. The results displayed 

Table 3  Performance of the LKH heuristic with n ∈ {1, 10, 100} iterations

#aisles sp/aisle picks LKH
1

ATSP
LKH

10

ATSP
LKH

100

ATSP

�
t

�
t

gap �
t

�
t

gap �
t

�
t

gap

5 30 3 0.083 0.011 0.000% 0.092 0.020 0.000% 0.311 0.097 0.000%
7 0.084 0.014 0.000% 0.191 0.058 0.000% 1.263 0.531 0.000%
15 0.140 0.027 0.279% 0.707 0.234 0.000% 6.280 2.241 0.000%
30 0.293 0.040 0.313% 2.185 0.350 0.000% 20.702 3.518 0.000%

10 60 3 0.084 0.013 0.000% 0.094 0.023 0.000% 0.321 0.161 0.000%
7 0.086 0.014 0.066% 0.229 0.155 0.044% 1.450 0.817 0.000%
15 0.155 0.031 0.288% 0.821 0.262 0.000% 7.484 2.605 0.000%
30 0.432 0.093 0.778% 3.448 0.891 0.076% 33.506 8.760 0.000%

avg. 0.170 0.030 0.216% 0.971 0.249 0.015% 8.915 2.341 0.000%
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there are comparable to the ones discussed in this paragraph. Even for the largest 
of these instances with 50 picking aisles of a length of 180 storage positions each, 
the runtime of LKH1

ATSP
 never reaches one second and the gap is still well below 

0.3% on average. We conclude that if only heuristic solutions are aspired and 
good solutions need to be obtained quickly, then applying a state-of-the-art ATSP 
solver such as LKH seems the perfect choice for the single-demand case. Without 
additional implementation effort, solutions to SPRP-SS instances of real-world size 
can be obtained in less than a second and with negligible optimality gaps.

5.3  Benchmark results for the multi‑demand cases

In this section, we switch to the multi-demand case and benchmark our alternative 
transformation schemes (see Sect. 4.2), if pick lists may require multiple pieces of 
some SKUs. To test our transformation schemes, the multi-demand version of the 
previously applied test bed with a pick list length of 3 and 7 is employed (see Heßler 
and Irnich 2023). By generating two additional parameters, namely the stock avail-
able at each position and the pick demand for each SKU at the pick list, the single 
demand instances can be transformed into multi-demand ones. For the instances of 
Heßler and Irnich (2023), the current stock is drawn independently from U(1, 3) for 
each position, with U representing the uniform distribution. A similar approach is 
implemented for the pick demand, which is drawn from U(1,min {6,

∑

i∈Nk
qi}) for 

each demanded SKU. Providing further insights into the performance of the pro-
cedures, we derive multiple versions of each instance by trimming the maximum 
demand for a SKU to rmax ∈ {2, 3, 4, 5, 6} . As Heßler and Irnich (2023) provide 
proven optimal solutions for instances with a maximal demand of six pieces per 
SKU only, we determine optimal solutions for the trimmed versions of the instances 
employing Gurobi solving the MIP model of Weidinger (2018) without time limit.

The results of the tests are presented in Table 4. Here, the average gap to the opti-
mal solution value (gap), the number of optimal solutions found (opt.), as well as 
the number of feasible solutions found (feas.) is given for the different approaches. 
Additionally, the columns combined present the performance indicators for a best-
of-four approach, representing the best solution found among all four procedures. 
For all approaches, the resulting ATSP instances have been solved employing the 
LKH100

ATSP
 approach.

As can be seen in the data, the proposed approaches provide good results even 
for multi-demand cases with up to six demanded pieces per SKU. While solution 
quality decreases for higher demands per SKU, the average optimality gap for all 
evaluated settings is at most 2%, while at least 80% of the instances are solved to 
optimality if the combined approach is applied. Hereby, especially, the approach 
Full-split delivers good-quality solutions with an optimality gap of only 1.95% on 
average over all scenarios and a success rate of 81.5% for finding optimal solutions. 
By combining the approaches No-split, Position-split, and Full-split, these results 
can further be improved to an optimality gap of only about 1.1% on average and 
more than 88% optimal solutions. Note that the SKU-split procedure never provides 
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a best solution, that has not been found by at least one of the other approaches as 
well.

After conducting our study, we once again conclude that using a state-of-the-art 
heuristic ATSP solver, such as LKH, yields nearly optimal solutions in a reasonable 
amount of time, even for the multi-demand case. Therefore, for practical applica-
tions where small optimality gaps are acceptable, there appears to be no need to 
employ tailor-made SPRP-SS solvers.

5.4  Cross aisles

In an additional test, the flexibility of the approach is exploited to study the influ-
ence of the number of cross aisles on the average length of picking tours. The num-
ber of cross aisles has two antagonistic main effects on the evaluation criteria, i.e., 
the average length of picking tours. Introducing more cross aisles allows for greater 
flexibility in changing picking aisles, which tends to reduce average tour lengths 
(effect 1). However, additional cross aisles also require more floor space, leading to 
larger warehouses and therefore longer average picking tours (effect 2). This tradeoff 
has gathered significant attention from both the scientific community and practition-
ers (Vaughan and Petersen 1999; Roodbergen and De Koster 2001a). To address this 
tradeoff in a scattered storage warehouse, we again employ the dataset of Heßler 
and Irnich (2023) with a scatter factor of two. To provide more insights, however, 
instances with five and ten aisles, aisle lengths of 30 and 60 storage positions, and 
differing pick list lengths have been tackled in a full factorial approach. For each 
of the 50 instances per warehouse size and pick list length, we started with a clas-
sical one-block layout, i.e., two cross aisles (see Fig. 1a). For that basic layout, we 
attained a solution using the LKH100

ATSP
 approach. Incrementing the number of cross 

aisles iteratively by one, and solving the resulting instances again with the same 
approach, i.e., LKH100

ATSP
 , we kept track of the solution values obtained for identical 

instances with differing number of cross aisles. The procedure has been repeated 
until the average tour length reached a minimum and started to increase again (i.e., 
effect 2 outweighs effect 1). Once the minimum has been exceeded by more than 
2%, the procedure has been terminated and a binary search was started to identify 
the number of cross aisles, for which the average tour length exceeds the value for 
two cross aisles only.

Note that we arrange the cross aisle as equidistantly as possible within the pick-
ing aisles. However, due to the non-divisibility of the storage positions, a perfect 
equidistant distribution of cross aisles could not be achieved for all settings.

The results of the tests are presented in Table 5, discriminated by the number of 
picking aisles, the length of picking aisles measured in storage positions per aisle, 
as well as the length of the pick lists. To account for the flat optima observed in the 
data, we report the number of cross aisles, which exceeded the minimum average 
tour length by less than one percent (#CA*). We further provide the interval of 
average tour lengths achieved (mean rel. length), set in relation to the average tour 
length obtained by the traditional one-block layout, which has cross aisles only at 
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the front and back (see Fig. 1a). Finally, the minimum number of cross aisles for 
which the average tour length exceeds the benchmark of a classical one-block layout 
is given in column #CA∇ . Note, that for some settings, such a value could not be 
identified. Analyzing the data reveals the following key findings:

• Potential savings are higher for larger warehouses and longer pick lists: As the 
size of the warehouse increases, the number and/or length of the picking aisles 
also increases. In these scenarios, additional shortcuts have a greater potential 
to reduce the length of picking tours. The same principle applies to longer pick 
lists. Since the average tour length increases with longer pick lists, there are 
more opportunities to utilize shortcuts, leading to increased benefits from addi-
tional cross aisles.

• The optimal number of cross aisles depends on interaction effects: Although all 
examined parameters have some influence on the optimal number of cross aisles, 
interaction effects can be observed. While the length of the pick list does not 
have major effects on the optimal number of cross aisles for the smallest ware-
houses tackled (for instance, 5 cross aisles are within the #CA*-interval for all 
pick list lengths in 5×30 warehouses), the factor importance increases for larger 
warehouses. In tendency, larger warehouses (and longer pick lists in larger ware-
houses) come with a demand for more cross aisles.

• Negative effects prevail only for an extremely high number of cross aisles: Across 
all experiments, the decreasing effect of an excessively large number of cross 
aisles could be observed. However, the point where more cross aisles even fall 
behind the traditional warehouse with just two cross aisles is only reached (if at 
all) at an unrealistically high number of cross aisles for all settings.

Based on these initial results, it can be assumed that the optimal number of cross 
aisles evaluated by the average length of picking tours tends to be higher than what 
is commonly observed in real-world facilities. During many visits to warehouses, 

Table 5  (Near) optimal number of cross aisles (#CA*), avg. picking tour length relative to tour length 
with two cross aisles (mean rel. length), and mean number of cross aisles leading to longer avg. tours 
than a one-block layout ( #CA∇ ) discriminated by different warehouse dimensions and pick lists

Number of 
picking aisles
sp/aisle

picks 5 10

#CA* mean rel. length #CA
∇ #CA* mean rel. length #CA

∇

30 3 (3–5) (88.97% - 89.96%) 12 (4–5) (88.53% - 89.14%) 14
7 (4–5) (83.29% - 83.43%) 17 (4–6) (82.37% - 83.24%) 21
15 (5–7) (79.72% - 80.07%) 23 (6–9) (75.66% - 76.64%) –
30 (5–8) (79.46% - 80.44%) 27 (7–10) (71.44% - 72.20%) –

60 3 (4–6) (84.89% - 85.51%) 21 (5–7) (84.38% - 84.83%) 25
7 (4–6) (78.11% - 78.63%) 30 (5–7) (76.74% - 77.51%) 37
15 (5–8) (73.52% - 74.37%) 40 (7–11) (65.62% - 66.29%) –
30 (7–12) (67.10% - 67.86%) – (8–16) (60.43% - 61.13%) –



1 3

Picker routing in scattered storage warehouses: an evaluation…

the authors found most often only a handful of cross aisles within comparable stor-
age areas. Therefore, warehouse managers should not shy away from implementing 
an adequate number of cross aisles due to concerns about increased floor space, at 
least if the average picking tour length is the benchmark value and additional floor 
space is easily available, e.g., if a warehouse is newly built on a green field. Clearly, 
in business practice, additional decision criteria must be evaluated, i.e., the costs of 
implementing and maintaining additional floor space. Seeing that the optimal num-
ber of cross aisles for a 10x30 warehouse increased floor space by about 19% in our 
tests (see Appendix 2, Fig. 4), these costs might be significant. Still, on the positive 
side a reduction of unproductive walking times by nearly 30% is promised. Based on 
these results, the most profitable decision must be made for each particular setting, 
as operating and labor costs are highly fluctuating, and therefore optimal decisions 
might vary for differing locations and time periods.

5.5  Non‑rectangular warehouse layouts

In the last computational test of this study, we tackle non-rectangular warehouse 
layouts to provide insights into the solution performance of the proposed approaches 
in such environments. For these tests, the instances of Heßler and Irnich (2023) 
have been transformed into two widely known non-rectangular layouts, namely 
the flying-V and the fishbone layout (see, e.g., Pohl et al. 2009; Clark and Meller 
2013; Çelk and Süral 2014; Cardona et  al. 2015). As for the flying-V layout, we 
add diagonal cross aisles such that each cross aisle starts at the (centered) depot 
and connects the picking aisles to the left and right at a 45◦ angle (see Fig. 3b). The 
resulting triangular picking areas are additionally reflected across a diagonal line for 
the fishbone layout (see Fig. 3c). Note that due to Concorde’s limitation to integer 
parameters, we approximate a diagonal movement of one square by 

√

2 ≈ 1.4 such 
that we can attain integrity by applying factor five to the distance values. To ensure 
comparability, we use this procedure for all solution approaches.

These transformations have been applied to the 200 instances of Heßler and 
Irnich (2023) with five picking aisles of length 30 and a scatter factor of two. Each 
of the resulting instances has been solved employing GurobiATSP , ConcordeTSP , 

Fig. 3  An SPRP-SS instance in different warehouse layouts
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GurobiMIP , and LKH100
ATSP

 with a time limit of one hour each per instance. Table 6 
presents the mean runtimes ( �t ), standard deviation of runtimes ( �t ), gap to the 
best known solution (gap), and percentage of proven optimal solutions attained 
(% opt.), discriminated by the different approaches, layouts, and pick list lengths 
(picks) and averaged over 50 instances per cell. As can be seen based on the 
results, the presented approaches can be applied to non-rectangular layouts 
without any decrease in performance. Again, both TSP-based solution procedures 
outperform the SPRP-SS MIP model solved by Gurobi. While the single values 
vary a bit, no significant differences in performance can be identified, such that 
again GurobiATSP is preferable for short pick lists and ConcordeTSP should be 
applied for longer pick lists. Remarkable is (once again) the outstanding solution 
quality of the LKH100

ATSP
 approach, which finds all best known solutions in only a 

fraction of the time of the exact approaches.
It can be concluded that the presented solution approaches are highly flexible and, 

according to the first tests conducted, robust regarding solution performance and 
time over differing layouts.

Table 6  Performance of solution approaches for non-rectangular warehouse layouts

Flying-V layout Fishbone layout

Solver picks �
t

�
t

gap % opt �
t

�
t

gap % opt

GurobiATSP 3 0.155 0.144 0.00% 100% 0.168 0.167 0.00% 100%
7 1.961 2.255 0.00% 100% 1.771 2.106 0.00% 100%
15 1107.094 1450.830 0.00% 78% 1131.232 1396.762 0.00% 82%
30 3600.201 0.082 3.40% 0% 3600.226 0.076 2.36% 0%

ConcordeTSP 3 0.339 0.286 0.00% 100% 0.322 0.255 0.00% 100%
7 7.028 7.996 0.00% 100% 8.038 11.381 0.00% 100%
15 826.106 1223.842 0.00% 88% 773.332 1106.791 0.04% 94%
30 3478.538 604.304 2.40% 4% 3540.539 420.524 2.22% 2%

GurobiMIP 3 0.102 0.084 0.00% 100% 0.114 0.094 0.00% 100%
7 11.015 7.906 0.00% 100% 13.361 9.553 0.00% 100%
15 1911.647 1605.228 0.00% 58% 2205.545 1614.657 0.14% 44%
30 3600.334 0.143 3.63% 0% 3600.369 0.136 3.95% 0%

LKH
100

ATSP
3 0.185 0.031 0.00% – 0.190 0.021 0.00% –
7 0.429 0.149 0.00% – 0.464 0.158 0.00% –
15 2.062 0.766 0.00% – 2.148 0.769 0.00% –
30 7.625 1.352 0.00% – 7.657 1.422 0.00% –
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6  Conclusion

This paper is dedicated to proposing a flexible approach for solving the single picker 
routing problem with scattered storage (SPRP-SS) either exact or heuristically, by pro-
viding transformation schemes of the problem into a classical (asymmetric) TSP. This 
transformation allows us to address all possible warehouse layouts and establishes a 
connection between SPRP-SS and TSP. By doing so, we can leverage the extensive 
array of powerful TSP solvers available to tackle the SPRP-SS effectively.

Through an extensive computational study, the novel approach demonstrates 
remarkable potential and achieves excellent performance by delivering near-optimal 
solutions in less than a second, even for warehouses of realistic sizes. On the manage-
rial front, the approach provides initial insights into the optimal number of cross aisles 
required in mixed-shelves storage warehouses. Specifically, it identifies the size of the 
warehouse, rather than the length of the pick lists, as a key driver influencing the opti-
mal number of cross aisles.

Based on the ideas presented in this paper, future research should primarily con-
centrate on benchmarking additional TSP solvers, while leveraging the transformation 
schemes proposed in this study. Moreover, it is essential to acknowledge that many 
real-world scattered storage warehouses expand beyond the basic SPRP-SS to encom-
pass various other complexities. These complexities may include dynamic batching of 
bins on the cart, cartless subtours, or the integration of stowing products in the shelves 
before transitioning to picking (see Boysen et al. 2019). Therefore, it becomes impera-
tive for future research to investigate whether these extended problem settings neces-
sitate the development of new tailor-made routing algorithms or if existing solvers for 
standard routing tasks can be adapted and effectively reused, especially for subprob-
lems. Further, the results of this paper can be employed to extend analytical frameworks 
for the  TSP towards scattered storage picker routing. Finally, a more comprehensive 
analysis of the costs and benefits of cross aisles is an interesting research question.

Appendix 1: Detailed results of the Lin–Kernighan–Helsgaun 
heuristic

See Table 7.

Appendix 2: Cross aisles: performance gain versus space utilization

See Fig. 4.



 C. Wildt et al.

1 3

Table 7  Mean optimality gaps and solution times for the Lin–Kernighan–Helsgaun heuristic with 1, 10, 
and 100 iterations for the whole dataset

#aisles sp/aisle len pl LKH
1

ATSP
LKH

10

ATSP
LKH

100

ATSP

�
t

�
t

gap �
t

�
t

gap �
t

�
t

gap

5 30 3 0.083 0.011 0.000% 0.092 0.020 0.000% 0.311 0.097 0.000%
7 0.084 0.014 0.000% 0.191 0.058 0.000% 1.263 0.531 0.000%
15 0.140 0.027 0.279% 0.707 0.234 0.000% 6.280 2.241 0.000%
30 0.293 0.040 0.313% 2.185 0.350 0.000% 20.702 3.518 0.000%

60 3 0.086 0.010 0.000% 0.096 0.021 0.000% 0.314 0.135 0.000%
7 0.085 0.014 0.107% 0.210 0.079 0.000% 1.374 0.720 0.000%
15 0.149 0.032 0.285% 0.794 0.267 0.000% 7.137 2.641 0.000%
30 0.364 0.059 0.426% 2.805 0.609 0.030% 26.830 5.964 0.000%

180 3 0.086 0.012 0.000% 0.101 0.025 0.000% 0.358 0.154 0.000%
7 0.085 0.016 0.140% 0.245 0.096 0.000% 1.721 0.881 0.000%
15 0.164 0.042 0.415% 0.943 0.314 0.000% 8.672 3.116 0.000%
30 0.450 0.087 0.491% 3.658 0.829 0.000% 35.277 8.146 0.000%

10 30 3 0.075 0.011 0.000% 0.096 0.023 0.000% 0.353 0.150 0.000%
7 0.086 0.013 0.113% 0.214 0.064 0.000% 1.437 0.609 0.000%
15 0.149 0.026 0.180% 0.782 0.239 0.154% 7.098 2.344 0.000%
30 0.402 0.079 0.835% 2.852 0.520 0.053% 27.738 5.089 0.000%

60 3 0.084 0.013 0.000% 0.094 0.023 0.000% 0.321 0.161 0.000%
7 0.086 0.014 0.066% 0.229 0.155 0.044% 1.450 0.817 0.000%
15 0.155 0.031 0.288% 0.821 0.262 0.000% 7.484 2.605 0.000%
30 0.432 0.093 0.778% 3.448 0.891 0.076% 33.506 8.760 0.000%

180 3 0.086 0.012 0.041% 0.094 0.021 0.000% 0.314 0.140 0.000%
7 0.088 0.019 0.111% 0.211 0.078 0.000% 1.417 0.714 0.000%
15 0.173 0.038 0.227% 0.855 0.288 0.000% 7.509 2.851 0.000%
30 0.486 0.104 0.607% 3.823 0.957 0.008% 36.634 9.060 0.000%

25 30 3 0.087 0.013 0.000% 0.094 0.023 0.000% 0.318 0.146 0.000%
7 0.086 0.014 0.023% 0.199 0.073 0.000% 1.311 0.690 0.000%
15 0.149 0.033 0.193% 0.813 0.283 0.000% 7.355 2.776 0.000%
30 0.430 0.098 0.569% 3.464 0.902 0.080% 33.793 9.004 0.000%

60 3 0.086 0.010 0.000% 0.097 0.025 0.000% 0.330 0.130 0.000%
7 0.088 0.012 0.030% 0.194 0.066 0.000% 1.283 0.629 0.000%
15 0.153 0.032 0.473% 0.794 0.265 0.000% 7.285 2.650 0.000%
30 0.439 0.098 0.342% 3.511 0.903 0.000% 34.058 8.920 0.000%

180 3 0.084 0.011 0.078% 0.097 0.022 0.000% 0.345 0.170 0.000%
7 0.088 0.013 0.351% 0.202 0.068 0.000% 1.351 0.664 0.000%
15 0.154 0.036 0.160% 0.813 0.282 0.018% 7.390 2.761 0.000%
30 0.461 0.106 0.590% 3.714 1.008 0.000% 35.924 9.741 0.000%

50 30 3 0.085 0.014 0.000% 0.098 0.025 0.000% 0.346 0.141 0.000%
7 0.082 0.019 0.993% 0.231 0.071 0.119% 1.600 0.663 0.000%
15 0.167 0.040 0.762% 0.953 0.334 0.011% 8.791 3.313 0.000%
30 0.467 0.091 0.492% 3.782 0.838 0.038% 36.869 8.263 0.015%
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Table 7  (continued)

#aisles sp/aisle len pl LKH
1

ATSP
LKH

10

ATSP
LKH

100

ATSP

�
t

�
t

gap �
t

�
t

gap �
t

�
t

gap

60 3 0.083 0.009 0.196% 0.095 0.025 0.000% 0.332 0.136 0.000%
7 0.087 0.013 0.240% 0.212 0.070 0.000% 1.444 0.628 0.000%
15 0.154 0.032 0.186% 0.827 0.251 0.082% 7.443 2.412 0.022%
30 0.452 0.092 0.372% 3.655 0.880 0.000% 35.559 8.624 0.000%

180 3 0.085 0.009 0.297% 0.101 0.028 0.000% 0.371 0.193 0.000%
7 0.090 0.017 0.190% 0.215 0.092 0.000% 1.511 0.854 0.000%
15 0.155 0.032 0.066% 0.832 0.255 0.016% 7.568 2.552 0.000%
30 0.477 0.108 0.130% 3.883 1.012 0.000% 37.594 9.983 0.000%

avg 0.189 0.037 0.259% 1.134 0.296 0.015% 10.535 2.864 0.001%

Fig. 4  Impact of cross aisles on the lengths of picking tours and the resulting warehouse size for a 
warehouse with 10 aisles with a length of 30 storage positions per aisle and a pick list length of 30. All 
values are set in relation to a classical one-block layout with two cross aisles only

https://logistik.bwl.uni-mainz.de/forschung/benchmarks/
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