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Abstract
In this work, a stochastic dynamic version of the container drayage problem is stud-
ied. The presented model incorporates uncertainty in the form of stochastic loading 
and unloading times at both terminals and customers, as well as stochastic travel 
times, conditionally dependent upon the departure time, allowing robust plan-
ning with respect to varying processing times. Moreover, the presented model is 
dynamic, allowing flexible orders and having the capability of re-solving the opti-
mization problem in case of last-minute orders. Finally, the model also incorporates 
a truck appointment system operating at each terminal. First, a description of the 
general model is given, which amounts to a mixed integer non-linear program. In 
order to efficiently solve the optimization problem, and linearize both the objective 
and the conditional chance constraints, it is reformulated based on time window par-
titioning, yielding a purely integer linear program. As a test case, a large road carrier 
operating in the port of Antwerp is considered. We demonstrate that the model is 
efficiently solvable, even for instances of up to 300 orders. Moreover, the impact of 
incorporating stochastic information is clearly illustrated.

Keywords Container drayage problem · Truck appointment scheduling · Real-time · 
Stochastic · Routing optimization

 * Kenneth Stoop 
 kenneth.stoop@ugent.be

 Mario Pickavet 
 mario.pickavet@ugent.be

 Didier Colle 
 didier.colle@ugent.be

 Pieter Audenaert 
 pieter.audenaert@ugent.be

1 IDLab, Ghent University - imec, 9000 Ghent, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-024-00762-2&domain=pdf
http://orcid.org/0000-0001-7972-5052
http://orcid.org/0000-0001-5817-7886
http://orcid.org/0000-0002-1428-0301
http://orcid.org/0000-0003-3319-4705


954 K. Stoop et al.

1 3

1 Introduction

Considering global trades, the short-distance road transport of containers—dray-
age—is an important link in the associated logistic chain (see Fig. 1) and contrib-
utes roughly 30% to the total long-distance transportation cost (Spasovic and Mor-
lok 1993). Drayage operations encompass all short-distance transports of containers 
over the road, as sea vessels or trains lack door-to-door services. Ever-increasing 
overseas trades make the problem of optimizing these drayage operations as relevant 
as ever.

The container drayage problem (CDP) models these drayage operations and aims 
to optimize them with respect to e.g. traveled distance, number of trucks, operational 
costs, profits, etc. The CDP is typically handled as a pickup and delivery problem 
(PDP) (Nossack and Pesch 2013) or a multiple traveling salesman problem (m-TSP) 
(Wang and Regan 2002), variants of the well-known rich class of vehicle routing 
problems (VRP) (Toth and Vigo 2014). In the general PDP, transport requests are 
point-to-point transports, i.e. for each transportation request, goods are picked up 
at one location, and goods are delivered to another, see Parragh et al. (2008a, b) for 
an overview. In order to model the CDP however, an extra constraint is necessary, 
namely, no fractional shipments are allowed, and a container is always transported 
as a whole. The m-TSP is a variant of the renowned TSP, where multiple salesmen 
are considered, see Cheikhrouhou and Khoufi (2021) for an overview of the general 
problem. Just like the related VRP (Toth and Vigo 2002), finding the optimal solu-
tion for the CDP is NP-hard (Imai et al. 2007). This limits the size of the problems 
that can be solved optimally and means approximate methods have to be used for 
larger problems.

Typically, the problems considered in literature are assumed to be static and 
deterministic. The assumption of full information is made and a complete planning 
is computed before operations commence. In practice, however, problems are rarely 
static or deterministic. For example, orders may be canceled or changed during oper-
ations, new high-priority orders might pop up, truck or driver availabilities might 
change, etc. Moreover, often fixed operating-, loading-, unloading- and travel-times 
are assumed, but in practice, the uncertainty upon these quantities is non-negligible; 

Fig. 1  A simplified schematic of overseas transport
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truck turnaround times in the container terminals might vary due to different inter-
nal operations, loading or unloading at customers might also experience unforeseen 
delays, and finally, travel times along the traffic network are dependent on the state 
of traffic and congestion and will vary considerably.

Taking these facts into consideration, we will formulate the CDP with conditional 
(i.e. time-dependent) chance constraints based on given general probability distribu-
tions which are conditioned upon the time of initiating certain activities. Addition-
ally, the model will be capable of handling flexible orders and recomputing a plan-
ning. Finally, a truck appointment system (TAS) operational at multiple terminals 
will be incorporated into the mathematical model. Such a TAS is employed by the 
terminals in order to spread the arrivals of trucks and avoid congestion. Each time a 
container is being transported to or from a terminal, a time slot/window should be 
booked through the TAS for the respective truck.

The CDP considered here will include both full and empty containers. The prob-
lem of transporting empty containers will be incorporated by using requiring and 
releasing attributes, denoting whether an empty container is needed at the pick-up 
and if one is released at the drop-off. Empty containers are assumed to be stored at 
one of the depots of the transport company. It is also assumed that sufficient empty 
containers are available at these depots. The objective will be minimizing the opera-
tion time needed to finish all orders, i.e. the sum of the time spent by each truck dur-
ing operations.

The full optimization model results in a mixed integer non-linear program 
(MINLP). However, we will reformulate it based on a time window partitioning, 
which results in a pure integer linear program (ILP), while still allowing completely 
general conditional probability distributions to be integrated into the model. Moreo-
ver, this linearization will allow the model to be solved and dynamically re-solved 
by highly efficient existing integer linear program solvers. Our contributions can 
thus be summarized as follows:

• Incorporating stochasticity (loading times, unloading times, driving times, ...), 
flexible orders, and a TAS into one container drayage model

• Incorporating chance constraints which are conditionally dependent on departure 
time

• Linearizing these non-linear conditional chance constraints by time window par-
titioning

• Testing on large instances based on the real-world case of the port of Antwerp

To the best of our knowledge, we are the first to propose a model for the stochastic 
CDP with conditionally dependent chance constraints. Moreover, we believe we are 
the first to apply time window partitioning in this context in order to be able to solve 
this MINLP, while still using the exact forms for the probability distributions.

The remainder of this article is structured as follows: Sect. 2 will give an over-
view of existing work that is relevant to the content of the article; Sect. 3 will give 
a detailed description of the mathematical model that is used; in Sect. 4 some con-
text will be given for the experimental test case used; Sect. 5 contains the obtained 
experimental results; and finally, Sect. 6 covers the final discussion and conclusions.
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2  Literature review

2.1  The container drayage problem

The CDP has been, like the more general class of VRPs, the subject of quite some 
research. The authors of Wang and Regan (2002) study the container drayage 
problem as “local truckload pickup and delivery” along with time window con-
straints and formulate it as a m-TSP with time window constraints (m-TSPTW). 
Moreover, they propose a time window partitioning scheme to solve the model 
more efficiently. In Jula et al. (2005) the CDP is considered with time windows 
and social constraints on the working time of truck drivers, which they formulate 
as an m-TSPTW. In Imai et al. (2007) the VRP with full container loads is tackled 
by a heuristic based on the Lagrangian relaxation of the problem containing two 
subproblems: the classical assignment problem and the generalized assignment 
problem. More recently, the authors of Escudero-Santana et  al. (2021) conduct 
an in-depth literature review on drayage optimizations. In more recent work, pla-
tooning is proposed as a way of reducing human labor and improving fuel effi-
ciency in truck transport. The authors of You et  al. (2023) study the CDP with 
truck platooning and propose an exact algorithm based on Branch-and-Price-and-
Cut which allows them to solve instances with up to 50 orders. Similarly, in Yan 
et al. (2023) the CDP with improved platooning operations is studied, where driv-
ers are not attached to their respective leading trucks but can move by alternative 
transport modes. The authors employ a heuristic based on simulated annealing to 
solve the problem. Instances with up to 400 orders are solved.

Some studies consider discretization or partitioning of time windows as a 
means to handle continuous time variables and time windows, by replacing them 
with a set of assignment variables. One of the earliest works in which this method 
is applied is Appelgren (1971), where a ship-scheduling problem is solved based 
on time discretization, while in Levin (1971) a similar method is used to gener-
ate flight assignments. The authors of Wang and Regan (2002) are the first to 
apply window partitioning in the context of the m-TSPTW such as container 
drayage optimization. In Zhang et al. (2010) the authors build upon the results of 
Wang and Regan (2002) and show a clear improvement in the computation time 
required to solve the CDP.

In the CDP considered in this work, the focus lies on a realistic case of signifi-
cant size. We will consider a transport company with several depots, fleet sizes 
ranging up to 120 trucks and a number of orders/tasks ranging up to 300. The 
generated orders will be distributed over several container terminals and custom-
ers distributed over an area covering the port of Antwerp. Our solution method 
will be based on making a linear approximation to the model by time window 
partitioning and using existing efficient solvers for this new model.
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2.2  Empty containers

The problem of drayage optimization in actuality consists of 2 subproblems, 
namely a VRP, and an empty container allocation problem. These two problems 
are sometimes solved in a sequential manner, where the objective of the first is 
to find the optimal tours, while the objective of the latter is to optimally distrib-
ute empty containers among customer locations, depots and terminals, based on 
supply and demand. The empty container allocation problem in itself has been 
studied by different authors Chang et al. (2008), Braekers et al. (2011), Kuzmicz 
and Pesch (2019). The VRP and empty container allocation problem have also 
been solved together in an integrated manner (Sterzik and Kopfer 2013). The 
authors of Zhang et al. (2009) for example propose a cluster method and a reac-
tive tabu search heuristic to solve the integrated problem, which they formulate 
as a m-TSPTW. In Zhang et al. (2011), the authors extend their previous work, 
considering empty containers as a transportation resource, and assuming a finite 
number of empty containers available at the depot. More recently, the authors of 
Song et al. (2023) consider the CDP with a limited number of empty containers 
at the depot, for which they propose a Branch-and-Price algorithm and solve 
instances with up to 40 orders. They incorporate a so-called “drop-and-pickup 
mode”, which means containers can be dropped off by the truck to be packed/
unpacked, and can be picked up later. On the other hand, often, it is assumed 
that enough empty containers are available at the depots and that an unlimited 
number of empty containers can be stored at the depots, such as in e.g. Zhang 
et al. (2014), Shiri et al. (2019), Chen et al. (2021). The same assumption will be 
made in the work presented here.

2.3  Truck appointment system

With the aim of reducing congestion and waiting times and improving their 
overall efficiency, many terminals have introduced a truck appointment system 
(TAS) (Huynh et al. 2016). The main idea behind a TAS is to set up time win-
dows which can be booked by truckers who want to pick up or deliver a certain 
container. The number of times a certain time slot can be booked is limited, 
which allows the terminal operators to effectively control the truck arrival rates 
such that the number of visiting trucks can be spread out more evenly through-
out the day. Some work has been done in designing a TAS with the impact on 
drayage tours taken into account by the authors of Torkjazi et  al. (2018). The 
reverse, integrating a TAS into the CDP, has been considered in only a few stud-
ies (Namboothiri and Erera 2008; Shiri and Huynh 2016; Shiri et al. 2019), all 
of which considered a single TAS.

In the optimization model presented in this article, several TAS operating at 
different container terminals will be included, inspired by the work of Shiri and 
Huynh (2016).
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2.4  Stochastic process times

Integrating uncertainty and stochasticity into VRPs has been the subject of earlier 
studies as well. Uncertainty can arise in different ways, such as stochastic orders, 
stochastic service times at customers, or stochastic travel times between customers 
(Oyola et al. 2018). In order to incorporate stochasticity into the problem, different 
techniques are discerned. Broadly speaking, these techniques can be divided into: 
chance-constrained optimization (Li et  al. 2008), stochastic programming (Birge 
and Louveaux 2011), and robust optimization (Yu and Li 2000). When stochasticity 
pertains solely to the constraints rather than the objective function, a conventional 
method known as chance-constrained optimization is employed. This framework ena-
bles the formulation of an optimization problem with the condition that the prob-
ability of violating specific constraints should be limited to a predetermined value. 
In stochastic programming, the probability distributions of the random variables 
are assumed to be known, and the objective is to optimize the expected value of 
the objective function. On the other hand, robust optimization focuses on scenarios 
where the underlying distributions are often unknown (though not necessarily), and 
the objective is to find a solution that remains robust (i.e.  feasible) against all poten-
tial uncertainty scenarios. A recent example of a VRP with uncertainty can be found 
in the work of Messaoud (2023), where the electric vehicle routing problem with sto-
chastic travel times is considered. They define an integer optimization model with 
chance constraints on the total service time of each vehicle not exceeding a set thresh-
old, and the battery level of each vehicle not going negative. To solve the problem, a 
metaheuristic approach based on large neighborhood search is proposed, where the 
chance constraints are checked by Monte Carlo sampling for each generated solution.

In Marković et al. (2014), a truck dispatching model is studied in the setting of 
truck-train intermodal transport, where uncertainty in truck roundtrip durations and 
uncertain train departure times are incorporated. In the context of CDPs, there has 
been little research on integrating uncertainty into the models. The authors of Shiri 
et al. (2019) study the CDP with a TAS operating at a single terminal, and incor-
porate stochastic container packing and unpacking times. Their model is based on 
chance constraints which are linearized by less strict approximations which make 
no assumptions about the specific form of the probability distributions, but only 
assume the mean and either the standard deviation or the lower and upper bounds to 
be known. In You et al. (2021) the CDP with uncertain packing and unpacking times 
is studied. The authors tackle this problem by employing a tractor-trailer separable 
mode and constructing an optimization model with an objective containing a cost 
minimization term, and a robustness maximization term. A robustness measure is 
defined by the buffer times available between the end of one order and the start of 
the next one, weighted by an exponential function. No assumptions about the prob-
ability distributions are made.

In the model proposed here, all processing times are assumed to be stochastic 
(i.e. loading, unloading, travel times, ...). The relevant probability distributions are 
assumed to be known, from which the composite probability distributions are com-
puted which in turn are used in the chance constraints of the model. Moreover, the 
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chance constraints will be conditionally dependent on the time of commencement of 
specific activities.

2.5  Dynamic problems

Another way of handling unexpected or uncertain events in VRPs or CDPs is by 
considering dynamic models. An often considered source of dynamism is the pres-
ence of flexible orders, i.e. orders which are changed or revealed during operations. 
For example, in Escudero et al. (2011, 2013), a framework which allows to re-opti-
mize drayage operations based on real-time GPS data of the trucks is proposed. The 
authors of Zhang et  al. (2014) study the CDP with flexible orders, where during 
operations, orders can be canceled or new orders can be added and the planning 
can be re-optimized. In order to handle flexible orders, they introduce a tempo-
ral vertex set in the graph formulation which represents the orders that are being 
handled at the decision epoch. The CDP with uncertain job arrivals has also been 
studied in the context of e-commerce drayage platforms in Chen et al. (2023). The 
authors propose a multi-stage stochastic programming model which is solved by a 
two-phase heuristic. The first phase consists of solving a container drayage service 
booking subproblem in order to decide on accepting or rejecting incoming orders, 
and determining the time period for carrying out the accepted orders. In the second 
phase, a fleet routing subproblem is solved to compute a schedule for the trucks. In 
Bjelić et al. (2022) a dynamic CDP is studied where the sources of uncertainty are 
dynamic orders, changing travel times, and changes in order time windows and ser-
vice times. The authors propose a re-optimization scheme for a given set of decision 
epochs, where the optimization model at each epoch is solved with a heuristic based 
on a variable neighborhood search. In order to further increase efficiency, they also 
consider longer vehicle combinations in their solution, i.e. multiple trailers can be 
combined onto one truck. The authors of Jia et al. (2022) consider a dynamic CDP 
where request arrival times are unknown, as well as uncertain time windows for 
the requests. The problem is tackled by a Markov decision process model, which is 
solved with an integrated reinforcement learning and integer programming method.

The model we will present in this article will also allow dynamic orders to be 
included. New orders can be added, or existing ones can be changed and the model 
can be re-optimized in a small amount of time.

3  Problem formulation

The problem that will be tackled in this work is thus stochastic as well as dynamic 
with respect to flexible orders. Both time windows and a TAS will be incorporated. 
The objective considered will be minimizing the total drayage operating time needed 
to process all orders. In the following subsections, the assumptions, notations and 
formulation will be discussed in more detail.
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3.1  Description and assumptions

For the CDP considered here, a set of depot nodes VD is considered, each having a loca-
tion Li and a certain number of identical trucks present ni,∀i ∈ VD at each decision 
epoch. At the end of each operating day, the trucks are assumed to return to one of the 
depots. We will also assume that there is no limit on the number of empty containers 
that can be stored or retrieved at one of these depots. It is also assumed that a truck and 
trailer, with the standard capacity for a 40-foot container, transport only one container 
(either a 40-foot or 20-foot container) at a time, i.e. no 20-foot containers are com-
bined onto one trailer. In practice, two containers are seldom combined onto one trailer, 
because of the risk of exceeding the legally allowed weight limits on a single truck.

Next, a set of orders VO is given, all of which should be handled. Each order has a 
number of attributes: origin Oi ; destination Di ; time window [Ai,Bi] ; type; and a requir-
ing and releasing attribute �Q

i
 and �L

i
 . Both the origin and destination of an order can be 

either a customer location or a container terminal. The time window [Ai,Bi] denotes the 
time frame in which the activities of order i ∈ VO should be commenced. The type of 
the order can be either:

• Import the origin of the order is a container terminal, the destination a customer
• Export the origin of the order is a customer, the destination a container terminal
• Transfer both the origin and destination of the order are a customer

In the formulation of the optimization model, additionally, the subset of import orders 
and export orders VI

O
⊂ VO and VE

O
⊂ VO will be used. In order to model the flow of 

empty containers, the requiring and releasing attributes �Q

i
 and �L

i
 are used, similar to 

the work in Zhang et al. (2014).

(1)�
Q

i
=

{
0 No empty container is required at the origin of order i

1 An empty container is required at the origin of order i

Table 1  Different types of physical transport processes that can be modeled with attributes �Q

i
 and �L

i

Type of physical transport process �
Q

i
�L
i

Import order, truck does not wait at customer to unload the container 0 0
Import order, truck waits at customer to unload the container 0 1
Export order, truck picks up a loaded container 0 0
Export order, truck waits at customer to load the container 1 0
Transport a loaded/unloaded container from a customer to another customer 0 0
Load an empty container at a customer and drop it off at another customer 1 0
Pick up a loaded container at a customer and unload it at another customer 0 1
Load a container at a customer and unload it at another customer 1 1
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Using these two attributes a number of different types of physical transport pro-
cesses can be modeled, see Table 1.

In order to handle flexible orders and recompute a planning, a set of temporal ver-
tices VT is introduced, comparable to Zhang et al. (2014). This set contains all orders 
being processed (i.e. started but not finished) at the time s of a decision epoch. Each 
vertex resembles the remaining time of the activities of the order being processed. 
Similarly to order vertices in VO , these temporal vertices have the following relevant 
attributes: a destination Di , type and releasing attribute �L

i
 (equal to the ones of the 

corresponding order vertex). These vertices have no time windows since the starting 
times have already been fixed. Such a temporary vertex has to precede an order or 
depot vertex, but no order or depot can be linked to a temporary vertex [see con-
straints (10d) and (10c) in the optimization model presented in the next subsections].

Finally, a set of arcs A is defined between order vertices, depots, and temporal 
vertices, representing the transitions. First of all, arcs from depots to order nodes are 
defined, as well as arcs from order nodes to depots. Secondly, arcs between different 
order nodes are defined. Finally, we have arcs going from temporal vertices to order 
vertices.

With each arc, and thus physical displacement, a travel time is associated as follows:

Here, the fourth case corresponds to the case where either an empty container is 
released after order i, but order j does not require an empty container, meaning it 
first has to be dropped off at the depot k which minimizes the distance i − k − j ; 
or similarly, if order i does not release an empty container, but j requires one, one 
should be picked up at the depot k which minimizes the distance i − k − j . In this 
way, the transport of empty containers is modeled.

In the model considered here, a truck appointment system (TAS) is incorporated at 
each of the container terminals. A distinction is made between import orders VI

O
⊂ VO 

and export orders VE
O
⊂ VO , each having a separate TAS. Each terminal m ∈ M has 

a corresponding set of time slots Tm . Each time slot l ∈ Tm and terminal m has a cor-
responding number of available places for import Ql

m
 , and export Rl

m
 . The width of the 

time slots is chosen to be the same for each terminal and is set to 2 h, i.e. the time 
slots are 0:00–2:00, 2:00–4:00, 4:00–6:00, 6:00–8:00, 8:00–10:00, 10:00–12:00, 

(2)�L
i
=

{
0 No empty container is released at the destination of order i

1 An empty container is released at the destination of order i

(3)
A ={(i, j) ∶ i ∈ VD, j ∈ VO, or i ∈ VO, j ∈ VO, i ≠ j, or

i ∈ VO, j ∈ VD, or i ∈ VT , j ∈ VO, or i ∈ VT , j ∈ VD}

(4)�ij =

⎧
⎪⎪⎨⎪⎪⎩

�(Li,Oj), ∀i ∈ VD, j ∈ VO

�(Di, Lj), ∀i ∈ VO ∪ VT , j ∈ VD

�(Di,Oj), ∀i ∈ VO ∪ VT , j ∈ VO,�
L
i
= �

Q

j

min
k∈VD

(�(Di, Lk) + �(Lk,Oj)), ∀i ∈ VO ∪ VT , j ∈ VO,�
L
i
≠ �

Q

j
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12:00–14:00, 14:00–16:00, 16:00–18:00, 18:00–20:00, 20:00–22:00, 22:00–24:00. The 
number of available places in each time slot, of course, depends on the capacity and the 
number of places that are booked by other transport companies, which will be elabo-
rated in more detail in Sect. 4.

In the formulation of the optimization model, a few different types of variables are 
used. The first type yi ∈ ℝ, ∀i ∈ VO represents the time at which the activities of 
order i are commenced. Next, the binary variables xij ∈ {0, 1}, ∀(i, j) ∈ A denote 
which vertex j should succeed the activities in i. Note that the fleet is assumed to be 
homogeneous and there are no vehicle-specific constraints, such that a two-index for-
mulation suffices and no three-index variables xk

ij
 (with k denoting the specific vehicle) 

are necessary. Finally, two sets of binary variables are introduced in order to capture the 
TAS functionality:

where m(i) denotes the terminal corresponding to order i for import and export 
orders.

3.2  Stochasticity

The model formulated and studied in this work will incorporate uncertainty and sto-
chasticity of both travel times and loading and unloading times. First of all the prob-
ability distribution of the loading and unloading time will depend on the attributes �Q

i
 

and �L
i
 and on the location (terminal or customer), pO∕D

i
(ti|�Q∕L

i
) , see Sect. 4. These 

distributions will however be assumed to be unconditioned on the time of arrival. The 
travel time between locations will be assumed to be distributed according to a given 
probability distribution, conditioned upon the time of departure p�(�|T) . The travel 
time described in (4) will thus be distributed accordingly

Here p1(�ij|s) = p�(�ij|s) for the first case, since departure from a depot takes place 
at time s, for a decision epoch at time s. For the second, third, and fourth cases, the 
time of departure from the destination Di of order i depends on the time it takes to 
complete the other activities of order i. Let us therefore first compute the distribution 
of this departure time, given the activities of order i are initiated at time yi . The first 

qil =

{
1, if l ∈ Tm(i) is booked in the import TAS of terminal m(i) for import order i

0, otherwise

ril =

{
1, if l ∈ Tm(i) is booked in the export TAS of terminal m(i) for export order i

0, otherwise

(5)

�ij =

⎧
⎪⎪⎨⎪⎪⎩

�(Li,Oj) ∼ p1(�ij�s), ∀i ∈ VD, j ∈ VO

�(Di, Lj) ∼ p2(�ij�yi), ∀i ∈ VO ∪ VT , j ∈ VD

�(Di,Oj) ∼ p2(�ij�yi), ∀i ∈ VO ∪ VT , j ∈ VO,�
L
i
= �

Q

j

min
k∈VD

(�(Di, Lk) + �(Lk,Oj)) ∼ p2(�ij�yi), ∀i ∈ VO ∪ VT , j ∈ VO,�
L
i
≠ �

Q

j



963

1 3

The dynamic stochastic container drayage problem with truck…

activity is the loading of a container at the origin Oi , for which the time needed to 
complete this, tO

i
 , is distributed as pi(tOi |�Q

i
) . The next activity is the trip from Oi to 

Di , with departure time yi + tO
i

 , with travel time �i . The distribution of tO�
i

= tO
i
+ �i 

is then given by

The following activity is the unloading of the container at the destination Di , the 
time for which, tD

i
 , is distributed as pi(tDi |�L

i
) . The probability distribution of the 

total time of all activities in order i, ti = tO�
i

+ tD
i

 is then given by

Finally, the distribution of the travel time between i and j is given by

In the optimization model, the probability distribution of the sum tij = ti + �ij will be 
needed, which can be computed in the following way

3.3  Optimization model: MINLP

The objective of the optimization model will be to minimize the expected value of 
the total operation time needed to complete all orders. The complete optimization 
problem is given below and is a mixed integer non-linear program (MINLP). 

(6)pO�(tO�
i
|yi) = ∫ pi(t

O
i
|�Q

i
)p�(t

O�
i

− tO
i
|yi + tO

i
)dtO

i

(7)pO�D(ti|yi) = ∫ pO�(tO�
i
|yi)pDi (ti − tO�

i
|�L

i
)dtO�

i

(8)p2(�ij|yi) = ∫ p�(�ij|yi + ti)p
O�D(ti|yi)dti

(9)pij(tij|yi) = ∫ p�(tij − ti|yi + ti)p
O�D(ti|yi)dti

(10a)

min

[ ∑
i∈VO

∑
j∈VD

(yi + � [ti + �ij])xij −
∑
i∈VD

∑
j∈VO

(yj − � [�ij])xij

+
∑
i∈VT

∑
j∈VD

(yi + � [ti + �ij])xij −
∑
i∈VT

∑
j∈VO∪VD

yixij

]

(10b)Subject to
∑
j∈VO

xij ≤ ni, ∀i ∈ VD

(10c)
∑

j∈VO∪VD

xij = 1, ∀i ∈ VT
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(10d)
∑

j∈VO∪VD∪VT

xji =
∑

j∈VO∪VD

xij = 1, ∀i ∈ VO

(10e)Ai ≤ yi ≤ Bi, ∀i ∈ VO

(10f)P(xij(yi + ti + �ij) ≤ yj|yi) ≥ (1 − �), ∀i, j ∈ VO

(10g)P(xij(yi + ti + �ij) ≤ yj|yi) ≥ (1 − �), ∀i ∈ VT , ∀j ∈ VO

(10h)P(xij(s + �ij) ≤ yj|s) ≥ (1 − �), ∀i ∈ VD, ∀j ∈ VO

(10i)yiqil ≤ U
m(i)

l
, ∀i ∈ VI

O
, ∀l ∈ Tm(i)

(10j)yi ≥ qilL
m(i)

l
, ∀i ∈ VI

O
, ∀l ∈ Tm(i)

(10k)
P(L

m(i)

l
ril ≤ ril(yi + tO

i
+ �i) ≤ U

m(i)

l
|yi) ≥ (1 − �), ∀i ∈ VE

O
, ∀l ∈ Tm(i)

(10l)
∑
l∈Tm(i)

qil = 1, ∀i ∈ VI
O

(10m)
∑
l∈Tm(i)

ril = 1, ∀i ∈ VE
O

(10n)

∑
i ∈ VI

O

m(i) = h

qil ≤ Qh
l
, ∀l ∈ Th, ∀h ∈ M

(10o)

∑
i ∈ VE

O

m(i) = h

ril ≤ Rh
l
, ∀l ∈ Th, ∀h ∈ M

(10p)xij ∈ {0, 1}, i ≠ j, ∀i ∈ VO ∪ VD ∪ VT , ∀j ∈ VO ∪ VD

(10q)yi ∈ ℝ, ∀i ∈ VO

(10r)qil ∈ {0, 1}, ∀i ∈ VI
O
, ∀l ∈ Tm(i)
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Let us first discuss the objective (10a) of minimizing the total operating time. 
The first line consists of two terms, the first of these represents the times at which 
trucks arrive back at a depot after finishing their orders, i.e. a truck departing 
from order i to depot j will arrive at time yi + � [ti + �ij] ; the second term in this 
line denotes the departing times of all trucks, i.e. if a truck start an order j at time 
yj , it should depart at time yj − � [�ij] at depot i. The difference of the time at 
which trucks return to a depot and the time at which they depart at a depot thus 
represents the total operation time, including waiting, loading, unloading, driv-
ing, etc. The second line in the objective is the total operating time for temporal 
vertices, i.e. they arrive at time yi + � [ti + �ij] at a depot j and depart at time yi.

The basic constraints (10b), (10c), and (10d) ensure that at most ni trucks can 
depart at a given depot i, each temporal vertex must be left, and every order vertex 
must have exactly one incoming and one outgoing truck, respectively. Next, the start-
ing time should respect the time windows (10e), and the probability of arriving before 
the starting time of the next order yj should meet at least some threshold (10f), (10g), 
(10h), where �, � ∈ [0, 1] are some user-defined parameters. Note that these constraints 
also eliminate subtours among orders. These probabilities can be easily computed 
by integrating (9) with the correct corresponding bounds. The next set of constraints 
implements the TAS functionality. For any import orders, the starting time of an order 
should meet the time slot booked in the TAS (10i) and (10j), and for any export orders, 
the probability of meeting the booked time slot should be at least a certain threshold 
value (10k), with � ∈ [0, 1] a user-defined parameter. For every import or export order, 
exactly one time slot should be booked, (10l) and (10m). And, for every terminal, the 
number of booked places in each time slot for import and export should not exceed 
the number of available places in that time slot, (10n) and (10o). Finally, (10p), (10q), 
(10r), and (10s) define the variable domains.

This optimization problem is a mixed integer problem and is also non-linear due 
to the objective (10a) and constraints (10f), (10g), (10h), (10i) and (10k). In the next 
subsection, a framework which fully linearizes this optimization problem will be 
discussed.

3.4  ILP: Window partitioning

In order to tackle the problem with very efficient existing ILP solvers, it is translated 
into an easier (but still NP-hard) integer linear program. This will allow us to solve 
problem instances with a considerable amount of orders, as will be demonstrated in the 
experiments. The optimization model of the previous subsection will be reformulated 
and approximated based on the discretization of the continuous time variable and time 
windows, yi ∈ [Ai,Bi] . Consider order i and its time window [Ai,Bi] , a discretization 
width � is chosen and the time window is replaced by a set of smaller time windows

(10s)ril ∈ {0, 1}, ∀i ∈ VE
O
, ∀l ∈ Tm(i)

(11)[Ai,Bi] → [Ai,Ai + �], [Ai + �,Ai + 2�],⋯ [Ai + (n − 1)�,Bi]
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where n = ⌊(Bi − Ai)∕�⌋ . Each order vertex is replaced by a set of suborder verti-
ces. Each suborder has a certain smaller time window [ai, bi] , which represents the 
discrete starting time of that suborder by only considering the latest time at which 
that suborder should be commenced, bi . Introducing the set of all suborders � , the 
respective sets for import and export, �I and �E , and replacing VO by � in the set of 
arcs A and in the definition of the variables xij , as well as replacing VT by �T , the 
stochastic travel time becomes:

By substituting the decision variable yi by the parameter bi , the optimization problem 
from Sect. 3.3 can thus be reformulated as (where the indicator o(i) ∈ VO, ∀i ∈ � 
denotes the order to which a suborder belongs): 

(12)

�ij =

⎧
⎪⎪⎨⎪⎪⎩

�(Li,Oj) ∼ p1(�ij�s), ∀i ∈ VD, j ∈ �

�(Di, Lj) ∼ p2(�ij�bi), ∀i ∈ � ∪ �T , j ∈ VD

�(Di,Oj) ∼ p2(�ij�bi), i ∈ � ∪ �T , j ∈ �,�L
i
= �

Q

j

min
k∈VD

(�(Di, Lk) + �(Lk,Oj)) ∼ p2(�ij�bi), i ∈ � ∪ �T , j ∈ �,�L
i
≠ �

Q

j

(13a)

min

[∑
i∈�

∑
j∈VD

(bi + � [ti + �ij])xij −
∑
i∈VD

∑
j∈�

(bj − � [�ij])xij

+
∑
i∈�T

∑
j∈VD

(bi + � [ti + �ij])xij −
∑
i∈�T

∑
j∈�∪VD

bixij

]

(13b)Subject to
∑
j∈�

xij ≤ ni, ∀i ∈ VD

(13c)
∑

j∈�∪VD

xij = 1, ∀i ∈ �T

(13d)
∑

j∈�∪VD∪�T

xji =
∑

j∈�∪VD

xij, ∀i ∈ �

(13e)

∑
i∈�∪VD∪�T

∑
j ∈ �

o(j) = k

xij = 1, ∀k ∈ VO

(13f)P(bi + ti + �ij ≤ bj|bi) ≥ (1 − �)xij, ∀i, j ∈ �
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The new objective (13a) is the straightforward linearization of (10a). Constraints 
(13b), (13c), and (13d) are the equivalents of constraints (10b), (10c), and (10d), 
while constraint (13e) enforces that for every order, exactly one suborder vertex 
should be visited. Constraints (13f), (13g) and (13h) are the linear versions of (10f), 
(10g) and (10h). The TAS constraints (13i), (13j), (13k), (13l), (13m), (13n), and 

(13g)P(bi + ti + �ij ≤ bj|bi) ≥ (1 − �)xij, ∀i ∈ �T , ∀j ∈ �

(13h)P(s + �ij ≤ bj|s) ≥ (1 − �)xij, ∀i ∈ VD, ∀j ∈ �

(13i)biqil ≤ U
m(i)

l
, ∀i ∈ �I , ∀l ∈ Tm(i)

(13j)bi ≥ qilL
m(i)

l
, ∀i ∈ �I , ∀l ∈ Tm(i)

(13k)P(L
m(i)

l
≤ bi + tO

i
+ �i ≤ U

m(i)

l
|bi) ≥ (1 − �)ril, ∀i ∈ �E, ∀l ∈ Tm(i)

(13l)

∑
i ∈ �

o(i) = k

∑
l∈Tm(i)

qil = 1, ∀k ∈ VI
O

(13m)

∑
i ∈ �

o(i) = k

∑
l∈Tm(i)

ril = 1, ∀k ∈ VE
O

(13n)

∑
i ∈ �I

m(i) = h

qil ≤ Qh
l
, ∀l ∈ Th, ∀h ∈ M

(13o)

∑
i ∈ �E

m(i) = h

ril ≤ Rh
l
, ∀l ∈ Th, ∀h ∈ M

(13p)xij ∈ {0, 1}, i ≠ j, ∀i ∈ � ∪ VD ∪ �T , ∀j ∈ � ∪ VD

(13q)qil ∈ {0, 1}, ∀i ∈ �I , ∀l ∈ Tm(i)

(13r)ril ∈ {0, 1}, ∀i ∈ �E, ∀l ∈ Tm(i)
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(13o) are also the direct translation of (10i), (10j), (10k), (10l), (10m), (10n), and 
(10o). Finally (13p), (13q), and (13r) define the variables.

The obtained model is a pure integer linear program (ILP) which is an over-con-
strained version of the original problem, since some feasible movements/arcs are 
eliminated by constraints (13f), (13g), see Fig. 2. The optimal solution of the new 
model thus results in a suboptimal solution (i.e. an upper bound) of the original 
MINLP. The approximation will, however, approach the optimal solution for a small 
enough discretization �.

4  Experimental setup and test case

As already mentioned earlier, the experiments and test cases will be based on 
the port of Antwerp, Belgium. The port of Antwerp is a seaport located centrally 
in Europe, near the city of Antwerp, is Europe’s second-largest seaport and is 
the 14th largest container port worldwide. The port generates an added value of 
roughly 22 billion euros, i.e. about 4.1% of Belgian GDP (Rubbrecht 2022). In 
2022, 13 484 122 TEU (twenty-foot equivalent unit) of containers were handled 
in the port of Antwerp, closely following the largest port in Europe, namely the 
port of Rotterdam with 14 455 000 TEU handled in 2022. Below, the test case 
will be discussed in more detail.

4.1  Terminals, customers and depots

The port of Antwerp has 5 main container terminals, see Fig. 3. In Table 2 the 
terminals are listed with their respective annual capacities. When generating 
orders for the experiments, it is assumed that 45% are import, 45% are export, 
and 10% are transports between customer nodes. Moreover, for import and export 
orders, the container terminal is chosen in a random fashion, weighted by the 
respective capacities.

As described earlier, each of the terminals employs a TAS for import and 
one for export. Each terminal is assumed to have the same time slots. In order 
to model the number of available places in each time slot at each terminal, the 
number of available places are weighted by the capacities of the terminals, and 
reduced by an amount proportional to the typical arrival rate at each time, see 

Fig. 2  An example of a feasible movement/arc in the original model (dashed arrow) which becomes 
infeasible due to the window partitioning (solid arrow)
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Fig. 4. The resulting available places used in the experiments (import + export) 
are summarized in Table 3.

Customer vertices are sampled randomly in the area of study, 100 such vertices 
are generated, see Fig. 3. In generating orders, the customers are picked randomly 
from this set.

The transport company considered in the experiments is assumed to own and 
manage 3 different depots at which trucks and empty containers can be stored, their 
locations are depicted in Fig. 3 as well. For all experiments, the number of trucks is 
assumed to be distributed equally over the different depots.

The travel time matrix between all vertices is computed based on the underlying 
traffic network. To this end data from OpenStreetMap (2020) was used.

Fig. 3  The port of Antwerp and its hinterland, along with the locations of the 5 main container terminals

Table 2  The 5 container terminals in the port of Antwerp, and their annual capacities

Label in Fig. 3 Terminal Capacity (TEU)

A MSC PSA European Terminal (MPET) 9,000,000 (53%)
B DP World Antwerp Gateway Terminal 2,500,000 (15%)
C PSA Antwerp Noordzee Terminal 2,600,000 (15%)
D PSA Antwerp Europa Terminal 1,800,000 (11%)
E Antwerp Container Terminal 1,000,000 (6%)
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4.2  Constructing probability distributions

4.2.1  Travel time

In order to estimate the conditional probability distribution of travel times, his-
toric GPS data of trucks in Belgium was used. Since no trip-specific data is avail-
able for every possible route, a “global” distribution of the delay on the road net-
work is constructed, averaged over all road segments. To this end a network of 
origins o and destinations d that appear in the historic data is constructed, and for 
each pair the travel times are scaled by the minimum value that appears for that 
specific (o, d) pair, � = tod∕t

min
od

 , as a function of the departure time T. This allows 
us to consider all (o, d) pairs together, and construct a global distribution p�(�|T) . 
To construct this global distribution, for each departure time T, a weighted Gauss-
ian KDE of all data points was used, with the weights given by

Fig. 4  The typical arrival frequency at a container terminal

Table 3  The number of available places in the TAS for each time slot, for the different container termi-
nals

Terminal 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

A 171 175 164 78 93 55 35 35 75 131 167 172
B 48 49 46 22 26 16 10 10 21 37 47 48
C 50 51 48 23 27 16 11 10 22 38 49 50
D 35 35 33 16 19 11 7 7 15 27 34 35
E 19 20 19 9 11 7 4 4 9 15 19 20
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where (Ti, �i) denotes an individual data point i with departure time Ti and delay fac-
tor �i . The parameter �w was set to 30 min. Figure 5 provides an illustration of the 
KDE weights. Putting this all together an estimator for the distribution p�(�|T) is 
obtained, depicted in Fig. 6. In Fig. 7 the mean of p�(�|T) is given for each T, from 
which one can clearly see 2 distinctive peaks corresponding to peak hours in traffic. 
Note that the increase in the mean around the morning and evening is not so much 
due to the peak of p�(�|T) shifting for each T, but due to the tail of the distribution 
reaching much further at these moments, as can be seen in Fig. 6, meaning there is 
way more variation or uncertainty about the travel time at these moments.

(14)w(�i) = e
−

1

2

(
Ti−T

�w

)2

∀ (Ti, �i)

Fig. 5  Illustration of the weighing in the KDE of p�(�|T)

Fig. 6  The obtained estimator for p�(�|T)
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Using the global delay distribution p�(�|T) , the travel time distributions of 
specific (o, d) pairs within the road network can be approximated by scaling this 
distribution by the minimal possible travel time between this origin and destina-
tion. For example

Note that in general, the delay or travel time distribution should not only be depend-
ent on the departure time, but also on the specific trajectory or the roads within it. 
Here, however, longer trajectories are considered, for which one can assume that the 
localized effects of specific roads within a trajectory get averaged out. This in turn 
justifies approximating the travel time distribution of a given trajectory by rescaling 
the global averaged delay distribution.

4.2.2  Turnaround time at container terminals

The probability distribution of the turnaround time (both import and export) at con-
tainer terminals was determined from historical data from a terminal in the port of Ant-
werp, averaged over a typical day. The resulting distribution is depicted in Fig. 8.

(15)p�(�ij|T) = p�(�ij∕�
0
ij
|T)

Fig. 7  The mean of � ∼ p�(�|T)
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4.2.3  Handling time at customer

The (un)loading time at the customer vertices is assumed to be distributed according to 
a log-normal distribution, since no quantitative data is available:

Both the mean and standard deviation are assumed to depend on the attributes �Q 
and �L:

5  Results

The linearized optimization model is solved using the commercial solver Gurobi 
Optimization (2022). All experiments were performed on a computer with an Intel 
Core i7-8650U CPU @ 1.90GHz× 8 processor and 16 GB of RAM, under Ubuntu 
18.04 x64.

(16)

ph(th) =
1

th�
√
2�

e
−

(ln th−�)
2

2�2

� = ln

�
�2
h�

�2
h
+ �2

h

�
, � = ln

�
1 +

�2
h

�2
h

�

(17)(�h, �h) =

{
(30 min, 10 min) �Q∕L = 0

(60 min, 15 min) �Q∕L = 1

Fig. 8  Distribution of the truck turnaround time at a container terminal
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5.1  Varying instance size

Let us first consider problem instances of varying numbers of orders and trucks, 
with a fixed planning without dynamic orders. Setting � = 10 min, � = � = 0.1 and 
� = 0.2 , the results are summarized in Table 4, where the computing time, the objec-
tive value, and the operating time (in minutes) per order is given for the optimal 
solutions. We were able to solve problems of substantial size in less than an hour, 
which is sufficient for a daily static planning. Moreover, for average-sized prob-
lems of 150 orders, a solution can be found in under 5 min. As a general trend, the 
computing time decreases with an increase in the number of available trucks, for a 
given number of orders. The reason for this is that for a smaller number of trucks, 
the constraints are tighter and more orders have to be combined in larger tours. It 
is also clear that the operating time per order decreases for an increasing number 

Table 4  Solutions for different problem sizes, where � = 10 min, � = � = 0.1 and � = 0.2

When no feasible solution exists, this is denoted by “–”

# Orders # Trucks Comp. time (s) Objective (min.) Minutes per order

10 2 0.009 – –
10 3 0.06 1699 169.9
10 4 0.06 1699 169.9
20 4 0.26 – –
20 6 0.26 3046 152.3
20 8 0.26 3046 152.3
50 10 6.2 7989 159.8
50 15 2.4 7720 154.4
50 20 3.6 7642 152.8
100 20 95 15,334 153.3
100 30 23 14,958 149.6
100 40 16 14,762 147.6
150 30 256 22,046 147.0
150 45 146 21,718 144.8
150 60 84 21,494 143.3
200 40 574 29,288 146.4
200 60 329 28,871 144.4
200 80 452 28,646 143.2
250 50 1396 36,411 145.6
250 75 474 35,865 143.5
250 100 416 35,578 142.3
300 60 2213 43,383 144.6
300 90 1299 42,871 142.9
300 120 775 42,612 142.0
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of orders and trucks, which can be expected since this results in a greater solution 
space meaning further optimization is possible.

Figures 9, 10 and 11 depict the computation time, objective value and operating time 
per order, respectively, for a varying number of orders, further illustrating these trends. 
In Fig. 9, the computation time is on average a factor 2–3 higher for 30 trucks com-
pared to 60 trucks, and a factor of 1.5–2 for 60 trucks compared to 90. The operating 
time per order in Fig. 11 is equal for small orders set sizes, since 30 trucks is excessive 

Fig. 9  Computation time for different amounts of orders

Fig. 10  Objective value of the optimal solution for different amounts of orders



976 K. Stoop et al.

1 3

and not all trucks are used. On the other hand, for a greater number of orders, the oper-
ating time per order is about 1.9% higher in the case of 60 trucks compared to the case 
of 90 trucks. The effect of increasing the number of trucks from 60 to 90 is smaller, 
since the number of tours that is impacted or can be split up is smaller (all trucks were 
used in all three cases for order set sizes equal to or greater than 160).

5.2  Stochastic versus deterministic

In order to validate the stochastic model presented in this work, let us compare it to 
a deterministic model. The deterministic model is similar to model (13a)–(13r), but 
the chance constraints (13f), (13g), (13h), and (13k) are changed to their deterministic 
counterparts: 

(18a)(bi + � [ti] + � [�ij])xij ≤ bj, ∀i, j ∈ �

(18b)(bi + � [ti] + � [�ij])xij ≤ bj, ∀i ∈ �T , ∀j ∈ �

(18c)(s + � [�ij])xij ≤ bj, ∀i ∈ VD, ∀j ∈ �

(18d)L
m(i)

l
ril ≤ bi + � [tO

i
] + � [�i], ∀i ∈ �E, ∀l ∈ Tm(i)

Fig. 11  Operation time per order in the optimal solution for different amounts of orders
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As a means of testing the feasibility and robustness of a solution under uncertain 
process times, a number of Monte Carlo simulations will be performed, where each 
random variable is drawn from its respective probability distribution. In a solution, 
each tour is simulated by generating random variables for the different steps in the tour, 
i.e. traveling from a depot to the first customer, loading the container, traveling to the 
destination, etc., advancing the time. For each time window, it is checked whether the 
current time falls in this window; if it is too early, the time is set to the lower bound of 
the time window; when it is too late, the solution is marked as failed or infeasible for 
that particular generated instance.

In Table 5 a comparison is made between the deterministic model and the stochas-
tic model ( � = 10 min, � = � = 0.1 and � = 0.2 ), in terms of the number of feasible 
instances for the optimal solution found with the respective model. The instances are 
generated by Monte Carlo simulations, each solution was tested 1000 times. First of 
all, the impact of the stochastic model is very clear. The probability of the solutions 

(18e)(bi + � [tO
i
] + � [�i])ril ≤ U

m(i)

l
, ∀i ∈ �E, ∀l ∈ Tm(i)

Table 5  Percentage of feasible 
instances in Monte Carlo 
simulations for the deterministic 
and the stochastic models

When no feasible solution exists, this is denoted by “–”

# Orders # Trucks Deterministic Stochastic

10 2 – –
10 3 99.3% 100.0%
10 4 99.6% 100.0%
20 4 65.1% –
20 6 90.7% 99.0%
20 8 92.2% 99.5%
50 10 35.5% 94.3%
50 15 72.5% 95.6%
50 20 58.8% 96.6%
100 20 8.4% 82.1%
100 30 11.0% 92.4%
100 40 19.0% 95.9%
150 30 19.1% 95.4%
150 45 6.3% 95.0%
150 60 10.8% 99.3%
200 40 11.4% 89.7%
200 60 13.2% 92.7%
200 80 19.1% 91.1%
250 50 2.5% 86.9%
250 75 4.7% 90.7%
250 100 14.4% 92.5%
300 60 1.3% 82.4%
300 90 1.1% 82.6%
300 120 1.4% 90.9%
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found with the deterministic model failing due to varying processing times is signifi-
cantly higher than for the solutions found with the stochastic model, especially for 
larger instances. On the other hand, the probability of the solutions found with the sto-
chastic model being feasible under randomly sampled instances is very high, decreas-
ing slightly with increasing instance sizes, as can be expected since the probability of 
something going wrong somewhere in the planning is higher.

Fig. 12  Objective value of the optimal solution for values of � ( = � ) ranging from 0.01 to 0.5

Fig. 13  Operation time per order in the optimal solution for values of � ( = � ) ranging from 0.01 to 0.5
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5.3  Influence of ̨ ,ˇ and ı

Let us now consider the influence of the confidence-parameters � and � in the 
chance constraints on the obtained solutions. Let us set � = � in the remainder of 
this subsection. Figure 12 depicts the objective value for the optimal solutions found 
for different values of � ranging from 0.01 to 0.5 (setting � to even lower values is 
futile, since one needs very good knowledge of the tails of the distributions in this 
case). The other parameters are set to � = 10 min and � = 0.2 . When making the 

Fig. 14  Probability of the optimal solution being feasible for values of � ( = � ) ranging from 0.01 to 0.5

Fig. 15  Computation time for varying values of �
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chance constraints less strict, i.e. increasing � , the obtained objective (total operat-
ing time) is lower, as is to be expected, the relative change in the objective value 
is however limited. In Fig. 13 the operating time per order is given for different �
-values, clearly illustrating the influence of � . Comparing the two extreme values of 
� = 0.01 and � = 0.5 , the relative difference in the operating time is approximately 
16%. In Fig.  14 the probability of the optimal solution being feasible under ran-
dom realizations of the model, for varying values of � , is shown. It is clear that the 

Fig. 16  Objective value of the optimal solution for different values of �

Fig. 17  Operation time per order in the optimal solution for different values of �
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probability of a solution proving to be infeasible greatly increases when increasing 
� . We can conclude that a value of � = 0.1 results in a good balance between the 
slight increase in operating times, and the success probability of the planning.

Another important parameter of the model is the discretization width � . Figure 15 
shows the computation time for different values of � , where it is apparent that there 
is a strong increase in computation time for smaller �-values. This is to be expected, 
as the number of variables in the ILP formulation scales as ∼ 1∕�2 . In Fig. 16 the 
optimal objective value is given for varying � . Since the approximate model based 

Fig. 18  Computation time and re-computation time for the dynamic instance at each epoch

Fig. 19  Number of orders and temporal orders for the dynamic instance at each epoch
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on time window partitioning provides an upper bound to the exact model, the opti-
mal objective value decreases with decreasing � , however, the influence is limited. 
Figure  17 contains the operating time per order for varying � , clearly illustrating 
the �-dependence. Over the considered range of � , the operating time varies only 
by approximately 5%. For the value of � = 10 min. used in the experiments before, 
the difference is only about 1.5%. From this one could conclude that by increasing 
� , problems of far greater size can be solved efficiently, in exchange for only a small 
increase in the objective.

5.4  Dynamic orders

Finally, let us consider the dynamic aspect of the model. To this end, a given set 
of 200 orders is considered at the start of the day, for which an initial planning is 
computed. Next, a total of 7 decision epochs is considered, with times s ∈ [3:00, 
6:00, 9:00, 12:00, 15:00, 18:00, 21:00], where during each epoch, 12 new orders 
(with the lower bound of their time window, Ai , between s and 23:59) are added 
to the pool orders still to be initiated at that time, and the model is re-optimized. 
The number of trucks is set equal to 90, � = 10 min, � = � = 0.1 and � = 0.2.

Figure 18 depicts the computation time needed to optimize and re-optimize the 
model at each decision epoch. The epoch at time 0:00 represents the initial planning 
for the initial 200 known orders. This initial planning takes longer to compute as the 
set of given orders is large. Each consecutive re-optimization however takes very 
little time, making it feasible to do in real-time. In Fig. 19 the number of orders in 
the order set VO as well as the number of temporal orders (or suborders, since only 
one temporal suborder exists for each temporal order) is given for each epoch. The 
number of orders is steadily decreasing as more orders are executed as time passes. 
The number of temporal orders remains relatively constant during operations, since 
at a given time, the number of orders being processed at that time remains mostly 
the same, only to drop off near the end of the day.

6  Conclusion

In this work, a model for the dynamic stochastic container drayage problem with 
a truck appointment system operating at the different terminals is presented. Sto-
chastic truck turnaround times at the terminals, loading and unloading times at the 
customers, and travel times conditioned upon the departure time, are incorporated 
in the form of conditional chance constraints. The general formulation results in a 
mixed integer nonlinear program, which we linearized by partitioning time windows 
and discretizing the time variable. The model is tested on instances based on a real-
world case based in the port of Antwerp.

The experiments showed that the model is efficiently solvable, even for large 
instances of up to 300 orders. It was also illustrated that the obtained solutions are 
robust with respect to stochastic operating times. Based on Monte Carlo simulations, 
the probability of a solution or planning not failing was computed and was shown to 
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remain high, even for large instances, while the solutions obtained with a determin-
istic model had a low probability of succeeding overall. By varying the confidence 
parameters in the chance constraints a trade-off can be made between robustness 
(i.e. probability of a planning succeeding) and minimizing the objective. We dem-
onstrated that by lowering these parameters, a great increase in success probability 
can be obtained in exchange for only a limited increase in total operating times. We 
also showed that varying the time discretization width � only had a minor impact on 
the resulting objective, but can greatly decrease computation times, which might be 
very useful when considering very large problem instances. Finally, it was demon-
strated that in the case of flexible orders, the model can be re-optimized efficiently.

Future research might encompass extending the framework to include a live data 
stream of e.g. traffic information or delays at different terminals, updating the prob-
ability distributions accordingly. Another possible extension might be to make the 
discretization width variable instead of fixed, based on e.g. the time-sensitivity of 
certain distributions at certain time intervals, increasing efficiency.
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