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Abstract
Despite ongoing automation efforts, most warehouses are still manually oper-
ated using a person-to-parts collection strategy. This process of collecting items of 
customer orders from different storage locations accounts for the majority of the 
operating costs of the warehouse. Hence, optimizing picker routes is an important 
instrument to reduce labor costs. We examine the scattered-storage variant of the 
single picker routing problem in a one-block parallel-aisle warehouse. With scat-
tered storage, an article can be stored at several storage locations within the ware-
house, whereas with classic storage, each article has a unique storage location. We 
use our recently published network-flow model with covering constraints that is 
based on an extension of the state space of the dynamic-programming formulation 
by Ratliff and Rosenthal. With modifications in the state graph, this model serves for 
both exact and all established heuristic routing methods for picker routing. The latter 
include traversal, return, largest gap, midpoint, and composite. We show that these 
routing policies can also be implemented through adaptations in the state space. 
Extensive computational studies highlight a comparison of the different routing and 
storage policies (in particular class-based storage policies) in the scattered storage 
context. Analyses demonstrate which combinations of policies are advantageous for 
the given warehouse layout. For class-based storage policies, we emphasize how the 
scattering of articles of different classes should be performed: scattering of C-arti-
cles is advantageous with reductions of up to 25%. In contrast, when articles are 
uniformly distributed, A-articles should be scattered.

Keywords  Routing · Warehousing · Picker routing · Scattered storage · Storage 
policy
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1  Introduction

In this work, we consider the single picker routing problem (SPRP), which is 
one of the fundamental problems in warehouse operations for manual (non-auto-
mated) warehouses. For a given warehouse layout and a list of articles with a stor-
age location (=pick position) for each of the articles, the SPRP consists of decid-
ing how a picker travels through the warehouse in order to collect the articles 
(picker-to-parts) in a minimum-length tour. It is estimated that more than 80% of 
all order-picking systems in Western Europe are low-level picker-to-parts picking 
systems (de Koster et al. 2007). A study by Behnisch et al. (2017) highlights that 
60% of companies in Germany that have small-sized warehouses (<10,000 square 
meters) use paper-based pick lists so that the pickers are routed by heuristics.

We study the extension of the SPRP to warehouses with scattered storage (abbre-
viated as SPRP-SS in the following) under the combination of different routing poli-
cies and storage policies. The three emphasised terms need to be further elaborated: 
First, a warehouse operates as a scattered storage warehouse or mixed-shelves ware-
house if one or several articles are pickable from more than one pick position. Scat-
tered storage is predominant in modern e-commerce warehouses of companies like 
Amazon or Zalando (Weidinger 2018; Weidinger and Boysen 2018; Boysen et  al. 
2019; Weidinger et al. 2019; Goeke and Schneider 2021; Bock and Boysen 2023; 
Khan et al. 2024). The main advantage of a scattered storage strategy is “that items 
of demanded SKUs are found close by irrespective of the position within the ware-
house [so that] the distance to be covered for order picking is reduced this way” 
(Weidinger 2018, p. 139). Boysen et al (2019, p. 399) point out that warehouses with 
scattered storage often have multiple I/O points where completed orders are handed 
over to the central conveyor system. As a result, the length of picker tours further 
decreases and tight delivery schedules can better be met. Another advantage is that 
scattered storage comes without excessive automation. In particular an adaption to 
varying workloads is easily possible by using less or more pickers. Our own study 
(see Sect. 6.3) reveals that it is of high importance to determine which article should 
be placed where and how often at different positions in the warehouse. We show that 
different strategies can easily lead to picker tours that, on average, differ in length by 
more than 30%.

The term scattered storage should not be confused with shared storage: while 
shared storage allows to allocate a storage location consecutively to different arti-
cles in general (Cormier and Gunn 1992), scattered storage even allows a single 
load unit to be broken up and distributed to different storage locations (Weidinger 
and Boysen 2018).

Second, even for the most simple warehouse layout, i.e., a single-block warehouse 
with parallel aisles, exact (=minimum length) picker tours can be complicated, 
counter-intuitive, and difficult to memorize, see, e.g., (Petersen 1997,  p.  1102). 
Therefore, the application of routing heuristics can be justified: the pickers can only 
perform tours defined by some simple rules. We consider the standard rule-based 
routing policies such as ��������� (a.k.a. S-shape), �������� , ������� ��� (Hall 
1993), ������ , and ��������� (Petersen 1997).
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Third, articles are either stored at a dedicated pick position, chaotically at random 
storage locations, or the warehouse is grouped into zones (de Koster et  al. 2007). 
In the latter case, the articles are often assigned to these zones on the basis of their 
turnover rate (Petersen and Schmenner 1999). Different class-based storage policies 
can use, e.g., an ABC-classification of articles to determine which article is allo-
cated to which storage locations in the warehouse.

1.1 � Definition of the SPRP‑SS

For a formal definition of the SPRP-SS, we assume that S denotes the set of differ-
ent articles that a picker must collect in a single picker tour. Moreover, qs ∈ ℕ units 
(=items) of this article s ∈ S need to be collected from one or several given posi-
tions Ps , where bsp ∈ ℕ units of article s are available at position p ∈ Ps . The special 
case of qs = 1 for all articles  s ∈ S is known as the unit-demand case, for which 
also bsp = 1 can be assumed w.l.o.g. The unit-demand case also describes the situa-
tion that sufficiently many items of all articles are available so that any demand can 
be collected from a single position for each article s . Otherwise, if qs > 1 for some 
s ∈ S , the SPRP-SS instance describes the general-demand case. Here, it may be 
necessary or advantageous to collect the same article from different positions. In the 
standard variants of the SPRP-SS, pickers start and end their tour at the same point 
in the warehouse often denoted as the I/O point 0 (=depot).

Let P0 = {0} and P = P0 ∪
⋃

s∈S Ps , where the latter set comprises the set of 
all positions relevant for the SPRP-SS. A tour is feasible for the given SPRP-SS 
instance, i.e., it allows the collection of the entire demand, if the tour visits a sub-
set P′ ⊆ P such that 0 ∈ P and 

∑
p∈P�∩Ps

bsp ≥ qs for all s ∈ S . Figure  1 shows a 
feasible tour for an SPRP-SS instance with general demand. Let the D = (dpq) be 
the (symmetric) distance between two positions  p ∈ P and q ∈ P . A tour is opti-
mal, if it is feasible and minimizes the distance traveled by the picker using the dis-
tance matrix D. In the unit-demand case, the SPRP-SS instance can be modeled and 
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Fig. 1   A feasible tour for a general-demand SPRP-SS instance with demand q1 = q2 = q5 = 1 and 
q3 = q4 = 5 . The pick positions of the five articles S = {1, 2, 3, 4, 5} are indicated with the article s and 
an index. The index shows the available number bsp of items of the article s at the pick position p . Pick 
positions from where the picker collects items are encircled
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solved as a special case of the generalized traveling salesman problem (GTSP, Gutin 
and Punnen 2002): The set of cities is given by P , the distances by D = (dpq) and the 
clusters by P0 and Ps for s ∈ S.

The standard SPRP (non-scattered) is the special case that all articles are avail-
able at a unique position, i.e., |Ps| = 1 for all s ∈ S . In contrast to the SPRP-SS, there 
is no selection of positions required, but every tour that covers all given positions is 
feasible. The SPRP seeks a minimum-length picker tour given the distances and the 
pick positions from where articles must be collected. Hence, it is a special case of 
the (Steiner) traveling salesman problem (TSP, Cornuéjols et al. 1985; Roodbergen 
2001). While the TSP is generally NP-hard, the modeling and solution approaches 
for picker routing heavily rely on the fact that typical warehouses have a well-defined 
structure that can be exploited. We discuss this in the following literature review.

1.2 � Literature review

Literature on warehouse operations is extensive. For the sake of brevity, we restrict 
ourselves to the same three central topics already discussed in the introduction, i.e., 
picker routing, scattered storage, and class-based storage policies. Intentionally, we 
do not discuss integrated problems in warehouse operations management where 
picker routing constitutes a well-defined subproblem such as in order batching and 
batch scheduling (van Gils et al. 2019) or warehouse layout and storage design prob-
lems (Henn et al. 2013).

For a single-block parallel-aisle warehouse, the seminal work of Ratliff and 
Rosenthal (1983) has shown that the SPRP is a well-solvable special case of the 
TSP. Recently, Heßler and Irnich (2022b) stated the complexity of the SPRP more 
precisely as linear in the number of aisles and the number of pick positions. The 
generalization of this dynamic-programming (DP) algorithm to the case of a two-
block parallel-aisle warehouse was presented by Roodbergen and de Koster (2001b). 
For an arbitrary number of blocks, Pansart et al. (2018) presented a DP as well as a 
MIP-based approach. Despite the low computational complexity of computing opti-
mal picker tours with DP algorithms, the application of heuristic policies is well 
justified in settings where pickers prefer to perform tours defined by some simple 
rules. Accordingly, heuristic routing policies are rule-based heuristics (see Sect. 2). 
In the following, we also consider the use of minimum-length tours and denote the 
routing policy by ����� . Both exact and heuristic techniques have been extended 
into many different directions, e.g., to various warehouse layouts (Roodbergen and 
de Koster 2021a,b; Öztürkoğlu et al. 2012; Çelk and Süral 2014), non-identical start 
and endpoints (Masae et al. 2020; Löffler et al. 2022a), and multiple end depots (de 
Koster and van der Poort 1998; Goeke and Schneider 2021). The most recent survey 
on picker routing is the one of Masae et al. (2020).

In Table  1, we provide an overview of SPRP and SPRP-SS variants that have 
been discussed in the literature. Variants address different problem dimensions such 
as the layout of the warehouse, the number of I/O points (=depots), and the routing 
policies.
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Scattered storage was first addressed by Daniels et al. (1998), who also pointed 
out that several items of the same article can or must be retrieved from different 
pick positions whenever the demanded number of items is greater than one (general-
demand case). For the general-demand case, the authors proposed a TSP-type of 
formulation with demand fulfillment constraints as well as a solution approach using 
a tabu search metaheuristic for the selection of pick positions. For the unit-demand 
case, Daniels et al note that the resulting SPRP-SS is a special case of generalized 
traveling salesman problem (GTSP, Gutin and Punnen 2002). Although Gu et  al. 
(2007) already stated the great research potential of the SPRP-SS, it received only 
little attention up to the middle of the last decade. Weidinger (2018) coined the term 
mixed-shelves storage as a synonym for scattered storage, emphasising that it is par-
ticularly advantageous in large warehouses with many different articles but rather 
small, time-critical orders. Weidinger showed that, for a single-block parallel-aisle 
warehouse, the determination of a minimum-length picker tour is NP-hard. Moreo-
ver, he compared a decomposition procedure (select the pick position by different 
priority rules and use the algorithm of Ratliff and Rosenthal to determine a picker 

Table 1   Problem dimensions of the SPRP and SPRP-SS

Similar to Table 1 in (Heßler and Irnich 2024)
¶: Different definitions of the policy were given by Petersen (1997), Scholz and Wäscher (2017b), and 
this paper, DP known only for the last definition
‡: Different type of DP.       †: Only relevant for the SPRP-SS

Dimension Attribute References DP known

Layout Single-block  Ratliff and Rosenthal (1983) Yes
Two-block  Roodbergen and de Koster (2001b) Yes
Multi-block  Pansart et al. (2018) Yes
Flying-V  Gue and Meller (2009) Yes
Butterfly  Öztürkoğlu et al. (2012) No
Fishbone  Çelk and Süral (2014) Yes
Chevron  Masae et al. (2019) Yes
Discrete cross-aisles  Öztürkoğlu and Hoser (2019) Yes
Leaf  Masae et al. (2021) Yes

I/O point(s) One unique point (= depot)  Ratliff and Rosenthal (1983) Yes
Multiple drop-off points  de Koster and van der Poort (1998) Yes
Non-identical start and drop-off 

point
 Masae et al. (2020); Löffler et al. 

(2022b)
Yes

Routing policy Exact  Ratliff and Rosenthal (1983) Yes
��������� , �������� , 
������� ���

 Hall (1993) Yes

������  Petersen (1997) Yes
���������  Petersen (1997) No/yes¶

��������  Roodbergen and de Koster (2001a) Yes‡

Demand† Unit demand  Daniels et al. (1998) n.a
General demand  Daniels et al. (1998) n.a
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tour) with the MIP-approach of Daniels et  al. (1998) complemented with MTZ-
based subtour-elimination constraints (Miller et  al. 1960). The effective model of 
Goeke and Schneider (2021) is tailored to the single-block parallel-aisle warehouse 
layout. Independently, a rather involved MIP-based approach has been presented 
by Su et  al. (2023) for multi-block parallel-aisle warehouses. Unfortunately, this 
approach has not been compared to any GTSP-based model or the approach of Pan-
sart et al.. The currently fastest exact SPRP-SS algorithm is the one of Heßler and 
Irnich (2024) which is explained and exploited in Sects.  2 and  3. Their approach 
assumes that the warehouse layout and I/O point configuration are such that a DP 
formulation for the non-scattered SPRP is known and can be extended to capture 
the options arising from scattered storage. The latter is true as can be seen from the 
last column of Table 1. A rather involved MIP model (solved with a MIP solver) 
has been presented by Su et al. (2023) for the SPRP-SS defined for multi-block par-
allel-aisle warehouses and the unit-demand case. Unfortunately, this approach has 
not been compared to any GTSP-based solution approach. Overall, all exact solu-
tion approaches for the SPRP-SS are MIP-based. Complementing exact approaches, 
Weidinger et al. (2019) presented a heuristic solution approach for SPRP-SS with 
multiple depots.

Class-based storage was first introduced by Hausman et al. (1976). Different cri-
teria that are often used for the assignment of articles to classes are the turnover 
rate, the required space, and the cube-per-order index (COI) (Heskett 1963) which 
is the ratio of required space to turnover rate (Gu et  al. 2007). Gibson and Sharp 
(1992) showed that class-based storage leads to significantly shorter picker tours 
than random storage. A special case of class-based storage is full-turnover storage 
where all articles are ranked according to their turnover rate. The articles are then 
assigned to the pick positions in such a way that articles with the highest turnover 
rate are located closest to the depot and the articles with the smallest turnover rate 
are most distant to the depot. Thus, in this case, each article is assigned to a differ-
ent class (de Koster et al. 2007). Full-turnover storage leads to shorter picker tours 
than class-based storage but is more complex to implement and more detailed data is 
needed (Petersen et al. 2004). Hence, Petersen et al. (2004) recommend class-based 
storage with two to four classes. Park and Webster (1989) consider three-dimen-
sional storage systems (vertically and horizontally organized storage positions) with 
specific handling equipment and suggest a so-called ‘cubic-in-time’ rule for design-
ing a two-class storage warehouse minimizing traveling time.

1.3 � Contributions

This is the first (exact) approach for picker routing that combines heuristic routing 
policies with scattered storage. We formally introduce variants of the SPRP-SS in 
which picker routes must obey the rules of the heuristic routing policies ��������� , 
������ , ������� ��� , �������� , and ��������� , respectively. The contributions 
of this work are:
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•	 We prove that all variants of the SPRP-SS with the above heuristic routing poli-
cies and scattered storage remain NP-hard.

•	 Adapting the approach of Heßler and Irnich (2024) for the routing policy ����� 
to heuristic routing policies, we provide a first ����� approach for the SPRP-
SS with the routing policies ��������� , ������ , ������� ��� , �������� , and 
��������� . Our solution approach is based on an incomplete DP formulation 
finally solved as an integer program (IP) with the help of a mixed-integer pro-
gramming (MIP) solver. In this context, ‘incomplete’ means that the DP formula-
tion does not ensure demand covering for articles available in more than a single 
aisle.

•	 We analyze combinations of routing and storage policies. In this sense, our 
work extends classical results of Petersen and Schmenner (1999) to warehouses 
with scattered storage. We find that larger cost savings are possible with scat-
tered storage by choosing a suitable combination of the routing and storage pol-
icy compared to classical warehouses, i.e., those without scattered storage. The 
combination of ������� ��� and within-aisle outperforms other combinations 
in most cases.

•	 For class-based storage policies, we investigate how the scattering of articles of 
different classes should be performed. For uniformly distributed articles, scatter-
ing of A-articles is most beneficial as suggested by Weidinger (2018). We also 
obtain an unexpected result: scattering of C-articles performs best for the stand-
ard class-based storage policies.

1.4 � Structure

The remainder of this paper is structured as follows. In Sect. 2, we briefly review the 
DP formulation of Ratliff and Rosenthal (1983) and detail the necessary modifica-
tions on the DP state space to enforce picker routes that obey the rules of the respec-
tive heuristic routing policy. In Sect. 3, we elaborate which extensions of the state 
space are required to correctly model the options arising from scattered storage. 
Together, these results allow us to specify a unified integer programming formula-
tion. The NP-hardness of the SPRP-SS even for simple heuristic routing policies is 
proven in Sect. 4. Section 5 formally introduces the class-based storage policies. The 
comprehensive computational study is presented in Sect. 6. The work closes with 
conclusions and an outlook in Sect. 7.

2 � Solving the SPRP for different routing policies

While the non-scattered standard SPRP can be solved efficiently, the SPRP-SS is prov-
enly NP-hard (Weidinger 2018). Different solution approaches for optimal routing 
(hereafter denoted as ����� routing policy) have been presented in the literature (see 
Sect. 1.2). To date, we are not aware of any exact algorithm for the SPRP-SS and heu-
ristic routing policies. In the following, we rely on an exact algorithm first presented in 
(Heßler and Irnich 2022a) (this technical report will remain unpublished) and Heßler 
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and Irnich (2024). Their approach assumes that the warehouse layout is such that a DP 
formulation for the non-scattered SPRP is known and can be extended to capture the 
options arising from scattered storage. The focus of the companion paper is on algorith-
mic performance, as it compares the solution times of the available solution approaches 
for SPRP-SS applicable to one-block and two-block parallel-aisles warehouses and the 
����� routing policy. We would like to stress that the paper at hand has a completely 
different focus, i.e., different heuristic routing policies evaluated in combination with 
different storage policies. Particularly, computation times are irrelevant because they 
are in the range of milliseconds (never exceeding one second, see Sect. 6.2). To make 
the paper at hand self-contained, we present the ideas coined in (Heßler and Irnich 
2022a) in the following paragraph.

Heßler and Irnich (2022a, 2024) have shown that, for the routing policy ����� in 
a single-block parallel-aisle warehouse, the SPRP-SS can be solved as a shortest-path 
problem with additional covering constraints. The underlying network is an extension 
of the state space of Ratliff and Rosenthal’s DP. We adapt the approach to heuristic 
routing policies. Section  2.1 introduces the notation and original state space, while 
Sect. 3 explains the necessary extension in the form of additional actions per aisle. In 
the extended state space, every picker tour is still a path, and vice versa. Exploiting 
the equivalence of DP and linear programming, a network-flow formulation for an ori-
gin–destination shortest path problem can be set up. The requirement to make consist-
ent selections of pick positions can be modeled with additional covering constraints. 
The resulting IP formulation is also presented in Sect. 3.

In this work, we follow the same solution approach for solving the SPRP-SS but 
now for the different heuristic routing policies. The new idea presented here is that the 
picker tour defined by a heuristic routing policy is a shortest path in a DP state space 
that is adapted according to the routing policy. Accordingly, we construct state spaces 
for the heuristic routing policies (Sects.  2.2–2.6). We summarize the results of this 
longer DP-related part in Sect. 2.7.

2.1 � Routing policy exact

Let J = {1, 2,… ,m} denote the set of aisles (numbered from left to right). The DP for-
mulation of Ratliff and Rosenthal (1983) constructs a distance-minimal picker tour by 
alternately deciding how the picker moves through an aisle  j ∈ J and through the next 
cross-aisles connecting aisle j with aisle  j + 1 . Accordingly, the stages of the DP can be 
denoted by

where j− ( j+ ) represents the situation before (after) the aisle  j ∈ J is traversed. Like-
wise, j+ and (j + 1)− represent the situations before and after the cross-aisle action 
connecting aisle  j with j + 1 has been performed, respectively. The stage (m + 1)− is 
added to have a unique final state (see below).

For a distance-minimal picker tour, within an aisle, only the actions

1−, 1+, 2−, 2+,… ,m−,m+, (m + 1)−,

Eaisle = {�����, �����, ���, ������, ���, ����},
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are possible, where ����� , ����� , stands for a single (double) traversal through 
the aisle (in either direction), ��� ( ������ ) for a traversal from the back (front) 
cross-aisle to the lowest (highest) relevant pick position and back, ��� for double-
sided traversal from front and back cross-aisle leaving a maximum length gap in the 
middle, and ���� for no traversal of the aisle, which is only possible in aisles from 
where nothing needs to be picked.

Possible cross-aisle actions are

where the first (second) digit gives the number of traversals of the back (front) 
cross-aisle.

Ratliff and Rosenthal introduced so-called partial tour subgraphs (PTSs) that rep-
resent the part of the picker tour containing only actions between aisle 1 and aisle  j . 
A PTS results from introducing vertices aj and bj at the crossing points of aisle  j and 
the back and front cross-aisle, respectively (see Fig. 3). Every PTS can be character-
ized by the following set of states:

The first two symbols describe the parity of the right-most vertices aj and bj with � , 
� , and � for uneven (=odd), even (with positive degree), and degree 0. The last two 
symbols describe the number of connected components of the PTS, i.e., �� , �� , for 
one (two) connected components, and �� for an (empty) PTS without edges.

Figure 2 visualizes the states and actions for the routing policy ����� . The state 
space of Ratliff and Rosenthal’s DP can be constructed by joining the building block 
depicted in Fig. 2a for j = 1 with the building block depicted in Fig. 2b for j = 1 , the 
latter one with the building block depicted in Fig. 2a for j = 2 , etc. The initial state 
is o = ���� at stage 1− , and the final state is d = ���� at stage (m + 1)− . The result-
ing state space is depicted in Fig. 3.

In contrast to Ratliff and Rosenthal, we do not model the depot 0 , which is located 
at the front or back of the depot aisle  j0 , as a pick position. Instead, the possible 
actions in cross-aisles can be restricted so that the depot is surely connected with the 
constructed tour, see the caption of Fig. 2b. For example, when being in state ���� 
at stage  j+ , the actions �� and �� would make bj disconnected, which is forbidden if 
j is the aisle  j0 of the depot 0 (in this case bj represents the depot). Note that these 
restrictions are based on the assumption that the depot 0 is located at a front cross-
aisle. In the case that the depot is at the back cross-aisle, the roles of back and front 
must be swapped. For simplicity, to not display symmetric cases, we assume in the 
following figures that the depot 0 is located at the front cross-aisle. Note also that 
our modeling approach is valid for any depot aisle  j0 ∈ J , not only if j0 = 1 , i.e., 
the depot is at the left end. Figure  3 illustrates an example SPRP instance where 
the depot is located in front of aisle  j0 = 3 . Figure 3a pictures the warehouse with 
the depot, the pick positions of the different (numbered) articles, and the optimal 
picker tour. The corresponding state space is shown in Fig. 3b, where the optimal 
control describing the optimal picker tour is marked in red. It is the shortest path 
from the initial state o to the final state d . Looking at the optimal picker tour shown 

Ecross = {��, ��, ��, ��, ��},

S = {����, ����, ����, ����, ����, ����, ����}.
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in Fig. 3a, we briefly discuss the PTS of each stage: At stage 1− , the PTS does not 
include any parts of the picker tour. At stage 1+ , aisle j = 1 is traversed using the 
action ��� . Thus, both vertices a1 and b1 have an even parity with a degree of two, 
leading to a PTS with state ���� , as the PTS consists of two components. The sub-
sequent PTS at stage 2− does not change its state because passing the cross-aisle 
sections between a1 and a2 and b1 and b2 twice still results in two components with 
an even degree. At stage 2+ , aisle j = 2 is traversed using the action ����� changing 
the degree of a2 and b2 to three. As the PTS becomes connected, the corresponding 
state is ���� . With the cross-aisle action �� , a3 and b3 have degree one so that the 
state of stage 3− is ���� . Following the same procedure with actions ����� and �� , 
the remaining PTSs of this instance have the states ���� and ���� for stages 3+ and 
4− , respectively.

To complete the definition of the DP, one must associate a cost to all actions, i.e., 
the arcs of the state graph: the cost is defined by the distance traveled (or time con-
sumed) by the picker when performing the associated action. Recently, Heßler and 
Irnich (2022b) have shown that computing these costs can be done with linear effort 
measured in the number m of aisles and number n of pick positions. Recall that any 
o-d-path in the state space represents a feasible picker tour. As a result, the length 
of the picker tour is exactly the cost of the path. Therefore, solving the SPRP can 
be interpreted as solving an origin–destination shortest-path problem. Note that the 
overall complexity is also linear because there is only a linear number of states and 
actions and the state graph is acyclic.

Fig. 2   Possible actions between states for the routing policy �����
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2.2 � Routing policy traversal

The rules of ��������� specify that an aisle is completely traversed when it is 
visited (Hall 1993). This means that if an aisle is entered from the back (front), 
it needs to be left at the front (back) cross-aisle. However, there is an exception 
regarding the rightmost aisle entered by the picker tour. In case an odd number of 
aisles is traversed in the course of the picker tour, this last aisle is not traversed 
completely, but entered and left from the same end. Thus, after collecting the arti-
cles, the picker is on the same side of the warehouse as the depot and can move 
back there without crossing an additional, unnecessary aisle. In particular, if the 
order only contains articles that are stored in one single aisle, then this aisle is not 
traversed completely.

For the remainder of this section, we assume the depot 0 to be located within 
the front cross-aisle at the level of the leftmost aisle, i.e., j0 = 1 . Then, possible 

Fig. 3   SPRP instance with the optimal picker tour and the corresponding state space
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actions within an aisle and possible cross-aisle actions for the routing policy 
��������� are

When the depot is located in the back cross-aisle, actions ��� and �� replace ������ 
and ��.

Due to the smaller sets of actions (compared to ����� ), the set of states for 
��������� has fewer elements. State ���� represents a PTS consisting of two com-
ponents and is impossible here ( ���� cannot be reached by any heuristic routing 
policy). Additionally, state ���� is omitted from the state set if the depot is located 
at the front cross-aisle, since with the allowed actions of ��������� , the state ���� 
cannot be reached. Instead, ���� is omitted if the depot is sited at the back cross-
aisle. Apart from the two excluded states, there is also a supplementary state denoted 
by ��� . This state can only be reached in combination with the action ������ (or 
��� , if the depot is located in the back cross-aisle) and is therefore responsible to 
enforce the above deviating rules for the last aisle entered by the picker tour. The 
resulting set of states is

Figure 4 depicts which state-action combinations are possible. Note that some com-
binations only exist in (non-)empty aisles or (non-)depot cross-aisles. In addition, 

Eaisle = {�����, ������, ����} and Ecross = {��, ��, ��}.

S = {����, ����, ����, ����, ����, ���}.

Fig. 4   Possible actions between states for the routing policy ���������
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the action of the cross-aisles between two ���-states varies depending on the loca-
tion  j0 of the depot 0 . If aisle  j is left to the depot aisle  j0 (or identical to it), then the 
action is �� : The picker has already collected all demanded items at this point, but 
still has to move to the depot. In case j is right to  j0 , the action is �� , and the picker 
does not need to move further but returns directly to the depot.

2.3 � Routing policy return

The opposite routing policy to ��������� is ������ (Petersen 1997). Instead of tra-
versing each relevant aisle completely, for ������ each relevant aisle is entered and 
left from the same end. The change of direction in the visited aisle is performed as 
soon as all requested articles in this aisle are collected. As the picker starts and ends 
the tour at the depot, the location of the depot determines the cross-aisle the picker 
passes through and, consequently, the end from which aisles are entered. This rather 
simple routing policy requires only two different actions each, within the aisles and 
for the cross-aisles. Not even for the last aisle of the picker tour is an additional 
action needed. Given the depot is located in the front cross-aisle, the two sets of 
actions are

(if the depot is located in the back cross-aisle, instead of ������ the action ��� is 
used, and �� is exchanged by �� ). The limited number of actions imposes three nec-
essary states which are

(if the depot is placed in the back cross-aisle, ���� is exchanged by ����).
Figure 5 confirms that the small number of possible actions and states also leads 

to few possible combinations in the state space.

Eaisle = {������, ����} and Ecross = {��, ��}

S = {����, ����, ����}.

Fig. 5   Possible actions between states for the routing policy ������



922	 L. Lüke et al.

1 3

2.4 � Routing policy largest gap

The routing policy ������� ��� has rather complex rules (Hall 1993): An aisle 
is entered (and left again) from both ends. The two turning points within the aisle 
are chosen in such a way that the longest possible part of the aisle is not traversed 
because there are no relevant articles. This part of the aisle is called ������� ��� . 
When applying ������� ��� , the picker moves through both cross-aisles one after 
the other and enters relevant aisles in between from the end that borders the cross-
aisle. To reach the opposite cross-aisle, the picker traverses the first and last aisle 
with relevant pick positions completely. For the implementation of these routing 
rules, the actions

are required. Here, action ����� is only used for the first and last aisle. For the aisles 
in between, the use of ��� is intended. If only one demanded article is stored in an 
aisle or if the largest gap of an aisle is connected to one of the two cross-aisles, then 
this aisle is only entered from one end and the action ��� or ������ is used instead 
of ��� . Concerning the cross-aisle actions, �� is replaced by �� , if the depot is 
located in the back cross-aisle. The set of possible states necessary for ������� ��� 
is

Since the first and last aisle are traversed differently than all the other aisles, this 
must be taken into account when defining the set of possible states. Thus, the addi-
tional state ��� is needed to enable the action ����� within the last aisle. For the 
complete traversal of the first aisle of the tour, no extra state is needed. As the initial 
state ���� is only used for this aisle (and for empty aisles left of it), only the actions 
����� and ���� are allowed at this state (see Fig. 6a).

In case all articles of the pick list are stored in one single aisle, the picker 
moves through the cross-aisle of the depot until the corresponding aisle is 
reached (in general, in either direction from left to right or right to left). In 
Fig. 6a, this case can be observed in the states ���� and ���� with action ������ 
assuming the depot is located at the front cross-aisle. This aisle is then served 
using the action ������ (otherwise with action ��� ). Another noticeable state 
is ���� for which it depends on the number and the distribution of the articles 
which action ��� , ��� or ������ is possible (in a middle aisle of the tour). 
Looking at Fig. 6b, the possible action between two ���-states is again depend-
ent on the depot location.

Eaisle = {�����, ���, ������, ���, ����} and Ecross = {��, ��, ��}

S = {����, ����, ����, ����, ���}.
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2.5 � Routing policy midpoint

The routing policy �������� (Hall 1993) has many similarities to the just-
described policy ������� ��� . The picker moves through the warehouse fol-
lowing almost all principles of ������� ��� . The only difference is the criterion 
for defining the turning points in aisles that are visited from both ends. While 
for ������� ��� the picker leaves out the maximum length part, the rules for 
�������� require the picker to not cross the middle of an aisle. This means if the 
picker enters an aisle from the back (front) cross-aisle, he or she is only allowed to 
collect articles closer to the back (front) cross-aisle than to the front (back) cross-
aisle or articles that are equidistant from both cross-aisles. The location of the 
turning points of �������� can only lead to identical or longer tour lengths than 
obtained with ������� ��� . Nevertheless, �������� also brings its advantages. 
While a picker can easily determine the turning points of each aisle on the go fol-
lowing the rules of �������� , this quickly becomes difficult for ������� ��� as 
soon as several articles have to be collected in the same aisle.

The following actions are possible for ��������:

Compared to the routing policy ������� ��� , the action ���� replaces ��� , thus 
respecting the rules for the determination of the turning points of �������� . Just 
as with ������� ��� , the actions ��� or ������ are used instead of ���� if there 
is only one requested article in an aisle or if the largest gap of this aisle is located at 
one end of this aisle.

Eaisle = {�����, ���, ������, ����, ����} and Ecross = {��, ��, ��}.

Fig. 6   Possible actions between states for the routing policy ������� ���
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The possible states of �������� remain the same compared to ������� ���:

The resulting possible combinations of states and actions for �������� are almost 
identical to the combinations of ������� ��� (compare Figs. 6 and 7). The only dif-
ference is the use of the aisle action ���� instead of ��� between two states ���� in 
Fig. 7a which differ in the definitions of the turning points.

2.6 � Routing policy composite

The policy ��������� is a combination of the routing policies ��������� and 
������ . That means the picker can either traverse an aisle completely or enter the 
aisle and move through it until all demanded articles are collected before returning 
to the same end again, where the aisle was entered. These two options are possible 
for each aisle that needs to be visited, regardless of whether it is one of the two 
aisles on the edge of the tour or not.

To the best of our knowledge, there are two different definitions of ��������� 
in the literature. In both cases, the decision whether an aisle is visited with action 
����� , ������ , or ��� is made in a greedy fashion. We first describe the two ver-
sions of the policy ��������� and then present the state space of a new version 
in which the distance-minimal route is generated when only allowing the actions 
����� , ������ , ��� , and ����.

S = {����, ����, ����, ����, ���}

Fig. 7   Possible actions between states for the policy ��������
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Petersen (1995) introduced the routing policy ��������� . Here, the distance 
between the two most distant articles of two successive aisles is used as the deci-
sion criterion which action is chosen. To be more precise, in both aisles, this con-
cerns the article that is furthest away from the picker’s current position (crossing 
of the current aisle with back or front cross-aisle). Aisles without relevant articles 
are ignored. This may result in relevant successive aisles not being contiguous, but 
separated by irrelevant aisles. If the path resulting from applying ����� ( ������ or 
��� ) between these two pick positions is shorter than the path resulting the other 
action, the former is chosen for the current aisle. If the two paths are of equal length, 
it is irrelevant which action is selected. According to this principle, a decision is 
made for each aisle on how it is passed through, starting with the aisle next to the 
depot. After all articles from the pick list are collected, the picker moves back to the 
depot through the cross-aisle where the depot is located.

Scholz and Wäscher (2017a) define the routing policy ��������� differently. If 
more than half of an aisle needs to be visited to collect all demanded articles in this 
aisle, then the action ����� is chosen. However, if the picker can collect all neces-
sary articles in the first half of the aisle, the picker follows the action ������ or ��� 
(depending on the current position) and leaves the aisle at the same end again.

It should be noted that neither of the above definitions leads to an easy-to-com-
pute tour. In addition, the resulting tour does not follow a simple pattern that can 
be easily remembered. We use a third and new version of ��������� in which the 
actions ����� , ������ , and ��� are combined optimally. More precisely, a distance-
minimal picker tour is constructed, only allowing the possible actions of these two 
routing policies. For this purpose, a state space is set up which contains the possible 
actions of ��������� and ������.

This procedure should not be confused with another routing policy called 
�������� (Roodbergen 2001), which also combines the possible actions of 
��������� and ������ in another target-oriented manner. �������� searches for 
a distance-minimal path starting at the depot and ending at the pick position of the 
last demanded article while collecting all other articles on the way. The way back 
to the depot leads through the cross-aisle of the depot. In contrast, our version of 
��������� optimizes the entire picker tour and allows the collection of articles on 
the way back to the depot.

The state space resulting from our new definition of ��������� includes the 
picker tours according to the previous interpretations of ��������� as well as tours 
according to the �������� policy. Thus, the corresponding picker tours dominate 
the others.

A visual representation of the differences in the definitions of and the routing 
policy �������� can be found in Fig. 8. In each version, the same instance is used 
in which the distance between two neighboring pick positions as well as the dis-
tance between the first (last) pick position of an aisle and the bordering cross-aisle is 
one. The routing costs show clear differences for the different definitions. The picker 
tour has a length of 68 when constructed according to the definition of Petersen but 
a length of 56 results from the definition of Scholz and Wäscher. Here, the picker 
tour is identical to the one resulting from the routing policy ��������� . Our new 
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version of ��������� leads to a tour length of 48. In contrast, the picker tour result-
ing from �������� has a length of 54.

Our version of ��������� has the following the sets of actions:

These two sets include all relevant actions of ��������� and ������ for the both 
possible scenarios of the depot being located in the back or front cross-aisle. The 
possible actions of ��������� are not dependent on the position of the depot. The 
set of states is

Eaisle = {�����, ���, ������, ����} and Ecross = {��, ��, ��, ��}.

S = {����, ����, ����, ����, ����, ����}
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defined by Scholz and Wäscher
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(d) Routing policy combined
(Roodbergen, 2001).

Fig. 8   Different definitions of the routing policy ��������� in comparison with the routing policy 
��������
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and contains almost all states required for the routing policy ����� . Solely ���� is 
missing. Furthermore, no additional state is needed for the first or last aisle of the 
picker tour because the rules of ��������� treat every aisle equally.

Although this routing policy already allows several different actions and needs 
only one state less than ����� , the number of possible state-action combinations 
is substantial smaller for ��������� . Comparing Figs. 2 and 9, this difference is 
clearly visible.

2.7 � Summary

Up to now, we have established DP formulations for the SPRP restricting picker 
routes to the rules of the different heuristic routing policies used in practice. 
These DP formulations may seem dispensable, since heuristic routing policies 
are simple route-construction procedures. However, a recent result of Heßler and 
Irnich (2022b) is applicable here showing that, if properly implemented, all DPs 
can be constructed and solved in linear time (measured in the number of aisles of 
the warehouse and the number of given pick positions). Even more, the following 
section shows that also the more difficult variants of the problem with scattered 
storage can be solved with a structurally simple integer-programming formulation 
based on the state spaces that have been presented in this section.

Fig. 9   Possible actions between states for the routing policy ���������
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3 � Extensions of the state spaces and IP formulation for scattered 
storage

The SPRP-SS distinguishes from the basic SPRP by the additional flexibility that 
one can select a pick position for a requested article whenever this article is stored at 
two or more positions. For capturing these options, the state space must be extended 
(Heßler and Irnich 2024). We again present this idea as in Sect.  2 for a standard 
warehouse with parallel aisles and a single block layout. Compared to the SPRP, the 
number of stages and the states within each stage remain identical, i.e., those of the 
state space of Ratliff and Rosenthal. Moreover, cross-aisle actions Ecross

j
 remain 

identical (connecting stages j+ and (j + 1)− ), and also the aisle actions ����� and 
����� remain unchanged. However, additional aisle actions have to be added what 
we explain with the help of the following example.

Example 1  An instance of the SPRP-SS with four requested articles S = {1, 2, 3, 4} 
is depicted in Fig. 10a. For simplicity, we discuss the unit-demand case first, i.e., 
qs = 1 for all s ∈ S . In aisle j = 1 , it is possible to pick only article 4 because arti-
cles  1 and 2 are also available in other aisles. The associated new aisle action is 
������(1) which is the traversal from the front cross-aisle with a U-turn in 
cell i = 1 . Moreover, picking only articles 1 and 4 or articles 2 and 4 is feasible lead-
ing to the additional aisle actions ������(7) and ���(1, 9) (the latter is leaving out 
the position i = 7 where article 1 is stored). These are all additional aisle actions as 
listed in the table in Fig. 10b. Note that any action ���(i, k) can be disregarded if i 
and k are neighboring positions with a non-maximal gap. As in the DP of Ratliff and 
Rosenthal, these actions are dominated by one with maximum gap.

Also in aisle j = 2 , it is not required to collect articles 1 and 2. However, arti-
cle 3 must be collected, either from position i = 2 or i = 8 making ���� and ���(9) 
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(a) The warehouse and optimal
picker tour.

Aisle Type of additional aisle actions

j = 1 bottom(i) Cells i ∈ {1, 7}
gap(h, i) Cell (h, i) = (1, 9)

j = 2 top(i) Cells i ∈ {4, 8}
bottom(i) Cells i ∈ {2, 4, 8∗}
gap(h, i) Cells (h, i) ∈ {(2, 8)‡, (2, 9), (4, 9)}

j = 3 top(i) Cell i = 9
bottom(i) Cell i = 4
void

(b) Additional aisle actions compared to non-
scattered storage. ∗: dominated by bottom (4).
‡ : dominated by gap(2 , 9).

Fig. 10   Instance of the SPRP-SS. The pick list contains four articles S = {1, 2, 3, 4} (unit demand); pick 
operations are encircled
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impossible. With ���(4) and ���(4, 9) we can collect all three articles 1, 2, and 3. 
The aisle actions ���(8) , ���(2, 8) , and ���(2, 9) can pick articles 2 and 3 but not 1. 
In this case, ���(2, 8) is dominated by ���(2, 9) in the sense that the latter is less 
costly but can collect the same articles (in the unit-demand case). Articles 1 and 3 
are collected with ������(4) and ������(8) where the latter is dominated by the 
first. Lastly, with ������(2) , only article 3 can be picked.

It is possible to not enter the last aisle  j = 3 , making ���� a feasible option here. 
Moreover, additional aisle actions collecting only article  1 or article  2 are ���(9) 
and ������(4) , respectively.

Overall, the set of aisle actions becomes aisle dependent. Hence, we denote by 
Eaisle
j

 the resulting set of arcs connecting stages j− and j+ for all j ∈ J . Several aisle 
actions of the same type referring to the same aisle can be considered as parallel 
arcs in the DP state space (in the above example, two parallel aisle actions ��� in 
aisle 2 differing in cost and articles that can be collected). Please note that, com-
pared to the basic SPRP discussed in Sects. 2.1–2.6, the aisle actions referring to 
empty aisles (depicted in green in Figs. 2, 3, 4, 5, 6, 7 and 9) are now also possible 
for (some) non-empty aisles.

As mentioned above, the set of additional aisle actions can be reduced by domi-
nance considerations. In the example in aisle  j = 2 , ���(2,8) is dominated by ���
(2,9) because of its higher cost. This is only true in the unit-demand case because 
otherwise, ���(2,8) could provide more items of article 3. Likewise, ������(8) is 
dominated by ������(4) in aisle  j = 2.

For scattered storage with general-demand, any aisle action e ∈ Eaisle
j

 that leaves 
out some positions in aisle  j is feasible if and only if the quantity that can be col-
lected from this aisle together with all quantities stored in other aisles  j′ ≠ j is suffi-
cient to fulfill the requested demand of the pick list.

In all cases (unit-demand and general-demand), we define bse as the quantity of 
article s ∈ S that can be collected when traversing the aisle via aisle action e ∈ Eaisle

j
 . 

Cross-aisle actions have zero supply bse = 0 for all e ∈ Ecross
j

 and j ∈ J . For a given 
article s ∈ S , we denote the set of edges with a non-negative quantity bse by Es.

Example 2  (continued from Example  1) For the SPRP-SS instance depicted in 
Fig.  10, we now assume that each position stores three units of each articles of 
the respective indicated type (the general-demand case). Then, overall, nine, nine, 
six, and three articles 1, 2, 3, and 4 are stored in the warehouse, respectively. Any 
demand q = (q1, q2, q3, q4) ≤ (9, 9, 6, 3) can be retrieved from a picker tour. The 
picker tour depicted in Fig. 10a can collect (3, 3, 6, 3) units. This picker tour uses 
in aisle j = 1 the aisle action ������(1) with positive supply value bse = 3 for s = 4 
and e = ������(1) ∈ Eaisle

1
 . In aisles  j = 2 , the aisle action  ������(9) has posi-

tive supply values b1e = 3 , b2e = 3 , and b3e = 6 for e = ������(9) ∈ Eaisle
2

 . In aisle 
j = 3 , the aisle action ���� has no positive supply values.

We can now formalize the DP-based formulation for the SPRP-SS. Recall 
that we have stages 1−, 1+, 2−, 2+,… ,m−,m+, (m + 1)− . Let V  denote the set of 
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all states of all stages, i.e., the vertices of state space. In particular, there are 
two distinct states, the initial state o = ���� at stage 1− and the final state is d at 
stage (m + 1)− . The latter state is either d = ���� or d = ��� depending on the 
routing policy, see Sect. 2. Moreover, let E denote the (disjoint) union of all aisle 
and cross-aisle actions, i.e.,

For each e ∈ E , let ce be the length of the corresponding part of a picker tour 
described by e . The discrete linear formulation uses binary variables xe for all e ∈ E 
to indicate whether the optimal picker tour contains the respective part of a walk 
described by e . Heßler and Irnich (2024) propose the following model: 

 The objective  (1a) is the minimization of the length of the resulting picker tour. 
The flow-conservation constraints (1b) ensure that the selected aisle and cross-aisle 
actions together describe a o-d-path in the extended state space (V ,E) . For any state 
� ∈ V  , �+(�) and �−(�) denote the set of arcs leaving and entering state � , respec-
tively. Demand fulfillment, i.e., that the requested number qs of articles s ∈ S can be 
collected with the constructed tour, is guaranteed by (1c). The domain of the flow 
variables xe is given by (1d). Note that (1a), (1b), and (1d) is the standard model of 
an origin–destination shortest-path problem.

Example 3  (continued from Example 2) We pursue the example depicted in Fig. 10 
and this time use the different routing policies presented in Sect. 2. Here, we have 
the seven stages 1− , 1+ , 2− , 2+ , 3− , 3+ , and 4−.

For the routing policy ����� , the initial state is o = ���� at stage 1− , and the 
final state is d = ���� at stage 4− . The optimal solution depicted in Fig. 10a can be 
described by the corresponding sequence

E =

m⋃
j=1

(
Eaisle
j

∪ Ecross
j

)
.

(1a)min
∑
e∈E

cexe

(1b)subject to
�

e∈�+(�)

xe −
�

e∈�−(�)

xe =

⎧
⎪⎨⎪⎩

+1, if � = o

−1, if � = d

0, otherwise

∀� ∈ V

(1c)
∑
e∈Es

bsexe ≥ qs ∀s ∈ S

(1d)xe ∈ {0, 1} ∀e ∈ E
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of states. The optimal control is (������(1), ��, ������(9), ��, ����, ��).
For the routing policy ������ , the exact same control 

(������(1), ��, ������(9), ��, ����, ��) is also optimal (feasibility can be tested 
with the help of Fig. 11), leading to the same sequence of states that the o-d-path travels 
through and the same final picker tour.

For the routing policies ��������� , ������� ��� , and �������� , the 
picker tour depicted in Fig.  10a is not feasible. Applying the same con-
trol  (������(1), ��, ������(9), ��, ����, ��) is infeasible, since the 
action ������(1) would let the path transit through the state ��� where it remains 
with action 02. From state ��� , the action ������(9) is not allowed, see Figs. 4a, 
6a, and 7a.

Finally, we consider the routing policy ��������� with the three different under-
lying definitions explained in Sect. 2.6. All three definitions lead to the picker tour 
depicted in Fig.  10a. The control  (������(1), ��, ������(9), ��, ����, ��) con-
sists of two ������ actions and one ���� action within the aisles. In general, these 
actions are possible when applying ��������� . Regarding our new definition of 
��������� , the state space constructed from the actions of Fig. 9 allows the solu-
tion shown in Fig. 10a. Following the definitions of ��������� by Petersen (1995) 
and Scholz and Wäscher (2017a), this picker tour is also feasible.

(����, ����, ����, ����, ����, ����, ����)

Fig. 11   State space for the SPRP-SS instance depicted in Fig. 10a and routing policy ������ . The short-
est o-d-path corresponding to the optimal picker tour is marked in red/thick. Note that only paths collect-
ing all articles S = {1, 2, 3, 4} are feasible
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Algorithm 1 summarizes the solution approach described so far. The construc-
tion of the state space of the SPRP in Step 1 depends on the warehouse layout, 
the routing policy ��� as described in Sects. 2.1–2.6, and the given positions of 
the SKUs. Note that the destination vertex d depends on the routing policy ��� 
(Step 2, state ���� or ��� ). The computation of additional aisle actions in Step 3 
has been explained in Sect. 3. In Steps 5 and 6, the costs ce and the supply val-
ues  bse depend on the given positions of the SKUs and the warehouse layout. 
The final picker tour is a closed walk w over all parts that result from the chosen 
aisle actions, i.e., variables xe with value one of the IP-formulation (1) solved in 
Step 7. The efficient computation of the walk w constructed in Step 8 is explained 
in (Ratliff and Rosenthal 1983, Sect. 4).

Algorithm 1   Exact Algorithm for SPRP-SS

Input : SPRP-SS instance, i.e., layout (m,C,distances), routing policy plc,
demands qs, and positions of SKUs with supply quantities

1 Construct DP state space (V,ESPRP ) for SPRP
2 Set origin o and destination d

3 Construct additional aisle actions ESS for SPRP-SS
4 Set E = ESPRP ∪ESS

5 Compute ce for all e ∈ E
6 Compute bse for all s ∈ S and e ∈ E
7 Solve formulation (1) over (V,E, o, d) with a MIP solver
8 Construct picker tour w from MIP solution

Output: Picker tour w

4 � NP‑hardness of the SPRP‑SS

As mentioned above, Weidinger (2018,  Theorem  1) has shown that computing a 
distance-minimal picker tour (policy ����� ) in a one-block parallel-aisle warehouse 
for the SPRP-SS is NP-hard. We now show an even stronger result, i.e., the problem 
remains NP-hard even if a shortest picker tour for one of the commonly used heuris-
tic routing policies has to be determined. The following proposition summarizes our 
findings about the computational complexity of the SPRP-SS.

Proposition 1  The SPRP-SS is strongly NP-hard for the routing policies ��������� , 
������ , �������� , ������� ��� , and ��������� considering a one-block paral-
lel-aisle warehouse.

Proof  The proof is analog to (Weidinger 2018, Theorem 1) through a reduction from 
the hitting set problem that is strongly NP-complete. We show that the existence of a 
hitting set is equivalent to the existence of a picker tour of a certain maximal length.

The hitting set problem is defined as follows (Garey and Johnson 1979): Given a 
finite set T, a positive integer k ≤ |T| , and a set of subsets {M1,… ,Mn} with Mi ⊆ T  
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for all i ∈ {1,… , n} , find a set H ⊆ T  such that |H| ≤ k and H ∩Mi ≠ ∅ for all 
i ∈ {1,… , n}.

Given an instance ⟨T , k, {M1,… ,Mn}⟩ of the hitting set problem, a correspond-
ing instance of the SPRP-SS can be constructed as follows. We consider a single-
block warehouse with m = |T| aisles and C = 2l + 2|T| cells per aisle. The depot 
is located at the front-end of the leftmost aisle. Let the (vertical) distance between 
two neighboring cells be 1 and the (horizontal) distance between two neighboring 
aisles be 3. Then, l = 3(|T| − 1) is the distance between the first and last aisle (see 
Fig. 12). All n articles that need to be collected are stored in the lower middle cell 
c = l + |T| + 1 . Article  i is stored in aisle  j if and only if j ∈ Mi . The figure illus-
trates how the SPRP-SS instance is constructed. We now prove that the existence of 
a hitting set of size |H| ≤ k is equivalent to the existence of a picker tour of maximal 
length k(C + 1) + 2l.

First, we consider the routing policies ������ , ��������� , and ��������.
’⇒ ’: Given a hitting set of size |H| ≤ k . According to the routing policy, we con-

struct the corresponding picker tour that enters only the aisles i ∈ H , i.e., not more 
than k aisles. For the policies ������ , ��������� , �������� , and the constructed 
instance, this picker tour consist of ������ actions only for collecting articles. The 
traveled distance is upper bounded by

M1

M2

M3

M4

M5

1 2

2 3

4 5

4

3 5

(a) Hitting set problem with
T = {1, 2, 3, 4, 5}, k = 3, and
sets M1, . . . ,M5 as shown.
The solution is the hitting set
H = {1, 3, 4}.

0

1

2

17

18

33

34

35

l = 12

3 3 3 3

1 1 2 2 5 3 4 3 5

depot

(b) The corresponding picker routing problem with m = 5
aisles and C = 34 cells per aisle. Article i is stored in
aisle j if and only if j ∈ Mi. The length of the plotted
optimal picker route for the policies return, composite,
and midpoint is 120 ≤ kC + 2l = 126. Aisles 1, 3, and 4
are entered.

Fig. 12   Example for the transformation between the hitting set problem and the picker routing problem. 
The hitting set corresponds to the entered aisles



934	 L. Lüke et al.

1 3

where the first summand is the distance of |H| ������ traversals and the second 
summand is an upper bound on the horizontal cross-aisle traversal distance. This 
shows the first direction.

’⇐ ’: Given a picker tour of maximal length k(C + 1) + 2l collecting all articles. It 
must be shown that the picker tour enters not more than k different aisles. We prove 
this direction by contradiction: If k + 1 or more aisles were entered, at least one arti-
cle was collected in each aisle. This results in a picker tour of length not shorter than

contradicting with the maximal tour length of k(C + 1) + 2l . Consequently, the 
picker collects the articles from not more than k different aisles. Defining the hitting 
set H as the set of all entered aisles, we have proven this direction, too.

Second, we consider the routing policy ���������.
’⇒ ’: The shape of the ��������� picker tour that enters only the aisles 

i ∈ H depends on whether |H| is even or odd. If |H| is even, the length is at most 
|H|(C + 1) + 2 l ≤ k(C + 1) + 2 l , where the first summand is the distance of 
|H| ≤ k ����� traversals and the second summand is an upper bound on the hori-
zontal cross-aisle traversal distance. If |H| is odd, the picker tour consists of k − 1 
����� traversals and one ������ traversal, which amounts a shorter tour length of 
(|H| − 1)(C + 1) + C + 2l ≤ k(C + 1) + 2l.

’⇐ ’: As in the first case, if k + 1 or more aisles were entered, the contradiction 
results from replacing (3) by

Third, we consider the routing policy ������� ���.
’⇒ ’: The ������� ��� picker tour that enters only the aisles i ∈ H has the fol-

lowing shape: two ����� traversals in the first and last non-empty aisle and |H| − 2 
������� ��� traversals that are actually ������ traversals because only one posi-
tion (at x) stores articles in a non-empty aisle. The distance of this optimal picker 
tour is at most

where the first summand is the two traversals in the first and last non-empty aisle, 
the second summand is the distance of |H| − 2 ������ traversals, and the third 

(2)|H|C
⏟⏟⏟

������ actions

+ 2l
⏟⏟⏟

cross-aisle actions

|H|≤k
≤ k(C + 1) + 2l,

(3)

(k + 1)C
�����

������ actions

+ 2 ⋅ 3 ⋅ k
���

cross-aisle actions

>

kC + C = kC + 2l + 2|T|k≤|T|≥ kC + 2l + k = k(C + 1) + 2l

(4)

k(C + 1)
�����
����� actions

+ C
���

������ actions

+ 2 ⋅ 3 ⋅ k
���

cross-aisle actions

> k(C + 1) + C
C=2l+2|T|

> k(C + 1) + 2l.

(5)2(C + 1) + (|H| − 2)C + 2l
|H|≤k
≤ 2(C + 1) + (k − 2)C + 2l ≤ k(C + 1) + 2l,
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summand is an upper bound on the horizontal cross-aisle traversal distance. This 
proves the first direction.

’⇐ ’: As in the first case, if k + 1 or more aisles were entered, the contradiction 
results from replacing (3) by

	�  ◻

5 � Class‑based storage policies

de Koster et  al. (2007) categorize several methods for the assignment of articles 
to pick positions. One type of these methods are the class-based storage policies, 
where each article is assigned to a pick position according to its value, e.g., the 
turnover rate, see Sect. 1.2. For this purpose, articles are classified into one of the 
classes A, B, or C based on their value. As commonly assumed, 20% of all articles 
with the highest value are assigned to class A, the next 30% are assigned to class B, 
and the remaining 50% of the articles belong to class C. We often observe then that 
classes A, B, and C are composed of approximately 80% , 15% , and 5% of the arti-
cles, respectively.

The pick positions of the warehouse are grouped into three zones (one zone for 
each class), and the different class-based storage policies vary in how the zones 
are defined. As in (Petersen and Schmenner 1999), we consider the typical class-
based policies across-aisle, within-aisle, perimeter, and diagonal, for which the 
corresponding distribution schemes are illustrated in Fig.  13. As a counterpart to 
the class-based policies, we include the storage policy uniformly distributed in the 
evaluation, which has already evolved into the most common storage policy in the 
last millennium (Petersen and Schmenner 1999, p. 483). For the latter policy uni-
formly distributed, the articles of all three classes are distributed randomly in the 
warehouse regardless of the classification.

The policies across-aisle, within-aisle, and diagonal arrange the zones in the 
warehouse such that zone A is positioned closest to the depot. Zone B follows after 
zone  A, and zone  C generally comprises pick positions that are farthest from the 
depot. The specific assignment of the pick positions to the zones depends on the 
distance measure used. In policy across-aisle, zone  A includes the pick positions 
of each aisle that are closest to the cross-aisle of the depot. The remaining pick 
positions are allocated to zones B and C according to the same principle. In policy 
within-aisle, pick positions are assigned to zones aisle by aisle and pick position by 
pick position (as a secondary criterion): Starting with the depot aisle and the posi-
tion closest to the depot cross-aisle, the remaining pick positions are assigned to the 
zones. When zone A (B) comprises sufficiently many pick positions, the next pick 
position is assigned to zone B (C). In policy diagonal, all pick positions are sorted 
by ascending distance to the depot in a first step. Afterwards, the first 20% of the 

2(C + 1)
�����

����� actions

+ (k − 1)C
�����
��� actions

+ 2 ⋅ 3 ⋅ k
���

cross-aisle actions

> k(C + 1) + C
C=2l+2|T|

> k(C + 1) + 2l.
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pick positions are allocated to zone A, and the remaining 30% and 50% of the pick 
positions are added to zone B and C, respectively.

In policy perimeter, the warehouse is split up into zones from the outside 
(zone A) to the inside (zones B and C): Zone A comprises the pick positions around 
the perimeter of the warehouse, while zone  C stores articles in the center of the 
warehouse. Zone B contains the remaining pick positions in between, arranged in a 
ring-shaped fashion. Overall, pick positions are assigned to zones A to C by moving 
from the outside to the inside of the warehouse. To exactly respect the predefined 
proportions of the zones (20%, 30%, and 50%), we used the following procedure for 
generating the three zones A, B, and C: 

1.	 Select alternately the outer horizontal and vertical layer that are not yet assigned:
	   The horizontal layer k includes the kth and the kth-last pick position of each 

aisle. In contrast, the vertical layer k includes all pick positions in the kth and the 
kth-last aisle. The selection of layers is then: horizontal layer 1, vertical layer 1, 
horizontal layer 2, vertical layer 2 etc.

2.	 Assign zones to the (unassigned) pick positions of the chosen layer in the order 
A, B, C:

	   If all unassigned pick positions of the layer can be added to the considered 
zone without exceeding the given size, they are assigned to the zone. Otherwise, 
if only a portion of the pick positions of the layer can be assigned to the zone, 
randomly select pick positions from the layer and assign them to the considered 
zone until the given size is reached. In the latter case, repeat the procedure with 
the remaining unassigned pick positions of the layer and the next zone.

Fig. 13   Class-based storage policies
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6 � Computational study

In this section, we present the results of our extensive computational study and ana-
lyze which combinations of routing and storage policies are beneficial for a given 
warehouse layout and length of order list. The state space and the resulting IP for-
mulation are implemented in C++ and compiled in release mode into a 64-bit sin-
gle-thread code under MS Visual Studio 2017. We use the callable library CPLEX 
20.1 for optimizing the IP formulation  (1a)–(1d). The default values are kept for 
all parameters except from setting the number of threads to one. The computational 
study was executed on a 64-bit Microsoft Windows  10 computer with an Intel® 
Core™ i7-5930k CPU clocked at 3.5 GHz and 64 GB of RAM.

6.1 � Instances

To the best of our knowledge, there are no benchmark instances combining scattered 
storage with class-based storage policies publicly available. Therefore, we gener-
ated an extensive set of instances for our computational study. We consider a single-
block warehouse with parallel aisles and two bordering cross-aisles, see Figs. 10a, 
12b and 13. The depot is located in the front cross-aisle at the level of the first aisle 
from the left, and the distance between the depot and the bottom cell in the first aisle 
is 1 unit. Likewise, the distance between two neighboring pick positions of an aisle 
is always 1  unit. The distance between two neighboring aisles is 3  units. Finally, 
switching between consecutive aisles amounts to 5 units (first cell to first cell or last 
cell to last cell).

For the entire computational study, we fixed the warehouse layout to m = 10 
aisles with C = 40 pick positions per aisle. At each pick position, there are two racks 
from which stored articles can be collected (left- and right-hand side are irrelevant 
for distance calculations). In total, there are 800  pick positions in the warehouse. 
We assume the articles to be rather small so that up to ten different articles can be 
stored at one pick position at the same time. Furthermore, we presume that a suf-
ficiently large quantity of each article is available at a pick position so that each line 
of the pick list can be collected from one pick position (the unit-demand case, see 
Sect. 1.2).

The number of different articles (SKUs) stored in the warehouse is fixed to 
n = 1000 for all instances to ensure comparability. Hence, there are nA = 200 class-
A, nB = 300 class-B, and nC = 500 class-C articles.

For the storage policy uniformly distributed, scattering is performed as follows. 
If the global scatter factor is � there must be n� different pairs (a, p) of article a and 
pick position  p. More precisely, for a given scatter factor setting (�A∕�B∕�C) , we 
generate nA�A + nB�B + nC�C = n� pairs in the following way: First, each article a 
is assigned to a randomly chosen pick position p (while making sure that no position 
contains more than 10 different articles). This guarantees that every article is avail-
able and stocked at least once.
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Second, for each class X ∈ {A,B,C} , we generate nX(�X − 1) additional pairs 
(a, p) (excluding duplicates and again making sure that no position contains more 
than 10 different articles).

Third, for class-based storage policies (across-aisle, within-aisle, perimeter, and 
diagonal), we use the same instance generation mechanism but extend the proce-
dure by the following additional step: The warehouse is divided into three zones, 
one zone for each class A, B, and C depending on the storage policy and according 
to the sizes of the zones, see Sect. 5. Hence, zone A comprises 20% , zone B 30% , 
and zone C 50% of all pick positions, respectively. Next, the pairs (a, p) generated in 
the second step are randomly relocated to feasible positions p′ where the position p′ 
must belong to the class of article a. As a result, the new set of pairs (a, p�) consist-
ently stores all articles according to the given class-based storage policy.

Fourth and finally, the pick list must be created. The length of the pick list is fixed 
to 5, 15, or 50. Given the length, we first assign each order line with a probability of 
80%, 15%, and 5% to class A, B, or C, respectively. Next, we randomly choose an 
article from the class (rejecting duplicate articles in the pick list).

Table 2 summarizes the parameters used for generating instances for the compu-
tational experiments. This includes the different scatter factor settings and lengths 
of pick lists. For each parameter combination, we generated 50 instances. In total, 
this gives 5 ⋅ 3 ⋅ 3 ⋅ 50 = 2250 instances (five storage policies, three scatter factor 
settings, and three lengths of pick lists) to be analyzed with six routing policies (see 
Sect. 2). The instances are online available at https://​logis​tik.​bwl.​uni-​mainz.​de/​reser​
ach/​bench​marks/.

6.2 � Computational performance

As noted in Sect. 4, solving the SPRP-SS is NP-hard, even when heuristic routing 
policies are used. However, all instances of the computational study can be solved 
within milliseconds. Table 3 shows the average and maximum computation times 
(in milliseconds) for the different routing policies and pick list lengths. Times 
include the construction of the IP model (which is negligible) and the actual solution 

Table 2   Parameters used for the generation of SPRP-SS instances

Parameter Value(s)

Number of aisles m 10
Number of pick positions C (per aisle) 40
Max. storage capacity per pick position 10 articles
Number of different articles n 1000
Relative sizes of zones A, B, and C 20%, 30%, and 50%
Overall scatter factor � 2
Number of different pairs of article and pick position �n 2000
Scatter factor settings (�

A
∕�

B
∕�

C
) (6∕1∕1) , (1∕1∕3) , (2∕2∕2)

Number of articles to pick = length of pick list 5, 15, 50
Distribution of A-, B-, and C-articles in pick list 80%, 15%, and 5%

https://logistik.bwl.uni-mainz.de/reserach/benchmarks/
https://logistik.bwl.uni-mainz.de/reserach/benchmarks/
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time consumed by the MIP solver (CPLEX is restricted to use a single CPU thread 
only). One can see that more complex routing policies like ����� or ��������� 
lead to longer computation times than fairly simple routing policies like ������ or 
��������� . The reason for this are the differently sized state spaces, see Sect.  2. 
While complex routing policies allow (almost) all states and many different actions 
within an aisle for the different states, the state space of a simple routing policy is 
rather small and sparse. The order size and the length of the pick list also influence 
the computation time (note that in the unit-demand case, order size equals pick list 
length; we will use the shorter term ‘order size’ in the following). In particular, if 
the considered routing policy allows many different actions within an aisle for many 
different states, a larger order size can result in a tenfold increase in runtime. In con-
trast, for small and sparse state spaces, this effect is very small or disappears com-
pletely. Despite a maximum runtime of 634.91 milliseconds for an instance with a 
pick list length of 50 and routing policy ����� , the computation times are very short 
overall. Therefore, we do not go into further algorithmic details and neglect a more 
in-depth analysis of the runtimes. Instead, we will focus on evaluating different rout-
ing and storage policy settings in the following.

6.3 � Evaluation of combinations of routing and storage policies

Next, we evaluate combinations of routing policies and storage policies for the 
SPRP-SS. To this end, each of the earlier introduced routing policies is combined 
with every storage policy. In addition, both the scatter factor settings (�A∕�B∕�C) 
and the order sizes are varied.

Table  4 provides aggregated results for each combination. (For the sake of 
readability, some routing and storage policies are abbreviated in the tables: uni-
formly distributed is denoted as unif. distr., ������� ��� as ��� , across-aisle as 
across, and within-aisle as within.) The upper part of the table shows the average 
tour lengths. A striking observation are the large differences in the tour lengths. 
While the combination of ������ and uniformly distributed leads to an average 
tour length of 351.31, the policies ����� and within-aisle induce tours that are 
nearly 60% shorter with a mean length of 149.04. Even if the optimal routing 

Table 3   Average and maximum computation times in milliseconds for different routing policies and 
order sizes

Average time Max. time

Order size 5 15 50 5 15 50
Routing policy ����� 6.60 15.57 72.78 48.64 227.38 634.91

��������� 3.27 5.47 11.38 26.53 112.33 160.16
������� ��� 1.54 2.20 7.93 14.43 20.57 141.76
�������� 1.40 1.78 4.03 5.86 16.97 75.66
������ 1.42 1.59 1.75 15.21 10.44 16.77
��������� 2.01 1.83 1.29 16.01 40.92 7.87
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policy ����� is replaced by ��������� , the tour hardly gets any longer on aver-
age. On the contrary, for a given storage policy, the average tour lengths differ 
considerably for all heuristic routing policies. Similar observations can be made 
when the routing policy is fixed and the storage policy is varied. Thus, we con-
clude that both the choice of the routing policy and the storage policy have a 
major impact on the tour length.

When comparing the routing policies in Table 4, it is noticeable that there are 
two policies each that behave very similarly. These are ��������� and ����� as 
well as �������� and ������� ��� . The lower part of the table shows that the 
deviation of ��������� ( �������� ) from ����� ( ������� ��� ) is less than 5% 
for every storage policy, except for the single combination with perimeter (with a 
deviation of nearly 12% ). As the tour lengths hardly differ for these routing poli-
cies, we exclude ��������� and �������� from further analyses. Routing policy 
����� is preferred over ��������� to be able to compare optimal rule-based and 
minimum-length tours. Besides, as already discussed in Sect.  2.6, the heuristic 
routing policy ��������� has rather difficult rules. Thus, the other routing poli-
cies are more attractive, because they are easier to remember and are expected 
to lead to fewer human errors. The rules for ������� ��� and �������� only 
differ in the turning point within an aisle. Tours resulting from ������� ��� are 
always shorter or as long as the tour resulting from �������� (this known result 
(Hall 1993) for the non-scattered case directly transfers to the case of scattering 
articles). Therefore, we limit the further evaluation to ������� ��� and disregard 
�������� in the following.

Table  5 shows detailed low-level results. For each combination of a routing 
and storage policy, average tour lengths are listed per scatter factor setting and 
order size. In addition, for each combination of routing policy, scatter factor set-
ting and order size, the storage policies leading to the shortest average tour length 
(min) are given. Vice versa, for each storage policy, the best routing policy is 
given per setting (in this case, we exclude the routing policy ����� from the min-
grading as the optimal routing always generates the shortest average tour lengths; 
policy ����� is shaded in italic in Table 5). In this spirit, the routing policy ����� 

Table 4   Average picker tour length for all combinations of routing policies and storage policies

Storage policy

unif. distr. within across perimeter diagonal
Routing policy ����� 233.27 149.04 163.31 165.68 162.20

��������� 238.82 151.61 164.30 185.46 163.99
������� ��� 256.91 165.93 197.24 174.61 186.83
�������� 268.50 169.86 198.80 176.36 189.54
������ 351.31 204.38 197.45 287.40 204.45
��������� 290.00 181.35 284.22 249.73 227.52

Deviation ��������� / ����� 2.38% 1.72% 0.61% 11.93% 1.10%
�������� / ������� ��� 4.51% 2.37% 0.79% 1.00% 1.45%
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Table 5   Break down of average tour lengths on the level of scatter factor settings and order sizes

unif. distr. perim-
eter

across within diagonal min

(a) Order size 5
Scatter 

factor 
setting

(1/1/3) ����� 155.20 139.08 70.60 89.12 72.52 across
��� 167.36 141.08 139.44 90.24 114.92 within
������ 220.80 186.92 70.60 110.36 72.88 across
��������� 214.56 158.76 200.88 90.40 127.16 within
min ��� ��� ������ ��� ������

(2/2/2) ����� 130.56 127.84 81.52 87.64 95.48 across
��� 141.16 138.84 130.76 104.76 126.44 within
������ 166.36 169.12 83.04 95.08 97.12 across
��������� 171.24 166.08 144.20 110.68 141.44 within
min ��� ��� ������ ������ ������

(6/1/1) ����� 98.12 93.48 98.04 92.68 94.76 within
��� 112.28 110.76 109.84 109.60 114.76 within
������ 106.16 100.60 108.72 100.08 100.64 within
��������� 115.60 114.52 114.80 115.08 117.84 perimeter
min ������ ������ ������ ������ ������

(b) Order size 15
Scatter 

factor 
setting

(1/1/3) ����� 278.88 152.40 137.00 114.76 130.12 within
��� 301.16 152.44 189.72 122.76 160.80 within
������ 447.40 266.56 137.80 156.92 134.56 diagonal
��������� 373.24 241.12 385.12 131.24 212.76 within
min ��� ��� ������ ��� ������

(2/2/2) ����� 214.08 164.32 159.12 152.60 153.68 within
��� 230.76 170.96 192.68 162.72 178.60 within
������ 328.08 254.72 170.00 211.92 168.64 diagonal
��������� 291.64 242.00 297.84 189.60 238.40 within
min ��� ��� ������ ��� ������

(6/1/1) ����� 160.64 154.08 166.96 151.44 167.08 within
��� 172.32 169.20 178.64 165.00 175.72 within
������ 215.08 214.64 221.24 198.04 228.68 within
��������� 206.84 205.04 208.04 199.80 208.08 within
min ��� ��� ��� ��� ���
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is rather used as an optimal reference solution, not as one of the compared routing 
policies for the subsequent evaluations.

We first concentrate on the global findings, before we analyze each class-based 
storage policy separately concerning the different routing policies and the varia-
tion of the scatter factor setting and the order size. In both cases, Table 5 is the 
basis for the evaluation, and Table 6 provides complementing data summarized 
across all order sizes.

General observations can be summarized as follows:

•	 Storage policy uniformly distributed performs worse compared to the class-
based storage policies: It generates the longest picker tours for nearly all 
settings with scatter factor setting (1/1/3) and (2/2/2), see Table 5. Only for 
(6/1/1), uniformly distributed can keep up and is in the midfield compared to 
the other storage policies. This can also be seen in Table  6, which summa-
rizes the average tour lengths across all order sizes. These observations can be 
explained by the fact that an order consists of 80% A-articles, and as uniformly 
distributed does not take advantage of the classification of the articles, it is 
most advantageous to scatter only the articles that appear most frequently in 

Table 5   (continued)

unif. distr. perim-
eter

across within diagonal min

(c) Order size 50

Scatter 
factor 
setting

(1/1/3) ����� 434.24 181.80 210.68 162.88 201.00 within

��� 502.32 181.80 248.32 187.12 218.72 perimeter

������ 706.40 555.04 220.56 241.64 231.24 across

��������� 462.88 440.08 464.00 197.16 292.24 within

min ��������� ��� ������ ��� ���

(2/2/2) ����� 359.48 232.68 257.28 240.60 263.80 perimeter

��� 396.68 233.52 280.60 270.76 290.20 perimeter

������ 562.68 452.56 298.72 354.12 315.60 across

��������� 427.24 369.04 397.80 283.24 353.84 within

min ��� ��� ��� ��� ���

(6/1/1) ����� 268.20 245.48 288.56 249.64 281.32 perimeter

��� 288.12 272.92 305.16 280.40 301.28 perimeter

������ 408.80 386.44 466.36 371.28 490.72 within

��������� 346.72 310.92 345.32 314.92 355.96 perimeter

min ��� ��� ��� ��� ���
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an order. We disregard the storage policy uniformly distributed in the follow-
ing analysis and concentrate on the class-based storage policies.

•	 Looking at the performance of the different scatter factor settings, it can be 
stated that, for every order size, the scattering of C-articles leads to the short-
est picker tours. We indicate the best result per order size and scatter factor 
setting by using bold font in Table 5. Furthermore, each routing policy also 
generates the shortest picker tours for each order size, if scatter factor set-
ting (1/1/3) is applied. Comparing the tours generated by the different rout-
ing policies per scatter factor setting and order size, it is noticeable that the 
scatter factor settings behave differently. For scatter factor setting (1/1/3), the 
tour lengths resulting from the different routing policies vary considerably. 
In contrast, if only the A-articles are scattered, the choice of the routing pol-
icy only has a minor influence on the tour length. While A-articles are stored 
at beneficial pick positions close to the depot, C-articles are located far from 
the depot. Thus, an A-article in the order list normally implies a shorter sup-
plementary path segment in the picker tour than a C-article. And similarly, 
scattering A-articles usually saves less distance than scattering C-articles, 
since the choice of one or several alternative pick positions within zone  A 
potentially leads to smaller savings than in zone C.

•	 Comparing the different order sizes, there are particularly poor and good 
routing policies. With an order size of 5, in eleven of 15 combinations, the 
routing policy ��������� leads to the longest tours on average. However, 
for order size of 50, the situation changes and ������ generates the longest 
picker tours in most of the combinations. The reason is that ������ is more 
suitable for smaller order sizes, while ��������� is advantageous for larger 
order sizes. If only a few pick positions need to be visited, it is shorter to 
enter the aisles only from the front cross-aisle. If many positions that are dis-
tributed across many aisles need to be visited, traversing each aisle leads to 
shorter picker tours than entering and leaving each aisle from the same end. 
Looking at best-performing routing policies, the routing policy ������ gen-
erates the shortest picker tours on average for order size 5. As already justi-
fied, the smaller the order, the better results achieves ������ . For the larger 
order sizes 15 and 50, the routing policy ������� ��� leads to the shortest 
picker tours in 24 of 30 settings.

•	 As highlighted in Table  6, the routing policies behave rather homog-
enous regarding the different scatter factor settings. Over all order sizes, 
������� ��� performs best (aside from the ����� routing) for all three scat-
ter factor settings. The average tour lengths of the other two routing policies 
������ and ��������� differ only slightly, especially for (1/1/3) and (2/2/2).

•	 Compared to the results of Petersen and Schmenner (1999) for classical ware-
houses (without scattered storage), the tour lengths vary over a wider range. 
In Petersen and Schmenner (1999, Table 6), the largest deviation from opti-
mal routing is 50.5% for perimeter and ������ , while for the scatter factor 
setting (1/1/3) the corresponding value is significantly larger at 113% . Such 
a greater difference can be observed for most of the routing and storage pol-
icy combinations. Consequently, larger cost savings are possible with scat-
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tered storage by choosing a suitable combination of the routing and storage 
policy compared to classical warehouses. However, note that the warehouse 
layout of Petersen and Schmenner differs from ours. Even though the number 
of aisles coincides, the warehouse dimension is approximately 2  : 1 in their 
approach, in contrast to 3 : 4 in ours. Nevertheless, both evaluations find the 
combination within-aisle and ������� ��� the best performing one.

6.3.1 � Storage policy perimeter

Given the storage policy perimeter, ������� ��� always provides the best results 
except for one setting that combines (1/1/6) with the order size of 5 (see Table 5). 
The picker tours generated from the policies ������� ��� and perimeter are only 
about 6% longer than the optimal tours resulting from ����� and perimeter. This is 
because the rules of ������� ��� are harmonized with the definition of the zones of 
perimeter. Since A-articles are stored around the perimeter and an order consists of 
80% A-articles, the procedure of ������� ��� is advantageous where the outer posi-
tions of each aisle are cheap to visit. Combined with perimeter, the routing policies 
������ and ��������� perform significantly worse than ������� ��� . However, 
an exception is the already mentioned setting with (1/1/6) and an order size of 5. 
Here the routing policy ������ leads to better results than ������� ��� . Because 
only very few articles need to be collected, the typical transition of ������� ��� 
(where an aisle is entered from both sides and the picker traverses both cross-aisles) 
enforces an unfavorable selection of pick positions to visit. In contrast, applying the 
routing policy ������ instructs the picker to traverse only one cross-aisle while 
entering the necessary aisles to collect the demanded articles. This leads to shorter 
picker tours for small order sizes. The situation is exactly the opposite with the order 
size of 50. In this case, many articles from several pick positions need to be col-
lected so that, in the worst case, a typical transition of ������ causes entire aisles to 
be traversed almost twice, as an aisle must be entered and exited from the same side.

In addition, it can be stated that perimeter is particularly suitable for large order 
sizes. Table 5 shows that, for the order size of 50, perimeter is the best choice for 
half of the settings.

6.3.2 � Storage policy across‑aisle

The storage policy across-aisle performs best in combination with the routing 
policy ������ , as can be seen from Table 5. Particularly, this affects orders with 
few C-articles (i.e., small orders) or orders with scattered C-articles where advanta-
geous pick positions are chosen to collect C-articles. For the large order size of 50 
and C-articles not being scattered exclusively, it is beneficial to use routing policy 
������� ��� . Here, the collection of additional C-articles can easily be appended to 
the tour. However, for routing policy ������ , the visit of numerous pick positions in 
zone C induces additional costly path sections, since most aisles must be traversed 
twice to collect an article of class C. Policy ������ can hardly gain any advantages 
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from the scattering of the A-articles, since only little distance can be saved by select-
ing favorable positions of A-articles. As a result, ������� ��� generates shorter 
tours on average.

In seven of nine settings, the routing policy ��������� is the worst policy for 
across-aisle because each aisle entered must be traversed completely while many 
aisles need to be entered to collect all the demanded A-articles. For the order size of 
5, storage policy across-aisle delivers the best results among all storage policies if 
combined with ����� routing.

6.3.3 � Storage policy within‑aisle

Comparing all 36 combinations of Table 5, within-aisle is the storage policy per-
forming best. For nearly 60% of the settings (21 settings), the application of within-
aisle leads to the shortest picker tours on average. Compared to the other storage 
policies, within-aisle is less sensitive to the rules of the different routing policies. 
The average tour lengths of within-aisle combined with all the routing policies devi-
ate significantly less among each other than the tour lengths produced by any other 
storage policy in combination with the different routing policies. Nevertheless, 
������� ��� is the best routing policy to be combined with within-aisle. In seven of 
nine settings, this combination generates the best results.

For order sizes 15 and 50, the shortest (policy ����� ) picker tours can be obtained 
with within-aisle. In both cases, the best results can be achieved if the C-articles 
are scattered. The reason is that pick positions for the demanded C-articles can 
be selected in aisles close to the depot and the picker does not even have to pass 
through some more distant aisles of the warehouse. For the same reason, within-
aisle works best, independent of the order size, if the scatter factor setting (1/1/3) is 
used. Overall, storage policy within-aisle leads to the shortest picker tours compared 
to combinations in which another storage policies is applied.

6.3.4 � Storage policy diagonal

The storage policy diagonal is a mixture of across-aisle and within-aisle. Depend-
ing on the warehouse layout, it resembles one of the two storage policies more than 
the other: If the aisles of the warehouse are rather short or the pick positions are 
arranged narrowly and without spacing, then diagonal has strong similarities to 
within-aisle. Otherwise, the warehouse tends to have long aisles and/or large dis-
tances between two consecutive aisles so that diagonal tends to resemble the storage 
policy across-aisle.

The warehouse layout that we use for the computational study (10 aisles and 40 
pick positions per aisle) effectuates that diagonal tends to resemble the storage pol-
icy across-aisle. In seven of the ten aisles, pick positions of zone A can be found. 
This is also reflected in the results, where the best and worst routing policies for 
diagonal and across-aisle are identical except for a single setting (order size of 50 
and storage factors (1/1/3)).
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7 � Conclusions and outlook

This work has focused on the single picker routing problem with scattered stor-
age (SPRP-SS) in combination with standard routing and storage policies. Routing 
policies restrict possible picker tours to those that obey policy-specific rules, which 
should preferably allow a fast tour computation and be easy to memorize for the 
picker. On the theoretical side, we have proven in Sect. 4 that even under these rout-
ing policies, the SPRP-SS, i.e., the problem of selecting pick positions in combina-
tion with the determination of a shortest picker tour, remains an NP-hard problem.

On the practical side, we have developed an exact solution algorithm for these 
variants of the SPRP-SS that is both effective and relatively simple to implement. 
It can be summarized as follows: First, we construct the state space of the DP 
for the non-scattered SPRP. In Sect. 2, we have derived and detailed these state 
spaces as modified and restricted versions of the well-known DP of Ratliff and 
Rosenthal (1983). Second, we introduce into the DP additional aisle actions (in 
particular for ��� , ������ , and ��� ) that become possible in the scattered stor-
age case (see Sect. 3). Third, we set up an IP that models the resulting DP as an 
origin–destination shortest-path problem. We add demand-covering constraints 
to ensure that a sufficient number of units of each requested article is collected. 
Fourth and finally, a standard MIP solver computes an optimal solution to the IP.

The computational evaluation has shown that the main drivers for the practical 
difficulty of the SPRP-SS are firstly the number of different articles to be picked, 
secondly the routing policy (the size of the respective state space). The aver-
age computation times for pick lists of lengths 5, 15, and 50 are below 49, 228, 
and 635 milliseconds, respectively, for all routing policies and for a single-block 
warehouse with ten parallel aisles of 40  cells each. Hence, computation times 
become irrelevant when the SPRP-SS is considered as a stand-alone problem.

The new and fast exact solution approach has enabled us to precisely analyze 
and compare different combinations of routing and storage policies. Note that the 
storage policy, i.e., at which locations in the warehouse articles are stored, deter-
mines how a typical instance of the SPRP and SPRP-SS is composed. It does 
not require a storage policy-specific adaptation of the above solution approach. 
Therefore, the comparison of all combinations of routing and storage policies 
focuses on the average tour lengths. The main findings for instances of a standard 
one-block parallel-aisle warehouse are:

•	 Neglecting the routing policy ����� , the combination of the ������� ��� 
routing policy and the within-aisle storage policy lead to the best overall 
results.

•	 For class-based storage policies, scattering of C-articles is most advantageous. 
On the contrary, for uniformly distributed articles, scattering of A-articles per-
forms best.

•	 In general, if only C-articles are scattered, different routing policies lead to picker 
tours with remarkable differences in tour length. However, if only A-articles are 
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scattered, the impact of the different routing policies is substantially less pro-
nounced and leads to only small differences among the tour lengths.

It must be stressed that the presented savings and performance ratios depend on the 
instance data, which includes the composition of an average pick list as well as the 
concrete warehouse geometry (number of aisles, number of cells per aisle, distances 
between aisles and cells and I/O  point(s), respectively). Even more, for different 
warehouse layouts and I/O point configurations (see Table 1), we probably get dif-
ferent results than those obtained in Sect. 6.3 per combination of routing and storage 
policy. However, we expect similar general findings as the three highlighted above. 
In this sense, we see our work as a fundamental step to introduce a methodology that 
is widely applicable to perform experiments and quantify savings in average picker 
tour lengths for a particular warehousing setting.

Accordingly, we see several avenues for interesting further research: Alterna-
tive warehouse settings other than the single-block parallel-aisle warehouse with a 
unique I/O point should be analyzed. Since DP algorithms are known for most of 
them (see Table 1), a solution approach adapted from the one presented here should 
also be tested and similar combinations of routing and storage policies should be 
analyzed. One complication is that, to our knowledge, class-based storage policies 
have not yet been defined for two-block, multi-block, and other warehouse lay-
outs. Even for warehouses where the I/O point is not in one of the corners and for 
warehouses with multiple drop-off points, the definition of the storage policies is 
unclear. This necessary specification should be done first. In addition, the storage 
policies could be refined and alternative storage policies could be empirically ana-
lyzed using the methodology proposed in this paper. For example, articles that are 
ordered together more often than other articles could be assigned to pick positions 
that are closer together. For class-based storage policies, one may vary the scatter 
factors within class C. An analysis of how article-specific scatter factors should be 
chosen is worth further investigation when class-based storage policies are replaced 
by full-turnover storage. Finally, if SPRP-SS appears as a subproblem, e.g., in the 
joint order batching and picker routing problem (Wahlen and Gschwind 2023), the 
presented IP-based solution algorithm might become too slow. Therefore, finding 
an even more effective solution algorithm for the SPRP-SS remains an algorithmic 
challenge.
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