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Abstract
An efficient part feeding is among the top challenges of many mass producers apply-
ing mixed-model assembly lines, for instance, in the automotive industry. This paper 
introduces a novel part feeding policy applied by a large German assembly plant 
for car engines: In-line kitting. Under this policy, the first stations of the line do not 
execute assembly operations, but are reserved for picking parts while passing con-
tainers of stock-keeping units (SKUs) arranged along the line. In this way, the parts 
are collected in traveling kits moving along with each workpiece on the conveyor, so 
that later assembly stations have the required parts directly available and do not lose 
precious labor time for unproductive parts handling. A major operational challenge 
when applying this part feeding policy is the walking effort for the human pick-
ers while putting the SKUs of their respective stations into the traveling kits of the 
passing workpieces. Due to a high product variety, a large number of comparatively 
bulky SKU containers have to fit into each station, so that the walking distance to be 
covered by a worker during a work shift exceeds multiple kilometers. We show that 
this physical burden can be reduced significantly by balancing the workload among 
stations and optimizing the storage assignment of SKU containers within each in-
line kitting station. We formulate the resulting optimization problem and provide 
suited solution procedures. Our computational study shows that the walking distance 
of pickers can be reduced significantly without producing any additional costs.
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1 Introduction

The mid-sized assembly plant of German car producer BMW in Dingolfing has to 
timely supply their assembly stations with parts arriving in more than 13,000 con-
tainers delivered by about 600 suppliers on more than 400 trucks on each average 
workday (Battini et al. 2013). These figures elucidate that part logistics is among the 
greatest challenges of today’s mass-producers, especially in the automotive indus-
try (Boysen et al. 2015). Therefore, it is anything but surprising that selecting the 
right part feeding policy has received much attention both among practitioners and 
scientists in the recent years. Part feeding is the in-house logistics process which 
moves parts from receipt after their arrival at the assembly plant up to their respec-
tive workstations where they are finally assembled into the workpieces. Note that 
a similar definition is provided by Choi and Lee (2002).

A part feeding policy specifies this in-house logistics process for a subset of parts. 
To do so, a specific policy has to choose among the alternative elements of the four 
basic process elements defined in Fig. 1. Note that previous papers (i.e., Battini et al. 
2013; Boysen et al. 2015; Kilic and Durmusoglu 2015; Schmid and Limère 2019) 
apply similar, yet slightly different elements of part feeding:

• Initially, the part feeding process is triggered either by previous consumption or 
by prospective demands, so that parts are either pulled (e.g., via a Kanban mech-
anism or by part inventory falling below a predefined reorder level) or pushed 
(i.e., according to the demands defined by the workpieces produced in the next 
production cycles) toward their respective assembly stations.

• Once the demand for parts is defined, the respective parts need to be retrieved 
from their storage positions. This can either be a central (receiving) warehouse, a 
decentralized logistics area directly on the shop floor (often called supermarket, 
see Emde and Boysen 2012), or local storage space directly next to the assembly 
line.

• Then, parts need to be moved by a suitable transportation device, which may be 
a traditional forklift, a tow train (i.e., a manned or automated tugger vehicle tow-
ing a handful of wagons (see Emde et al. 2012), or a conveyor belt.

• Finally, the parts need to be positioned next to the line, which is also called their 
line-side presentation (see also Limère et  al. 2012; Schmid and Limère 2019). 

Fig. 1  Part feeding policies and their basic elements
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Line stocking places containers (e.g., large unit loads or smaller bins) each filled 
with homogeneous pieces of the same stock-keeping unit (SKU) directly in 
the respective workstations (e.g., multiple bins each containing a specific exte-
rior mirror variant), so that the assembly workers have to identify and fetch the 
respective parts required in each production cycle. To avoid unproductive part 
sorting of (highly paid) assembly workers stationary kits are placed next to the 
line and contain pre-sorted pieces of different SKUs ordered according prospec-
tive demand (e.g., the exterior mirror variants sequenced for the next production 
cycles). Traveling kits, instead, contain pre-sorted pieces of multiple SKUs for a 
single workpiece (e.g., the exterior and interior mirrors and other parts for a spe-
cific car) and accompany their workpiece on the conveyor.

The most widespread part feeding policies resulting from choosing a specific ele-
ment for each process step are traditional bulk feeding and the supermarket concept 
(see Fig. 1). Triggered by previous part consumption, the former applies forklifts to 
deliver large homogeneous unit loads from central storage to the line and leaves the 
sorting of parts to the assembly workers (Boysen and Bock 2011). Decentralized 
storage in supermarkets allows for a more reactive part supply in smaller bins of 
pre-sorted products and applies tow trains delivering multiple workstations along 
fixed routes (Emde et al. 2012). The supermarket concept can be applied in a push 
and pull environment and can service all kinds of line-side presentation. Identifying 
a suitable part feeding policy for each part is an important practical decision task, 
and the pros and cons of each policy are vividly discussed in the scientific litera-
ture (e.g., Hanson and Brolin 2013; Sali et al. 2015). Moreover, quantitative deci-
sion models for selecting the right feeding policy (e.g., Limère et al. 2012; Caputo 
et  al. 2015, 2018) and its interdependency with assembly line balancing (Sternatz 
2015; Battini et al. 2017; Nourmohammadi et al. 2019) have been investigated. The 
manifold literature in this area is summarized by the survey papers of Boysen et al. 
(2015), Kilic and Durmusoglu (2015), and Schmid and Limère (2019).

This paper treats a part feeding policy, which (to the best of the authors’ knowl-
edge) has been overlooked by previous research. We elaborate this novel policy, 
which combines the elements marked by the dotted arrow in Fig. 1, in the following 
section.

1.1  In‑line kitting

We saw in-line kitting at work in the assembly plant of MDC Power in Kölleda, 
which is one of Germany’s largest assembly plants for car engines and belongs to the 
Daimler group. The engines are produced on multiple mixed-model assembly lines 
in lot-size one. Each engine moves from station to station on a hanging workpiece 
carrier transported by a trolley conveyor. The first stations of the line are reserved 
for in-line kitting, which means that the specific parts dedicated to each engine are 
directly added to the cases of their carriers. The carriers, thus, also serve as traveling 
kits. In this way, the parts required in later assembly stations are directly available 
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on each workpiece carrier, so that unproductive walking of assembly workers for 
fetching parts from racks and containers next to the line is eliminated.

The in-line kitting segment of the assembly line, whose schematic layout is 
depicted in Fig. 2, is separated into distinct areas called stations each operated by a 
single dedicated worker. To better distinguish these workers solely concerned with 
part logistics from assembly workers of later stations, we call them the pickers. Each 
station consists of a given set of successively arranged skeleton containers each con-
taining homogeneous pieces of a specific SKU. Pick-to-light displays indicate which 
SKUs (and how many of each) have to be added to the cases of the engine carrier 
currently entering a station. The picker accompanies the engine, which is continu-
ously moved forward by the conveyor, adds the indicated parts whenever they pass 
the respective SKU, and accredits the picks (by pushing a button on the pick-to-light 
display) until the end of the station is reached. Naturally, there are no precedence 
constraints that restrict the sequence in which the SKUs are packed on the carriers, 
so that the pickers are advised to follow the sequence in which the SKU containers 
are arranged along the line. Then, the picker rushes backward toward the successive 
engine of the next cycle. Since engines are produced in lot-size one, each engine has 
its different part demands. Given the specific part demands of the next cycle, the 
picker repeats the kitting process for the next workpiece. Note that the kitting line 
segment itself is replenished via a bulk feeding process (see Fig. 1), where forklifts 
replace (almost) empty with filled skeleton containers delivered from central storage 
once a specific reorder level is reached.

The biggest advantage of in-line kitting is that assembly workers, who are spe-
cially trained and earn higher wages, are relieved from part fetching. The parts are 
directly available on the cases of each engine carrier, so that unproductive time for 
walking to part containers next to the line as well as identifying and retrieving the 
required parts from there is eliminated. These work contents are executed by less 
costly pickers in the kitting area, who are typically assigned to another pay scale 
group. Another advantage is that there is no need to store part containers in assem-
bly stations, which is especially valuable for small sized workpieces such as car 
engines where stations are much smaller compared to automobile assembly. These 
advantages, however, could also be realized by moving traveling kits assembled in 

Fig. 2  Schematic layout of the in-line kitting line segment
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some remote logistics area onto the conveyor. In engine assembly, however, there 
is no belt conveyor, so that a traveling kit would have to be attached to the carrier, 
which requires a suited (and stable) technical solution. Furthermore, in-line kitting 
moves part logistics under the strict regime of a paced flow process, so that part 
feeding is under tight control and picking errors can easily be reduced, e.g., by add-
ing an extra weighing mechanism for the added parts to the workpiece carrier.

On the negative side, in-line kitting requires an extended conveyor and blocks 
space directly on the shop floor where room is notoriously scarce. Car engines and 
the part variety they require, however, are smaller compared to typical assembly line 
products such as cars, so that the prolongation of the line due to the additional kit-
ting segment is moderate. Furthermore, trolley conveyors are less costly than large 
ground conveyors for cars, so that in the specific case of engine assembly the addi-
tional investment for in-line kitting seems acceptable. These characteristics question 
the suitability of in-line kitting for car assembly, but make it a valid part feeding 
alternative for small product assembly, e.g., in the electronics industry.

1.2  How to reduce the pickers’ walking effort

For our engine producer, one of the greatest operational challenges when applying 
in-line kitting is the high physical stress for the picker workforce. Since the parts in 
engine assembly are small and light-weighed, ergonomic stress caused by lifting, 
which is a major cause for long-term back injuries in many industries (e.g., Grosse 
et al. 2015; Otto et al. 2017), is less of an issue. Instead, accompanying the work-
pieces while putting the indicated SKUs into the engine carriers and walking back 
to the start of the station again and again during a work shift accumulates to a con-
siderable total walking distance for each picker. The station each picker services is 
relatively large due to the following two reasons:

• The standardized skeleton containers for the SKUs applied by our engine pro-
ducer are comparatively large (i.e., they have the same outline as a europallet 
with a width of 800 mm. Due to the small size of the parts, these containers have 
the advantage that plenty pieces of a SKU fit into each container, so that the 
logistics effort for replenishing the kitting stations is reduced.

• Each assembly line produces not only a single type of engine, but multiple vari-
ants in a mixed-model setting (see, e.g., Boysen et al. 2009). Therefore, each sta-
tion contains many SKUs, but only some of them are required by any type of 
engine. Recall that the part variety is small compared to car assembly but still 
considerable.

This results in station sizes of dozens of meters. At a cycle time between 60 and 
90 seconds, which are typical values in the automotive industry (see Boysen et al. 
2015), the walking distance quickly accumulates to several kilometers per work-
ing shift. If a worker has to service 50 SKUs whose containers have an identical 
width of 800 mm, the resulting area width is 40 m. Under the assumption that the 
picker always has to traverse the complete area at a cycle time of 60 seconds, the 
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worst-case walking distance of a 7-hour working shift amounts to 17 km. We admit 
that this is rather a ballpark calculation to highlight the potential worst-case walk-
ing effort of workers. In the real-world, these extremes are seldom reached due to 
more generous break regulations, job rotation, or longer picking times that enforce 
smaller stations. However, the managers of our engine producer told us that more 
than 10-km walking per shift regularly occur, which they suspect as a major source 
for the comparatively high level of absenteeism and labor turnover in the kitting 
area. Furthermore, the kitting area employs many impaired workers not suitable for 
the even more demanding workplaces in the assembly stations, so that the manag-
ers (and the representatives of the trade union) aim to reduce the pickers’ walking 
distances.

Obvious levers for reducing the walking distance in the kitting segment are a 
larger workforce or an extended cycle time. The former, however, increases wage 
costs and the latter reduces the output of the assembly line. Hence, the management 
rather prioritize less costly countermeasures, such as the following. Pickers need 
not traverse their complete stations in every cycle. Once pickers recognize that the 
remaining pick-to-light displays indicate no further demand for the current engine, 
they can let the workpiece pass the remainder of their station unattended and can 
prematurely return back toward the next workpiece. Such a reduction in the walking 
effort can be influenced by the following two decisions tasks:

• Workload balancing: Naturally, only SKUs required by the current workpiece 
and located within the respective station have to be serviced by a picker. Thus, 
distributing the SKUs among the kitting stations in a fair manner enables a work-
load balancing for pickers. In this way, exceptionally large walking distances of 
single pickers can be avoided. Thus, the partitioning of SKUs among kitting sta-
tions influences the walking effort of the pickers, and this decision task is tack-
led by the optimization procedures developed in this paper. Workload balancing 
alone (without the subsequent storage assignment within each station, see below) 
resembles the famous assembly line balancing problem (see Boysen et al. 2022, 
2008), which decides on the division of labor among subsequent assembly sta-
tions. In our case, we face a special line balancing problem without precedence 
constraints (i.e., the SKUs can be processed in any sequence) and including the 
model mix (see Merengo et al. 1999), because each engine type requires a differ-
ent subset of SKUs. The biggest difference to existing research, however, is the 
interdependence with the following decision task.

• Storage assignment: Another lever, which reduces picker walking without deteri-
orating picking performance, is the storage assignment of SKUs within each kit-
ting station. It decides on the sequence, in which the set of SKUs of a station are 
arranged along the conveyor. In our setting, the picking orders, i.e., the subset of 
SKUs demanded by each engine, are known with certainty. If we find a storage 
assignment, such that the spread of each picking order, i.e., its distance from the 
first to the last container required by the respective order, is reduced, then pick-
ers need not traverse their complete stations, but only a smaller subsegment. For 
this purpose, we integrate the storage assignment of SKUs to reduce the pickers’ 
walking effort into our optimization procedures. Storage assignment of SKUs is 
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one of the classical decision problems of warehousing research (see De Koster 
et al. 2007). This also holds true for a special order picking system called trolley 
line picking (see Boysen et al. 2021). Here, hanging trolleys each assigned to a 
specific customer order pass by SKUs, and it is the duty of human pickers to add 
requested SKUs to the trolleys. Thus, trolley line picking directly transfers the 
basic setup of in-line kitting to the warehouse domain. Here, however, customer 
orders are typically not known with certainty, when having to decide on the stor-
age assignment, we have no continuously moving line, but trolleys automatically 
stop in front of requested SKUs, and pickers need not strictly pick one order after 
the other but can switch among waiting trolleys (see Füßler et  al. 2019). Fur-
thermore, the main lever to improve these systems is the sequence, in which the 
orders are processed (see Füßler et al. 2019). This lever, however, is not available 
to us, as is argued in the following.

The production sequence, in which the engines are sent down the line, can also 
relieve pickers. If the storage position of the last SKU within a picker’s station 
demanded by the previous engine is close to the storage position of the first SKU of 
the subsequent engine, the walk-back distance between successive engines can be 
reduced. In-line kitting, however, is typically dominated by the subsequent assem-
bly stations, which have a complex demand for specific production sequences obey-
ing different technical restrictions and leveling constraints (see Boysen et al. 2009). 
Thus, determining the model sequences according to the walking effort of kitting 
workers is, typically, not an option. Note that other industrial settings (e.g., where 
heavier or bulkier parts are to be handled) suggest a more holistic view on the physi-
cal strain of workers that also includes the ergonomic burden caused by lifting and 
unfavorable body postures. Blueprints on appropriate measures are provided by 
the order picking literature (see, e.g., Calzavara et al. 2017; Glock et al. 2019). An 
interesting future research issue in this direction would, for instance, be field tests 
that investigate for which types of products the total walking distance is a sufficient 
proxy for the total physical burden and for which more detailed models should be 
selected.

1.3  Contribution and paper structure

After the paper’s first contribution, namely introducing and discussing the in-line 
kitting part feeding policy, the remainder of the paper is concerned with reducing 
the walking effort of pickers putting together the traveling kits under the in-line kit-
ting policy. For this purpose, we formulate the joint workload balancing and stor-
age assignment problem, which combines both levers for reducing the pickers’ total 
walking distances in a holistic problem setting. Unfortunately, our computational 
results will show that a mixed-integer model for the holistic problem cannot be 
solved by an off-the-shelf solver for instances of real-world size. For solving these 
instances, we rather introduce different decomposition approaches addressing both 
decision parts in an iterative manner. Once a suitable heuristic solution procedure 
is available (and proven successful in a comprehensive performance test), we can 
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apply this algorithm to explore to what extent the total walking distance of pickers 
can be reduced in our case study. Our results indicate that the walking distances of 
pickers can be reduced significantly without deteriorating picking performance.

The remainder of the paper is structured as follows. Section 2 elaborates our opti-
mization task and provides a mixed-integer model for the holistic problem. Two com-
peting heuristic decomposition approaches, namely, balance first, sequence second 
and (vice versa) sequence first, balance second, are presented in Sect. 3. The compu-
tational performance of our solution methods is investigated in Sect. 4. This section 
also contains further tests on managerial issues, where we explore the possible reduc-
tion of the pickers’ walking effort. Finally, Sect. 5 concludes the paper.

2  The joint workload balancing and storage assignment problem

This section treats the joint workload balancing and storage assignment problem, 
which we dub WBSAP. Section 2.1 defines the problem, and Sect. 2.2 discusses our 
basic assumptions and investigates its complexity status. Finally, Sect. 2.3 presents a 
mixed-integer programming (MIP) model for WBSAP.

2.1  Problem definition

Consider a mixed-model assembly line producing n different types of car 
engines. Each engine i ∈ I = {1, 2,… , n} is produced with a given frequency 
fi within the planning horizon and requires a specific subset of parts for assem-
bly. We define the total SKU set of parts by S = {1, 2,… , |S|} and the subset of 
SKUs required by engine i ∈ I constitutes its associated picking order Oi ⊂ S with 
O = {O1,O2,… ,On} . Each SKU is available in a separate skeleton container. All 
containers are standardized and have identical size; they only differ in the dedicated 
SKU they contain. Note that we discuss this and all further assumptions in more 
detail below. The storage positions P = {1, 2,… , |P| = |S|} along the line are sorted 
in ascending order of their index. The part demands have to be fulfilled by a kitting 
line segment operated by a picking workforce of given size. Each picker operates a 
separate station, so that we have a given set K = {1,… , |K|} of kitting stations.

Our decision task is to partition the total SKU set among the stations and to 
decide on the storage assignment within each station. These two decisions can be 
encoded by (Φ,�) , i.e.,

• a family of sets Φ = {Φ1,Φ2,… ,Φ|K|} with Φk defining the subset of SKUs 
assigned to kitting station k and

• a SKU sequence � , i.e., a permutation of S defining the storage assignment of 
each SKU along the line.

We call a solution (Φ,�) feasible, if the following three conditions are met:
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• Φk ∩ Φk� = � for all k, k� ∈ K with k ≠ k′ , that is, a SKU cannot be assigned to 
more than one station at a time,

• 
⋃

k∈K Φk = S , that is, each SKU is assigned to at least one station, and
• 

[
∃k ∈ K, p, p� ∈ P ∶ p < p� ∧ 𝜙(p),𝜙(p�) ∈ Φk

]
→ 𝜙(p + 1) ∈ Φk , that is, only 

consecutive SKUs can be assigned to the same station.

Our aim is to reduce the pickers’ walking effort. Among all feasible solutions, we, 
thus, seek those which allow to assemble each picking order in a small subarea of 
each station. In this way, each picker does not have to traverse her complete kitting 
station in each cycle. We formalize this aim by the order spread �i,k(Φ,�) , which 
defines the number of SKU containers between the first and the last occurrence of a 
SKU required by order Oi within the storage assignment � of station k. Specifically, 
order spread �i,k(Φ,�) of picking order Oi ∈ O in station k ∈ K is defined as follows:

where function �−1(s) returns the storage position p ∈ P = S of SKU s within stor-
age assignment �.

Given the standardized container sizes we presuppose, the order spread directly 
defines the distance each picker has to accompany an order while picking. Unfortu-
nately, at the point in time storage assignments are planned, the production sequence 
of engines is, typically, not available, so that we cannot exactly anticipate the total 
walking distance. To do so, the storage assignment, which defines the walking dis-
tances during order picking, and the exact order sequence, which defines the walk-
back distance between two successive orders for walking from the last position of 
the predecessor to the first of the successor, both need to be available. As the latter 
information is not at hand, we have to do without and aim to minimize the total 
weighted order spread

In our case, it is well-known how many of each engine type are to be produced 
within the next working shifts (but not their exact production sequence), so that it 
seems advisable to weigh the order spreads �ik(Φ,�) with picking frequencies fi . We 
dub the problem that seeks the minimum total weighted order spread Z(Φ,�) among 
all feasible storage assignments � , the joint workload balancing and storage assign-
ment problem (WBSAP).

Example: Consider the example data given in Fig. 3a. Four engines i = 1,… , 4 
each produced once during the planning horizon have different parts demands for 
six SKUs S = {A,B,… ,F} . These picking orders have to be fulfilled by two work-
ers in kitting stations k = 1, 2 . Solution one depicted in Fig. 3b shows an objective 
of Z(Φ,�) = 10 , constituted by the total walking distance of Station 2 exceeding 
that of Station 1. Solution two (Fig. 3c) reduces the maximum total walking distance 

(1)

�i,k(Φ,�) =

{
maxs∈(Oi∩Φk)

{�−1(s)} −mins∈(Oi∩Φk)
{�−1(s)} + 1, if Oi ∩ Φk ≠ �

0, if Oi ∩ Φk = �
∀ i ∈ I, k ∈ K,

(2)Z(Φ,�) = max
k∈K

{∑
i∈I

fi ⋅ �i,k(Φ,�)

}
.
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to Z(Φ,�) = 8 by altering the storage assignment within both stations, whereas the 
division of labor among both stations remains unaltered. Balancing the workload by 
reassigning SKUs among both stations leads to Solution three and a further reduc-
tion to Z(Φ,�) = 7 depicted in Fig. 3d.

2.2  Assumptions and complexity

After having defined our optimization problem, we summarize the simplifying 
assumptions (explicitly and implicitly) contained in our problem setting:

• We aim at a reduction in the physical effort of pickers induced by their total 
walking distance. We consider this general aim by minimizing the maximum 
walking distance among all stations. This is considered to be more fair compared 
to a min-sum objective where the total walking distance accumulated over all 
stations may be smaller, but some pickers may receive exceptionally large walk-
ing distances.

Fig. 3  Example for WBSAP
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• Furthermore, we want to relieve pickers without causing additional costs, so 
that we assume a given picker workforce. In line with the setting of our engine 
producer, each picker operates a dedicated kitting station defined by a fixed 
subset of SKUs. Dynamic workload sharing within changing station borders, 
for instance enabled by the bucket brigade protocol (Bartholdi and Eisenstein 
1996), or the relieve promised by job rotation (Otto and Scholl 2013) are not 
considered.

• Assigning storage positions is a planning task executed over a mid-term plan-
ning horizon (De Koster et  al. 2007). Thus, the composition Oi of picking 
orders and their picking frequencies fi may be available, but not the specific 
order sequences. In the automotive industry, production sequences frequently 
need to be altered briefly before production starts, e.g., due to missing parts 
not timely delivered (Boysen et  al. 2009). Thus, we cannot exactly quantify 
the picker’s total walking distance, which also depends on the walk-back dis-
tances between successive jobs. Our order spreads, therefore, only measure 
one part of the total walking distance, namely the picker’s company of an 
engine from its first to the last SKU container. In Sect. 4.3, we simulate the 
total walking distances by randomly drawing production sequences in order 
to check whether our proxy is indeed a good surrogate for the pickers’ total 
walking distances.

• As is the case at our engine manufacturer, we presuppose standardized SKU con-
tainers each having identical size. This allows us to calculate the objective value 
in number of passed containers. Many manufacturers aim to apply standardized 
containers, because this reduces their logistics and handling costs (Boysen et al. 
2015). If, nonetheless, differently sized containers are applied, an order spread 
no longer solely depends on the first and last storage position, but also on the size 
of the containers placed in between. We rather aim at the most basic problem set-
ting, which is also relevant for our real-world case. But adapting our models and 
solution approaches by this aspect seems truly straightforward. However, smaller 
containers are certainly another potential lever to reduce the pickers’ walking 
effort, which comes at the price of more frequent replenishments. Evaluating this 
trade-off could be an interesting issue for future research.

• We restrict our view on ground storage of containers along the conveyor, because 
this is the most basic setting. At our engine manufacturer this setting is applied 
to allow for quick container exchanges without double handling for repacking 
items or maneuvering containers stockpiled on top of each other. The alterations 
required to adapt our setting to the two-dimensional case are straightforward, so 
that we abstain from a detailed description.

• We assume that the total in-line kitting area has enough space to house contain-
ers for all SKUs. If this is not given, depending on the parts demanded by subse-
quent workpieces, SKU containers must be added to and removed from stations 
on short notice. Given the short cycle times of the automotive industry these 
dynamic SKU swaps seem rather unrealistic, but they could be an interesting 
field for future research in other industries.

• Missing parts in the assembly process produce excessive costs, in the worst case, 
the line needs to be stopped with hundreds of workers being idle (Boysen et al. 
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2009). Therefore, our engine manufacturer takes great care that there are always 
enough parts available in each SKU container. Consequently, we can abstract 
from the replenishment process and assume that there are always enough pieces 
in a container to satisfy demand.

Now, we consider the computational complexity of WBSAP, which has the follow-
ing complexity status.

Theorem 1 WBSAP is NP-hard in the strong sense, even if we have just a single kit-
ting station |K| = 1.

The proof is by transformation from the linear arrangement problem (LAP), 
which is well-known to be strongly NP-hard (Garey and Johnson 1979) and stated 
as follows:

LAP: Given a graph G = (V ,E) and a positive integer M, is there a one-to-one-
function f ∶ V → {1, 2,… , |V|} , i.e., a numbering of nodes V with integer values 
from 1 to |V|, such that 

∑
(u,v)∈E �f (u) − f (v)� ≤ M?

Proof The transformation scheme for generating an instance of WBSAP from an 
LAP instance is as follows. Since we have only a single station |K| = 1 , the com-
plete workload is to be processed by a single worker, and the problem reduces to the 
storage assignment part seeking a sequence of SKUs within the station. For each 
node of LAP, we introduce a SKU, i.e., |S| = |V| , and for each edge, we generate an 
engine and its associated picking order with unit weight fi = 1 exclusively demand-
ing the two SKUs represented by the adjacent nodes. Thus, we have a direct map-
ping between SKUs and nodes, picking orders and edges as well as storage positions 
and node numbers, so that a one-to-one mapping between both problems is readily 
available.   ◻

Table 1  Notation for WBSAP-MIP

I Set of engine types (index i)
S Set of SKUs with S = {1,… , |S|} (indices s, s′)
Oi Picking order of engine i with Oi ⊂ S

P Set of storage positions with P = {1,… , |P| = |S|}| (indices p, p′)
K Set of kitting stations with K = {1,… , |K|}| (index k)
fi Production frequency of engine i
�max Continuous variable: maximum order spread
�i,k Continuous variable: spread of order Oi in station k
xs,p Binary variable: 1, if SKU s is assigned to storage position p (0, otherwise)
yp,k Binary variable: 1, if position p is assigned to kitting station k (0, otherwise)
zs,k Binary variable: 1, if SKU s is assigned to a storage position in kitting station k
Z Objective function: maximum order spread
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2.3  Mixed‑integer model for WBSAP

Given the notation summarized in Table 1, we are able to formulate WBSAP as a 
MIP with objective function (3) and constraints (4) to (14).

WBSAP-MIP:

subject to

(3)Minimize Z(�max, �, x, y, z) = �max

(4)
∑
p∈P

xs,p = 1 ∀ s ∈ S

(5)
∑
s∈S

xs,p = 1 ∀ p ∈ P

(6)
∑
k∈K

yp,k = 1 ∀ p ∈ P

(7)
∑
p∈P

yp,k ≥ 1 ∀ k ∈ K

(8)zs,k ≥ xs,p + yp,k − 1 ∀ s ∈ S; p ∈ P; k ∈ K

(9)

yp+1,k ≥ yp,k + yp�,k − 1 ∀ k ∈ K;

p = 1,… , |P| − 2;

p� = p + 2,… , |P|

(10)
�i,k ≥

∑
p∈P

xs,p ⋅ p −
∑
p∈P

xs�,p ⋅ p + 1

− |P| ⋅ (2 − zs,k − zs�,k) ∀ i ∈ I; s, s� ∈ Oi; k ∈ K

(11)�max ≥
∑
i∈I

fi ⋅ �i,k ∀ k ∈ K

(12)xs,p ∈ {0, 1} ∀ s ∈ S; p ∈ P

(13)yp,k ∈ {0, 1} ∀ p ∈ P; k ∈ K

(14)zs,k ∈ {0, 1} ∀ s ∈ S; k ∈ K
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Objective function (3) minimizes the maximum weighted order spread over all kit-
ting stations. Constraints (4) to (7) enable proper assignments of SKUs and storage 
positions: (4) assigns each SKU to exactly one storage position, (5) assigns exactly 
one SKU to each storage position, (6) assigns each storage position to exactly one 
kitting station, and (7) assigns at least one storage position to each kitting station. 
In inequalities (8), our zs,k-variables are aligned with xs,p and yp,k . Note that in case 
SKU s is not assigned to kitting station k, the zs,k-variables can attain either value 0 
or 1, if this does not negatively affect solutions. (9) ensures connected kitting sta-
tions along the line. Specifically, if two positions p and p′ are assigned to the same 
station, all other positions between p and p′ must be assigned to this station as well. 
Constraints (10) define the order spread for each order and for each kitting station, 
and (11) defines the maximum order spread over all kitting stations, which is mini-
mized in the objective function. Finally, variable domains are set in (12) to (14).

To further strengthen this formulation of WBSAP, we introduce several valid ine-
qualities that eliminate symmetric solutions (so-called symmetry breakers):

Constraints (15) sort the kitting stations along the line in increasing index order. In 
this way, solutions that only differ in the numbering of stations are eliminated. Note 
that we have also tried out the alternative formulation of these constraints of Ritt and 
Costa (2018), which can be borrowed from their model for assembly line balancing, 
on a small sample of instances. Since we were not able to detect any remarkable 

(15)
∑
k∈K

k ⋅ yp,k ≤
∑
k∈K

k ⋅ yp+1,k ∀ p = 1,… , |P| − 1

(16)

yp−1,k−1 + yp,k + yp�−1,k + yp�,k+1 + xs,p + xs�,p� ≤ 5 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 1;

p� = p + 1,… , |P|;
s, s� ∈ S ∶ s > s�

(17)
y1,1 + yp−1,1 + yp,2 + xs,1 + xs�,p ≤ 4 ∀ p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(18)

yp−1,k−1 + yp,k + xs,p + xs�,p� + yp�,k + yp�+1,k+1 ≤ 5 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 2;

p� = p + 1,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(19)
y1,1 + xs,1 + xs�,p + yp,1 + yp+1,2 ≤ 4 ∀ p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(20)
yp−1,|K|−1 + yp,|K| + xs,p + xs�,|P| + y|P|,|K| ≤ 4 ∀ p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�
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performance differences, we abstain from reporting these tests in detail. Inequali-
ties (16) and (17) specify the assignment of SKU sets to stations: The indexes of the 
first SKUs in each station are sorted in increasing order. Hence, solutions that only 
differ in the assignments of SKU sets to stations are eliminated. Finally, (18) to (20) 
eliminate solutions that only differ in the direction of the SKU sequence within a 
station, since this direction is not relevant for the order spread. The first SKU in each 
station must have a smaller index than the second SKU in that station. Note that 
constraints (15) to (20) are only necessary, if we have more than one kitting station, 
i.e., |K| ≥ 2 . In case of |K| = 1 , (21) can be applied to define the direction of the 
SKU sequence:

Preliminary computational tests have shown that all of these additional constraints, 
individually and in combination, reduce the solution time of a standard solver. How-
ever, the combination of all symmetry breakers performs best. Therefore, all fur-
ther tests are conducted with symmetry breaking constraints (15) to (20) resp. con-
straints (21). Note that we also tried out another MIP based on variables xs,p,k , which 
directly encode the assignment SKU s to storage position p in kitting station k. This 
MIP, however, was outperformed by the one elaborated above, so that we abstain 
from reporting further details here and refer to Appendix A instead.

3  Decomposition approaches for the holistic problem

In order to solve a complex optimization problem such as WBSAP, decomposition 
is often a promising approach. We will follow this general idea in this section by 
decomposing WBSAP into its two core subproblems, storage assignment and work-
load balancing. If we have a solution for one of the subproblems, we will find it 
much easier to solve the other one. However, we still have to decide on the order in 
which we solve the problems, as both approaches go hand in hand with advantages 
and disadvantages:

• Balance first, sequence second (BFSS): In this approach, we first decide on 
the assignment of SKUs to kitting stations. Given this assignment, we can deter-
mine the final SKU sequence for each station individually. The advantage of 
this approach is that the remaining sequencing problems can be small enough 
to solve them in reasonable time. However, this strongly depends on the amount 
and size of kitting stations since the remaining sequencing problem for a single 
station is still NP-hard. In Sect. 3.1, we introduce a meta-heuristic procedure for 
the workload balancing on the upper level and a beam search approach for the 
remaining storage assignment problem.

• Sequence first, balance second (SFBS): If we have a sequence of SKUs along 
the storage area given, the remaining workload balancing problem reduces to 
the decision on sizing and positioning of kitting stations, a problem solvable in 
polynomial time. The downside of this approach, however, is the bigger size of 

(21)xs,1 + xs�,|P| ≤ 1 ∀ s, s� ∈ S ∶ s > s�
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the SKU sequence to be determined upfront. In Sect.  3.2, we provide a meta-
heuristic procedure for the storage assignment problem on the upper level and a 
dynamic programming procedure for the remaining workload balancing problem.

Each of these approaches is dedicated a separate section in the following.

3.1  Balance first, sequence second

We explain this decomposition approach in reverted sequence. We start with the 
subsequent problem and elaborate how we determine a storage assignment prob-
lem for a given station workload. Then, we turn to the upper level and introduce a 
metaheuristic for determining the station workloads.

3.1.1  Storage assignment for a given station workload

This section defines the storage assignment problem (SAP) for a single kitting sta-
tion once the workload for this station is already given. Thus, we have a single kit-
ting station k operated by a dedicated picker and the set Sk of SKUs to be placed 
within the station. The SKU containers have to be placed along the conveyor system, 
which has |Sk| storage positions, so that each SKU receives exactly one position. 
Such a storage assignment can, thus, be represented by a SKU sequence �k , i.e., a 
permutation of SKU set Sk = {1, 2,… , |Sk|} . The order spread �SA

i,k
(�k) of the pick-

ing order Oi,k ⊂ Sk associated with the SKUs of engine i ∈ I stored in station k is 
defined by:

where function �−1
k
(s) returns the storage position of SKU s within storage assign-

ment �k . By aggregating all order spreads, we receive the total weighted order 
spread within the station:

(22)

�SA
i,k
(�k) =

{
maxs∈Oi,k

{�−1
k
(s)} −mins∈Oi,k

{�−1
k
(s)} + 1, if Oi,k ≠ �

0, if Oi,k = �
∀ i ∈ I,

Fig. 4  Example for SAP
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Example (cont.): Consider the given workload of Station 1 within Solution three 
of Fig. 3d in Sect. 2.1. From the overall workload of six SKUs Station 1 only has 
to process SKU set S = {A,C,E,F} and the adapted order set depicted in Fig. 4a. 
Solution one and two depicted in Fig. 4b and c lead to a total order spread of 8 and 
6, respectively.

Naturally, problem SAP can also be formulated as a MIP, which we present in 
Appendix B. In preliminary computational tests that are—for a matter of concise-
ness—not reported in this paper, however, the following approach proved much 
more successful. Recall that this problem has been shown to be strongly NP-hard 
within Theorem 1. Therefore, we introduce a dynamic programming (DP) scheme 
in the following, which is subsequently applied within a beam search heuristic. The 
following DP, which is an adaption of the basic sequencing DP of Held and Karp 
(1962), solves SAP to optimality.

Our DP consists of Pk + 1 stages, each corresponding to a storage position in 
our line setup (plus a virtual starting stage). Each stage p includes states S̄k ⊆ Sk , 
each defining a subset of SKUs stored in the first p storage containers along the 
line. The initial state is represented by an empty set S̄k,0 = � . The partial objective 
value of a state S̄k is denoted by zSA(S̄k) and corresponds to the cumulative weighted 
order spread over all picking orders with respect to the first |S̄k| storage positions. 
Furthermore, we have a transition S̄k → S̄′

k
 from state S̄k to state S̄′

k
 if S̄k ⊂ S̄′

k
 and 

S̄�
k
⧵ S̄k = {s} with s ∈ Sk , that is, the successive state contains the same SKUs as its 

predecessor plus an additional SKU. The additional weighted order spread for such a 
transition amounts to

With the transition’s contributions to the objective value on hand the Bellman recur-
sion is defined by

with z(�) = 0 . After a stage-wise forward recursion, the last stage Pk + 1 contains 
only a single state S̄k = Sk including all SKUs with objective value ZSA

k
= z(Sk) . 

Finally, we can extract the optimal storage assignment by a simple backward 
recursion.

Regarding the computational effort of our DP, we have O(2|Sk|) states and 
O(|Sk| ⋅ 2|Sk|) transitions. The implied exponential runtime of O(|Sk| ⋅ 2|Sk|) is in line 
with our complexity result for SAP.

Due to the exponential runtime (in the number of SKUs), DP struggles with 
larger instances of our storage assignment problem. To accelerate the proce-
dure, we modify DP and introduce a heuristic beam search (BS) approach. BS 

(23)ZSA
k
(�k) =

∑
i∈I

fi ⋅ �
SA
i,k
(�k).

(24)v(S̄k, S̄
�
k
) =

∑
i∈I

{
fi , if Oi,k ⧵ S̄k ≠ � ∧ Oi,k ⧵ S̄

�
k
≠ Oi,k

0 , else
.

(25)zSA(S̄k) = min
s∈S̄k

{
z(S̄k ⧵ {s}) + v(S̄k ⧵ {s}, S̄k)

}
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requires less runtime and memory as it only branches the � most promising (with 
respect to the partial objective value) states of each stage. � is called the beam 
width. With this modification, runtime and memory are polynomial bounded. 
However, optimality is not guaranteed hereby, since states leading to an opti-
mal solution can be discarded during the forward recursion due to less promis-
ing partial objective values. Preliminary tests have shown that a beamwidth of 
� = 100 performs well regarding solution quality and runtime for smaller and 
larger instances as well.

Example (cont.): Recall the example from above (see Fig.  4), where SKUs 
A,C,E, and F have to be sequenced within Station 1. The resulting beam search 
graph with a beamwidth of � = 2 is depicted in Fig. 5. The procedure determines 
the four equally good—and in this case optimal—SKU sequences ⟨C,F,A,E] , 
⟨C,F,E,A] , ⟨F,C,E,A] and ⟨F,C,A,E] with an objective value of 6, highlighted 
by bold transitions. In each stage, several states are evaluated regarding their par-
tial objective value, e.g., in stage p = 1 , the four states {A} , {C} , {E} , and {F} 
are evaluated. Due to the beamwidth, only the best two states are branched when 
constructing the next stage. Note that nodes that have been discarded due to the 
beamwidth are displayed with dashed outlines. In stage p = 2 , several states have 
the same partial objective value, i.e., {A,C} , {C,E} , {A,F} and {E,F} . Hence, we 
need to apply a tiebreaker to decide which states should be branched. In our case, 
we randomly choose a state ( {A,C}).

Fig. 5  BS graph for SAP
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3.1.2  Workload balancing on the upper level

With the approach for solving the sequencing problem for a given kitting station k at 
hand, we can now tackle the balancing problem on the upper level. For this purpose, 
we implemented a straightforward simulated annealing (SA) approach to determine 
the assignment of SKUs to kitting stations. SA is a stochastic metaheuristic inspired 
by thermal processes for obtaining low-energy states in heat baths. Based on the 
probabilistic acceptance of neighboring solutions, SA is able overcome local optima 
(e.g., Kirkpatrick et al. 1983; Aarts et al. 1997).

Our SA operates on an array of sets (S1,… , S|K|) , whereby set k contains all 
SKUs dedicated to station k. Hence, each SKU must be element of one of the sets, 
i.e., 

⋃
k∈K Sk = S , each set must contain at least one SKU, i.e., |Sk| >= 1,∀k ∈ K , 

and the sets must be disjunct, i.e., Sk ∩ Sk� = �,∀k ≠ k� ∈ K . The initial solution is 
determined by randomly assigning SKUs to sets, such that the above conditions are 
fulfilled. For obtaining a neighboring solution, we randomly perform either a swap 
move or a switch move:

• Swap: Randomly choose two SKUs from different stations and swap their assign-
ment to sets.

• Switch: Move a randomly chosen SKU from one set to a different, also randomly 
chosen one.

Given the new (neighboring) assignment of SKUs to stations, we can obtain the 
weighted order spread Zk for each station k by applying the BS approach introduced 
in the last section. The objective value of our (balancing) solution Z(S1,… , Sk) can 
be determined by calculating the maximum weighted order spread over all stations 
Z(S1,… , Sk) = maxk∈KZk.

The decision whether or not a neighboring solution (S�
1
,… , S�

k
) should be 

accepted is made according to the following traditional probability scheme (see 
Aarts et al. 1997):

If accepted, our current solution (S1,… , Sk) is replaced by neighbor (S�
1
,… , S�

k
) as 

the new starting point for further iterations.
We applied a simple static cooling schedule (see Kirkpatrick et  al. 1983) for 

steering our SA. The initial value Tinit for our control parameter T, the temperature, 
is given by Tinit = Z((S1,… , Sk)

init) , where (S1,… , Sk)
init denotes our randomly gen-

erated initial solution. For each value of T, we perform three iterations of construct-
ing and comparing neighboring solutions. Afterward, T is decreased by multiplying 
it with the factor 0.999. We continue this procedure until the T <= 0.001 ⋅ Tinit . If 
the given time limit for the procedure has not been reached, we restart SA with a 
new random solution and the initial temperature up to a maximum of five times. 

(26)

Prob((S�
1
,… , S�

k
) replacing (S1,… , Sk))

=

{
1, if Z(S�

1
,… , S�

k
) ≤ Z(S1,… , Sk)

exp
(

Z(S1,…,Sk)−Z(S
�
1
,…,S�

k
)

T

)
, otherwise.
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Note that in our computational study, we invariably used control parameter values 
as described above as preliminary studies indicated that this parameter constellation 
outperforms other settings and delivers a reasonable compromise between solution 
quality and time.

3.2  Sequence first, balance second

The next decomposition approach solves the two subproblems in opposite order, 
which we again describe in reverted order. First, we elaborate the workload balanc-
ing problem for a given SKU sequence, and only afterward, we present a heuristic 
procedure to determine such a sequence.

3.2.1  Workload balancing for a given storage assignment

If the sequence of SKUs along the line � is given, the remaining workload bal-
ancing problem (WBP) simply decides on the range of storage positions covered 
by each kitting station. Hence, we look for a solution �WB = (l1, l2,… , l|K|) , i.e., 
a sequence of storage positions with lk defining the last storage position of station 
k ∈ K . Such a solution is feasible, if lk+1 ≥ lk + 1 with l0 = 0 , that is each station 
contains at least on storage position. With the given SKU sequence � , we are now 
able to determine the order spread for each order in kitting station k:

with l0 = 0 . The final objective value, i.e., the maximum of weighted order spreads 
across the kitting stations, can then be determined by

Example (cont.): Recall the example from Fig. 3 in Sect. 2.1 and assume given 
SKU sequence � = ⟨E,A,C,F,D,B] and |K| = 3 kitting stations. Figure 6 depicts 
three different solutions of WBP: (b) A poor arrangement of stations along the 
line can lead to very unequal workloads between the stations. (c) Even an equal 
partition of SKUs among kitting stations, where each station receives the same 
number of SKUs, does not guarantee an equal assignment of workload. (d) The 
optimal solution leads to a minimal workload of 5.

(27)

�WB
i,k

(�) =

⎧⎪⎪⎨⎪⎪⎩

max

q = lk−1 + 1,… , lk ∶

�q ∈ Oi

{q} − min

q = lk−1 + 1,… , lk ∶

�q ∈ Oi

{q} + 1, if ∃ q ∈ {lk−1 + 1,… , lk} ∶ �q ∈ Oi

0, else,

(28)ZWB(�) = max
k∈K

{∑
i∈I

fi ⋅ �
WB
i,k

(�)

}
.
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Naturally, WBP can also be modeled as a MIP. However, since this problem 
can be solved to optimality in polynomial time, we present such a MIP only in 
Appendix C. Instead, we elaborate a more efficient DP approach in the following.

This DP consists of |K| + 1 stages, each corresponding to a kitting station (plus 
a virtual starting stage). Each stage k includes states (k, p) that each define the 
ending position p of kitting station k. The initial state is represented by (0, 0). The 
partial objective value of a state (k, p) is denoted by zWB(k, p) and corresponds to 
the maximum weighted order spread over the first k kitting stations along the line. 
Furthermore, we have a transition (k, p) → (k + 1, p�)� from state (k,  p) to state 
(k + 1, p�) , if p < p′ , that is, the ending position of a station is smaller than the 
ending position of the subsequent kitting station, and p� ≤ |P| − |K| + k + 1 , that 
is, the remaining number of positions is not smaller than the remaining number of 
kitting stations. The order spread for the new station added by such a transition is 
given by wp+1,p� . With the transition’s contributions to the objective value on hand 
the Bellman recursion is defined by

(29)zWB(k, p�) = min
k−1≤p<p�

{
max{z(k − 1, p),w(p + 1, p�)}

}

Fig. 6  Example for WBP
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with zWB(0, 0) = 0 . After a stage-wise forward recursion, the last stage |K| contains 
only a single state (|K|,  |P|) with objective value Z = zWB(|K|, |P|) . Finally, we can 
extract the optimal workload balancing by a simple backward recursion.

Regarding the computational effort of our DP, we have O(|K|) stages each con-
taining O(|P|) states. Since the number of transitions leaving a state is in O(|P|) 
and |P| = |S| , the resulting runtime is in O(|K| ⋅ |S|2) , thus polynomial. However, 
in order to apply the DP procedure, the values wp,p′ have to be determined before-
hand, which requires a runtime in O(|I| ⋅ |S|3) . Since |K| ≤ |S| , the total runt-
ime is in O(|I| ⋅ |S|3) , thus polynomial. This allows us to solve even larger sized 
instances in a short runtime.

Example: Recall the example above depicted in Fig.  6 with the given SKU 
sequence � = ⟨E,A,C,F,D,B] and |K| = 3 kitting stations. The aggregated 
weighted order spreads are given by

Applying the introduced DP procedure, we obtain the graph depicted in Fig. 7. The 
optimal solution with an objective value of 5 is highlighted by the bold transitions. 
Here, the first kitting station includes the storage positions 1, 2, and 3 (state (1, 3)) 
with a workload of w1,3 = 5 , the second station includes positions 4 and 5 (state 
(2, 5)) with a workload of w4,5 = 5 and the last (third) station includes only position 

w =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 4 5 6 17 20

− 2 3 4 12 15

− − 1 2 6 9

− − − 1 5 8

− − − − 4 7

− − − − − 3

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 7  DP graph for WBP
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6 (state (3, 6)) with a workload of w6,6 = 3 . The maximum workload over all three 
stations is max{5, 5, 3} = 5.

3.2.2  Storage assignment on the upper level

In the first stage of our sequence first, balance second approach, we address the 
sequencing problem, i.e., the ordering the SKUs along the kitting area. Again, we 
implemented a straightforward simulated annealing heuristic, which operates on a 
permutation (s1, s2,… , s|P| of SKU set |S|, with sp defining the SKU stored at storage 
position p. To obtain an initial solution, we simply assign SKUs randomly. A neigh-
boring solution (s�

1
,… , s�|P|) is then determined by randomly performing one of the 

following moves:

• Swap: Two (different) SKUs are randomly chosen and swap their sequence posi-
tions.

• Switch: Relocate a random SKU to a (randomly selected, different) position 
within the storage assignment.

With the new (neighboring) sequence on hand, we can determine the weighted order 
spread Z(s�

1
,… , s�|P|) of our (sequencing) solution by applying the DP approach 

introduced in the previous section. The probability for accepting the neighboring 
solution—and therefore replacing the former solution—is given by

(30)

Prob((s�
1
,… , s�|P|) replacing (s1,… , s|P|))

=

{
1, if Z(s�

1
,… , s�|P|) ≤ Z(s1,… , s|P|)

exp
(

Z(s1,…,s|P|)−Z(s�1,…,s�|P|)

T

)
, otherwise.

Table 2  Parameters for instance generation

Values

Symbol Description Small Large Surrogate Managerial (Default)

|S| Number of SKUs 5,7,...,15 25,50,75 10,20,...,50 10,20,...,100 (50)
|I| Number of engine types 5,10,...,25 5,15,25 5,10,...,25 2,4,...,20 (10)
|K| Number of kitting stations 1,2,...,5 1,2,...,5 1,2,...,5 1,2,...,10 (5)
r SKU ratio of reference order 0.5 0.5 0.5 0.1,0.2,...,0.9 (0.5)
� Heterogeneity of frequencies 0.5 0.5 0.5 0.1,0.2,...,0.9 (0.5)
� Heterogeneity of order set 1 1 1 0.1,0.2,...,0.9 (0.5)
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If accepted, the neighboring solution (s�
1
,… , s�|P|) replaces (s1, s2,… , s|P|) and serves 

as the new starting point for further iterations. We apply exactly the same static 
cooling, restart, and stop policy as in our previous SA of Sect.  3.1.2.

4  Computational study

First, we evaluate the computational performance of our different solution methods 
in Sect. 4.2. Then, we answer the question whether our surrogate objective (i.e., the 
order spread) is indeed a suitable proxy for the workers’ actual total walking dis-
tances (see Sect. 4.3). Furthermore, we address several managerial aspects and ana-
lyze the benefit of our optimization approach in Sect. 4.4. Beforehand, however, we 
have to elaborate on our data instances in Sect. 4.1.

4.1  Instance generation

Since there is no established testbed for our WBSAP and confidentiality issues pro-
hibit the application of real-world data, we had to generate our own instance genera-
tor. To do so, Table 2 lists the main parameters that are handed over to our generator 
as its own input data.

Table 2 lists the parameter values for four different sets of instances employed 
during the subsequent sections. For a given combination of parameter values, each 
single instance is generated as follows: For given values of |S|, |I|, and |K|, we con-
struct a set of different orders that refer to different engine types to be produced. 
For being able to generate order sets that are either more homogeneous or rather 
heterogeneous, we first derive a reference order with max(1, rd(|S| ⋅ r)) randomly 
chosen SKUs, whereby rd(x) yields the closest integer to x. Subsequently, we con-
struct |I| orders Oi , whereby each SKU (not) contained in the reference order is also 
demanded by an order Oi with a probability of 1 − �

2
 ( �

2
 ). Smaller (larger) values of 

� , with � ∈ (0, 1] , thus lead to rather homogeneous (heterogeneous) orders. As each 
engine type demands an individual set of parts, we make sure that all orders are dif-
ferent. To ensure this, |I| must be smaller or equal to 2|S| − |S| − 2 . If the constructed 
order is already contained in our order set, we dispose it and restart order genera-
tion. We also make sure that each order contains at least one SKU and that each 
SKU is used at least once. We, then, determine the |I| order frequencies randomly. 
Hereby, we presuppose a 7-hour working shift and a cycle time of 90 s, which equals 
the situation at our engine producer. Therefore, during a shift, about 280 engines are 
produced. We determine order frequencies f̄i ∈ (1 − 𝛼, 1 + 𝛼) and normalize them, 
so that 

∑
i∈I fi ≈ 280 . Hence, we set

(31)fi = rd

�
280 ⋅

f̄i∑
i∈I f̄i

�
.
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Analogously to our order set, smaller (larger) values of � , with � ∈ [0, 1) , lead to 
rather homogeneous (heterogeneous) frequencies. Note that due to rounding the 
total number of engines may differ slightly from 280.

For the first three instance sets (Small, Large, and Surrogate), we repeat the con-
struction process five times for each parameter combination, resulting in sets of 750, 
225, and 625 instances, respectively. For the fourth set (Managerial), we only vary 
one parameter at a time and fix the others to their default values listed in parentheses 
within Table 2. We repeat the generation process 25 times for each parameter com-
bination and obtain 1425 instances in this data set.

4.2  Computational performance

To evaluate our solution methods for WBSAP, we benchmark their computational 
performance for differently sized sets of instances: Small instances are still man-
ageable by a commercial solver (to be solved to proven optimality in acceptable 
time) and large instances represent real-world problem sizes (see Table 2, Columns 
’Small’ and ’Large’).

We solved the 750 small and 225 large instances each with both the balance first, 
sequence second (BFSS) algorithm and the sequence first, balance second (SFBS) 
procedure. Our industry partner currently determines a random SKU assignment to 
storage positions and assigns all stations the same amount of SKUs. We dub this 
approach RND. All procedures were implemented in Visual Basic, and tests were 
performed on a 64-bit system on an Intel(R) Core(TM)2 Quad CPU with 2.83 giga-
hertz and 8 gigabytes memory. Moreover, we apply optimization software ’Gurobi’ 
(GRB, version 9, see Gurobi Optimization, LLC 2021) with a time limit of 300 s 
(900 s) for small (large) instances. The criteria with which we evaluate computa-
tional performance is defined at the bottom of Tables 3 and 4. The results summa-
rized in these tables suggest the following findings.

• Gurobi: Among the 750 small instances, Gurobi solves 443 (59%) to proven 
optimality within the given time frame of 300 s. However, even for the small 
instances, Gurobi regularly hits the timeout when more stations |K| and SKUs |S| 
are involved. On average over all small instances, Gurobi is clearly outperformed 
by our decomposition approaches both with regard to solution quality and runt-
ime. This finding becomes even more pronounced for the large instances. Here, 
Gurobi does not terminate prior to the timeout of 900 s in any instance, and 
for 109 out of 225 instances (48.4%), Gurobi is not even able to find a feasi-
ble solution during this time. Hence, we conclude that Gurobi is not suitable for 
instances of real-world size, and heuristic solutions seem preferable instead.

• BFSS vs. SFBS: We can observe no clear dominance of either of our decom-
position approaches. In some cases, BFSS delivers better results than SFBS; in 
others, it is the other way round. This holds true for both runtime and solution 
quality. On average, however, SFBS leads to better results regarding both test 
sets, small and large, and both performance criteria, runtime and solution quality. 
Thus, SFBS seems the better option.
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• Real-world method: Finally, we can observe that the status quo method applied 
by our engine producer seems not advisable. Although its runtime requirement is 
barely measurable, it produces gaps to the best solutions of up to 47.81%. How 
this translates into walking effort for the pickers is investigated in more detail in 
Sect. 4.4. Note that a single random SKU sequence is a rather weak competitor 
from an optimization perspective. In Appendix D, we explore the performance 
impact if more than a single random solution are drawn. Our results show that 
especially for large instances such a simple approach cannot compete with our 
more sophisticated optimization approaches.

To conclude, our results suggest that both our decomposition approaches BFSS 
and SFBS deliver good solutions in a short amount of time, so that they seem well-
suited even if large instances of real-world size are to be solved. SFBS is a bit faster 
and delivers better average objective values, so that for all further tests SFBS is our 
method of choice.

4.3  On the appropriateness of the surrogate objective

In this section, we aim to answer the question whether our surrogate objective, 
namely, minimizing the maximum weighted order spread, is indeed a good proxy 
for the actual objective, which is to minimize the workers’ actual maximum walking 
distance. Recall that when planning the storage assignment, which is done on a mid-
term basis (e.g., twice a year), we do not know the actual daily production sequences 
of engines. Instead, we only have reliable forecasts on the frequencies, in which each 
engine type is produced. Note that our engine producer has long-term contracts with 
car manufactures and rather long lead times, so that aggregate demands for the next 
months are indeed well predictable in this case. This allows us to quantify the dis-
tances each worker has to accompany the engines over the planning horizon with 
the help of our surrogate objective. However, we cannot add the walk-back distances 
between subsequent engines, because they depend on the production sequences. In 
this section, we investigate if our proxy, in spite of this inaccuracy, still supports our 
’true’ objective.

To do so, we evaluate 625 instances, including 25 different settings of station 
numbers |K| ∈ {1, 2,… , 5} and SKU numbers |S| ∈ {10, 20,… , 50} , each generated 
with the data generator defined in Sect. 4.1, applying the parameter settings stated in 
Column ’Surrogate’ of Table 2. For each of these instances, 100 random WBSAP 
solutions, each consisting of a random storage assignment of SKUs along the line 
and random station borders, are obtained. Each solution is evaluated with our sur-
rogate objective to determine the resulting maximum order spread over all kitting 
stations. These values are compared to the actual maximum walking distances that 
include the walk-back distances. To obtain them, we draw 250 production sequences 
per instance, where each engine type occurs in this sequence according to the given 
production frequencies. For a given production sequence, the actual total walking 
distance per station and thus the maximum over all stations can easily be obtained. 
Finally, we average the maximum actual walking distances over all 250 production 
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sequences. For the resulting 2 ⋅ 100 values, namely of our surrogates and the actual 
objectives, we calculate Pearson’s correlation coefficient. The minimum, average 
and maximum correlation coefficients, rounded to six digits, are listed in Table 5 for 
all 25 |S|-|K|-parameter settings. To get an idea on the absolute values of our surro-
gate objective and the (simulated) total walking distance (in m), we also present the 
respective average values in the table as well. Note that the actual forward distance 
(in m) can be determined by 0.8 ⋅ (objective value) as SKUs have an assumed width 
of 80 cm.

For every parameter combination, we observe correlation coefficients close to 1. 
This result verifies that we have a strong positive correlation between our surrogate 

Table 5  Correlation coefficients (Pearson) between surrogate and actual objective, average surrogate 
objective value, and average total walking distance (simulated) for different instance sizes

Pearson Objective Total

|K| |S| Minimum Average Maximum Value Distance 
[m]

1 10 0.995203 0.999220 1.000000 2263 3170
1 20 0.999999 1.000000 1.000000 5032 7589
1 30 1.000000 1.000000 1.000000 7863 12111
1 40 1.000000 1.000000 1.000000 10635 16539
1 50 1.000000 1.000000 1.000000 13426 20996
2 10 0.998740 0.999720 0.999996 1515 1987
2 20 0.999956 0.999997 1.000000 3558 5236
2 30 1.000000 1.000000 1.000000 5677 8619
2 40 1.000000 1.000000 1.000000 7761 11949
2 50 1.000000 1.000000 1.000000 9868 15314
3 10 0.995105 0.998915 0.999723 1091 1326
3 20 0.999814 0.999964 0.999999 2677 3831
3 30 0.999999 1.000000 1.000000 4440 6645
3 40 1.000000 1.000000 1.000000 6183 9429
3 50 1.000000 1.000000 1.000000 7824 12049
4 10 0.995290 0.998249 0.999226 844 947
4 20 0.999776 0.999952 0.999999 2235 3127
4 30 0.999977 0.999998 1.000000 3672 5418
4 40 1.000000 1.000000 1.000000 5133 7751
4 50 1.000000 1.000000 1.000000 6578 10059
5 10 0.979236 0.994913 0.999257 640 644
5 20 0.999697 0.999884 0.999975 1829 2483
5 30 0.999985 0.999995 1.000000 3106 4515
5 40 0.999996 1.000000 1.000000 4342 6489
5 50 0.999999 1.000000 1.000000 5637 8556
over all instances 0.979236 0.999632 1.000000 4953 7471
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’maximum weighted order spread’ and actual objective ’maximum actual walking 
distance.’ We can thus conclude that our proxy seems well-suited and, if applied to 
guide an optimization task, can successfully support the reduction in the workers’ 
actual walking distances.

4.4  Managerial issues: reduction in walking effort

In this section, we evaluate whether our optimization task, i.e., optimizing the 
storage assignment and division of labor among kitting stations, actually has the 
potential to considerably reduce the workers’ walking effort. To explore this, 
our computational experiment is designed as follows. We start with the 1425 
instances generated with our instance generator (see Sect.   4.1) and the param-
eter settings from Column ‘Managerial’ in Table 2, and derive WBSAP solutions 
with the status quo method RND of our engine producer (i.e., random storage 
assignment with equally sized stations) and our best-performing decomposi-
tion approach SFBS for each instance. To obtain the actual maximum walking 
distances for each of these solutions that also include the walk-back distances, 
we again derive 250 random production sequences of 7-hour shifts with engine 
occurrences according to the given frequencies. The resulting actual maximum 
walking distances are finally averaged over all 250 production sequences.

First, we take a look on the impact of parameters |S| (number of SKUs), |K| 
(number of kitting stations), and |I| (number of engine types to be produced) 
when benchmarking our two competitors. In Fig.  8, we report the actual maxi-
mum walking distances of our two solution methods depending on the above 
three parameters. These results suggest the following findings:

• Impact of SKUs: First, we can confirm an expectable result in Fig. 8 (left). If the 
engines require more parts and |S| increases, then more SKU containers have to 
be arranged along the line. Obviously, this leads to a linear increase in the walk-
ing distances.
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Fig. 8  Maximum walking distances of status-quo method RND and our decomposition approach SFBS 
depending on the number |S| of SKUs (left), the number |K| of stations (middle), and the number |I| of 
engine types (right)



748 S. Fedtke et al.

1 3

• Impact of stations: Figure  8 (middle) displays the impact of another lever to 
reduce the walking effort of the workers: additional kitting stations. This, how-
ever, also increases the kitting workforce and thus wage costs. We can observe 
diminishing returns of additional workers. When having a small workforce every 
additional worker leads to a considerable relieve. If however the workforce is 
already substantial, the extra relieve of yet another worker is small.

• Impact of engine types: Finally, Fig. 8 (right) shows that the number |I| of dif-
ferent engine types that are produced on the line has only moderate impact. It is 
not the sheer number of engines but rather the level of heterogeneity of their part 
demands that impacts the walking effort, which can be seen in our further analy-
sis.

Our previous results of Fig. 8 have shown a consistent improvement of our optimiza-
tion approach over status quo method RND. We analyze these gains in more detail 
with the help of Fig. 9. Here, we display the percental reduction of the actual maxi-
mum walking distances of our optimization approach SFBS compared to the base-
line of status-quo method RND of our engine producer. The results of Fig. 9 suggest 
the following findings:

• Impact of reference order: During the discussions with our practice partner, we 
had to learn that in engine production there are quite a few basic parts that are 
required by most engine types. The reference order represents these parts. A 
larger r-value (with default � = 0.5 ) mainly results in larger order sets per engine 
(see Fig. 9 (left)). In this case, large parts of each kitting station must be passed 
in each cycle anyway, so that optimization cannot gain much. If only a few SKUs 
are needed (i.e., at a smaller r-value), optimization has much more flexibility to 
cut the accompanying walks for specific engines short.

• Impact order heterogeneity: Parameter � controls the probability with which a 
SKU of the reference set is contained in a specific order (see Fig.  9 (middle)). 
Thus, a small (large) � leads to more (fewer) SKUs of the reference set being 
contained in each order. Thus, smaller �-values lead to rather homogeneous 
SKU demands of all engine types. Hence, we benefit substantially by optimiz-
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Fig. 9  Reduction in the actual maximum walking distance of our optimization approach SFBS compared 
to the status quo method of our engine producer depending on fraction r of SKUs that belong to the ref-
erence order (left), order set heterogeneity � (middle), and frequency heterogeneity � (right)
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ing the arrangement of the most common SKUs. Optimization can build clus-
ters of SKUs jointly demanded in similar orders and the workers must only trav-
erse subsections of their stations for each engine. In this case, the walking effort 
of pickers can considerably be reduced by up to 30%. For more heterogeneous 
orders, it is harder to find SKU arrangements that lead to small order spread for 
each order, and therefore, the benefit of optimization decreases with increasing 
values of �.

• Impact of frequency: In Fig. 9 (right), we can observe that more or less varia-
tion in the frequencies, in which the engine types are produced (i.e., regulated 
by parameter � ), has only negligible impact. The improvements of optimization 
over the status quo are consistently over 20 %. This result indicates that when 
applying the default values for all other parameters, this obviously leads to rather 
homogeneous demands for parts among different engine types. Hence, varying 
their frequencies still leads to similar part demands.

To conclude, our study reveals the following main take-home message. On aver-
age over our instances, sophisticated optimization can reduce the maximum walking 
distances of pickers by more than 20 %, which is good news for both workers and 
their employers. For workers, it makes a considerable difference, especially on their 
long-term well-being, if their daily walking distances reduce by several kilometers. 
Healthy and more satisfied workers are certainly also important for their employ-
ers, especially in the aging societies of many industrialized countries. Furthermore, 
these gains can be realized without more wage costs for additional workers or a 
reduction in the output; merely a low-cost rearrangement of SKU containers along 
the line and altered station borders are required.

5  Conclusions and outlook

In this paper, we introduce a novel part feeding policy to the scientific literature: 
in-line kitting. The first part of an assembly line is reserved to part logistics. Here, 
pickers have to add the requested parts that are arranged in containers along the line 
to traveling part kits that move with their workpieces on the conveyor. To reduce 
the ergonomic effort for these pickers when having to walk along their kitting sta-
tions, we formulate a novel optimization problem that arranges the SKU containers 
along the line and determines the borders of kitting stations. We introduce different 
solution methods, and our computational performance tests identify decomposition 
approach sequence first, balance second (SFBS) as an appropriate approach even 
if large instances of real-world size must be solved. In further tests on managerial 
issues, we show that applying this method can reduce the walking distances of pick-
ers by about 20 % without producing any additional costs or reducing the output.

Future research could challenge our solution methods and provide even more 
powerful (especially exact) optimization approaches. Furthermore, it could be ben-
eficial to provide the same SKU not only at a single kitting station, but also at mul-
tiple ones. This adds an operational selection problem, from which station a specific 
SKU demand should be satisfied, and increases the space demand for kitting. On 
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the other hand, duplicate SKUs could—if properly placed—further reduce the walk-
ing effort of the workers. Furthermore, reducing the walking effort could not only 
lower the physical effort of the existing workforce. These savings could also be used 
to improve productivity and reduce the kitting workforce. The resulting balancing 
problem that minimizes the workforce for a given cycle time is an interesting chal-
lenge for future research. Finally, future research should evaluate whether in-line kit-
ting could also be a suitable alternative for other production lines (beyond engine 
production). This suggests an extensive benchmark study of all alternative part feed-
ing policies in different production environments.

Appendix A: An alternative MIP for WBSAP

This appendix presents an alternative MIP model, which due to its three-dimen-
sional assignment variables seems better accessible but turned out non-competitive. 
Applying the notation summarized in Table 6, this MIP (dubbed WBSP-MIP2) con-
sists of objective function (32) subject to constraints (33) to (46):

WBSAP-MIP2:

subject to

(32)Minimize Z(�max, �, x) = �max

(33)
∑
p∈P

∑
k∈K

xs,p,k = 1 ∀ s ∈ S

(34)
∑
s∈S

∑
k∈K

xs,p,k = 1 ∀ p ∈ P

Table 6  Notation for WBSAP-MIP2

I Set of engine types (index i)
S Set of SKUs with S = {1,… , |S|} (indices s, s′)
Oi Picking order of engine i with Oi ⊂ S

P Set of storage positions with P = {1,… , |P| = |S|}| (indices p, p′)
K Set of kitting stations with K = {1,… , |K|}| (index k)
fi Production frequency of engine i
�max Continuous variable: maximum order spread over all kitting stations
�i,k Continuous variable: spread of order Oi in station k
xs,p,k Binary variable: 1, if SKU s is assigned to storage position p in kit-

ting station k (0, otherwise)
Z Objective function: maximum order spread
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(35)
∑
s∈S

∑
p∈P

xs,p,k ≥ 1 ∀ k ∈ K

(36)

∑
s∈S

xs,p+1,k ≥
∑
s∈S

xs,p,k +
∑
s∈S

xs,p�,k − 1 ∀k ∈ K; p = 1,… , |P| − 2;

p� = p + 2,… , |P|

(37)

�i,k ≥
∑
p∈P

xs,p,k ⋅ p −
∑
p∈P

xs�,p,k ⋅ p + 1

− |P| ⋅
(
2 −

∑
p∈P

xs,p,k −
∑
p∈P

xs�,p,k

)
∀ i ∈ I; s, s� ∈ Oi; k ∈ K

(38)�max ≥
∑
i∈I

fi ⋅ �i,k ∀ k ∈ K

(39)xs,p,k ∈ {0, 1} ∀ s ∈ S; p ∈ P; k ∈ K

(40)
∑
s∈S

∑
k∈K

k ⋅ xs,p,k ≤
∑
s∈S

∑
k∈K

k ⋅ xs,p+1,k ∀ p = 1,… , |P| − 1

(41)

∑
t∈S

xt,p−1,k−1 + xs,p,k +
∑
t∈S

xt,p�−1,k + xs�,p�,k+1 ≤ 3 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 1;

p� = p + 1,… , |P|;
s, s� ∈ S ∶ s > s�

(42)
xs,1,1 +

∑
t∈S

xt,p−1,1 + xs�,p,2 ≤ 2 ∀ p = 2,… , |P|;

s, s� ∈ S ∶ s > s�

(43)

∑
t∈S

xt,p−1,k−1 + xs,p,k + xs�,p�,k +
∑
t∈S

xt,p�+1,k+1 ≤ 3 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 2;

p� = p + 1,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(44)
xs,1,1 + xs�,p,1 +

∑
t∈S

xt,p+1,2 ≤ 2 ∀p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�
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Objective function (32) minimizes the maximum order spread. Constraints (33) 
assign each SKU to exactly one storage position and one kitting station. Analo-
gously, constraints (34) assign exactly one SKU to each storage position and each 
storage position to exactly one kitting station. Furthermore, (35) assigns at least one 
SKU and storage position to each kitting station. The connection of kitting stations 
along the line is ensured by (36). Constraints (37) define the order spreads for each 
order and each kitting station. Derived from that, constraints (38) define the maxi-
mum order spread over all kitting stations. Finally, the model is completed by setting 
the variable domains in (39).

To enable a fair comparison with our previous MIP of Sect.  2.3, we enrich this 
model too with symmetry breakers. Specifically, the following ones are applied:

• Based on constraints (40), stations are sorted along the line in increasing 
index order.

• Constraints (41) to (42) specify the assignment of SKU sets to stations, so that 
the indexes of the first SKUs in each station are in increasing order.

• Constraints (43) to (45) specify the direction of the SKU sequences within each 
station by setting the first SKU’s index smaller than that of the last one. The special 
case of |K| = 1 is considered by (46).

In spite of these symmetry breakers, this model is outperformed by competitor 
WBSAP-MIP of Sect. 2.3. We evaluated the two MIPs on 3475 instances ranging from 
5 to 25 SKUs. WBSAP-MIP (MIP2) was able to find the optimal solution in 893 (858) 
instances, found a feasible solution within 300 s in 1721 (1505) instances and missed 
feasible solutions in 861 (1112) instances. While runtimes are rather similar, WBSAP-
MIP outperforms WBSAP-MIP2 with respect to solution quality. Therefore, we 
decided to move WBSAP-MIP2 into this appendix. All computational studies reported 
in the main paper only apply WBSAP-MIP.

Appendix B: A MIP for SAP: Storage assignment for a given station 
workload

This appendix provides a MIP for problem SAP of Sect.  3.1.1. Applying the additional 
notation summarized in Table 7, SAP-MIP consists of objective function (47) and con-
straints (48) to (51).

(45)

∑
t∈S

xt,p−1,|K|−1 + xs,p,|K| + xs�,|P|,|K| ≤ 2 ∀p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(46)xs,1,1 + xs�,|P|,1 ≤ 1 ∀ s, s� ∈ S ∶ s > s�
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SAP-MIP:

subject to

Objective function (47) minimizes the weighted order spread in kitting station k 
summarized over all picking orders. Constraints (48) and (49) ensure that each stor-
age position receives exactly one SKU and vice versa. The order spreads for all pick-
ing orders are dimensioned by (50). Here, each pair of SKUs per order is evaluated, 
and the maximum distance among any such pair defines the order spread. Finally, 
constraints (51) set the domain of the binary variables.

We have carefully tested the application of this MIP within our decomposition 
approach. However, especially for larger instances solving this model took default 
solver Gurobi too much time to evaluate a large number of storage assignments. Our 
beam search approach delivers only heuristic results but is much faster, so that it 
turned our as the better option for this stage. For a matter of conciseness, we abstain 
from a detailed elaboration of these computational results.

(47)Minimize Zk(x, �) =
∑
i∈I

fi ⋅ �i,k

(48)
∑
s∈Sk

xs,p = 1 ∀ p ∈ Pk

(49)
∑
p∈Pk

xs,p = 1 ∀ s ∈ Sk

(50)�i,k ≥
∑
p∈Pk

xs,p ⋅ p −
∑
p∈Pk

xs�,p ⋅ p + 1 ∀ i ∈ I; s, s� ∈ Oi,k

(51)xs,p ∈ {0, 1} ∀ s ∈ Sk; p ∈ Pk

Table 7  Notation for SAP
Sk Set of SKUs with Sk = {1,… , |Sk|} 

within station k (indices s, s′)
Oi,k Picking order of engine i in station k
Pk Set of storage positions in station k with 

Pk = {1,… , |Pk| = |Sk|}| (index p)
Zk Objective value: order spread in station k
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Appendix C: A MIP for WBP: Workload balancing for a given storage 
assignment

This appendix provides a MIP for problem WBP, which is defined in Sect. 3.2.1 and 
part of our sequence first, balance second decomposition approach. First, we pre-
process, the aggregated weighted order spread between positions p and p′:

This term is strongly related to (27). However, it also includes the weight of each 
order, i.e., the frequencies fi and aggregates the weighted order spread over all 
orders i ∈ I for the storage area starting at position p and ending at position p′.

Applying these parameters and additional notation summarized in Table 8, WBP 
can also be formulated as a MIP (dubbed WBP-MIP) consisting of objective func-
tion (53) and constraints (54) to (59).

WBP-MIP:

subject to

(52)

wp,p� =
�
i∈I

fi ⋅

⎧
⎪⎪⎨⎪⎪⎩

max

q = p,… , p� ∶

�q ∈ Oi

{q} − min

q = p,… , p� ∶

�q ∈ Oi

{q} + 1, if ∃ q ∈ {p,… , p�} ∶ �q ∈ Oi

0, else

(53)Minimize Z(l, �max) = �max

(54)
|P|−1∑
p=1

lk,p = 1 ∀ k = 1,… , |K| − 1

(55)l|K|,|P| = 1

(56)
|P|−1∑
p=1

p ⋅ lk+1,p ≥

|P|−1∑
p=1

p ⋅ lk,p + 1 ∀ k = 1,… , |K| − 1

Table 8  Notation for WBP
wp,p′ Weighted order spread for a 

station starting at p and ending 
at p′

M Big value, e.g., M = |P| ⋅maxi∈I fi

lk,p Binary variable: 1, if kitting sta-
tion k is ending at position p (0, 
otherwise)



755

1 3

In‑line kitting for part feeding of assembly lines: workload…

Objective function (53) minimizes the maximum order spread. Constraints (54) and 
(55) assign an end position to each kitting station, whereas constraints (56) sort the 
stations in increasing index order. Constraints (57) and (58) set the maximum order 
spread over all stations, where the latter handles the special case of the first station. 
Finally, the variable domains are set by (59).

Appendix D: Computational performance of the random solution 
approach (RND)

In Sect.  4, we compare the performance of our sophisticated optimization proce-
dures with the current status quo approach implemented by our partner in prac-
tice. There, the assignment of SKUs to storage positions is randomly chosen and 
the kitting stations are equally distributed along the storage area. To obtain insights 
regarding the impact of more random solutions on the performance, we report on 
further experiments with modified random approaches. Instead of drawing only a 
single random solution, we now generate several random SKU sequence each evalu-
ated by the equal-number-of-SKUs-per-station policy of our engine producer. The 
best among our random solutions is finally returned. We denote the resulting pro-
cedures by RND#sol , where #sol gives the number of randomly generated storage 
assignments.

(57)
𝛿max ≥ wp,p� −M ⋅ (2 − lk,p−1 − lk+1,p� ) ∀k = 2,… , |K|;

p, p� ∈ P ∶ p < p�

(58)�max ≥ w1,p −M ⋅ (1 − l1,p) ∀ p ∈ P

(59)lk,p ∈ {0, 1} ∀ k ∈ K; p ∈ P

Table 9  Computational 
performance for different 
random solution approaches

Small instance Large instances

gapBest [%] cpu time [s] gapBest [%] cpu time [s]

GRB 1.31 136.87 21.22 900.91
BFSS 0.22 75.10 4.03 720.03
SFBS 0.11 31.51 3.20 532.31
RND1 28.81 0.00 30.69 0.00
RND10 13.79 0.00 24.60 0.01
RND100 7.34 0.00 20.68 0.06
RND1000 4.46 0.03 18.10 0.57
RND10000 2.79 0.26 15.82 5.72
RND100000 1.71 2.58 13.82 57.30
RND1000000 1.00 25.94 12.38 573.58



756 S. Fedtke et al.

1 3

We applied these procedures to the small and large set of instances from Sub-
sect.  4.2 for #sol ∈ {1, 10, 100, 1000, 104, 105, 106} . The results are presented in 
Table  9. Note that to improve readability, we only list the average values for the 
entire data set rather than the results for each parameter combination. gapBest 
denotes the average objective gap to the best performing procedure.

The results of Table 9 clearly indicate that even drawing a significant amount of 
random sequences, so that the solution times are about as high as those of our more 
sophisticated optimization approach SFBS, is not competitive. This supports our 
choice of applying method SFBS (see Sect. 3.2) for solving WBSAP.
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