
Vol.:(0123456789)

OR Spectrum (2023) 45:717–758
https://doi.org/10.1007/s00291-023-00723-1

1 3

ORIGINAL ARTICLE

In‑line kitting for part feeding of assembly lines: workload
balancing and storage assignment to reduce the workers’
walking effort

Stefan Fedtke1  · Nils Boysen1 · Patrick Schumacher2

Received: 18 February 2022 / Accepted: 20 April 2023 / Published online: 8 May 2023
© The Author(s) 2023

Abstract
An efficient part feeding is among the top challenges of many mass producers apply-
ing mixed-model assembly lines, for instance, in the automotive industry. This paper
introduces a novel part feeding policy applied by a large German assembly plant
for car engines: In-line kitting. Under this policy, the first stations of the line do not
execute assembly operations, but are reserved for picking parts while passing con-
tainers of stock-keeping units (SKUs) arranged along the line. In this way, the parts
are collected in traveling kits moving along with each workpiece on the conveyor, so
that later assembly stations have the required parts directly available and do not lose
precious labor time for unproductive parts handling. A major operational challenge
when applying this part feeding policy is the walking effort for the human pick-
ers while putting the SKUs of their respective stations into the traveling kits of the
passing workpieces. Due to a high product variety, a large number of comparatively
bulky SKU containers have to fit into each station, so that the walking distance to be
covered by a worker during a work shift exceeds multiple kilometers. We show that
this physical burden can be reduced significantly by balancing the workload among
stations and optimizing the storage assignment of SKU containers within each in-
line kitting station. We formulate the resulting optimization problem and provide
suited solution procedures. Our computational study shows that the walking distance
of pickers can be reduced significantly without producing any additional costs.

Keywords  Mixed-model assembly lines · Part feeding · In-line kitting ·
Optimization

 *	 Stefan Fedtke
	 stefan.fedtke@uni-jena.de
	 https://www.om.uni-jena.de

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-023-00723-1&domain=pdf
http://orcid.org/0000-0003-1410-5367

718	 S. Fedtke et al.

1 3

1  Introduction

The mid-sized assembly plant of German car producer BMW in Dingolfing has to
timely supply their assembly stations with parts arriving in more than 13,000 con-
tainers delivered by about 600 suppliers on more than 400 trucks on each average
workday (Battini et al. 2013). These figures elucidate that part logistics is among the
greatest challenges of today’s mass-producers, especially in the automotive indus-
try (Boysen et al. 2015). Therefore, it is anything but surprising that selecting the
right part feeding policy has received much attention both among practitioners and
scientists in the recent years. Part feeding is the in-house logistics process which
moves parts from receipt after their arrival at the assembly plant up to their respec-
tive workstations where they are finally assembled into the workpieces. Note that
a similar definition is provided by Choi and Lee (2002).

A part feeding policy specifies this in-house logistics process for a subset of parts.
To do so, a specific policy has to choose among the alternative elements of the four
basic process elements defined in Fig. 1. Note that previous papers (i.e., Battini et al.
2013; Boysen et al. 2015; Kilic and Durmusoglu 2015; Schmid and Limère 2019)
apply similar, yet slightly different elements of part feeding:

•	 Initially, the part feeding process is triggered either by previous consumption or
by prospective demands, so that parts are either pulled (e.g., via a Kanban mech-
anism or by part inventory falling below a predefined reorder level) or pushed
(i.e., according to the demands defined by the workpieces produced in the next
production cycles) toward their respective assembly stations.

•	 Once the demand for parts is defined, the respective parts need to be retrieved
from their storage positions. This can either be a central (receiving) warehouse, a
decentralized logistics area directly on the shop floor (often called supermarket,
see Emde and Boysen 2012), or local storage space directly next to the assembly
line.

•	 Then, parts need to be moved by a suitable transportation device, which may be
a traditional forklift, a tow train (i.e., a manned or automated tugger vehicle tow-
ing a handful of wagons (see Emde et al. 2012), or a conveyor belt.

•	 Finally, the parts need to be positioned next to the line, which is also called their
line-side presentation (see also Limère et al. 2012; Schmid and Limère 2019).

Fig. 1   Part feeding policies and their basic elements

719

1 3

In‑line kitting for part feeding of assembly lines: workload…

Line stocking places containers (e.g., large unit loads or smaller bins) each filled
with homogeneous pieces of the same stock-keeping unit (SKU) directly in
the respective workstations (e.g., multiple bins each containing a specific exte-
rior mirror variant), so that the assembly workers have to identify and fetch the
respective parts required in each production cycle. To avoid unproductive part
sorting of (highly paid) assembly workers stationary kits are placed next to the
line and contain pre-sorted pieces of different SKUs ordered according prospec-
tive demand (e.g., the exterior mirror variants sequenced for the next production
cycles). Traveling kits, instead, contain pre-sorted pieces of multiple SKUs for a
single workpiece (e.g., the exterior and interior mirrors and other parts for a spe-
cific car) and accompany their workpiece on the conveyor.

The most widespread part feeding policies resulting from choosing a specific ele-
ment for each process step are traditional bulk feeding and the supermarket concept
(see Fig. 1). Triggered by previous part consumption, the former applies forklifts to
deliver large homogeneous unit loads from central storage to the line and leaves the
sorting of parts to the assembly workers (Boysen and Bock 2011). Decentralized
storage in supermarkets allows for a more reactive part supply in smaller bins of
pre-sorted products and applies tow trains delivering multiple workstations along
fixed routes (Emde et al. 2012). The supermarket concept can be applied in a push
and pull environment and can service all kinds of line-side presentation. Identifying
a suitable part feeding policy for each part is an important practical decision task,
and the pros and cons of each policy are vividly discussed in the scientific litera-
ture (e.g., Hanson and Brolin 2013; Sali et al. 2015). Moreover, quantitative deci-
sion models for selecting the right feeding policy (e.g., Limère et al. 2012; Caputo
et al. 2015, 2018) and its interdependency with assembly line balancing (Sternatz
2015; Battini et al. 2017; Nourmohammadi et al. 2019) have been investigated. The
manifold literature in this area is summarized by the survey papers of Boysen et al.
(2015), Kilic and Durmusoglu (2015), and Schmid and Limère (2019).

This paper treats a part feeding policy, which (to the best of the authors’ knowl-
edge) has been overlooked by previous research. We elaborate this novel policy,
which combines the elements marked by the dotted arrow in Fig. 1, in the following
section.

1.1 � In‑line kitting

We saw in-line kitting at work in the assembly plant of MDC Power in Kölleda,
which is one of Germany’s largest assembly plants for car engines and belongs to the
Daimler group. The engines are produced on multiple mixed-model assembly lines
in lot-size one. Each engine moves from station to station on a hanging workpiece
carrier transported by a trolley conveyor. The first stations of the line are reserved
for in-line kitting, which means that the specific parts dedicated to each engine are
directly added to the cases of their carriers. The carriers, thus, also serve as traveling
kits. In this way, the parts required in later assembly stations are directly available

720	 S. Fedtke et al.

1 3

on each workpiece carrier, so that unproductive walking of assembly workers for
fetching parts from racks and containers next to the line is eliminated.

The in-line kitting segment of the assembly line, whose schematic layout is
depicted in Fig. 2, is separated into distinct areas called stations each operated by a
single dedicated worker. To better distinguish these workers solely concerned with
part logistics from assembly workers of later stations, we call them the pickers. Each
station consists of a given set of successively arranged skeleton containers each con-
taining homogeneous pieces of a specific SKU. Pick-to-light displays indicate which
SKUs (and how many of each) have to be added to the cases of the engine carrier
currently entering a station. The picker accompanies the engine, which is continu-
ously moved forward by the conveyor, adds the indicated parts whenever they pass
the respective SKU, and accredits the picks (by pushing a button on the pick-to-light
display) until the end of the station is reached. Naturally, there are no precedence
constraints that restrict the sequence in which the SKUs are packed on the carriers,
so that the pickers are advised to follow the sequence in which the SKU containers
are arranged along the line. Then, the picker rushes backward toward the successive
engine of the next cycle. Since engines are produced in lot-size one, each engine has
its different part demands. Given the specific part demands of the next cycle, the
picker repeats the kitting process for the next workpiece. Note that the kitting line
segment itself is replenished via a bulk feeding process (see Fig. 1), where forklifts
replace (almost) empty with filled skeleton containers delivered from central storage
once a specific reorder level is reached.

The biggest advantage of in-line kitting is that assembly workers, who are spe-
cially trained and earn higher wages, are relieved from part fetching. The parts are
directly available on the cases of each engine carrier, so that unproductive time for
walking to part containers next to the line as well as identifying and retrieving the
required parts from there is eliminated. These work contents are executed by less
costly pickers in the kitting area, who are typically assigned to another pay scale
group. Another advantage is that there is no need to store part containers in assem-
bly stations, which is especially valuable for small sized workpieces such as car
engines where stations are much smaller compared to automobile assembly. These
advantages, however, could also be realized by moving traveling kits assembled in

Fig. 2   Schematic layout of the in-line kitting line segment

721

1 3

In‑line kitting for part feeding of assembly lines: workload…

some remote logistics area onto the conveyor. In engine assembly, however, there
is no belt conveyor, so that a traveling kit would have to be attached to the carrier,
which requires a suited (and stable) technical solution. Furthermore, in-line kitting
moves part logistics under the strict regime of a paced flow process, so that part
feeding is under tight control and picking errors can easily be reduced, e.g., by add-
ing an extra weighing mechanism for the added parts to the workpiece carrier.

On the negative side, in-line kitting requires an extended conveyor and blocks
space directly on the shop floor where room is notoriously scarce. Car engines and
the part variety they require, however, are smaller compared to typical assembly line
products such as cars, so that the prolongation of the line due to the additional kit-
ting segment is moderate. Furthermore, trolley conveyors are less costly than large
ground conveyors for cars, so that in the specific case of engine assembly the addi-
tional investment for in-line kitting seems acceptable. These characteristics question
the suitability of in-line kitting for car assembly, but make it a valid part feeding
alternative for small product assembly, e.g., in the electronics industry.

1.2 � How to reduce the pickers’ walking effort

For our engine producer, one of the greatest operational challenges when applying
in-line kitting is the high physical stress for the picker workforce. Since the parts in
engine assembly are small and light-weighed, ergonomic stress caused by lifting,
which is a major cause for long-term back injuries in many industries (e.g., Grosse
et al. 2015; Otto et al. 2017), is less of an issue. Instead, accompanying the work-
pieces while putting the indicated SKUs into the engine carriers and walking back
to the start of the station again and again during a work shift accumulates to a con-
siderable total walking distance for each picker. The station each picker services is
relatively large due to the following two reasons:

•	 The standardized skeleton containers for the SKUs applied by our engine pro-
ducer are comparatively large (i.e., they have the same outline as a europallet
with a width of 800 mm. Due to the small size of the parts, these containers have
the advantage that plenty pieces of a SKU fit into each container, so that the
logistics effort for replenishing the kitting stations is reduced.

•	 Each assembly line produces not only a single type of engine, but multiple vari-
ants in a mixed-model setting (see, e.g., Boysen et al. 2009). Therefore, each sta-
tion contains many SKUs, but only some of them are required by any type of
engine. Recall that the part variety is small compared to car assembly but still
considerable.

This results in station sizes of dozens of meters. At a cycle time between 60 and
90 seconds, which are typical values in the automotive industry (see Boysen et al.
2015), the walking distance quickly accumulates to several kilometers per work-
ing shift. If a worker has to service 50 SKUs whose containers have an identical
width of 800 mm, the resulting area width is 40 m. Under the assumption that the
picker always has to traverse the complete area at a cycle time of 60 seconds, the

722	 S. Fedtke et al.

1 3

worst-case walking distance of a 7-hour working shift amounts to 17 km. We admit
that this is rather a ballpark calculation to highlight the potential worst-case walk-
ing effort of workers. In the real-world, these extremes are seldom reached due to
more generous break regulations, job rotation, or longer picking times that enforce
smaller stations. However, the managers of our engine producer told us that more
than 10-km walking per shift regularly occur, which they suspect as a major source
for the comparatively high level of absenteeism and labor turnover in the kitting
area. Furthermore, the kitting area employs many impaired workers not suitable for
the even more demanding workplaces in the assembly stations, so that the manag-
ers (and the representatives of the trade union) aim to reduce the pickers’ walking
distances.

Obvious levers for reducing the walking distance in the kitting segment are a
larger workforce or an extended cycle time. The former, however, increases wage
costs and the latter reduces the output of the assembly line. Hence, the management
rather prioritize less costly countermeasures, such as the following. Pickers need
not traverse their complete stations in every cycle. Once pickers recognize that the
remaining pick-to-light displays indicate no further demand for the current engine,
they can let the workpiece pass the remainder of their station unattended and can
prematurely return back toward the next workpiece. Such a reduction in the walking
effort can be influenced by the following two decisions tasks:

•	 Workload balancing: Naturally, only SKUs required by the current workpiece
and located within the respective station have to be serviced by a picker. Thus,
distributing the SKUs among the kitting stations in a fair manner enables a work-
load balancing for pickers. In this way, exceptionally large walking distances of
single pickers can be avoided. Thus, the partitioning of SKUs among kitting sta-
tions influences the walking effort of the pickers, and this decision task is tack-
led by the optimization procedures developed in this paper. Workload balancing
alone (without the subsequent storage assignment within each station, see below)
resembles the famous assembly line balancing problem (see Boysen et al. 2022,
2008), which decides on the division of labor among subsequent assembly sta-
tions. In our case, we face a special line balancing problem without precedence
constraints (i.e., the SKUs can be processed in any sequence) and including the
model mix (see Merengo et al. 1999), because each engine type requires a differ-
ent subset of SKUs. The biggest difference to existing research, however, is the
interdependence with the following decision task.

•	 Storage assignment: Another lever, which reduces picker walking without deteri-
orating picking performance, is the storage assignment of SKUs within each kit-
ting station. It decides on the sequence, in which the set of SKUs of a station are
arranged along the conveyor. In our setting, the picking orders, i.e., the subset of
SKUs demanded by each engine, are known with certainty. If we find a storage
assignment, such that the spread of each picking order, i.e., its distance from the
first to the last container required by the respective order, is reduced, then pick-
ers need not traverse their complete stations, but only a smaller subsegment. For
this purpose, we integrate the storage assignment of SKUs to reduce the pickers’
walking effort into our optimization procedures. Storage assignment of SKUs is

723

1 3

In‑line kitting for part feeding of assembly lines: workload…

one of the classical decision problems of warehousing research (see De Koster
et al. 2007). This also holds true for a special order picking system called trolley
line picking (see Boysen et al. 2021). Here, hanging trolleys each assigned to a
specific customer order pass by SKUs, and it is the duty of human pickers to add
requested SKUs to the trolleys. Thus, trolley line picking directly transfers the
basic setup of in-line kitting to the warehouse domain. Here, however, customer
orders are typically not known with certainty, when having to decide on the stor-
age assignment, we have no continuously moving line, but trolleys automatically
stop in front of requested SKUs, and pickers need not strictly pick one order after
the other but can switch among waiting trolleys (see Füßler et al. 2019). Fur-
thermore, the main lever to improve these systems is the sequence, in which the
orders are processed (see Füßler et al. 2019). This lever, however, is not available
to us, as is argued in the following.

The production sequence, in which the engines are sent down the line, can also
relieve pickers. If the storage position of the last SKU within a picker’s station
demanded by the previous engine is close to the storage position of the first SKU of
the subsequent engine, the walk-back distance between successive engines can be
reduced. In-line kitting, however, is typically dominated by the subsequent assem-
bly stations, which have a complex demand for specific production sequences obey-
ing different technical restrictions and leveling constraints (see Boysen et al. 2009).
Thus, determining the model sequences according to the walking effort of kitting
workers is, typically, not an option. Note that other industrial settings (e.g., where
heavier or bulkier parts are to be handled) suggest a more holistic view on the physi-
cal strain of workers that also includes the ergonomic burden caused by lifting and
unfavorable body postures. Blueprints on appropriate measures are provided by
the order picking literature (see, e.g., Calzavara et al. 2017; Glock et al. 2019). An
interesting future research issue in this direction would, for instance, be field tests
that investigate for which types of products the total walking distance is a sufficient
proxy for the total physical burden and for which more detailed models should be
selected.

1.3 � Contribution and paper structure

After the paper’s first contribution, namely introducing and discussing the in-line
kitting part feeding policy, the remainder of the paper is concerned with reducing
the walking effort of pickers putting together the traveling kits under the in-line kit-
ting policy. For this purpose, we formulate the joint workload balancing and stor-
age assignment problem, which combines both levers for reducing the pickers’ total
walking distances in a holistic problem setting. Unfortunately, our computational
results will show that a mixed-integer model for the holistic problem cannot be
solved by an off-the-shelf solver for instances of real-world size. For solving these
instances, we rather introduce different decomposition approaches addressing both
decision parts in an iterative manner. Once a suitable heuristic solution procedure
is available (and proven successful in a comprehensive performance test), we can

724	 S. Fedtke et al.

1 3

apply this algorithm to explore to what extent the total walking distance of pickers
can be reduced in our case study. Our results indicate that the walking distances of
pickers can be reduced significantly without deteriorating picking performance.

The remainder of the paper is structured as follows. Section 2 elaborates our opti-
mization task and provides a mixed-integer model for the holistic problem. Two com-
peting heuristic decomposition approaches, namely, balance first, sequence second
and (vice versa) sequence first, balance second, are presented in Sect. 3. The compu-
tational performance of our solution methods is investigated in Sect. 4. This section
also contains further tests on managerial issues, where we explore the possible reduc-
tion of the pickers’ walking effort. Finally, Sect. 5 concludes the paper.

2 � The joint workload balancing and storage assignment problem

This section treats the joint workload balancing and storage assignment problem,
which we dub WBSAP. Section 2.1 defines the problem, and Sect. 2.2 discusses our
basic assumptions and investigates its complexity status. Finally, Sect. 2.3 presents a
mixed-integer programming (MIP) model for WBSAP.

2.1 � Problem definition

Consider a mixed-model assembly line producing n different types of car
engines. Each engine i ∈ I = {1, 2,… , n} is produced with a given frequency
fi within the planning horizon and requires a specific subset of parts for assem-
bly. We define the total SKU set of parts by S = {1, 2,… , |S|} and the subset of
SKUs required by engine i ∈ I constitutes its associated picking order Oi ⊂ S with
O = {O1,O2,… ,On} . Each SKU is available in a separate skeleton container. All
containers are standardized and have identical size; they only differ in the dedicated
SKU they contain. Note that we discuss this and all further assumptions in more
detail below. The storage positions P = {1, 2,… , |P| = |S|} along the line are sorted
in ascending order of their index. The part demands have to be fulfilled by a kitting
line segment operated by a picking workforce of given size. Each picker operates a
separate station, so that we have a given set K = {1,… , |K|} of kitting stations.

Our decision task is to partition the total SKU set among the stations and to
decide on the storage assignment within each station. These two decisions can be
encoded by (Φ,�) , i.e.,

•	 a family of sets Φ = {Φ1,Φ2,… ,Φ|K|} with Φk defining the subset of SKUs
assigned to kitting station k and

•	 a SKU sequence � , i.e., a permutation of S defining the storage assignment of
each SKU along the line.

We call a solution (Φ,�) feasible, if the following three conditions are met:

725

1 3

In‑line kitting for part feeding of assembly lines: workload…

•	 Φk ∩ Φk� = � for all k, k� ∈ K with k ≠ k′ , that is, a SKU cannot be assigned to
more than one station at a time,

•	
⋃

k∈K Φk = S , that is, each SKU is assigned to at least one station, and
•	

[
∃k ∈ K, p, p� ∈ P ∶ p < p� ∧ 𝜙(p),𝜙(p�) ∈ Φk

]
→ 𝜙(p + 1) ∈ Φk , that is, only

consecutive SKUs can be assigned to the same station.

Our aim is to reduce the pickers’ walking effort. Among all feasible solutions, we,
thus, seek those which allow to assemble each picking order in a small subarea of
each station. In this way, each picker does not have to traverse her complete kitting
station in each cycle. We formalize this aim by the order spread �i,k(Φ,�) , which
defines the number of SKU containers between the first and the last occurrence of a
SKU required by order Oi within the storage assignment � of station k. Specifically,
order spread �i,k(Φ,�) of picking order Oi ∈ O in station k ∈ K is defined as follows:

where function �−1(s) returns the storage position p ∈ P = S of SKU s within stor-
age assignment �.

Given the standardized container sizes we presuppose, the order spread directly
defines the distance each picker has to accompany an order while picking. Unfortu-
nately, at the point in time storage assignments are planned, the production sequence
of engines is, typically, not available, so that we cannot exactly anticipate the total
walking distance. To do so, the storage assignment, which defines the walking dis-
tances during order picking, and the exact order sequence, which defines the walk-
back distance between two successive orders for walking from the last position of
the predecessor to the first of the successor, both need to be available. As the latter
information is not at hand, we have to do without and aim to minimize the total
weighted order spread

In our case, it is well-known how many of each engine type are to be produced
within the next working shifts (but not their exact production sequence), so that it
seems advisable to weigh the order spreads �ik(Φ,�) with picking frequencies fi . We
dub the problem that seeks the minimum total weighted order spread Z(Φ,�) among
all feasible storage assignments � , the joint workload balancing and storage assign-
ment problem (WBSAP).

Example: Consider the example data given in Fig. 3a. Four engines i = 1,… , 4
each produced once during the planning horizon have different parts demands for
six SKUs S = {A,B,… ,F} . These picking orders have to be fulfilled by two work-
ers in kitting stations k = 1, 2 . Solution one depicted in Fig. 3b shows an objective
of Z(Φ,�) = 10 , constituted by the total walking distance of Station 2 exceeding
that of Station 1. Solution two (Fig. 3c) reduces the maximum total walking distance

(1)

�i,k(Φ,�) =

{
maxs∈(Oi∩Φk)

{�−1(s)} −mins∈(Oi∩Φk)
{�−1(s)} + 1, if Oi ∩ Φk ≠ �

0, if Oi ∩ Φk = �
∀ i ∈ I, k ∈ K,

(2)Z(Φ,�) = max
k∈K

{∑
i∈I

fi ⋅ �i,k(Φ,�)

}
.

726	 S. Fedtke et al.

1 3

to Z(Φ,�) = 8 by altering the storage assignment within both stations, whereas the
division of labor among both stations remains unaltered. Balancing the workload by
reassigning SKUs among both stations leads to Solution three and a further reduc-
tion to Z(Φ,�) = 7 depicted in Fig. 3d.

2.2 � Assumptions and complexity

After having defined our optimization problem, we summarize the simplifying
assumptions (explicitly and implicitly) contained in our problem setting:

•	 We aim at a reduction in the physical effort of pickers induced by their total
walking distance. We consider this general aim by minimizing the maximum
walking distance among all stations. This is considered to be more fair compared
to a min-sum objective where the total walking distance accumulated over all
stations may be smaller, but some pickers may receive exceptionally large walk-
ing distances.

Fig. 3   Example for WBSAP

727

1 3

In‑line kitting for part feeding of assembly lines: workload…

•	 Furthermore, we want to relieve pickers without causing additional costs, so
that we assume a given picker workforce. In line with the setting of our engine
producer, each picker operates a dedicated kitting station defined by a fixed
subset of SKUs. Dynamic workload sharing within changing station borders,
for instance enabled by the bucket brigade protocol (Bartholdi and Eisenstein
1996), or the relieve promised by job rotation (Otto and Scholl 2013) are not
considered.

•	 Assigning storage positions is a planning task executed over a mid-term plan-
ning horizon (De Koster et al. 2007). Thus, the composition Oi of picking
orders and their picking frequencies fi may be available, but not the specific
order sequences. In the automotive industry, production sequences frequently
need to be altered briefly before production starts, e.g., due to missing parts
not timely delivered (Boysen et al. 2009). Thus, we cannot exactly quantify
the picker’s total walking distance, which also depends on the walk-back dis-
tances between successive jobs. Our order spreads, therefore, only measure
one part of the total walking distance, namely the picker’s company of an
engine from its first to the last SKU container. In Sect. 4.3, we simulate the
total walking distances by randomly drawing production sequences in order
to check whether our proxy is indeed a good surrogate for the pickers’ total
walking distances.

•	 As is the case at our engine manufacturer, we presuppose standardized SKU con-
tainers each having identical size. This allows us to calculate the objective value
in number of passed containers. Many manufacturers aim to apply standardized
containers, because this reduces their logistics and handling costs (Boysen et al.
2015). If, nonetheless, differently sized containers are applied, an order spread
no longer solely depends on the first and last storage position, but also on the size
of the containers placed in between. We rather aim at the most basic problem set-
ting, which is also relevant for our real-world case. But adapting our models and
solution approaches by this aspect seems truly straightforward. However, smaller
containers are certainly another potential lever to reduce the pickers’ walking
effort, which comes at the price of more frequent replenishments. Evaluating this
trade-off could be an interesting issue for future research.

•	 We restrict our view on ground storage of containers along the conveyor, because
this is the most basic setting. At our engine manufacturer this setting is applied
to allow for quick container exchanges without double handling for repacking
items or maneuvering containers stockpiled on top of each other. The alterations
required to adapt our setting to the two-dimensional case are straightforward, so
that we abstain from a detailed description.

•	 We assume that the total in-line kitting area has enough space to house contain-
ers for all SKUs. If this is not given, depending on the parts demanded by subse-
quent workpieces, SKU containers must be added to and removed from stations
on short notice. Given the short cycle times of the automotive industry these
dynamic SKU swaps seem rather unrealistic, but they could be an interesting
field for future research in other industries.

•	 Missing parts in the assembly process produce excessive costs, in the worst case,
the line needs to be stopped with hundreds of workers being idle (Boysen et al.

728	 S. Fedtke et al.

1 3

2009). Therefore, our engine manufacturer takes great care that there are always
enough parts available in each SKU container. Consequently, we can abstract
from the replenishment process and assume that there are always enough pieces
in a container to satisfy demand.

Now, we consider the computational complexity of WBSAP, which has the follow-
ing complexity status.

Theorem 1  WBSAP is NP-hard in the strong sense, even if we have just a single kit-
ting station |K| = 1.

The proof is by transformation from the linear arrangement problem (LAP),
which is well-known to be strongly NP-hard (Garey and Johnson 1979) and stated
as follows:

LAP: Given a graph G = (V ,E) and a positive integer M, is there a one-to-one-
function f ∶ V → {1, 2,… , |V|} , i.e., a numbering of nodes V with integer values
from 1 to |V|, such that

∑
(u,v)∈E �f (u) − f (v)� ≤ M?

Proof  The transformation scheme for generating an instance of WBSAP from an
LAP instance is as follows. Since we have only a single station |K| = 1 , the com-
plete workload is to be processed by a single worker, and the problem reduces to the
storage assignment part seeking a sequence of SKUs within the station. For each
node of LAP, we introduce a SKU, i.e., |S| = |V| , and for each edge, we generate an
engine and its associated picking order with unit weight fi = 1 exclusively demand-
ing the two SKUs represented by the adjacent nodes. Thus, we have a direct map-
ping between SKUs and nodes, picking orders and edges as well as storage positions
and node numbers, so that a one-to-one mapping between both problems is readily
available. 	� ◻

Table 1   Notation for WBSAP-MIP

I Set of engine types (index i)
S Set of SKUs with S = {1,… , |S|} (indices s, s′)
Oi Picking order of engine i with Oi ⊂ S

P Set of storage positions with P = {1,… , |P| = |S|}| (indices p, p′)
K Set of kitting stations with K = {1,… , |K|}| (index k)
fi Production frequency of engine i
�max Continuous variable: maximum order spread
�i,k Continuous variable: spread of order Oi in station k
xs,p Binary variable: 1, if SKU s is assigned to storage position p (0, otherwise)
yp,k Binary variable: 1, if position p is assigned to kitting station k (0, otherwise)
zs,k Binary variable: 1, if SKU s is assigned to a storage position in kitting station k
Z Objective function: maximum order spread

729

1 3

In‑line kitting for part feeding of assembly lines: workload…

2.3 � Mixed‑integer model for WBSAP

Given the notation summarized in Table 1, we are able to formulate WBSAP as a
MIP with objective function (3) and constraints (4) to (14).

WBSAP-MIP:

subject to

(3)Minimize Z(�max, �, x, y, z) = �max

(4)
∑
p∈P

xs,p = 1 ∀ s ∈ S

(5)
∑
s∈S

xs,p = 1 ∀ p ∈ P

(6)
∑
k∈K

yp,k = 1 ∀ p ∈ P

(7)
∑
p∈P

yp,k ≥ 1 ∀ k ∈ K

(8)zs,k ≥ xs,p + yp,k − 1 ∀ s ∈ S; p ∈ P; k ∈ K

(9)

yp+1,k ≥ yp,k + yp�,k − 1 ∀ k ∈ K;

p = 1,… , |P| − 2;

p� = p + 2,… , |P|

(10)
�i,k ≥

∑
p∈P

xs,p ⋅ p −
∑
p∈P

xs�,p ⋅ p + 1

− |P| ⋅ (2 − zs,k − zs�,k) ∀ i ∈ I; s, s� ∈ Oi; k ∈ K

(11)�max ≥
∑
i∈I

fi ⋅ �i,k ∀ k ∈ K

(12)xs,p ∈ {0, 1} ∀ s ∈ S; p ∈ P

(13)yp,k ∈ {0, 1} ∀ p ∈ P; k ∈ K

(14)zs,k ∈ {0, 1} ∀ s ∈ S; k ∈ K

730	 S. Fedtke et al.

1 3

Objective function (3) minimizes the maximum weighted order spread over all kit-
ting stations. Constraints (4) to (7) enable proper assignments of SKUs and storage
positions: (4) assigns each SKU to exactly one storage position, (5) assigns exactly
one SKU to each storage position, (6) assigns each storage position to exactly one
kitting station, and (7) assigns at least one storage position to each kitting station.
In inequalities (8), our zs,k-variables are aligned with xs,p and yp,k . Note that in case
SKU s is not assigned to kitting station k, the zs,k-variables can attain either value 0
or 1, if this does not negatively affect solutions. (9) ensures connected kitting sta-
tions along the line. Specifically, if two positions p and p′ are assigned to the same
station, all other positions between p and p′ must be assigned to this station as well.
Constraints (10) define the order spread for each order and for each kitting station,
and (11) defines the maximum order spread over all kitting stations, which is mini-
mized in the objective function. Finally, variable domains are set in (12) to (14).

To further strengthen this formulation of WBSAP, we introduce several valid ine-
qualities that eliminate symmetric solutions (so-called symmetry breakers):

Constraints (15) sort the kitting stations along the line in increasing index order. In
this way, solutions that only differ in the numbering of stations are eliminated. Note
that we have also tried out the alternative formulation of these constraints of Ritt and
Costa (2018), which can be borrowed from their model for assembly line balancing,
on a small sample of instances. Since we were not able to detect any remarkable

(15)
∑
k∈K

k ⋅ yp,k ≤
∑
k∈K

k ⋅ yp+1,k ∀ p = 1,… , |P| − 1

(16)

yp−1,k−1 + yp,k + yp�−1,k + yp�,k+1 + xs,p + xs�,p� ≤ 5 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 1;

p� = p + 1,… , |P|;
s, s� ∈ S ∶ s > s�

(17)
y1,1 + yp−1,1 + yp,2 + xs,1 + xs�,p ≤ 4 ∀ p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(18)

yp−1,k−1 + yp,k + xs,p + xs�,p� + yp�,k + yp�+1,k+1 ≤ 5 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 2;

p� = p + 1,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(19)
y1,1 + xs,1 + xs�,p + yp,1 + yp+1,2 ≤ 4 ∀ p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(20)
yp−1,|K|−1 + yp,|K| + xs,p + xs�,|P| + y|P|,|K| ≤ 4 ∀ p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

731

1 3

In‑line kitting for part feeding of assembly lines: workload…

performance differences, we abstain from reporting these tests in detail. Inequali-
ties (16) and (17) specify the assignment of SKU sets to stations: The indexes of the
first SKUs in each station are sorted in increasing order. Hence, solutions that only
differ in the assignments of SKU sets to stations are eliminated. Finally, (18) to (20)
eliminate solutions that only differ in the direction of the SKU sequence within a
station, since this direction is not relevant for the order spread. The first SKU in each
station must have a smaller index than the second SKU in that station. Note that
constraints (15) to (20) are only necessary, if we have more than one kitting station,
i.e., |K| ≥ 2 . In case of |K| = 1 , (21) can be applied to define the direction of the
SKU sequence:

Preliminary computational tests have shown that all of these additional constraints,
individually and in combination, reduce the solution time of a standard solver. How-
ever, the combination of all symmetry breakers performs best. Therefore, all fur-
ther tests are conducted with symmetry breaking constraints (15) to (20) resp. con-
straints (21). Note that we also tried out another MIP based on variables xs,p,k , which
directly encode the assignment SKU s to storage position p in kitting station k. This
MIP, however, was outperformed by the one elaborated above, so that we abstain
from reporting further details here and refer to Appendix A instead.

3 � Decomposition approaches for the holistic problem

In order to solve a complex optimization problem such as WBSAP, decomposition
is often a promising approach. We will follow this general idea in this section by
decomposing WBSAP into its two core subproblems, storage assignment and work-
load balancing. If we have a solution for one of the subproblems, we will find it
much easier to solve the other one. However, we still have to decide on the order in
which we solve the problems, as both approaches go hand in hand with advantages
and disadvantages:

•	 Balance first, sequence second (BFSS): In this approach, we first decide on
the assignment of SKUs to kitting stations. Given this assignment, we can deter-
mine the final SKU sequence for each station individually. The advantage of
this approach is that the remaining sequencing problems can be small enough
to solve them in reasonable time. However, this strongly depends on the amount
and size of kitting stations since the remaining sequencing problem for a single
station is still NP-hard. In Sect. 3.1, we introduce a meta-heuristic procedure for
the workload balancing on the upper level and a beam search approach for the
remaining storage assignment problem.

•	 Sequence first, balance second (SFBS): If we have a sequence of SKUs along
the storage area given, the remaining workload balancing problem reduces to
the decision on sizing and positioning of kitting stations, a problem solvable in
polynomial time. The downside of this approach, however, is the bigger size of

(21)xs,1 + xs�,|P| ≤ 1 ∀ s, s� ∈ S ∶ s > s�

732	 S. Fedtke et al.

1 3

the SKU sequence to be determined upfront. In Sect. 3.2, we provide a meta-
heuristic procedure for the storage assignment problem on the upper level and a
dynamic programming procedure for the remaining workload balancing problem.

Each of these approaches is dedicated a separate section in the following.

3.1 � Balance first, sequence second

We explain this decomposition approach in reverted sequence. We start with the
subsequent problem and elaborate how we determine a storage assignment prob-
lem for a given station workload. Then, we turn to the upper level and introduce a
metaheuristic for determining the station workloads.

3.1.1 � Storage assignment for a given station workload

This section defines the storage assignment problem (SAP) for a single kitting sta-
tion once the workload for this station is already given. Thus, we have a single kit-
ting station k operated by a dedicated picker and the set Sk of SKUs to be placed
within the station. The SKU containers have to be placed along the conveyor system,
which has |Sk| storage positions, so that each SKU receives exactly one position.
Such a storage assignment can, thus, be represented by a SKU sequence �k , i.e., a
permutation of SKU set Sk = {1, 2,… , |Sk|} . The order spread �SA

i,k
(�k) of the pick-

ing order Oi,k ⊂ Sk associated with the SKUs of engine i ∈ I stored in station k is
defined by:

where function �−1
k
(s) returns the storage position of SKU s within storage assign-

ment �k . By aggregating all order spreads, we receive the total weighted order
spread within the station:

(22)

�SA
i,k
(�k) =

{
maxs∈Oi,k

{�−1
k
(s)} −mins∈Oi,k

{�−1
k
(s)} + 1, if Oi,k ≠ �

0, if Oi,k = �
∀ i ∈ I,

Fig. 4   Example for SAP

733

1 3

In‑line kitting for part feeding of assembly lines: workload…

Example (cont.): Consider the given workload of Station 1 within Solution three
of Fig. 3d in Sect. 2.1. From the overall workload of six SKUs Station 1 only has
to process SKU set S = {A,C,E,F} and the adapted order set depicted in Fig. 4a.
Solution one and two depicted in Fig. 4b and c lead to a total order spread of 8 and
6, respectively.

Naturally, problem SAP can also be formulated as a MIP, which we present in
Appendix B. In preliminary computational tests that are—for a matter of concise-
ness—not reported in this paper, however, the following approach proved much
more successful. Recall that this problem has been shown to be strongly NP-hard
within Theorem 1. Therefore, we introduce a dynamic programming (DP) scheme
in the following, which is subsequently applied within a beam search heuristic. The
following DP, which is an adaption of the basic sequencing DP of Held and Karp
(1962), solves SAP to optimality.

Our DP consists of Pk + 1 stages, each corresponding to a storage position in
our line setup (plus a virtual starting stage). Each stage p includes states S̄k ⊆ Sk ,
each defining a subset of SKUs stored in the first p storage containers along the
line. The initial state is represented by an empty set S̄k,0 = � . The partial objective
value of a state S̄k is denoted by zSA(S̄k) and corresponds to the cumulative weighted
order spread over all picking orders with respect to the first |S̄k| storage positions.
Furthermore, we have a transition S̄k → S̄′

k
 from state S̄k to state S̄′

k
 if S̄k ⊂ S̄′

k
 and

S̄�
k
⧵ S̄k = {s} with s ∈ Sk , that is, the successive state contains the same SKUs as its

predecessor plus an additional SKU. The additional weighted order spread for such a
transition amounts to

With the transition’s contributions to the objective value on hand the Bellman recur-
sion is defined by

with z(�) = 0 . After a stage-wise forward recursion, the last stage Pk + 1 contains
only a single state S̄k = Sk including all SKUs with objective value ZSA

k
= z(Sk) .

Finally, we can extract the optimal storage assignment by a simple backward
recursion.

Regarding the computational effort of our DP, we have O(2|Sk|) states and
O(|Sk| ⋅ 2|Sk|) transitions. The implied exponential runtime of O(|Sk| ⋅ 2|Sk|) is in line
with our complexity result for SAP.

Due to the exponential runtime (in the number of SKUs), DP struggles with
larger instances of our storage assignment problem. To accelerate the proce-
dure, we modify DP and introduce a heuristic beam search (BS) approach. BS

(23)ZSA
k
(�k) =

∑
i∈I

fi ⋅ �
SA
i,k
(�k).

(24)v(S̄k, S̄
�
k
) =

∑
i∈I

{
fi , if Oi,k ⧵ S̄k ≠ � ∧ Oi,k ⧵ S̄

�
k
≠ Oi,k

0 , else
.

(25)zSA(S̄k) = min
s∈S̄k

{
z(S̄k ⧵ {s}) + v(S̄k ⧵ {s}, S̄k)

}

734	 S. Fedtke et al.

1 3

requires less runtime and memory as it only branches the � most promising (with
respect to the partial objective value) states of each stage. � is called the beam
width. With this modification, runtime and memory are polynomial bounded.
However, optimality is not guaranteed hereby, since states leading to an opti-
mal solution can be discarded during the forward recursion due to less promis-
ing partial objective values. Preliminary tests have shown that a beamwidth of
� = 100 performs well regarding solution quality and runtime for smaller and
larger instances as well.

Example (cont.): Recall the example from above (see Fig. 4), where SKUs
A,C,E, and F have to be sequenced within Station 1. The resulting beam search
graph with a beamwidth of � = 2 is depicted in Fig. 5. The procedure determines
the four equally good—and in this case optimal—SKU sequences ⟨C,F,A,E] ,
⟨C,F,E,A] , ⟨F,C,E,A] and ⟨F,C,A,E] with an objective value of 6, highlighted
by bold transitions. In each stage, several states are evaluated regarding their par-
tial objective value, e.g., in stage p = 1 , the four states {A} , {C} , {E} , and {F}
are evaluated. Due to the beamwidth, only the best two states are branched when
constructing the next stage. Note that nodes that have been discarded due to the
beamwidth are displayed with dashed outlines. In stage p = 2 , several states have
the same partial objective value, i.e., {A,C} , {C,E} , {A,F} and {E,F} . Hence, we
need to apply a tiebreaker to decide which states should be branched. In our case,
we randomly choose a state ( {A,C}).

Fig. 5   BS graph for SAP

735

1 3

In‑line kitting for part feeding of assembly lines: workload…

3.1.2 � Workload balancing on the upper level

With the approach for solving the sequencing problem for a given kitting station k at
hand, we can now tackle the balancing problem on the upper level. For this purpose,
we implemented a straightforward simulated annealing (SA) approach to determine
the assignment of SKUs to kitting stations. SA is a stochastic metaheuristic inspired
by thermal processes for obtaining low-energy states in heat baths. Based on the
probabilistic acceptance of neighboring solutions, SA is able overcome local optima
(e.g., Kirkpatrick et al. 1983; Aarts et al. 1997).

Our SA operates on an array of sets (S1,… , S|K|) , whereby set k contains all
SKUs dedicated to station k. Hence, each SKU must be element of one of the sets,
i.e.,

⋃
k∈K Sk = S , each set must contain at least one SKU, i.e., |Sk| >= 1,∀k ∈ K ,

and the sets must be disjunct, i.e., Sk ∩ Sk� = �,∀k ≠ k� ∈ K . The initial solution is
determined by randomly assigning SKUs to sets, such that the above conditions are
fulfilled. For obtaining a neighboring solution, we randomly perform either a swap
move or a switch move:

•	 Swap: Randomly choose two SKUs from different stations and swap their assign-
ment to sets.

•	 Switch: Move a randomly chosen SKU from one set to a different, also randomly
chosen one.

Given the new (neighboring) assignment of SKUs to stations, we can obtain the
weighted order spread Zk for each station k by applying the BS approach introduced
in the last section. The objective value of our (balancing) solution Z(S1,… , Sk) can
be determined by calculating the maximum weighted order spread over all stations
Z(S1,… , Sk) = maxk∈KZk.

The decision whether or not a neighboring solution (S�
1
,… , S�

k
) should be

accepted is made according to the following traditional probability scheme (see
Aarts et al. 1997):

If accepted, our current solution (S1,… , Sk) is replaced by neighbor (S�
1
,… , S�

k
) as

the new starting point for further iterations.
We applied a simple static cooling schedule (see Kirkpatrick et al. 1983) for

steering our SA. The initial value Tinit for our control parameter T, the temperature,
is given by Tinit = Z((S1,… , Sk)

init) , where (S1,… , Sk)
init denotes our randomly gen-

erated initial solution. For each value of T, we perform three iterations of construct-
ing and comparing neighboring solutions. Afterward, T is decreased by multiplying
it with the factor 0.999. We continue this procedure until the T <= 0.001 ⋅ Tinit . If
the given time limit for the procedure has not been reached, we restart SA with a
new random solution and the initial temperature up to a maximum of five times.

(26)

Prob((S�
1
,… , S�

k
) replacing (S1,… , Sk))

=

{
1, if Z(S�

1
,… , S�

k
) ≤ Z(S1,… , Sk)

exp
(

Z(S1,…,Sk)−Z(S
�
1
,…,S�

k
)

T

)
, otherwise.

736	 S. Fedtke et al.

1 3

Note that in our computational study, we invariably used control parameter values
as described above as preliminary studies indicated that this parameter constellation
outperforms other settings and delivers a reasonable compromise between solution
quality and time.

3.2 � Sequence first, balance second

The next decomposition approach solves the two subproblems in opposite order,
which we again describe in reverted order. First, we elaborate the workload balanc-
ing problem for a given SKU sequence, and only afterward, we present a heuristic
procedure to determine such a sequence.

3.2.1 � Workload balancing for a given storage assignment

If the sequence of SKUs along the line � is given, the remaining workload bal-
ancing problem (WBP) simply decides on the range of storage positions covered
by each kitting station. Hence, we look for a solution �WB = (l1, l2,… , l|K|) , i.e.,
a sequence of storage positions with lk defining the last storage position of station
k ∈ K . Such a solution is feasible, if lk+1 ≥ lk + 1 with l0 = 0 , that is each station
contains at least on storage position. With the given SKU sequence � , we are now
able to determine the order spread for each order in kitting station k:

with l0 = 0 . The final objective value, i.e., the maximum of weighted order spreads
across the kitting stations, can then be determined by

Example (cont.): Recall the example from Fig. 3 in Sect. 2.1 and assume given
SKU sequence � = ⟨E,A,C,F,D,B] and |K| = 3 kitting stations. Figure 6 depicts
three different solutions of WBP: (b) A poor arrangement of stations along the
line can lead to very unequal workloads between the stations. (c) Even an equal
partition of SKUs among kitting stations, where each station receives the same
number of SKUs, does not guarantee an equal assignment of workload. (d) The
optimal solution leads to a minimal workload of 5.

(27)

�WB
i,k

(�) =

⎧⎪⎪⎨⎪⎪⎩

max

q = lk−1 + 1,… , lk ∶

�q ∈ Oi

{q} − min

q = lk−1 + 1,… , lk ∶

�q ∈ Oi

{q} + 1, if ∃ q ∈ {lk−1 + 1,… , lk} ∶ �q ∈ Oi

0, else,

(28)ZWB(�) = max
k∈K

{∑
i∈I

fi ⋅ �
WB
i,k

(�)

}
.

737

1 3

In‑line kitting for part feeding of assembly lines: workload…

Naturally, WBP can also be modeled as a MIP. However, since this problem
can be solved to optimality in polynomial time, we present such a MIP only in
Appendix C. Instead, we elaborate a more efficient DP approach in the following.

This DP consists of |K| + 1 stages, each corresponding to a kitting station (plus
a virtual starting stage). Each stage k includes states (k, p) that each define the
ending position p of kitting station k. The initial state is represented by (0, 0). The
partial objective value of a state (k, p) is denoted by zWB(k, p) and corresponds to
the maximum weighted order spread over the first k kitting stations along the line.
Furthermore, we have a transition (k, p) → (k + 1, p�)� from state (k, p) to state
(k + 1, p�) , if p < p′ , that is, the ending position of a station is smaller than the
ending position of the subsequent kitting station, and p� ≤ |P| − |K| + k + 1 , that
is, the remaining number of positions is not smaller than the remaining number of
kitting stations. The order spread for the new station added by such a transition is
given by wp+1,p� . With the transition’s contributions to the objective value on hand
the Bellman recursion is defined by

(29)zWB(k, p�) = min
k−1≤p<p�

{
max{z(k − 1, p),w(p + 1, p�)}

}

Fig. 6   Example for WBP

738	 S. Fedtke et al.

1 3

with zWB(0, 0) = 0 . After a stage-wise forward recursion, the last stage |K| contains
only a single state (|K|, |P|) with objective value Z = zWB(|K|, |P|) . Finally, we can
extract the optimal workload balancing by a simple backward recursion.

Regarding the computational effort of our DP, we have O(|K|) stages each con-
taining O(|P|) states. Since the number of transitions leaving a state is in O(|P|)
and |P| = |S| , the resulting runtime is in O(|K| ⋅ |S|2) , thus polynomial. However,
in order to apply the DP procedure, the values wp,p′ have to be determined before-
hand, which requires a runtime in O(|I| ⋅ |S|3) . Since |K| ≤ |S| , the total runt-
ime is in O(|I| ⋅ |S|3) , thus polynomial. This allows us to solve even larger sized
instances in a short runtime.

Example: Recall the example above depicted in Fig. 6 with the given SKU
sequence � = ⟨E,A,C,F,D,B] and |K| = 3 kitting stations. The aggregated
weighted order spreads are given by

Applying the introduced DP procedure, we obtain the graph depicted in Fig. 7. The
optimal solution with an objective value of 5 is highlighted by the bold transitions.
Here, the first kitting station includes the storage positions 1, 2, and 3 (state (1, 3))
with a workload of w1,3 = 5 , the second station includes positions 4 and 5 (state
(2, 5)) with a workload of w4,5 = 5 and the last (third) station includes only position

w =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 4 5 6 17 20

− 2 3 4 12 15

− − 1 2 6 9

− − − 1 5 8

− − − − 4 7

− − − − − 3

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 7   DP graph for WBP

739

1 3

In‑line kitting for part feeding of assembly lines: workload…

6 (state (3, 6)) with a workload of w6,6 = 3 . The maximum workload over all three
stations is max{5, 5, 3} = 5.

3.2.2 � Storage assignment on the upper level

In the first stage of our sequence first, balance second approach, we address the
sequencing problem, i.e., the ordering the SKUs along the kitting area. Again, we
implemented a straightforward simulated annealing heuristic, which operates on a
permutation (s1, s2,… , s|P| of SKU set |S|, with sp defining the SKU stored at storage
position p. To obtain an initial solution, we simply assign SKUs randomly. A neigh-
boring solution (s�

1
,… , s�|P|) is then determined by randomly performing one of the

following moves:

•	 Swap: Two (different) SKUs are randomly chosen and swap their sequence posi-
tions.

•	 Switch: Relocate a random SKU to a (randomly selected, different) position
within the storage assignment.

With the new (neighboring) sequence on hand, we can determine the weighted order
spread Z(s�

1
,… , s�|P|) of our (sequencing) solution by applying the DP approach

introduced in the previous section. The probability for accepting the neighboring
solution—and therefore replacing the former solution—is given by

(30)

Prob((s�
1
,… , s�|P|) replacing (s1,… , s|P|))

=

{
1, if Z(s�

1
,… , s�|P|) ≤ Z(s1,… , s|P|)

exp
(

Z(s1,…,s|P|)−Z(s�1,…,s�|P|)

T

)
, otherwise.

Table 2   Parameters for instance generation

Values

Symbol Description Small Large Surrogate Managerial (Default)

|S| Number of SKUs 5,7,...,15 25,50,75 10,20,...,50 10,20,...,100 (50)
|I| Number of engine types 5,10,...,25 5,15,25 5,10,...,25 2,4,...,20 (10)
|K| Number of kitting stations 1,2,...,5 1,2,...,5 1,2,...,5 1,2,...,10 (5)
r SKU ratio of reference order 0.5 0.5 0.5 0.1,0.2,...,0.9 (0.5)
� Heterogeneity of frequencies 0.5 0.5 0.5 0.1,0.2,...,0.9 (0.5)
� Heterogeneity of order set 1 1 1 0.1,0.2,...,0.9 (0.5)

740	 S. Fedtke et al.

1 3

If accepted, the neighboring solution (s�
1
,… , s�|P|) replaces (s1, s2,… , s|P|) and serves

as the new starting point for further iterations. We apply exactly the same static
cooling, restart, and stop policy as in our previous SA of Sect. 3.1.2.

4 � Computational study

First, we evaluate the computational performance of our different solution methods
in Sect. 4.2. Then, we answer the question whether our surrogate objective (i.e., the
order spread) is indeed a suitable proxy for the workers’ actual total walking dis-
tances (see Sect. 4.3). Furthermore, we address several managerial aspects and ana-
lyze the benefit of our optimization approach in Sect. 4.4. Beforehand, however, we
have to elaborate on our data instances in Sect. 4.1.

4.1 � Instance generation

Since there is no established testbed for our WBSAP and confidentiality issues pro-
hibit the application of real-world data, we had to generate our own instance genera-
tor. To do so, Table 2 lists the main parameters that are handed over to our generator
as its own input data.

Table 2 lists the parameter values for four different sets of instances employed
during the subsequent sections. For a given combination of parameter values, each
single instance is generated as follows: For given values of |S|, |I|, and |K|, we con-
struct a set of different orders that refer to different engine types to be produced.
For being able to generate order sets that are either more homogeneous or rather
heterogeneous, we first derive a reference order with max(1, rd(|S| ⋅ r)) randomly
chosen SKUs, whereby rd(x) yields the closest integer to x. Subsequently, we con-
struct |I| orders Oi , whereby each SKU (not) contained in the reference order is also
demanded by an order Oi with a probability of 1 − �

2
 ( �

2
 ). Smaller (larger) values of

� , with � ∈ (0, 1] , thus lead to rather homogeneous (heterogeneous) orders. As each
engine type demands an individual set of parts, we make sure that all orders are dif-
ferent. To ensure this, |I| must be smaller or equal to 2|S| − |S| − 2 . If the constructed
order is already contained in our order set, we dispose it and restart order genera-
tion. We also make sure that each order contains at least one SKU and that each
SKU is used at least once. We, then, determine the |I| order frequencies randomly.
Hereby, we presuppose a 7-hour working shift and a cycle time of 90 s, which equals
the situation at our engine producer. Therefore, during a shift, about 280 engines are
produced. We determine order frequencies f̄i ∈ (1 − 𝛼, 1 + 𝛼) and normalize them,
so that

∑
i∈I fi ≈ 280 . Hence, we set

(31)fi = rd

�
280 ⋅

f̄i∑
i∈I f̄i

�
.

741

1 3

In‑line kitting for part feeding of assembly lines: workload…

Analogously to our order set, smaller (larger) values of � , with � ∈ [0, 1) , lead to
rather homogeneous (heterogeneous) frequencies. Note that due to rounding the
total number of engines may differ slightly from 280.

For the first three instance sets (Small, Large, and Surrogate), we repeat the con-
struction process five times for each parameter combination, resulting in sets of 750,
225, and 625 instances, respectively. For the fourth set (Managerial), we only vary
one parameter at a time and fix the others to their default values listed in parentheses
within Table 2. We repeat the generation process 25 times for each parameter com-
bination and obtain 1425 instances in this data set.

4.2 � Computational performance

To evaluate our solution methods for WBSAP, we benchmark their computational
performance for differently sized sets of instances: Small instances are still man-
ageable by a commercial solver (to be solved to proven optimality in acceptable
time) and large instances represent real-world problem sizes (see Table 2, Columns
’Small’ and ’Large’).

We solved the 750 small and 225 large instances each with both the balance first,
sequence second (BFSS) algorithm and the sequence first, balance second (SFBS)
procedure. Our industry partner currently determines a random SKU assignment to
storage positions and assigns all stations the same amount of SKUs. We dub this
approach RND. All procedures were implemented in Visual Basic, and tests were
performed on a 64-bit system on an Intel(R) Core(TM)2 Quad CPU with 2.83 giga-
hertz and 8 gigabytes memory. Moreover, we apply optimization software ’Gurobi’
(GRB, version 9, see Gurobi Optimization, LLC 2021) with a time limit of 300 s
(900 s) for small (large) instances. The criteria with which we evaluate computa-
tional performance is defined at the bottom of Tables 3 and 4. The results summa-
rized in these tables suggest the following findings.

•	 Gurobi: Among the 750 small instances, Gurobi solves 443 (59%) to proven
optimality within the given time frame of 300 s. However, even for the small
instances, Gurobi regularly hits the timeout when more stations |K| and SKUs |S|
are involved. On average over all small instances, Gurobi is clearly outperformed
by our decomposition approaches both with regard to solution quality and runt-
ime. This finding becomes even more pronounced for the large instances. Here,
Gurobi does not terminate prior to the timeout of 900 s in any instance, and
for 109 out of 225 instances (48.4%), Gurobi is not even able to find a feasi-
ble solution during this time. Hence, we conclude that Gurobi is not suitable for
instances of real-world size, and heuristic solutions seem preferable instead.

•	 BFSS vs. SFBS: We can observe no clear dominance of either of our decom-
position approaches. In some cases, BFSS delivers better results than SFBS; in
others, it is the other way round. This holds true for both runtime and solution
quality. On average, however, SFBS leads to better results regarding both test
sets, small and large, and both performance criteria, runtime and solution quality.
Thus, SFBS seems the better option.

742	 S. Fedtke et al.

1 3

Ta
bl

e 
3  

P
er

fo
rm

an
ce

 r
es

ul
ts

 o
f

G
ur

ob
i

(G
R

B
),

ra
nd

om
 a

pp
ro

ac
h

R
se

q,
 b

al
an

ce
 fi

rs
t,

se
qu

en
ce

 s
ec

on
d

(B
FS

S)
,

an
d

se
qu

en
ce

 fi
rs

t,
ba

la
nc

e
se

co
nd

 (
SF

B
S)

 o
n

sm
al

l
in

st
an

ce
s

#o
pt

ga
pO

pt
 [%

]
#b

es
t

ga
pB

es
t [

%
]

cp
u

tim
e

[s
]

|K
|

|S
|

G
R

B
G

R
B

G
R

B
R

N
D

B
FS

S
SF

B
S

G
R

B
R

N
D

B
FS

S
SF

B
S

G
R

B
R

N
D

B
FS

S
SF

B
S

1
5

25
<

0.
01

25
1

25
25

<
0.

01
12

.8
7

<
0.

01
<

0.
01

0.
03

<
0.

01
<

0.
01

0.
31

1
7

25
<

0.
01

25
0

25
25

<
0.

01
20

.4
2

<
0.

01
<

0.
01

0.
13

<
0.

01
<

0.
01

0.
44

1
9

25
<

0.
01

25
0

25
25

<
0.

01
25

.0
1

<
0.

01
<

0.
01

1.
27

<
0.

01
0.

02
0.

56
1

11
25

<
0.

01
25

0
22

21
<

0.
01

28
.5

9
0.

26
0.

05
9.

63
<

0.
01

0.
05

0.
68

1
13

19
0.

03
23

0
17

23
0.

03
31

.4
2

0.
36

0.
03

13
6.

23
<

0.
01

0.
07

0.
81

1
15

8
0.

08
16

0
10

23
0.

14
25

.7
0

0.
89

0.
01

25
1.

78
<

0.
01

0.
11

0.
97

2
5

25
<

0.
01

25
1

25
25

<
0.

01
20

.3
3

<
0.

01
<

0.
01

0.
11

<
0.

01
15

.1
1

6.
29

2
7

25
<

0.
01

25
0

25
25

<
0.

01
28

.4
0

<
0.

01
<

0.
01

0.
97

<
0.

01
41

.6
7

10
.2

6
2

9
25

<
0.

01
25

0
25

25
<

0.
01

28
.2

4
<

0.
01

<
0.

01
20

.1
1

<
0.

01
12

0.
73

15
.4

7
2

11
9

0.
23

14
0

23
19

0.
48

34
.5

4
0.

10
0.

16
24

8.
00

<
0.

01
29

4.
25

22
.2

8
2

13
0

0.
63

7
0

19
17

1.
90

36
.9

5
0.

48
0.

48
30

0.
02

<
0.

01
29

9.
53

30
.9

4
2

15
0

0.
75

1
0

17
13

3.
09

40
.2

8
0.

88
0.

59
30

0.
03

<
0.

01
29

9.
54

40
.8

1
3

5
25

<
0.

01
25

4
25

25
<

0.
01

12
.5

1
<

0.
01

<
0.

01
0.

14
<

0.
01

9.
06

8.
03

3
7

25
<

0.
01

25
0

25
25

<
0.

01
35

.9
7

<
0.

01
<

0.
01

2.
52

<
0.

01
19

.1
5

15
.6

3
3

9
25

<
0.

01
25

0
25

25
<

0.
01

19
.7

0
<

0.
01

<
0.

01
51

.7
8

<
0.

01
38

.9
9

26
.1

0
3

11
5

0.
46

10
0

25
21

0.
92

37
.3

6
<

0.
01

0.
14

28
0.

39
<

0.
01

90
.3

0
39

.7
0

3
13

0
0.

70
6

0
23

11
3.

06
43

.3
3

0.
02

0.
58

30
0.

04
<

0.
01

20
1.

92
55

.8
9

3
15

0
0.

78
0

0
4

21
2.

83
35

.6
8

3.
26

0.
07

30
0.

06
<

0.
01

29
9.

31
77

.0
8

4
5

25
<

0.
01

25
3

25
25

<
0.

01
21

.2
6

<
0.

01
<

0.
01

0.
08

<
0.

01
7.

42
7.

34
4

7
25

<
0.

01
25

0
25

25
<

0.
01

23
.6

0
<

0.
01

<
0.

01
2.

73
<

0.
01

13
.2

2
17

.1
3

4
9

25
<

0.
01

25
0

25
25

<
0.

01
40

.2
1

<
0.

01
<

0.
01

57
.5

1
<

0.
01

23
.8

0
31

.3
0

4
11

2
0.

47
12

0
24

25
0.

81
28

.6
1

0.
03

<
0.

01
29

3.
64

<
0.

01
43

.1
7

50
.3

0

743

1 3

In‑line kitting for part feeding of assembly lines: workload…

#o
pt

: N
um

be
r o

f i
ns

ta
nc

es
 (o

ut
 o

f 2
5)

 so
lv

ed
 to

 o
pt

im
al

ity
, g

ap
O

pt
: O

pt
im

al
ity

 g
ap

, #
be

st
: N

um
be

r o
f i

ns
ta

nc
es

 (o
ut

 o
f 2

5)
w

he
re

 th
e

m
et

ho
d

pe
rfo

rm
ed

 b
es

t c
om

pa
re

d
to

 o
th

er
s,

ga
pB

es
t:

O
bj

ec
tiv

e
ga

p
to

 b
es

t p
er

fo
rm

in
g

pr
oc

ed
ur

e

Ta
bl

e 
3  

(c
on

tin
ue

d)

#o
pt

ga
pO

pt
 [%

]
#b

es
t

ga
pB

es
t [

%
]

cp
u

tim
e

[s
]

|K
|

|S
|

G
R

B
G

R
B

G
R

B
R

N
D

B
FS

S
SF

B
S

G
R

B
R

N
D

B
FS

S
SF

B
S

G
R

B
R

N
D

B
FS

S
SF

B
S

4
13

0
0.

70
6

0
23

18
2.

45
40

.4
6

0.
09

0.
24

30
0.

06
<

0.
01

82
.9

3
74

.2
7

4
15

0
0.

84
0

0
22

10
7.

12
39

.2
0

0.
07

0.
56

30
0.

06
<

0.
01

16
1.

97
10

4.
05

5
5

25
<

0.
01

25
25

25
25

<
0.

01
<

0.
01

<
0.

01
<

0.
01

0.
01

<
0.

01
<

0.
01

<
0.

01
5

7
25

<
0.

01
25

1
25

25
<

0.
01

27
.7

7
<

0.
01

<
0.

01
2.

11
<

0.
01

11
.3

2
15

.7
3

5
9

25
<

0.
01

25
0

25
25

<
0.

01
24

.5
8

<
0.

01
<

0.
01

46
.6

4
<

0.
01

17
.6

6
32

.0
9

5
11

0
0.

41
15

0
25

25
1.

48
42

.2
4

<
0.

01
<

0.
01

30
0.

04
<

0.
01

29
.1

1
54

.7
9

5
13

0
0.

67
2

0
24

24
3.

20
42

.3
8

0.
05

0.
01

30
0.

06
<

0.
01

48
.8

5
84

.5
0

5
15

0
0.

81
0

0
22

17
11

.6
7

26
.7

0
0.

05
0.

23
30

0.
09

<
0.

01
83

.6
0

12
1.

67
av

g/
to

ta
l

44
3

0.
25

51
2

35
67

5
66

3
1.

31
29

.1
4

0.
22

0.
11

13
6.

87
<

0.
01

75
.1

0
31

.5
1

744	 S. Fedtke et al.

1 3

Ta
bl

e 
4  

P
er

fo
rm

an
ce

 r
es

ul
ts

 o
f

G
ur

ob
i

(G
R

B
),

ra
nd

om
 a

pp
ro

ac
h

R
se

q,
 b

al
an

ce
 fi

rs
t,

se
qu

en
ce

 s
ec

on
d

(B
FS

S)
,

an
d

se
qu

en
ce

 fi
rs

t,
ba

la
nc

e
se

co
nd

 (
SF

B
S)

 o
n

la
rg

e
in

st
an

ce
s

#n
oS

ol
: N

um
be

r o
f i

ns
ta

nc
es

 (o
ut

 o
f 1

5)
 w

ith
ou

t f
ea

si
bl

e
so

lu
tio

n
w

ith
in

 ti
m

e
lim

it,
 #

be
st

: N
um

be
r o

f i
ns

ta
nc

es
 (o

ut
 o

f 1
5)

w
he

re
 m

et
ho

d
pe

rfo
rm

ed
 b

es
t c

om
pa

re
d

to
 o

th
er

s,
ga

pB
es

t:
O

bj
ec

tiv
e

ga
p

to
 b

es
t p

er
fo

rm
in

g
pr

oc
ed

ur
e

#n
oS

ol
#b

es
t

ga
pB

es
t [

%
]

cp
u

tim
e

[s
]

|K
|

|S
|

G
R

B
G

R
B

R
N

D
B

FS
S

SF
B

S
G

R
B

R
N

D
B

FS
S

SF
B

S
G

R
B

R
N

D
B

FS
S

SF
B

S

1
25

0
2

0
2

12
2.

40
27

.4
9

2.
85

0.
19

90
0.

03
0

0.
58

1.
79

1
50

0
1

0
6

8
5.

45
26

.4
6

4.
05

0.
57

90
0.

06
0

6.
16

4.
89

1
75

0
0

0
11

4
7.

88
21

.8
8

2.
53

2.
27

90
0.

32
0

25
.8

0
9.

53
2

25
0

0
0

4
11

3.
91

43
.1

0
0.

90
0.

28
90

0.
07

0
89

9.
86

12
9.

98
2

50
0

0
0

8
7

8.
89

34
.1

3
2.

91
4.

12
90

0.
36

0
90

3.
32

64
4.

41
2

75
0

1
0

9
5

14
.4

5
28

.2
7

2.
59

6.
59

90
0.

56
0

90
7.

10
86

0.
13

3
25

0
0

0
2

14
23

.5
4

44
.9

2
3.

18
0.

06
90

0.
25

0
89

9.
57

23
8.

52
3

50
14

0
0

7
8

56
.9

3
31

.1
9

3.
44

4.
47

90
1.

06
0

90
1.

21
84

4.
90

3
75

15
0

0
12

3
–

22
.2

3
0.

19
12

.7
9

90
0.

82
0

90
3.

54
89

9.
56

4
25

5
0

0
3

12
14

0.
69

47
.8

1
8.

44
0.

20
90

0.
29

0
89

9.
58

33
6.

45
4

50
15

0
0

9
6

–
33

.6
2

3.
05

3.
14

90
2.

34
0

90
0.

53
89

9.
53

4
75

15
0

0
7

8
–

21
.7

6
4.

00
5.

73
90

1.
93

0
90

3.
07

89
9.

56
5

25
15

0
0

5
11

–
41

.0
9

10
.5

2
0.

12
90

0.
15

0
84

7.
87

41
6.

34
5

50
15

0
0

5
10

–
22

.5
9

3.
70

0.
84

90
2.

53
0

90
0.

30
89

9.
53

5
75

15
0

0
7

8
–

15
.8

9
5.

76
4.

29
90

2.
90

0
90

2.
02

89
9.

59
av

g/
to

ta
l

10
9

4
0

97
12

7
21

.2
2

30
.8

3
3.

87
3.

05
90

0.
91

0
72

0.
03

53
2.

31

745

1 3

In‑line kitting for part feeding of assembly lines: workload…

•	 Real-world method: Finally, we can observe that the status quo method applied
by our engine producer seems not advisable. Although its runtime requirement is
barely measurable, it produces gaps to the best solutions of up to 47.81%. How
this translates into walking effort for the pickers is investigated in more detail in
Sect. 4.4. Note that a single random SKU sequence is a rather weak competitor
from an optimization perspective. In Appendix D, we explore the performance
impact if more than a single random solution are drawn. Our results show that
especially for large instances such a simple approach cannot compete with our
more sophisticated optimization approaches.

To conclude, our results suggest that both our decomposition approaches BFSS
and SFBS deliver good solutions in a short amount of time, so that they seem well-
suited even if large instances of real-world size are to be solved. SFBS is a bit faster
and delivers better average objective values, so that for all further tests SFBS is our
method of choice.

4.3 � On the appropriateness of the surrogate objective

In this section, we aim to answer the question whether our surrogate objective,
namely, minimizing the maximum weighted order spread, is indeed a good proxy
for the actual objective, which is to minimize the workers’ actual maximum walking
distance. Recall that when planning the storage assignment, which is done on a mid-
term basis (e.g., twice a year), we do not know the actual daily production sequences
of engines. Instead, we only have reliable forecasts on the frequencies, in which each
engine type is produced. Note that our engine producer has long-term contracts with
car manufactures and rather long lead times, so that aggregate demands for the next
months are indeed well predictable in this case. This allows us to quantify the dis-
tances each worker has to accompany the engines over the planning horizon with
the help of our surrogate objective. However, we cannot add the walk-back distances
between subsequent engines, because they depend on the production sequences. In
this section, we investigate if our proxy, in spite of this inaccuracy, still supports our
’true’ objective.

To do so, we evaluate 625 instances, including 25 different settings of station
numbers |K| ∈ {1, 2,… , 5} and SKU numbers |S| ∈ {10, 20,… , 50} , each generated
with the data generator defined in Sect. 4.1, applying the parameter settings stated in
Column ’Surrogate’ of Table 2. For each of these instances, 100 random WBSAP
solutions, each consisting of a random storage assignment of SKUs along the line
and random station borders, are obtained. Each solution is evaluated with our sur-
rogate objective to determine the resulting maximum order spread over all kitting
stations. These values are compared to the actual maximum walking distances that
include the walk-back distances. To obtain them, we draw 250 production sequences
per instance, where each engine type occurs in this sequence according to the given
production frequencies. For a given production sequence, the actual total walking
distance per station and thus the maximum over all stations can easily be obtained.
Finally, we average the maximum actual walking distances over all 250 production

746	 S. Fedtke et al.

1 3

sequences. For the resulting 2 ⋅ 100 values, namely of our surrogates and the actual
objectives, we calculate Pearson’s correlation coefficient. The minimum, average
and maximum correlation coefficients, rounded to six digits, are listed in Table 5 for
all 25 |S|-|K|-parameter settings. To get an idea on the absolute values of our surro-
gate objective and the (simulated) total walking distance (in m), we also present the
respective average values in the table as well. Note that the actual forward distance
(in m) can be determined by 0.8 ⋅ (objective value) as SKUs have an assumed width
of 80 cm.

For every parameter combination, we observe correlation coefficients close to 1.
This result verifies that we have a strong positive correlation between our surrogate

Table 5   Correlation coefficients (Pearson) between surrogate and actual objective, average surrogate
objective value, and average total walking distance (simulated) for different instance sizes

Pearson Objective Total

|K| |S| Minimum Average Maximum Value Distance
[m]

1 10 0.995203 0.999220 1.000000 2263 3170
1 20 0.999999 1.000000 1.000000 5032 7589
1 30 1.000000 1.000000 1.000000 7863 12111
1 40 1.000000 1.000000 1.000000 10635 16539
1 50 1.000000 1.000000 1.000000 13426 20996
2 10 0.998740 0.999720 0.999996 1515 1987
2 20 0.999956 0.999997 1.000000 3558 5236
2 30 1.000000 1.000000 1.000000 5677 8619
2 40 1.000000 1.000000 1.000000 7761 11949
2 50 1.000000 1.000000 1.000000 9868 15314
3 10 0.995105 0.998915 0.999723 1091 1326
3 20 0.999814 0.999964 0.999999 2677 3831
3 30 0.999999 1.000000 1.000000 4440 6645
3 40 1.000000 1.000000 1.000000 6183 9429
3 50 1.000000 1.000000 1.000000 7824 12049
4 10 0.995290 0.998249 0.999226 844 947
4 20 0.999776 0.999952 0.999999 2235 3127
4 30 0.999977 0.999998 1.000000 3672 5418
4 40 1.000000 1.000000 1.000000 5133 7751
4 50 1.000000 1.000000 1.000000 6578 10059
5 10 0.979236 0.994913 0.999257 640 644
5 20 0.999697 0.999884 0.999975 1829 2483
5 30 0.999985 0.999995 1.000000 3106 4515
5 40 0.999996 1.000000 1.000000 4342 6489
5 50 0.999999 1.000000 1.000000 5637 8556
over all instances 0.979236 0.999632 1.000000 4953 7471

747

1 3

In‑line kitting for part feeding of assembly lines: workload…

’maximum weighted order spread’ and actual objective ’maximum actual walking
distance.’ We can thus conclude that our proxy seems well-suited and, if applied to
guide an optimization task, can successfully support the reduction in the workers’
actual walking distances.

4.4 � Managerial issues: reduction in walking effort

In this section, we evaluate whether our optimization task, i.e., optimizing the
storage assignment and division of labor among kitting stations, actually has the
potential to considerably reduce the workers’ walking effort. To explore this,
our computational experiment is designed as follows. We start with the 1425
instances generated with our instance generator (see Sect. 4.1) and the param-
eter settings from Column ‘Managerial’ in Table 2, and derive WBSAP solutions
with the status quo method RND of our engine producer (i.e., random storage
assignment with equally sized stations) and our best-performing decomposi-
tion approach SFBS for each instance. To obtain the actual maximum walking
distances for each of these solutions that also include the walk-back distances,
we again derive 250 random production sequences of 7-hour shifts with engine
occurrences according to the given frequencies. The resulting actual maximum
walking distances are finally averaged over all 250 production sequences.

First, we take a look on the impact of parameters |S| (number of SKUs), |K|
(number of kitting stations), and |I| (number of engine types to be produced)
when benchmarking our two competitors. In Fig. 8, we report the actual maxi-
mum walking distances of our two solution methods depending on the above
three parameters. These results suggest the following findings:

•	 Impact of SKUs: First, we can confirm an expectable result in Fig. 8 (left). If the
engines require more parts and |S| increases, then more SKU containers have to
be arranged along the line. Obviously, this leads to a linear increase in the walk-
ing distances.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

|S|

M
ax
im

um
di
st
an
ce

[k
m
]

Number of SKUs

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

|K|

Number of kitting stations

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

|I|

Number of engines types

RND
SFBS

Fig. 8   Maximum walking distances of status-quo method RND and our decomposition approach SFBS
depending on the number |S| of SKUs (left), the number |K| of stations (middle), and the number |I| of
engine types (right)

748	 S. Fedtke et al.

1 3

•	 Impact of stations: Figure 8 (middle) displays the impact of another lever to
reduce the walking effort of the workers: additional kitting stations. This, how-
ever, also increases the kitting workforce and thus wage costs. We can observe
diminishing returns of additional workers. When having a small workforce every
additional worker leads to a considerable relieve. If however the workforce is
already substantial, the extra relieve of yet another worker is small.

•	 Impact of engine types: Finally, Fig. 8 (right) shows that the number |I| of dif-
ferent engine types that are produced on the line has only moderate impact. It is
not the sheer number of engines but rather the level of heterogeneity of their part
demands that impacts the walking effort, which can be seen in our further analy-
sis.

Our previous results of Fig. 8 have shown a consistent improvement of our optimiza-
tion approach over status quo method RND. We analyze these gains in more detail
with the help of Fig. 9. Here, we display the percental reduction of the actual maxi-
mum walking distances of our optimization approach SFBS compared to the base-
line of status-quo method RND of our engine producer. The results of Fig. 9 suggest
the following findings:

•	 Impact of reference order: During the discussions with our practice partner, we
had to learn that in engine production there are quite a few basic parts that are
required by most engine types. The reference order represents these parts. A
larger r-value (with default � = 0.5 ) mainly results in larger order sets per engine
(see Fig. 9 (left)). In this case, large parts of each kitting station must be passed
in each cycle anyway, so that optimization cannot gain much. If only a few SKUs
are needed (i.e., at a smaller r-value), optimization has much more flexibility to
cut the accompanying walks for specific engines short.

•	 Impact order heterogeneity: Parameter � controls the probability with which a
SKU of the reference set is contained in a specific order (see Fig. 9 (middle)).
Thus, a small (large) � leads to more (fewer) SKUs of the reference set being
contained in each order. Thus, smaller �-values lead to rather homogeneous
SKU demands of all engine types. Hence, we benefit substantially by optimiz-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

rR
ed
uc
tio

n
of

ac
tu
al

w
al
ki
ng

di
st
an
ce

[%
] Fraction of SKUs in reference order

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
β

Order set heterogeneity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

Frequency heterogeneity

Fig. 9   Reduction in the actual maximum walking distance of our optimization approach SFBS compared
to the status quo method of our engine producer depending on fraction r of SKUs that belong to the ref-
erence order (left), order set heterogeneity � (middle), and frequency heterogeneity � (right)

749

1 3

In‑line kitting for part feeding of assembly lines: workload…

ing the arrangement of the most common SKUs. Optimization can build clus-
ters of SKUs jointly demanded in similar orders and the workers must only trav-
erse subsections of their stations for each engine. In this case, the walking effort
of pickers can considerably be reduced by up to 30%. For more heterogeneous
orders, it is harder to find SKU arrangements that lead to small order spread for
each order, and therefore, the benefit of optimization decreases with increasing
values of �.

•	 Impact of frequency: In Fig. 9 (right), we can observe that more or less varia-
tion in the frequencies, in which the engine types are produced (i.e., regulated
by parameter � ), has only negligible impact. The improvements of optimization
over the status quo are consistently over 20 %. This result indicates that when
applying the default values for all other parameters, this obviously leads to rather
homogeneous demands for parts among different engine types. Hence, varying
their frequencies still leads to similar part demands.

To conclude, our study reveals the following main take-home message. On aver-
age over our instances, sophisticated optimization can reduce the maximum walking
distances of pickers by more than 20 %, which is good news for both workers and
their employers. For workers, it makes a considerable difference, especially on their
long-term well-being, if their daily walking distances reduce by several kilometers.
Healthy and more satisfied workers are certainly also important for their employ-
ers, especially in the aging societies of many industrialized countries. Furthermore,
these gains can be realized without more wage costs for additional workers or a
reduction in the output; merely a low-cost rearrangement of SKU containers along
the line and altered station borders are required.

5 � Conclusions and outlook

In this paper, we introduce a novel part feeding policy to the scientific literature:
in-line kitting. The first part of an assembly line is reserved to part logistics. Here,
pickers have to add the requested parts that are arranged in containers along the line
to traveling part kits that move with their workpieces on the conveyor. To reduce
the ergonomic effort for these pickers when having to walk along their kitting sta-
tions, we formulate a novel optimization problem that arranges the SKU containers
along the line and determines the borders of kitting stations. We introduce different
solution methods, and our computational performance tests identify decomposition
approach sequence first, balance second (SFBS) as an appropriate approach even
if large instances of real-world size must be solved. In further tests on managerial
issues, we show that applying this method can reduce the walking distances of pick-
ers by about 20 % without producing any additional costs or reducing the output.

Future research could challenge our solution methods and provide even more
powerful (especially exact) optimization approaches. Furthermore, it could be ben-
eficial to provide the same SKU not only at a single kitting station, but also at mul-
tiple ones. This adds an operational selection problem, from which station a specific
SKU demand should be satisfied, and increases the space demand for kitting. On

750	 S. Fedtke et al.

1 3

the other hand, duplicate SKUs could—if properly placed—further reduce the walk-
ing effort of the workers. Furthermore, reducing the walking effort could not only
lower the physical effort of the existing workforce. These savings could also be used
to improve productivity and reduce the kitting workforce. The resulting balancing
problem that minimizes the workforce for a given cycle time is an interesting chal-
lenge for future research. Finally, future research should evaluate whether in-line kit-
ting could also be a suitable alternative for other production lines (beyond engine
production). This suggests an extensive benchmark study of all alternative part feed-
ing policies in different production environments.

Appendix A: An alternative MIP for WBSAP

This appendix presents an alternative MIP model, which due to its three-dimen-
sional assignment variables seems better accessible but turned out non-competitive.
Applying the notation summarized in Table 6, this MIP (dubbed WBSP-MIP2) con-
sists of objective function (32) subject to constraints (33) to (46):

WBSAP-MIP2:

subject to

(32)Minimize Z(�max, �, x) = �max

(33)
∑
p∈P

∑
k∈K

xs,p,k = 1 ∀ s ∈ S

(34)
∑
s∈S

∑
k∈K

xs,p,k = 1 ∀ p ∈ P

Table 6   Notation for WBSAP-MIP2

I Set of engine types (index i)
S Set of SKUs with S = {1,… , |S|} (indices s, s′)
Oi Picking order of engine i with Oi ⊂ S

P Set of storage positions with P = {1,… , |P| = |S|}| (indices p, p′)
K Set of kitting stations with K = {1,… , |K|}| (index k)
fi Production frequency of engine i
�max Continuous variable: maximum order spread over all kitting stations
�i,k Continuous variable: spread of order Oi in station k
xs,p,k Binary variable: 1, if SKU s is assigned to storage position p in kit-

ting station k (0, otherwise)
Z Objective function: maximum order spread

751

1 3

In‑line kitting for part feeding of assembly lines: workload…

(35)
∑
s∈S

∑
p∈P

xs,p,k ≥ 1 ∀ k ∈ K

(36)

∑
s∈S

xs,p+1,k ≥
∑
s∈S

xs,p,k +
∑
s∈S

xs,p�,k − 1 ∀k ∈ K; p = 1,… , |P| − 2;

p� = p + 2,… , |P|

(37)

�i,k ≥
∑
p∈P

xs,p,k ⋅ p −
∑
p∈P

xs�,p,k ⋅ p + 1

− |P| ⋅
(
2 −

∑
p∈P

xs,p,k −
∑
p∈P

xs�,p,k

)
∀ i ∈ I; s, s� ∈ Oi; k ∈ K

(38)�max ≥
∑
i∈I

fi ⋅ �i,k ∀ k ∈ K

(39)xs,p,k ∈ {0, 1} ∀ s ∈ S; p ∈ P; k ∈ K

(40)
∑
s∈S

∑
k∈K

k ⋅ xs,p,k ≤
∑
s∈S

∑
k∈K

k ⋅ xs,p+1,k ∀ p = 1,… , |P| − 1

(41)

∑
t∈S

xt,p−1,k−1 + xs,p,k +
∑
t∈S

xt,p�−1,k + xs�,p�,k+1 ≤ 3 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 1;

p� = p + 1,… , |P|;
s, s� ∈ S ∶ s > s�

(42)
xs,1,1 +

∑
t∈S

xt,p−1,1 + xs�,p,2 ≤ 2 ∀ p = 2,… , |P|;

s, s� ∈ S ∶ s > s�

(43)

∑
t∈S

xt,p−1,k−1 + xs,p,k + xs�,p�,k +
∑
t∈S

xt,p�+1,k+1 ≤ 3 ∀k = 2,… , |K| − 1;

p = 2,… , |P| − 2;

p� = p + 1,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(44)
xs,1,1 + xs�,p,1 +

∑
t∈S

xt,p+1,2 ≤ 2 ∀p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

752	 S. Fedtke et al.

1 3

Objective function (32) minimizes the maximum order spread. Constraints (33)
assign each SKU to exactly one storage position and one kitting station. Analo-
gously, constraints (34) assign exactly one SKU to each storage position and each
storage position to exactly one kitting station. Furthermore, (35) assigns at least one
SKU and storage position to each kitting station. The connection of kitting stations
along the line is ensured by (36). Constraints (37) define the order spreads for each
order and each kitting station. Derived from that, constraints (38) define the maxi-
mum order spread over all kitting stations. Finally, the model is completed by setting
the variable domains in (39).

To enable a fair comparison with our previous MIP of Sect. 2.3, we enrich this
model too with symmetry breakers. Specifically, the following ones are applied:

•	 Based on constraints (40), stations are sorted along the line in increasing
index order.

•	 Constraints (41) to (42) specify the assignment of SKU sets to stations, so that
the indexes of the first SKUs in each station are in increasing order.

•	 Constraints (43) to (45) specify the direction of the SKU sequences within each
station by setting the first SKU’s index smaller than that of the last one. The special
case of |K| = 1 is considered by (46).

In spite of these symmetry breakers, this model is outperformed by competitor
WBSAP-MIP of Sect. 2.3. We evaluated the two MIPs on 3475 instances ranging from
5 to 25 SKUs. WBSAP-MIP (MIP2) was able to find the optimal solution in 893 (858)
instances, found a feasible solution within 300 s in 1721 (1505) instances and missed
feasible solutions in 861 (1112) instances. While runtimes are rather similar, WBSAP-
MIP outperforms WBSAP-MIP2 with respect to solution quality. Therefore, we
decided to move WBSAP-MIP2 into this appendix. All computational studies reported
in the main paper only apply WBSAP-MIP.

Appendix B: A MIP for SAP: Storage assignment for a given station
workload

This appendix provides a MIP for problem SAP of Sect. 3.1.1. Applying the additional
notation summarized in Table 7, SAP-MIP consists of objective function (47) and con-
straints (48) to (51).

(45)

∑
t∈S

xt,p−1,|K|−1 + xs,p,|K| + xs�,|P|,|K| ≤ 2 ∀p = 2,… , |P| − 1;

s, s� ∈ S ∶ s > s�

(46)xs,1,1 + xs�,|P|,1 ≤ 1 ∀ s, s� ∈ S ∶ s > s�

753

1 3

In‑line kitting for part feeding of assembly lines: workload…

SAP-MIP:

subject to

Objective function (47) minimizes the weighted order spread in kitting station k
summarized over all picking orders. Constraints (48) and (49) ensure that each stor-
age position receives exactly one SKU and vice versa. The order spreads for all pick-
ing orders are dimensioned by (50). Here, each pair of SKUs per order is evaluated,
and the maximum distance among any such pair defines the order spread. Finally,
constraints (51) set the domain of the binary variables.

We have carefully tested the application of this MIP within our decomposition
approach. However, especially for larger instances solving this model took default
solver Gurobi too much time to evaluate a large number of storage assignments. Our
beam search approach delivers only heuristic results but is much faster, so that it
turned our as the better option for this stage. For a matter of conciseness, we abstain
from a detailed elaboration of these computational results.

(47)Minimize Zk(x, �) =
∑
i∈I

fi ⋅ �i,k

(48)
∑
s∈Sk

xs,p = 1 ∀ p ∈ Pk

(49)
∑
p∈Pk

xs,p = 1 ∀ s ∈ Sk

(50)�i,k ≥
∑
p∈Pk

xs,p ⋅ p −
∑
p∈Pk

xs�,p ⋅ p + 1 ∀ i ∈ I; s, s� ∈ Oi,k

(51)xs,p ∈ {0, 1} ∀ s ∈ Sk; p ∈ Pk

Table 7   Notation for SAP
Sk Set of SKUs with Sk = {1,… , |Sk|}

within station k (indices s, s′)
Oi,k Picking order of engine i in station k
Pk Set of storage positions in station k with

Pk = {1,… , |Pk| = |Sk|}| (index p)
Zk Objective value: order spread in station k

754	 S. Fedtke et al.

1 3

Appendix C: A MIP for WBP: Workload balancing for a given storage
assignment

This appendix provides a MIP for problem WBP, which is defined in Sect. 3.2.1 and
part of our sequence first, balance second decomposition approach. First, we pre-
process, the aggregated weighted order spread between positions p and p′:

This term is strongly related to (27). However, it also includes the weight of each
order, i.e., the frequencies fi and aggregates the weighted order spread over all
orders i ∈ I for the storage area starting at position p and ending at position p′.

Applying these parameters and additional notation summarized in Table 8, WBP
can also be formulated as a MIP (dubbed WBP-MIP) consisting of objective func-
tion (53) and constraints (54) to (59).

WBP-MIP:

subject to

(52)

wp,p� =
�
i∈I

fi ⋅

⎧
⎪⎪⎨⎪⎪⎩

max

q = p,… , p� ∶

�q ∈ Oi

{q} − min

q = p,… , p� ∶

�q ∈ Oi

{q} + 1, if ∃ q ∈ {p,… , p�} ∶ �q ∈ Oi

0, else

(53)Minimize Z(l, �max) = �max

(54)
|P|−1∑
p=1

lk,p = 1 ∀ k = 1,… , |K| − 1

(55)l|K|,|P| = 1

(56)
|P|−1∑
p=1

p ⋅ lk+1,p ≥

|P|−1∑
p=1

p ⋅ lk,p + 1 ∀ k = 1,… , |K| − 1

Table 8   Notation for WBP
wp,p′ Weighted order spread for a

station starting at p and ending
at p′

M Big value, e.g., M = |P| ⋅maxi∈I fi

lk,p Binary variable: 1, if kitting sta-
tion k is ending at position p (0,
otherwise)

755

1 3

In‑line kitting for part feeding of assembly lines: workload…

Objective function (53) minimizes the maximum order spread. Constraints (54) and
(55) assign an end position to each kitting station, whereas constraints (56) sort the
stations in increasing index order. Constraints (57) and (58) set the maximum order
spread over all stations, where the latter handles the special case of the first station.
Finally, the variable domains are set by (59).

Appendix D: Computational performance of the random solution
approach (RND)

In Sect. 4, we compare the performance of our sophisticated optimization proce-
dures with the current status quo approach implemented by our partner in prac-
tice. There, the assignment of SKUs to storage positions is randomly chosen and
the kitting stations are equally distributed along the storage area. To obtain insights
regarding the impact of more random solutions on the performance, we report on
further experiments with modified random approaches. Instead of drawing only a
single random solution, we now generate several random SKU sequence each evalu-
ated by the equal-number-of-SKUs-per-station policy of our engine producer. The
best among our random solutions is finally returned. We denote the resulting pro-
cedures by RND#sol , where #sol gives the number of randomly generated storage
assignments.

(57)
𝛿max ≥ wp,p� −M ⋅ (2 − lk,p−1 − lk+1,p�) ∀k = 2,… , |K|;

p, p� ∈ P ∶ p < p�

(58)�max ≥ w1,p −M ⋅ (1 − l1,p) ∀ p ∈ P

(59)lk,p ∈ {0, 1} ∀ k ∈ K; p ∈ P

Table 9   Computational
performance for different
random solution approaches

Small instance Large instances

gapBest [%] cpu time [s] gapBest [%] cpu time [s]

GRB 1.31 136.87 21.22 900.91
BFSS 0.22 75.10 4.03 720.03
SFBS 0.11 31.51 3.20 532.31
RND1 28.81 0.00 30.69 0.00
RND10 13.79 0.00 24.60 0.01
RND100 7.34 0.00 20.68 0.06
RND1000 4.46 0.03 18.10 0.57
RND10000 2.79 0.26 15.82 5.72
RND100000 1.71 2.58 13.82 57.30
RND1000000 1.00 25.94 12.38 573.58

756	 S. Fedtke et al.

1 3

We applied these procedures to the small and large set of instances from Sub-
sect. 4.2 for #sol ∈ {1, 10, 100, 1000, 104, 105, 106} . The results are presented in
Table 9. Note that to improve readability, we only list the average values for the
entire data set rather than the results for each parameter combination. gapBest
denotes the average objective gap to the best performing procedure.

The results of Table 9 clearly indicate that even drawing a significant amount of
random sequences, so that the solution times are about as high as those of our more
sophisticated optimization approach SFBS, is not competitive. This supports our
choice of applying method SFBS (see Sect. 3.2) for solving WBSAP.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Data availability  The datasets generated and analyzed during the current study are available from the cor-
responding author upon reasonable request.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Aarts EHL, Korst JHM, van Laarhoven JM (1997) Simulated annealing. In: Aarts EHL, Lenstra JK (eds)
Local search in combinatorial optimization. Wiley, Hoboken, pp 91–120

Bartholdi JJ III, Eisenstein DD (1996) A production line that balances itself. Oper Res 44:21–34
Battini D, Boysen N, Emde S (2013) Just-in-time supermarkets for part supply in the automobile industry. J

Manag Control 24:209–217
Battini D, Calzavara M, Otto A, Sgarbossa F (2017) Preventing ergonomic risks with integrated planning on

assembly line balancing and parts feeding. Int J Prod Res 55:7452–7472
Boysen N, Fliedner M, Scholl A (2008) Assembly line balancing: which model to use when? Int J Prod Econ

111:509–528
Boysen N, Fliedner M, Scholl A (2009) Sequencing mixed-model assembly lines: survey, classification and

model critique. Eur J Oper Res 192:349–373
Boysen N, Bock S (2011) Scheduling just-in-time part supply for mixed-model assembly lines. Eur J Oper

Res 211:15–25
Boysen N, Emde S, Hoeck M, Kauderer M (2015) A survey on part logistics in the automotive industry. Eur

J Oper Res 242:107–120
Boysen N, De Koster R, Füßler D (2021) The forgotten sons: warehousing systems for brick-and-mortar

retail chains. Eur J Oper Res 288:361–381
Boysen N, Schulze P, Scholl A (2022) Assembly line balancing: what happened in the last fifteen years? Eur

J Oper Res 301:797–814
Calzavara M, Glock CH, Grosse EH, Persona A, Sgarbossa F (2017) Analysis of economic and ergonomic

performance measures of different rack layouts in an order picking warehouse. Comput Ind Eng
111:527–536

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

757

1 3

In‑line kitting for part feeding of assembly lines: workload…

Caputo AC, Pelagagge PM, Salini P (2015) A decision model for selecting parts feeding policies in assembly
lines. Ind Manag Data Syst 115:974–1003

Caputo AC, Pelagagge PM, Salini P (2018) Selection of assembly lines feeding policies based on parts fea-
tures and scenario conditions. Int J Prod Res 56:1208–1232

Choi W, Lee Y (2002) A dynamic part-feeding system for an automotive assembly line. Comput Ind Eng
43:123–134

De Koster R, Le-Duc T, Roodbergen KJ (2007) Design and control of warehouse order picking: a literature
review. Eur J Oper Res 182:481–501

Emde S, Boysen N (2012) Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model
assembly lines. Int J Prod Econ 135:393–402

Emde S, Fliedner M, Boysen N (2012) Optimally loading tow trains for JIT-supply of mixed-model assembly
lines. IIE Trans 44:121–135

Füßler D, Fedtke S, Boysen N (2019) The cafeteria problem: order sequencing and picker routing in on-the-
line picking systems. OR Spectr 41:727–756

Füßler D, Boysen N, Stephan K (2019) Trolley line picking: storage assignment and order sequencing to
increase picking performance. OR Spectr 41:1087–1121

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.
Freeman, New York

Glock CH, Grosse EH, Abedinnia H, Emde S (2019) An integrated model to improve ergonomic and eco-
nomic performance in order picking by rotating pallets. Eur J Oper Res 273:516–534

Grosse EH, Glock CH, Jaber MY, Neumann WP (2015) Incorporating human factors in order picking plan-
ning models: framework and research opportunities. Int J Prod Res 53:695–717

Gurobi Optimization, LLC (2021) Gurobi optimizer reference manual. http://​www.​gurobi.​com
Hanson R, Brolin A (2013) A comparison of kitting and continuous supply in in-plant materials supply. Int J

Prod Res 51:979–992
Held M, Karp RM (1962) A dynamic programming approach to sequencing problems. J Soc Ind Appl Math

10:196–210
Kilic HS, Durmusoglu MB (2015) Advances in assembly line parts feeding policies: a literature review.

Assem Autom 35:57–68
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680
Limère V, Landeghem HV, Goetschalckx M, Aghezzaf EH, McGinnis LF (2012) Optimising part feed-

ing in the automotive assembly industry: deciding between kitting and line stocking. Int J Prod Res
50:4046–4060

Merengo C, Nava F, Pozzetti A (1999) Balancing and sequencing manual mixed-model assembly lines. Int J
Prod Res 37:2835–2860

Nourmohammadi A, Eskandari H, Fathi M (2019) Design of stochastic assembly lines considering line bal-
ancing and part feeding with supermarkets. Eng Optim 51:63–83

Otto A, Scholl A (2013) Reducing ergonomic risks by job rotation scheduling. OR Spectr 35:711–733
Otto A, Boysen N, Scholl A, Walter R (2017) Ergonomic workplace design in the fast pick area. OR Spectr

39:945–975
Ritt M, Costa AM (2018) Improved integer programming models for simple assembly line balancing and

related problems. Int Trans Oper Res 25:1345–1359
Sali M, Sahin E, Patchong A (2015) An empirical assessment of the performances of three line feeding modes

used in the automotive sector: line stocking vs. kitting vs. sequencing. Int J Prod Res 53:1439–1459
Schmid NA, Limère V (2019) A classification of tactical assembly line feeding problems. Int J Prod Res

57:7586–7609
Sternatz J (2015) The joint line balancing and material supply problem. Int J Prod Econ 159:304–318

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://www.gurobi.com

758	 S. Fedtke et al.

1 3

Authors and Affiliations

Stefan Fedtke1  · Nils Boysen1 · Patrick Schumacher2

	 Nils Boysen
	 nils.boysen@uni-jena.de

	 Patrick Schumacher
	 p.schumacher@tu-braunschweig.de
	 https://www.tu-braunschweig.de/aip/pl

1	 Friedrich-Schiller-Universität Jena Lehrstuhl für Operations Management, Carl‑Zeiss‑Str. 3,
07743 Jena, Germany

2	 Technische Universität Braunschweig Lehrstuhl für Produktion und Logistik,
Mühlenpfordtstraße 23, 38106 Braunschweig, Germany

http://orcid.org/0000-0003-1410-5367

	In-line kitting for part feeding of assembly lines: workload balancing and storage assignment to reduce the workers’ walking effort
	Abstract
	1 Introduction
	1.1 In-line kitting
	1.2 How to reduce the pickers’ walking effort
	1.3 Contribution and paper structure

	2 The joint workload balancing and storage assignment problem
	2.1 Problem definition
	2.2 Assumptions and complexity
	2.3 Mixed-integer model for WBSAP

	3 Decomposition approaches for the holistic problem
	3.1 Balance first, sequence second
	3.1.1 Storage assignment for a given station workload
	3.1.2 Workload balancing on the upper level

	3.2 Sequence first, balance second
	3.2.1 Workload balancing for a given storage assignment
	3.2.2 Storage assignment on the upper level

	4 Computational study
	4.1 Instance generation
	4.2 Computational performance
	4.3 On the appropriateness of the surrogate objective
	4.4 Managerial issues: reduction in walking effort

	5 Conclusions and outlook
	Appendix A: An alternative MIP for WBSAP
	Appendix B: A MIP for SAP: Storage assignment for a given station workload
	Appendix C: A MIP for WBP: Workload balancing for a given storage assignment
	Appendix D: Computational performance of the random solution approach (RND)
	References

