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Abstract
We consider an urban instant delivery environment, e.g., meal delivery, in which 
customers place orders over the course of a day and are promised delivery within 
a short period of time after an order is placed. Deliveries are made using a fleet of 
vehicles, each completing one or more trips during the day. To avoid missing deliv-
ery time promises as much as possible, the provider manages demand by dynami-
cally adjusting the size of the service area, i.e., the area in which orders can be deliv-
ered. The provider seeks to maximize the number of orders served while avoiding 
missed delivery time promises. We present three techniques to support the dynamic 
adjusting of the size of the service area which can be embedded in planning and 
execution tools that help the provider achieve its goal. First, we learn the functional 
dependency between expected demand and the service area that can be supported 
with the fleet of vehicles. Second, we use value function approximation to improve 
an initial service area sizing plan for the day based on expected demand. Finally, 
we introduce a correction mechanism to dynamically adjust the service area sizing 
plan in response to observed realized demand. Extensive computational experiments 
demonstrate the efficacy of the techniques and show that dynamic sizing of the ser-
vice area can increase the number of orders served significantly without increasing 
the number of missed delivery time promises.
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1 Introduction

Urban delivery services, especially same-day and instant delivery services, are 
becoming widespread and commonplace. Retailers like Amazon, Walmart, and 
Target offer same-day delivery for a growing product selection (Keyes 2019), 
online delivery platforms like GoPuff provide delivery of convenience store 
items (Feliciano Reyes 2018), and, most prominently – in part due the COVID-
19 pandemic, meal delivery companies and platforms like Domino’s, Grubhub 
and DoorDash offer instant delivery to satisfy hungry diners (Shead 2019). All of 
these services have a common feature: customers order during the course of the 
day and are promised fast delivery; in the case of instant delivery, the promise is 
very fast (for example, 40 minutes after the time the order is placed in meal deliv-
ery). For the actual delivery, service providers typically employ a fleet of drivers 
(Dai and Liu 2020). Drivers repeatedly perform trips from facilities (fulfillment 
centers, warehouses, stores, restaurants, etc.) delivering orders to sets of custom-
ers. Demand in these environments is uncertain and volatile. Orders only become 
known when they are placed and order volume varies during the day (e.g., more 
orders arrive during the lunch and dinner peaks in a meal delivery environment). 
Furthermore, order volumes can vary from day to day (Littman 2019). As a con-
sequence, ensuring that orders are delivered when promised and that drivers are 
highly utilized is extremely challenging.

Too many missed delivery promises results in dissatisfied customers who may 
decide no longer to use the service, an issue especially important in meal delivery 
(Stoll 2019). However, having too many underutilized drivers is costly as they are 
paid without generating revenue. Three strategies can be considered when seek-
ing to reduce missed delivery promises or to increase driver utilization: better 
managing demand, better managing drivers, or altering service offerings. In this 
research, we focus on the first – better managing demand. A common approach to 
managing demand in the context of urban delivery is to properly define a service 
area, i.e., the area where you are offering to make deliveries (Yildiz and Savels-
bergh 2019). Ideally, the service area is chosen large enough to capture many 
orders but small enough to serve those orders cost effectively (i.e., achieve a high 
utilization of the fleet of drivers). For the remainder and for ease of presentation, 
we assume that deliveries are made from a single facility (restaurant) and that the 
service area is characterized by a maximum travel time (or radius) from the facil-
ity, i.e., the maximum time we are willing to travel to reach the location where an 
order must be delivered.

It is common practice to define a service area radius once and then use that 
radius every day and at every time during the day. Not surprisingly, in meal deliv-
ery environments, this can result in missed delivery promises during the lunch 
and dinner peak (when the number of placed orders is large) and in underutilized 
drivers before the lunch peak, in between the lunch and dinner peak, and after 
the dinner peak (when the number of placed orders is low). Furthermore, com-
panies can experience significant day-to-day variations, for example, the number 
of meal delivery orders placed increases when the weather unexpectedly worsens 
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(Littman 2019). This suggests that dynamically adjusting the radius in response 
to observed demand and in anticipation of future demand may be more effective 
than a single radius. Meal delivery platforms have recently started experiment-
ing with dynamic radii (private communication, instant delivery companies in the 
USA and Europe, 2021).

Such a dynamic decision environment can be summarized as follows. Throughout 
the day, customers visit the delivery service’s website to place an order. Based on 
the customer’s address and the active radius, the service provider decides whether 
the customer is located in the service area and eligible to place an order. If so, and 
if the customer does place an order, the customer is promised a latest delivery time. 
Because all customers within the service area can place an order and all these orders 
will be delivered, it may not be possible to meet the promised delivery time for all 
customers. To manage service (missed delivery time promises) and profit (driver 
utilization), the provider dynamically adjusts the service area radius based on pre-
dicted and observed demand. The goal is to find a feasible decision policy that maxi-
mizes the expected number of orders, where a policy is feasible if the average delay, 
i.e., the difference between actual delivery time and promised delivery time, if posi-
tive, is less than a threshold.

Some companies we are in discussions with initially considered dynamic service 
area adjustments as a mechanism to increase market share by guaranteeing service 
in a certain area (as they do currently) but offering service in a larger area when 
order volume and delivery capacity allow them to do so. Such an environment may 
be acceptable, even welcomed, by those customers that did not qualify for home 
delivery before, but may now receive home delivery at (off-peak) times when the 
capacity for doing so is available. Meal delivery platforms have recently started 
exploring this idea (private communication, instant delivery companies in the USA 
and Europe, 2021).

In both cases, an effective policy should accommodate the expected demand 
pattern, but also react to deviations from this expected demand pattern. For exam-
ple, if at a particular time of the day the expected demand is low, the radius should 
be large enough to ensure high driver utilization. Or, if at a particular time of the 
day the demand is expected to go up, the radius should be decreased to ensure that 
future delivery time promises will be met. If deviations to the expected demand 
pattern occur, the radius should also be adjusted. For example, the radius may be 
decreased when demand is higher than expected to avoid delays, and the radius may 
be increased when demand is lower than expected to avoid underutilized drivers.

To accommodate an expected demand pattern and to react to deviations from 
this expected demand, we propose to combine a number of techniques. First, we 
use the concept of continuous approximation (CA, Daganzo 1984) to derive a 
function that takes an expected demand as argument and returns an appropri-
ate service area radius given the fixed delivery fleet. The function is derived by 
solving many instances with a constant demand pattern and a fixed service area 
radius. The derived function is then used to determine an initial policy by taking 
the actual expected demand pattern, partitioning the day into a number of short 
time periods, and using the derived function to determine a service area radius 
in each of these time periods based on the expected demand in that time period. 
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To capture the interdependencies of adjacent time periods, we use the concept of 
value function approximation (VFA), a reinforcement learning method (Powell 
2011). We use VFA to explore policies in the neighborhood of the initial pol-
icy. As a result, the radius in one time period may be increased or decreased 
in anticipation of demand in subsequent time periods. Finally, we develop and 
embed an day-of-execution correction mechanism to adjust the radius based on 
the observed demand on a specific day if it deviates from the expected demand. 
For example, it may increase the radius when the observed demand is low com-
pared to the expected demand. To determine the corrections, the mechanism 
again relies on CA.

We analyze the performance of our proposed approach for determining an 
effective radius adjustment policy in a comprehensive computational study. 
The computational study confirms that accommodating expected demand pat-
terns (planning) as well as reacting to deviations from expected demand patterns 
(execution) can significantly increase performance: Dynamically adjusting the 
service area radius can increase the number of customers serviced by more than 
20% compared to a using a single radius the entire day. Not surprisingly, the 
higher the demand volatility, the greater the importance of a day-of-execution 
correction mechanism. However, even without day-of-execution corrections, 
a few radius adjustments over the course of the day can significantly improve 
performance.

Our research makes the following contributions: 

1. We provide one of the first analyses of the value of controlling the service area 
size in urban instant delivery services. To this end, we model the problem as a 
dynamic decision process.

2. We propose a novel approach for producing an effective decision policy that 
integrates planning and execution controls. While some of the individual com-
ponents of our approach have been used previously in other planning contexts, 
integrating day-of-execution corrections is new (and, as our computational study 
shows, beneficial).

3. We conduct a comprehensive computational study, using restaurant meal delivery 
as the setting, which clearly demonstrates the benefits of dynamically sizing the 
service area—the number of orders served increases significantly, by more than 
20% in certain cases.

Even though our approach is tailored to and our computational study is restricted 
to meal delivery, we believe that our ideas can be applied and be valuable in 
other urban logistic settings, especially when demand is volatile and varies over 
time, e.g., same-day delivery of goods and dial-a-ride services.

The remainder of the paper is organized as follows. In Sect. 2, we provide a 
literature review. In Sect. 3, we present the mathematical model. In Sect. 4, we 
outline our approach for producing an effective decision policy. In Sect. 5, we 
analyze the results of an extensive computational study. Finally, in Sect. 6, we 
conclude with final remarks.
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2  Literature

In the following, we give an overview of the related literature. Our work focuses 
on the fields of dynamic (meal) delivery routing and service area sizing.

The literature on dynamic delivery routing is summarized in Table  1. We 
differentiate the literature based on problem characteristics and whether or not 
demand management is considered.

The problem we focus on is a dynamic routing problem with many vehicles 
( ≥ 5 ) and customers ( ≥ 200 ), delivery from a warehouse (restaurant), and deliv-
ery time commitments. Thus, we classify the problems considered in the litera-
ture based on these four characteristics (fleet size, number of customers, delivery 
from one or more warehouses, and delivery time commitments). If a character-
istic is present we indicate that with “ ✓ ”, and if a characteristic is “partially” 
present we indicate that with “ (✓) ”. For example, “ (✓) ” in the Large fleet column 
indicates that more than one vehicle is used for delivery but fewer than 5.

The decisions we focus on relate to demand management, i.e., a service area 
sizing plan and dynamic sizing adjustments during execution. The techniques we 
use are continuous approximation and value function approximation, a reinforce-
ment learning method. Thus, we classify the solution approaches presented in the 
literature based on whether demand management is considered and, if so, when, 
i.e., not at all, as part of planning, as part of execution, or as part of planning and 
execution. We also list how demand is managed, i.e., service area size or time 
slots (controlling time slot availability or time slot pricing for customers) and the 
techniques used to do so, i.e., by enumeration (enum.), by deriving a functional 
dependency (funct.), by lookahead methods using sampled scenarios (LA), or by 
reinforcement learning (RL).

The first two entries in Table  1 represent the research most closely related 
to ours, i.e., Ulmer and Thomas (2018) and Yildiz and Savelsbergh (2019). In 
Ulmer and Thomas (2018), customers request delivery during the day and can 
be served either by a delivery van or by a drone; in case neither is available, a 
request is rejected. To decide whether to use a delivery van or a drone to serve 
a customer request, the authors present a threshold policy based on the travel 
time between the depot and the customer. If the travel time exceeds the threshold 
radius, then the customer is served by a drone, otherwise the customer is served 
by a delivery van. An enumeration procedure is used to determine the thresh-
old. Our research is similar in that a travel time threshold is used to determine 
whether or not service is offered to a customer. However, our threshold radius is 
both time-dependent and dynamic. We show, among others, the benefits of using 
a time-dependent and dynamic threshold rather than fixed threshold. Yildiz and 
Savelsbergh (2019) analyze how the service area size impacts the profit of a 
delivery platform providing meal delivery services, where the profit depends on 
the revenue from customers served and compensation payed to delivery drivers. 
They derive a functional dependency between the revenue and the service area 
size and other parameters, such as customer arrival rate, revenue per customer, 
compensation per delivery and miles traveled, and customer satisfaction. Our 
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research is similar in that we also derive a functional dependency between driver 
utilization and service area size, which is then used to maximize profits. How-
ever, we explicitly incorporate the pattern of expected demand over time and the 
interdependency of service area sizing decisions over time.

The second part of Table 1 lists research that considers related problems or 
involves demand management. We see that when large-scale problems are con-
sidered, as in Ghiani et al. (2009), Ferrucci et al. (2013) or Ulmer et al. (2021), 
there is typically no mention of demand management. This research mostly 
focuses on routing technology that ensures fast, on-time service. Ulmer et  al. 
(2021), for example, develops assignment and routing strategies for meal deliv-
ery. Thus, their efforts complement our research.

We find that the vast majority of demand management procedures discussed 
in the literature involve slotting, i.e., deciding when to offer service to individ-
ual customers, which involves determining when customers can be served “effi-
ciently.” When service can be offered efficiently is evaluated either by lookahead 
(LA) or reinforcement learning (RL) methods. LA methods sample scenarios 
of potential future arrivals and evaluate these scenarios assuming a customer 
under investigation is served in a particular slot or is not served in that slot. 
RL-methods compare the value of problem states by means of repeated learning 
simulations. Then, the value of the states with and without the new customer is 
compared to decide if service is offered. Good examples this type of research are 
Klapp et al. (2018a, b) and Ulmer et al. (2019b), where a single-vehicle setting 
is investigated and LA and RL methods are employed to decide whether to serve 
a customer request or not. In Ulmer (2020), reinforcement learning is used, 
instead, to decide delivery prices; based on the delivery fee customers decide to 
complete an order or to walk away. All previous work on demand management 
focuses on day-of-execution and individual customers, usually for settings with 
one or possibly a few vehicles and a small number of customers, whereas our 
work extends to planning and sets of customers.

Besides dynamic delivery routing, service area considerations also appear 
as part of demand management strategies in attended home delivery. In these 
environments, order acceptance and order delivery are clearly separated. That 
is orders are accepted over a period of time, but the routing of delivery vehicles 
only occurs after the order acceptance phase has finished. Some research in this 
area proposes to use so-called resource buckets for areas of the service region 
(see for example (Cleophas and Ehmke 2014)). Once the number of accepted 
orders in a resource bucket exceeds its capacity, service in that area is no longer 
offered. Our setting is different, because new customers arrive while orders that 
were placed earlier are already being delivered. Thus, resource management is 
more time-critical and immediate.

For further reading on other related topics, we suggest Strauss et  al. (2018) 
and Klein et al. (2020) for revenue and demand management, Pillac et al. (2013) 
and Ulmer et al. (2020) for dynamic vehicle routing, and Alnaggar et al. (2021), 
Sampaio et  al. (2019), and Savelsbergh and Ulmer (2022) for crowd-sourced 
delivery.
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3  Problem definition

In the following, we define the problem and present the mathematical model. We 
first give a problem narrative. We then describe the dynamic decision process.

3.1  Problem narrative

We consider a service provider delivering items from a facility to customers with a 
delivery time promise. Even though this captures a variety of settings, for ease of 
presentation, we focus on a meal delivery environment.

In a meal delivery setting, customers open the provider’s web page and enter 
their address to find out if they are eligible for a delivery. A customer’s eligibil-
ity to receive a delivery depends on their location. Eligible customers that place an 
order are promised that delivery will take place within a certain amount of time, 
e.g., within 40 minutes after the order is placed. The delivery time promise is the 
same for every customer. Order placement is a stochastic process and order place-
ment volume can vary by day and by time of day. In meal delivery, the number of 
orders during the week tends to be higher than the number of orders during the 
weekend and order placement peaks during lunch and dinner hours (Dai and Liu 
2020). Furthermore, in meal delivery, order volume is impacted by special events 
and weather conditions (Littman 2019). This indicates that the stochastic process 
representing order placement is not memoryless. For the delivery of orders, the pro-
vider uses a fixed fleet of vehicles (operating during the period that orders can be 
placed and some time after that to complete final deliveries). The provider seeks to 
maximize the expected number of orders served (as a proxy for profit) while ensur-
ing a target service level. For example, in meal delivery, late deliveries do not only 
result in customers waiting but also less fresh food. Thus, the provider may seek to 
have small delivery lateness (or delay) over all served customers, for example, less 
than 1 minute on average per customer (this will be modeled as a chance constraint).

To achieve the desired service level, the provider manages the size of the service 
area. More specifically, at a fixed set of decision epochs during the day, the provider 
sets a service area radius around the facility (restaurant) to be used until the next 
decision epoch. Customers within the service area, i.e., with a travel time between 
restaurant and customer that is less than the radius, are eligible to receive a delivery; 
customers outside the service area, i.e., with a travel time between depot and cus-
tomer that is larger than the radius, are ineligible and cannot place an order. The siz-
ing decision is informed by the observed customers so far and the expected custom-
ers for the remainder of the day. Placed orders are delivered by the vehicles in the 
fleet on a trip that starts and ends at the facility; a vehicle typically makes multiple 
trips per day. We assume that the assignment of orders to vehicles and the routing of 
the vehicles are performed by a predefined assignment and routing policy, i.e., these 
decisions are not under our control. More specifically, we assume that the provider 
only observes demand (eligible and ineligible) and observes realized delivery late-
ness (delay).
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3.2  Stochastic dynamic decision process

In the following, we present a mathematical model of the meal delivery setting. 
Because order placements are stochastic and decisions are made dynamically, we 
model the setting as a stochastic dynamic decision process following Powell (2011). 
A stochastic dynamic decision process consists of the following components: deci-
sion points, decision states, decisions, reward function, state transition function, 
and exogenous information. We start by defining the parameters and notation and 
by giving an illustration of the system dynamics. We then define the various model 
components.

3.2.1  Preliminaries

We assume that a fleet of m vehicles delivers orders placed at time points during 
the planning horizon T = [0, 1,… , T] . For the remainder, we will assume regularly 
spaced time points one time unit apart (e.g., a time point at every minute of the day). 
The vehicles start and end their shift at facility D (a shift ends when a vehicle has 
served all orders assigned during the planning horizon). The travel time between 
two locations, l1 and l2 , is given by function �(l1, l2) . The time to load items into a 
vehicle at the facility is given by �D and independent of the number of items to load. 
The time to deliver an item at a customer is �C and independent of the customer. We 
assume travel, loading, and delivery times are a multiple of the time unit (thus are 
integer valued). The facility and customers are located in an area A . The location of 
D is denoted by aD ∈ A and that of a customer C by aC ∈ A . The time a customer C 
arrives, i.e., attempts to place an order, is denoted by tC ∈ T  (recall that depending 
on the active service area radius, a customer may be ineligible to place an order). 
The customer arrivals are a stochastic process with memory. The delivery plan, 
i.e., the assignment of orders to vehicles and the routing of the vehicles, is updated 
whenever a new order is placed. In our experiments, we use the fast assignment and 
routing heuristic presented in Ulmer (2017). This greedy heuristic examines all (par-
tial) vehicle routes to identify the insertion position that minimizes additional delay, 
and, as a tiebreaker, minimizes additional travel time. We note that our approach for 
determining an effective policy for deciding the service area radius is independent of 
the chosen heuristic. However, we do require that the time that an order of customer 
C is delivered, denoted by td

C
 , is revealed as soon as it occurs. The delivery time 

promise is � , i.e., if customer C places an order at tC, the delivery time promise is 
tC + � , and the customer experiences a delay if td

C
> tC + 𝛿 . We denote the delay for 

customer C by dC and set dC = max{0, td
C
− (tC + �)}.

3.2.2  Illustration of system dynamics

Before we introduce the components of the dynamic decision process in detail, we 
illustrate the system dynamics with a small example. For ease of presentation, we 
omit information on the vehicles delivering orders and any delay experienced by 
customers. We assume that sizing decisions are made every 15 minutes. Figure 1 
shows the system at the fifth decision point (left part), a decision (middle part), and 
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a realization of demand during the next 15 minutes (right part). The facility (restau-
rant) is represented with a black square, customers that were offered delivery are 
represented by circles, and customers that were not offered delivery by diamonds.

At the fifth decision point, one hour has already passed and four radius decisions 
have already been made. Five customers have attempted to place an order; Customer 
1 was deemed ineligible at the time of the attempt and Customers 2 thru 5 were 
deemed eligible at the time of their attempt. Based on this information and informa-
tion about expected future orders, the provider decides the service area radius to use 
for the next 15 minutes. This decision controls whether or not a customer attempt-
ing to place an order in the next 15 minutes will be successful or not. Two new 
customers attempt to place an order in the next 15 minutes. The delivery location of 
Customer 6 is within the active service area and the customer can place an order; the 
delivery location of Customer 7 is outside the active service area and cannot place 
an order. Thus, the realized reward between t = 60 and t = 75 is one, because one 
additional customer could be offered service. At time 75, the sixth decision point, 
the provider again decides the radius for the next 15 minutes.

3.2.3  Customer arrivals

Decisions regarding the active service area radius are made every t̄ time units 
with the first decision at the start of the day. Let the set of decision time points 
be TD = [0, t̄, 2t̄,… , (K − 1)t̄] with Kt̄ = T  (we assume t̄ divides T). Thus, a day 
is partitioned into time intervals [(k − 1)t̄, kt̄) for k = 1,… ,K . For each interval 
[kt̄, (k + 1)t̄) , let Ck+1 be a random variable denoting the set of customers arriving 
in the interval and let C�

k+1
 for � ∈ Ωk+1 denote a specific realization of customer 

arrivals in the interval where Ωk+1 is the set of all possible customer arrivals in the 
interval. Because we model customer arrivals as a stochastic process with memory, 
we have that Ωk+1 depends on Ωk . The combination of all possible realizations of 
customer arrivals in the intervals leads to a set of possible realizations for the entire 
day, i.e., Ω =

∏K−1

k=0
Ωk+1 . Finally, let C0k denote an observed set of customer arrivals 

in the interval [0, kt̄) for k = 1,… ,K.

3.2.4  State variables

A state Sk is defined by a decision time point, kt̄ , and observed customer arrivals up 
to that time point, C0k , i.e., a list of nk customers C1,… ,Cnk

 with for each customer 
its location and the time at which the customer arrived. Thus, a state can be repre-
sented as Sk = (k, C0k) with the initial state being S0 = (0, �).

3.2.5  Decision variables

A decision xk ∈ X(Sk) at decision time kt̄ sets the active service area radius for the 
time interval [kt̄, (k + 1)t̄) . The (immediate) reward R(Sk, xk) of a decision xk in state 
Sk is a random variable and represents the expected number of customers arriving in 
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the time interval [kt̄, (k + 1)t̄) with a location within the active service area, i.e., the 
expected number of order placements. Therefore, the reward function is

Recall that the we assume that customer arrivals are a stochastic process with 
memory, thus the potential realizations C�

k+1
 and the expected reward depend on the 

observed demand which is captured in state Sk.

3.2.6  State transitions

Once a decision has been made, a realization of customer arrivals C�
k+1

 for the time 
interval [kt̄, (k + 1)t̄) is observed. The leads to a state Sk+1 at time (k + 1)t̄ with 
observed demand C0,k+1 = C0k ∪ C

�
k+1

.

3.2.7  Objective and service level

A solution to the problem is a policy � from among the set of policies Π . A policy 
� maps each state Sk to a radius decision X�(Sk) . An optimal policy maximizes the 
expected reward

One policy is to set the radius to infinity regardless of the state. In that case, all 
arriving customers can place an order and are served. However, many customers 
will experience a substantial delay. Thus, we restrict the set of policies by means of 
a chance constraint, namely that the expected average delay per customer must lie 
below a threshold L ≥ 0.

(1)R(Sk, xk) = �

[(|||{C ∈ C
�
k+1

∶ �(aD, aC) ≤ xk}
|||
)
|Sk

]
.

(2)�∗ = argmax
�∈Π

�

[
K∑

k=0

R(Sk,X
�(Sk))|S0

]
.
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Fig. 1  Example for a state, a decision, and a realization of stochastic information
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To this end, we define a quality measure Q(�, C�) for a policy � and a given 
realization of customer arrivals C� with � ∈ Ω . The quality measure relates to the 
observed delay during an entire day. Let C�,� be the set of order placements when 
policy � is applied (i.e., the set of customers with a location within the active service 
area at the time of their arrival). Then, the observed delay is

A policy is considered feasible if the expected delay divided by the expected number 
of order placements (i.e., the average customer delay) is less than threshold L:

Note that, the average customer delay for a specific realization of customer arrivals 
can be larger than L.1

4  Solution approach

Finding an optimal policy is challenging because of the dimensions of the state and 
decision spaces. Thus, we present a heuristic. In the following, we present our solu-
tion approach for finding a high-quality policy. We first give a motivation and an 
overview of the steps taken. We then describe each of the steps in detail.

4.1  Motivation and overview

The design of our policy is driven by three practical considerations: 

1. At times with high expected demand, the service area should be small and at times 
with low expected demand the service area should be large. When the number 
of orders in a given service area increases, the workload per vehicle increases 
measured by number of deliveries as well as travel distance. Consequently, the 
likelihood of delays increases. To achieve a desired level of service, the area may 
need to be reduced. Similarly, when the number of orders in a given service area 
decreases, the workload per vehicle decreases. Consequently, the likelihood of 
vehicle idle time increases. To achieve a desired level of vehicle utilization, the 
area may have to be enlarged.

2. Deciding the size of the service area should not only consider the expected 
demand at the time of the decision but also the expected future demand. The size 
of the service area affects the percentage of arriving customers that are allowed 
to place an order. However, orders that are placed are not delivered instantane-

(3)Q(�, C�) =
∑

C∈C�,�

dC.

(4)
�Q(�, C�)

�|C�,�|
≤ L.

1 Such a constraint may lead to a few customers with substantial delay. However, in our computational 
study, the largest delay observed during a day is always less than 25 minutes and the delay for the 90%
-quantile is between 0 and 3 minutes. Given hundreds of services per day, such values seem reasonable.
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ously, because it may take time before a vehicle is available at the depot to load 
the order, to travel to customer location, and to deliver the order. Thus, the size 
of the service area also impacts the workload of the vehicles in subsequent time 
intervals and, thus, the ability to deliver orders placed in the future. Therefore 
expected future demand should be considered when deciding its size.

3. If the realized demand is higher (lower) than expected, the service area should be 
smaller (larger) than usual. When we observe a larger than expected number of 
customer arrivals, the workload per vehicle will be higher than expected. Thus, 
to ensure the desired level of service, the service area should be reduced. This is 
especially true since it is likely that a larger number of customer arrivals will also 
be observed in the future. Similarly, when we observe a smaller than expected 
number of customer arrivals, the workload per vehicle will be lower than expected 
and the service area should be enlarged.

Using these considerations, we develop a heuristic approach with the following 
features: 

1. Continuous Approximation (CA). To incorporate the first consideration, we adapt 
the idea of Daganzo (1984) and approximate a function that maps a number of 
customers to the fleet size required to serve these customers. In our case, we 
derive a function that maps an expected stream of customer arrivals to an “opti-
mal” radius, i.e., a radius that allows the largest number of orders to be delivered 
without causing an average delay that exceeds the threshold. We derive this func-
tion by analyzing combinations of a constant expected customer arrival rate and 
a service area of a given size and finding the maximum areas that do not exceed 
the threshold. We then use regression to determine the functional dependency 
between expected customer arrival rate and maximum service area radius. We 
use this function to derive time-dependent radii for instances with heterogeneous 
expected customer arrival rates over time.

2. Value Function Approximation (VFA). To incorporate the second consideration, 
we search the space of policies around the policy obtained by CA with value 
function approximation (VFA, Powell 2011). VFA is a reinforcement learning 
technique seeking to learn the value of decision in a state via repeated simulation 
and updates. For our problem, the VFA approximates the expected reward to go 
of setting a service area radius at a specific time in the horizon, i.e., the expected 
number of orders served until the end of the day. Higher than desired average 
customer delay values are incorporated by means of a penalty term. VFA starts 
with initial values and then repeatedly selects a policy (a set of radii) based on 
the values, simulates the policy, and updates the approximated values using the 
observed values. In contrast to the initial policy obtained using CA, VFA produces 
a policy that reflects the interdependency of the chosen radii.
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3. Day-of-execution Correction Mechanism. To incorporate the third consideration, 
we adjust the radii of the policy produced by VFA using recently observed cus-
tomer arrival rates (to adjust for higher or lower than expected customer arrivals). 
To do so, we use the function that maps an expected customer arrival rate to a 
service area radius. Specifically, we take a convex combination of the radius sug-
gested by the policy produced by VFA and the radius suggested by the function 
for the recently observed customer arrival rate.

Combining the concepts of CA and VFA was already proposed in Ulmer and Savels-
bergh (2020) for a tactical workforce scheduling problem, but the implementations 
of CA and VFA for this problem setting are new. The integration of day-of-opera-
tion corrections is novel and, as we show in our computational study, beneficial. We 
refer to the policy obtained by using all three techniques as the anticipatory service 
area radius sizing policy with correction mechanism (ARS+)2. In the following, we 
describe the algorithmic details of the three techniques.

4.2  Continuous approximation

In the following, we describe how we use CA to determine a function that maps an 
expected stream of customer arrivals to a service area radius.

We generate M sets of H customer arrival sequences using (constant) expected 
arrival rates �m for m = 1,… ,M . We omit any customers arriving in the last hour 
of the day to avoid ending effects and denote the resulting sets of customer arrival 
sequences by Ωm , m = 1,… ,M.

Given that customers arrive at a given rate throughout the day, we assume that 
the same service area radius is used throughout the day as well, i.e., we assume a 
policy �i mapping each state to the same service area radius i. For each set of cus-
tomer arrival sequences, i.e., Ωm for m = 1,… ,M , we determine the maximum ser-
vice area radius that does not violated the average customer waiting time limit (see 
Equation (4)). The average customer waiting time is the ratio of accumulated delay 
over all H sequences, with Q(�i, C

�h

 ) measuring the observed delay in sequence h, 
divided by the number of served customers in all H sequences, with |C�h,�i | repre-
senting the number of served customers in sequence h when applying policy �i:

We now find the maximum radius by a simple search – increasing the service area as 
long as the average waiting time violation limit L is not exceeded, i.e.,

(5)
∑H

h=1
Q(�i, C

�h

)
∑H

h=1
�C�h,�i �

.

(6)xm = argmax
i∈ℕ

∑H

h=1
Q(�i, C

�h

)
∑H

h=1
�C�h,�i �

≤ L.

2 For the remainder of the paper, italic typesetting is used to indicate policies.
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The value xm is the service area radius selected for expected customer arrival rate �m.
In this way, we get policies for each of the M expected customer arrival rates, 

(�1, x1),… , (�M , xM) . We then use regression to fit a power function through these 
data points. A power function can flexibly model that the radius should decrease 
as the demand increases (as stipulated by Consideration 2). We obtain a function 
�(�) that maps an expected customer arrival rate to a service area radius, i.e.,

where the parameters a and b are determined by the regression.
In our experiments, we set M = 11 and H = 500 . We increase the expected 

number of customer requests per day in steps of hundreds from Ω1 with expected 
demand of 100 to Ω11 with expected demand of 1000 requests per day. For the 
geographical settings described later in the paper, the corresponding empirical 
radii and the power-function approximation are depicted in Fig.  2. We observe 
a monotone decrease in the radius when the demand increases. We further see 
that a power-function approximation can provide an accurate representation of 
the observed radius values.

In the setting of interest, expected customer arrival rates are not constant but 
vary during the day. We use the function �(�) to determine a policy for this setting 
as follows. Preliminary tests with setting a service area radius using �(�) at each 
decision time point yielded poor results, most likely because it cannot capture 
interdependencies between radii decisions. Thus, we aggregate time intervals into 
a smaller set of time periods P = {1,… , pmax} each with length T

pmax

 . In our com-
putational experiments, we have used pmax = 4 with each period p representing 
two hours. Within a time period, the same radius will be set at every decision 
time point. That is, given expected customer arrival rate �p for time period p, we 
set the service area radius xp to �(�p).

The expected customer arrival rate �p for a period p can be determined based on 
the distribution of request times tC throughout the day (for example, based on his-
toric observations or predictions). Given a vector of expected customer arrival rates, 
(�1,… , �P) , the service area radii are set to 

(
�(�1),… , �(�P)

)
 . Because this policy may 

not be feasible or unnecessarily conservative, we do some fine tuning. We adjust the 
radii in a period as follows:

where � is the maximum value such that the corresponding policy does not exceed 
the average customer delay threshold. Again, we use simulation to identify � . We 
start with � = 0 and increase � in small steps of 0.05 based on preliminary computa-
tional tests. We denote the resulting policy by CA.

(7)�(�) = a�b,

(8)x̂p =
⌊
� × �(�p)

⌋
,
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4.3  Value function approximation

The obtained CA-policy provides radii based on the expected demand in the corre-
sponding period. However, it fails to consider the interdependencies of radius-decisions 
in different periods.

As Ulmer and Savelsbergh (2020), we use VFA to search the space of poli-
cies around CA to capture temporal interdependencies, e.g., an expected increase or 
decrease in customer arrivals. In the following, we define the value function for the 
problem at hand, we describe the solution space being searched, and we present the 
learning procedure.

For a state Sk and each possible decision xk ∈ Xk(Sk) , the value function V defines 
the expected reward to go when taking the decision that assuming an optimal policy �∗ 
used for the remainder of the day:

The value function provides a value for each pair of state and decision. In our VFA, 
we approximate the values by means of simulation. Because of the vast number of 
state-decision pairs, we aggregate the states. Instead of the full state information, 
we solely focus on the time and ignore the observed customer arrivals. As before, 
we also aggregate the time intervals into time periods p = 1,… ,Pmax . We consider 
the full decision space. Thus, our approximate value function V̂  provides the value 
V̂(p, xp) of a service area radius decision xp at the beginning of period p and we use 
simulation to approximate the values of V̂ .

(9)V(Sk, xk) = �

[
R(Sk, xk) +

K∑

l=k+1

R(Sl,X
�∗

(Sl))|Sk, xk

]
.
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To this end, we define an area of the space of policies that VFA searches. Specifi-
cally, we create a neighborhood around policy CA as follows. For each period p, we 
consider radii in the range

for a 𝛾 > 0 , where we use notation [⋅]+ to indicate the positive part, i.e., 
[x]+ = max{x, 0} . Larger values of � and xCA

p
 result in a larger radius range in a 

period. This allows for the smoothing of policy CA. We also consider a minimum 
range

for an r ∈ ℤ>0 . The union of the two sets Xp = X�
p
∪ Xr

p
 is the set of considered radii 

for period p. Thus, the search space is X = X1 × X2 ×⋯ × XP . Because policy CA is 
in the search space, the search space has at least one feasible policy.

VFA systematically searches the defined space by iteratively selecting a policy, 
simulating the policy, and using the simulation results to update the values of V̂  . 
In the following, we give a description of the process (for algorithmic details, see 
Ulmer and Savelsbergh (2020)).

The first policy selected is (xCA
1
,… , xCA

pmax
) . Policies in subsequent iterations 

i = 1,… , I are selected by means of Boltzmann exploration, as suggested in 
Brinkmann et al. (2019). Using Boltzmann exploration, the probability of select-
ing a particular radius decision xi

p
 in a period p depends on the current value 

V̂ i(p, xi
p
) , the range of current values associated with the possible radii in the 

period, and the iteration. We denote the policy selected in iteration i by 
xi = (xi

1
,… , xi

pmax
).

A selected policy is evaluated by simulating a batch of 1,000 realizations of 
customer arrivals. The simulation returns the average realized value of the pairs 
(p, xi

p
) , denoted by vi(p, xi

p
) . It also returns the delay Q and the delay Qp(p, x

i
p
) for 

the order placements in periods p′ with p′ ≥ p . The latter allows us to penalize 
parts of the policy, even if the policy itself is feasible.

Both realized values and delays are used to update the values of V̂  . When the 
delay Qp is greater than threshold L, we calculate a penalty �(i + 1)(Qp − L) that 
depends on the VFA iteration i and a parameter � . Tying the penalty to the num-
ber of iterations leads to an increasing penalization of infeasible solutions over 
the iterations, a procedure often observed in heuristic search procedures. The cor-
rected value for state (p, xi

p
) is

Given this calculated value, the state value is updated as follows:

(10)X�
p
=

{[⌊
(1 − �)xCA

p

⌋]+
,
[⌊
(1 − �)xCA

p

⌋
+ 1

]+
,… ,

⌈
(1 + �)xCA

p

⌉}
,

(11)Xr
p
=

{[
xCA
p

− r
]+
,
[
xCA
p

− r + 1
]+
,… , xCA

p
+ r

}
,

(12)
vi(p, xi

p
) = vi(p, xi

p
) − �(i + 1)(Qp − L)+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Penalty Term

.
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Parameter � determines the stepsize of the update process. We set � =
1√
n(p,xi

p
)
 with 

n(p, xi
p
) being the number of observations of xi

p
 in period p. This results in a stronger 

emphasis on the value of vi(p, xi
p
) in later observations when the values becomes 

likely more accurate (Powell 2011).
We run VFA with I = 1000, r = 2 and � = 100 . We further explore � =

1

2
,
1

3
 and 

1

4
 and select the policy that performs best. We select a high number of I to ensure 

statistical significance. The values for r, � , and � are based on preliminary computa-
tional tests. We denote the best policy encountered during the search by anticipatory 
radius sizing policy (ARS).

4.4  Day‑of‑execution correction mechanism

Policy ARS captures expected customer arrivals as well as temporal and spatial con-
solidation and should perform well when daily customer arrivals are as expected. 
However, the policy does not react to observed customer arrivals, i.e., does not 
adjust to days with fewer than expected customer arrivals or days with more than 
expected customer arrivals. Such reactions may avoid delays when there are more 
than expected customer arrivals and may avoid low vehicle utilization when there 
are fewer than expected customer arrivals.

To allow such reactions, we combine ARS with a day-of-execution correction 
mechanism (CM). The CM observes customer arrivals and adjusts the service area 
radius accordingly. CM is applied at every decision time point regardless of the 
state. More specifically, for a state Sk , we calculate the customer arrival rate �k in the 
last Δ time units

The decision in state Sk is then

with � ∈ [0, 1] a parameter controlling the emphasis on the correction mechanism.
When a day-of-execution correction mechanism is in use on a daily basis, it 

should also be in effect when we determine policy ARS. Therefore, we integrate CM 
in ARS. ARS still learns a vector of radii via VFA, however, CM is already applied in 
the decision-making and evaluation of the value function. Based on preliminary test-
ing, we set the CM-horizon to Δ = 30 minutes. We test � ∈ {0.1, 0.2, 0.3, 0.4, 0.5} 
and select the best � for each instance setting. The best results are usually obtained 
with � between 0.1 and 0.3. We denote the best policy obtained during the policy 
search when the day-of-execution correction mechanism is active as ARS plus CM, 
ARS+.

(13)V̂ i+1(p, xi
p
) = (1 − �) × V̂ i(p, xi

p
) + � × vi(p, xi

p
),

(14)𝜈k = |{C ∈ �Ck ∶ tC ≥ kt̄ − Δ}|∕Δ.

(15)xk = (1 − �)xARS
p

+ ��(�k),
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5  Computational study

In this section, we present our computational study. We first describe the instances 
and the benchmark policies. We then analyze the performance of the various 
policies.

5.1  Instances and benchmark policies

In the following, we describe the instances and the policies tested.

5.1.1  Geography

We assume a central facility in the service area at location (0, 0) and a fleet of 10 
vehicles. Each vehicle travels at a speed of 25 kilometers per hour (von Schnei-
demesser 2015). Service and loading times are set to 2 minutes. The coordinates 
of the customer locations are iid and follow a normal distribution with mean zero 
and standard deviation of 2.5 km. This resembles what has been observed in prac-
tice, i.e., that the number of customers declines with the distance to the restau-
rant, possibly because customers worry about the freshness of the delivered food 
due to the longer travel times. The travel distances are set as Euclidean distances 
multiplied with factor 1.4 to simulate a street network (Boscoe et  al. 2012). In 
combination with the customer location distribution, this implies that about 99% 
of the customers are located less than 10 km and 25 minutes travel from the facil-
ity. All travel times are rounded up to minutes.

An example day of customer locations is depicted in Fig.  3. The facility is 
shown as the square in the center and each customer location is shown as a cross. 
The dashed circles are at the radii of 15 and 25 minutes of travel from the facility, 

Fig. 3  Example for customer 
locations for one day

25min

15min
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respectively. We see that most customer locations are within 15 minutes travel 
from the facility with a few customers being farther away.

5.1.2  Customer arrivals

We assume a horizon of 420 minutes plus sufficient time afterward for the vehi-
cles to deliver the final orders. The service promise to customers is 40 minutes 
after order placement. Radius decisions are made every 15 minutes. We assume 
customer arrivals only occur in the first seven hours (so that at least one hour 
is available for delivery). The expected number of requests per day is 500. We 
model customer arrivals as a combination of three arrival streams: one base 
stream, one smaller noon stream, and one larger evening stream. This arrival pat-
tern is common in meal delivery settings, see for example Dai and Liu (2020). 
All streams generate customer arrivals via Poisson processes. The base stream is 
homogeneous over time; the other two are nonhomogeneous over time. The noon 
and evening streams produce customer arrival times that are normally distributed 
with standard deviation of 30 minutes and means of minutes 90 and 300, respec-
tively. In expectation, 30% (or 150) of the customer arrivals are from the base 
stream, 30% (or 150) are from the noon stream, and 40% (or 200) are from the 
evening stream. The combination is shown in Fig. 4. The x-axis depicts time; the 
y-axis depicts the relative arrival rate. We observe the two peaks around minutes 
90 and 300.

To model daily variations, we vary the expected number of customer arrivals per 
stream. More specifically, we sample the expected number of customer arrivals for 
a stream from a normal distribution, with mean 150 for the base stream, mean 150 
for the noon stream, and mean 200 for the evening stream. Even though the expected 
expected number of customer arrivals for a day is always 500, this procedure leads to 
days with smaller and larger demand peaks and, therefore, days with fewer or more 
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customer arrivals. These variations can be recognized, and acted upon, by monitor-
ing customer arrivals; the number of customer arrivals early in the day is a predictor 
of the number of arrivals later in the day. Thus, the customer arrival process is not 
memoryless. When generating instances, i.e., realizations of daily customer arrivals, 
we use different coefficients of variation (COV) for these normal distributions: 0.0, 
0.1, 0.2, 0.4, and 0.6. With increasing COV, the variance in the number of (daily) 
customer arrivals increases as well.

We generate 2000 realizations of customer arrivals for each COV value, using 
1000 realizations for learning and 1000 realizations for evaluation. Instances are 
available upon request.

5.1.3  Policies

We compare the following policies:

• FIXED: The service area is fixed for the entire day with the largest radius pos-
sible. This radius is determined by starting from zero and increasing it in small 
increments until the average customer delay exceeds the threshold.

• CA: This policy uses the CA-radii.
• VFA: This policy uses the radii learnt when VFA is initialized with FIXED.
• ARS: This policy uses the radii learnt when VFA is initialized with CA.
• ARS+ : This policy uses the radii learnt when VFA is initialized with CA and uses 

CM during training.

We determine five variants of these policies, one for each of the different COV 
values.

5.2  Performance

We evaluate each of these policies (i.e., each of its five variants) using 1000 realiza-
tions of customer arrivals. For each of the policies, the average customer delay was 
below the threshold of one minute. Because the service area radius for FIXED tends 
to be small, the average delay is usually smallest for FIXED.

All statistics reported in the remainder are averages over the realizations of cus-
tomer arrivals used in the evaluation (even though not explicitly stated).

To compare the policies, we calculate the (relative) improvement of a given 
policy over FIXED in terms of number of orders served, i.e., n

�−n�����

n�����
 with n� and 

n����� the number of orders served by policy � and FIXED. The number of orders 
served (out of an expected number of 500) and the improvement for the policies are 
shown in Fig. 5 (across all instance classes, i.e., across all COV values).

We observe that ARS+ provides the best solution quality with the largest number 
of orders serviced and the largest improvement of more than 20% . While VFA shows 
some improvement, CA does not. This indicates that capturing temporal dependen-
cies and anticipating future demand are essential for good decision-making. How-
ever, initializing VFA with CA is beneficial, as ARS outperforms VFA. Finally, we 
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see that incorporating day-of-execution corrections (when learning a policy and 
when executing that policy) leads to substantial performance improvement, i.e., 
ARS+ improves over FIXED by 22.4%, whereas ARS improves over FIXED by 
13.3%. Thus, even a deterministic, time-dependent policy that changes the service 
area only a few times a day, e.g., ARS, already yields substantial benefits. Such poli-
cies can easily be implemented in practice as the number of service area changes is 
small and they occur at the same time every day.

5.3  The value of day‑of‑execution corrections

In the following, we analyze the policies’ performance in more detail and focus in 
particular on the value of day-of-execution corrections in ARS+.

To investigate the benefits of day-of-execution corrections, we look at the differ-
ent instances classes, i.e., with different COV values, separately. Figure 6 shows the 
number of orders served for the different instance classes for policies ARS and ARS+.

As expected, the COV affects the number of orders served. For COV values 
greater than or equal to 0.2, when the uncertainty about the number of customer 
arrivals increases, the number of orders served declines. Furthermore, we see that 
the benefit of incorporating day-of-execution corrections increases when the uncer-
tainty about the number of customer arrivals increases, i.e., when the day-to-day 
variation in number of customer arrivals is high. For COV values 0.4 and 0.6, the 
number of orders served when using ARS+ is more than 10% larger than when using 
ARS.

The day-of-execution mechanism is therefore particularly important when the 
demand volumes vary from day to day. This is also reflected in the weighting param-
eter of ARS+ , which indicates how much emphasis is placed on the correction mech-
anism. For COVs of 0.0 and 0.1, the best weighting parameter is � = 0.1 , i.e., the 
radii are mostly predetermined and the corrections are relatively minor. For COVs of 
0.2 and 0.4, the best weighting parameter is � = 0.2 , thus the emphasis clearly shifts 
toward more and more major corrections. This is even more evident for a COV of 
0.6 when the best weighting parameter is � = 0.3.

We further analyze how the day-of-execution mechanism impacts the number of 
customers served and the delays. To this end, Table 2 presents average results over 
all COVs for the number of customers served and the average delay resulting from 
the five different policies. Specifically, we show the average number of customers 
served and its standard deviation (SD) over the 1000 days, the average delay per 
served customer (in minutes) and its SD over the 1000 days, and the average maxi-
mum delay per day a customer observed in minutes. It also shows the average 90%
-percentile of the overall delay distribution in minutes, i.e., we sort the observed 
delays over all served customers over the 1000 simulated days in increasing order 
and report the delay for the customer at the 90%-position of all customers.

The values in the first column of the table resemble the results of Fig.  5, with 
FIXED and CA performing relatively poorly, VFA and ARS performing modestly, and 
ARS+ clearly outperforming the other policies. As the number of customers served 
increases, we expect to see an increase in the standard deviation. Interestingly, the 
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SD is smallest for ARS+ with 43.0 even though the number of customers served is 
substantially more than with any other policy. The difference is largest between ARS 
and ARS+ and the only difference between these two policies is the daily correc-
tion mechanism. The smaller SD indicates that ARS+ better smooths the number of 
customers served per day even when the days differ in demand volume. A more bal-
anced day-to-day workload has positive effects for the drivers in terms of stress and 
compensation. ARS+ also has benefits for customers compared to ARS. Even though 
the average delay is slightly higher (0.93 compared to 0.92), the average SD is lower 
(3.07 compared to 3.41). This suggests that ARS has some days with several large 
delays and some days with hardly any delays, whereas ARS+ adapts to the observed 
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daily demand and smooths the delays per day. (This is also reflected in the average 
maximum delay.) We observe too that, every day, there is likely to be an “unlucky” 
customer with a delay of more than 10 minutes regardless of the policy. Similar 
to practice, this seems hard to avoid when serving hundreds of customers per day. 
However, when looking at the 90%-percentiles of all policies, we see that the vast 
majority of customers experience a delay of less than 3 minutes (if any). This shows 
that using a constraint in our model that limits the average delay per customer also 
leads to a relatively balanced distribution of delays for the customers.

We conclude that the newly developed day-of-execution correction mechanism 
does not only improve the number of customers served, but it also reduces the day-
to-day variation in the number of customers served and has benefits for the experi-
ence of workforce and customers.

5.4  Service area sizing

Next, we investigate how the different policies set the service area radius over time. 
To this end, we analyze the results of the instance setting with COV value 0.2 in 
more detail. However, the observations are similar for the other COV values.

We compare three policies: CA, VFA, and ARS. Figure 7a shows for each of the 
three policies the service area radii over the day. The service area radius changes 
at the start of each of the four periods (see Sect. 4). Thus, each policy adjusts the 
radius only three times per day.

Recalling the customer arrival distribution shown in Fig. 4, we see that the poli-
cies recognize the presence of the peaks (at 90 and at 300) and valleys by having a 
smaller radius in the first and third period (in anticipation of the peaks) and a larger 
radius in the second and fourth period of the day (in anticipation of the valleys). 
Furthermore, we see that initializing VFA with FIXED (giving policy VFA) is able 
to recognize the peaks, but is unable to fully capitalize on the peaks. Initializing 
VFA with CA (giving policy ARS), which already recognizes the peaks, allows VFA 
to make the necessary adjustments to better capitalize on their existence, pushing 
the radius out in the second and third period, but bringing the radius in in the fourth 
period.

It is interesting to observe that CA at the time of the second peak (at 300) sets a 
service area radius that is smaller than the other policies (even smaller than FIXED). 

Table 2  Policy performance

Policy Customers SD Delay Delay SD Maximum delay 90%-Percentile

FIXED 234.4 44.0 0.72 2.80 14.91 1.4
CA 233.4 44.8 0.83 3.28 18.04 1.0
VFA 254.9 46.7 0.89 3.19 18.42 2.2
ARS 264.9 49.0 0.92 3.41 20.77 2.0
ARS+ 285.3 43.0 0.93 3.07 19.78 2.8
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The continuous approximation decides on the small radius to accommodate days 
with a large number of customer arrivals throughout the day to avoid the vehicles 
becoming too busy, which causes delivery delays. However, the results show that 
setting the small radius is overly conservative when customer arrivals are heteroge-
neous and vehicles have sufficient chance to “recover” from being busy.

Next, we analyze how incorporating day-of-execution corrections impacts the 
radii. We compare ARS+ for values � = 0.0, 0.2 , and 0.4 (value � = 0.0 represents 
ARS (i.e., without CM)); the larger the value of � , the more emphasis is placed on 
CM. Recall that day-of-execution corrections are considered every 15 minutes. 
Again, we focus on the instance setting with COV value 0.2. The results are depicted 
in Fig. 7b. We observe that for all values of � , the radii match the customer arrival 
distribution with smaller radii in times of a larger number of customer arrivals. 
However, we also see that with CM ( 𝛼 > 0 ) service area, radius changes occur more 
smoothly. At the start and end of the day, when the number of customers that have 
arrived in the last 30 minutes is small, the radii are large to ensure that vehicles are 
used and are not idle. It is also apparent that putting too much emphasis on correc-
tions is undermining the value of planning. With � = 0.4 , we see that the policy is 
unable to properly anticipate. After time 300 customer arrivals start to decline and 
around time 360, the customer arrival peak is usually over and the radius should 
increase significantly. However, with � = 0.4, the policy acts put too much emphasis 
on recent observations and keep the radius (too) small, which leads to missed oppor-
tunities and poor performance.

5.5  Minimum service area

So far, we have assumed that the company can set the service area to any size at any 
time. However, in practice, there may be considerations that put limits on the service 
area size that can be set. For example, the company may want to offer a guaranteed 
service to customers living close to the facility. In the following, we analyze how 
enforcing a lower limit on the service area radius impacts the performance of ARS+ . 
We denote the new policy by ARS+(limited) and we produce it using the exact same 
methodology as before.

We compare the performance of ARS+(limited) to ARS+ for different COV values 
when we enforce a minimum service area radius equal to the service area radius of 
FIXED. The results can be found in Fig. 8.

We observe a decrease in the number of orders served when we enforce a mini-
mum service area size. We further see that the difference between ARS+ and ARS+
(limited) increases with increasing COV values, highlighting that guaranteeing ser-
vice to a certain set of customers becomes more costly when demand is volatile.

The effect of enforcing a minimum service area size can also be seen in the ser-
vice area radii over time. In Fig. 9, for the instance setting with COV value 0.2, and 
for the variant with day-of-execution corrections, we show the radii of ARS+ and 
ARS+(limited). (FIXED has a radius of 10 minutes for this instance setting.)

We observe that the pattern for both policies is the same. However, for ARS+
(limited), the radii vary less. At times with the highest number of customer arrivals 
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(around the second peak at 300), the radii no longer drop below the minimum radius 
of 10. The larger radii (compared to ARS+ ) lead to more orders and a larger work-
load, thus, limiting the increase in the radius after the peak, which results in fewer 
orders during the period with a small number if customer arrivals.

This shows that enforcing guaranteed service to a certain set of customers comes 
at a cost, particularly, when the number of customer arrivals is volatile. However, 
as we show next, even without guaranteeing service to the customer close to the 
facility, these customers are nearly always served. More specifically, we compare the 
difference in number of orders served by FIXED, ARS+ , and ARS+(limited) where 
we partition the orders by travel time from the facility (again for the instance setting 

Fig. 7  Average Radii over Time



789

1 3

Dynamic service area sizing in urban delivery  

with COV value 0.2). The results are depicted in Fig. 10 where we show the relative 
difference to FIXED.

We observe that ARS+ does not serve four customers per day (on average) with a 
travel time to the facility of 10 (at the edge of the guaranteed service area). However, 
as a result, it is able to serve noticeably more orders of customers at travel times 
11, 12, 13, 14, and 15 from the facility than ARS+(limited). Clearly, both ARS+ and 
ARS+(limited) serve many more orders than FIXED (on average).

6  Final remarks

We have shown how dynamically sizing the service area based on expected and 
observed demand can provide significant benefits for a service provider. We have 
also illustrated that demand volatility over time and days is an important factor when 
setting up and controlling the area service is offered. There are multiple avenues for 
future research, which we discuss briefly below.

We have focused on variation and uncertainty on the demand side, but assumed a 
fixed and homogeneous fleet of delivery vehicles on the supply side. Future research 
may focus on the supply side and investigate the benefits (and challenges) of add-
ing drivers dynamically when demand is higher than expected. Or on supply uncer-
tainty, which is relevant in  situations where deliveries are performed by crowd-
sourced drivers. Dynamically sizing the service area may be one of the mechanisms 
for handling supply uncertainty.

Another interesting direction, particularly in a meal delivery setting, is to investi-
gate the interplay between different facilities (e.g., restaurants). When sharing deliv-
ery drivers across multiple facilities, sizing decisions will be interdependent. Also, 
customers may be served from different facilities. In such situations, sizing decisions 
need to be coordinated and should capture not only the expected customer arrivals 
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but also other aspects such as fairness among the restaurants or driver familiarity 
with different areas of the city.

Customers expect cheap, but reliable service. Our study has shown that reve-
nue can be increased by dynamically adjusting the service area. These benefits (or 
at least some) can be passed on to the customers in the form of reduced delivery 
prices. However, such a reduction in delivery costs would also imply a reduction 
in delivery reliability as service will no longer be offered at every location at any 
time. Dynamic pricing of service rather then dynamic availability of service may 
be more acceptable to customers. Therefore, a natural avenue for future research is 
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investigating how a provider can offer service in a larger area by dynamically adjust-
ing delivery prices.

Provide service in a larger area may also be possible by offering different service 
promises to different customers and, possibly, at different times. For example, cus-
tomers with a travel time less than a certain threshold may be offered faster delivery 
than customers with a travel time that exceeds the threshold. Determining an opti-
mal threshold in such settings is non-trivial. It should be recognized that offering 
customers different service promises (from different facilities) will influence cus-
tomer behavior and, if not done well, may adversely affect consolidation opportu-
nities. Because offering different service promises to different customers mainly 
affects the underlying routing problem, it is likely that the same techniques used to 
derive effective policies for service area sizing can be used to derive effective poli-
cies for service promise threshold setting.
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