
Vol.:(0123456789)

OR Spectrum (2022) 44:575–602
https://doi.org/10.1007/s00291-021-00654-9

1 3

ORIGINAL ARTICLE

A partition‑based branch‑and‑bound algorithm 
for the project duration problem with partially renewable 
resources and general temporal constraints

Kai Watermeyer1   · Jürgen Zimmermann1

Received: 15 July 2020 / Accepted: 8 September 2021 / Published online: 9 December 2021 
© The Author(s) 2021

Abstract
The concept of partially renewable resources provides a general modeling frame-
work that can be used for a wide range of different real-life applications. In this 
paper, we consider a resource-constrained project duration problem with partially 
renewable resources, where the temporal constraints between the activities are given 
by minimum and maximum time lags. We present a new branch-and-bound algo-
rithm for this problem, which is based on a stepwise decomposition of the possi-
ble resource consumptions by the activities of the project. It is shown that the new 
approach results in a polynomially bounded depth of the enumeration tree, which is 
obtained by kind of a binary search. In a comprehensive experimental performance 
analysis, we compare our exact solution procedure with all branch-and-bound algo-
rithms and state-of-the-art heuristics from the literature on different benchmark sets. 
The results of the performance study reveal that our branch-and-bound algorithm 
clearly outperforms all exact solution procedures. Furthermore, it is shown that our 
new approach dominates the state-of-the-art heuristics on well known benchmark 
instances.
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1  Introduction

Over the last decades, partially renewable resources have proven to be highly 
suitable to model constraints for a wide range of different real-life applications. 
The concept of partially renewable resources had first been introduced in Drexl 
et  al. (1993) for a course scheduling problem and was later used in Drexl and 
Salewski (1997) to model constraints for a school timetabling problem. Further 
applications have been considered in Bartsch et al. (2006) and Knust (2010) for 
sports scheduling, in Briskorn and Fliedner (2012) for container transshipment, in 
Okubo et al. (2015) for machine scheduling, and in Androutsopoulos et al. (2020) 
for airport slot scheduling. Different modeling capabilities of partially renewa-
ble resources that cover logical relations between activities and further practical 
applications are discussed in Schirmer and Drexl (2001).

The concept of partially renewable resources allows to restrict the availability 
of a resource on an arbitrary subset of time periods of the whole planning hori-
zon. As a consequence, the availability of a partially renewable resource for a 
specific time period is not fixed in advance, which provides a great flexibility for 
the scheduling process.

Böttcher et al. (1999) and Schirmer (1999) were the first to integrate the con-
cept of partially renewable resources in the framework of project scheduling. Both 
works propose solution procedures for the classical resource-constrained project 
scheduling problem (RCPSP) with partially renewable resources (RCPSP/� ). 
In Böttcher et  al. (1999), the only available branch-and-bound algorithm for 
the RCPSP/� is given, which extends the basic enumeration scheme of Talbot 
and Patterson (1978) by two feasibilty bounds. Moreover, Böttcher et al. (1999) 
investigated different priority rules for a serial schedule generation scheme that 
considers, in compliance with the enumeration approach of Talbot and Patter-
son (1978), all feasible start times in each scheduling step. Further variants of 
a serial schedule generation scheme are provided in Schirmer (1999), which are 
based on a deterministic or randomized procedure to select the next activity to be 
scheduled and its start time. Additionally, Schirmer (1999) presents a tabu search 
algorithm and different techniques that are based on shift procedures to improve 
feasible solutions. Based on the work by Schirmer, Alvarez-Valdes et al. (2008) 
developed a GRASP algorithm for the RCPSP/� and a preprocessing procedure, 
in which the GRASP algorithm is contained. Different variants of the GRASP 
algorithm are investigated, where the best performance could be obtained by the 
combination with a path relinking approach. A further approximation method is 
given in Alvarez-Valdes et al. (2006) by a scatter search procedure that applies the 
GRASP algorithm for the generation of feasible solutions. Computational experi-
ments could show that some variants of the scatter search procedure outperform 
the GRASP algorithm in terms of the solution quality, but at the expense of a 
strong increase in the computational effort (see, e.g., Alvarez-Valdes et al. 2015).

Recently, Watermeyer and Zimmermann (2020a) introduced an extension 
of the RCPSP/� that additionally considers minimum and maximum time lags 
between the start times of the activities in order to cover even more aspects of 
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real-life projects. For this problem, which is denoted by RCPSP/max-� , Water-
meyer and Zimmermann (2020a, 2020b) have proposed two branch-and-bound 
algorithms that are based on different enumeration schemes. The exact solution 
procedure in Watermeyer and Zimmermann (2020a) can be classified as a relax-
ation-based branch-and-bound algorithm that reduces the possible resource con-
sumptions by the activities of the project step by step, where the resource-relaxa-
tion of the RCPSP/max-� represents the starting point. An alternative approach is 
considered in Watermeyer and Zimmermann (2020b), which schedules the activi-
ties of the project successively in combination with an unscheduling step.

In this paper, we present a new relaxation-based branch-and-bound algorithm 
for the RCPSP/max-� that decomposes the possible resource consumptions by the 
activities of the project in each enumeration step, which results in a partition of the 
start time domains of the activities. The new enumeration approach avoids the dis-
advantageous of the solution procedures in Watermeyer and Zimmermann (2020a, 
2020b) that are mainly given by redundancies in the course of the enumeration and a 
great number of descendant nodes in each decomposition step.

The remainder of this paper is organized as follows. Section 2 provides a formal 
description of the RCPSP/max-� , where Sect. 3 deals with an example of a real-life 
project. Section 4 describes the enumeration scheme of the branch-and-bound algo-
rithm that is discussed in Sect. 5. In Sect. 6, a comprehensive experimental perfor-
mance analysis is provided, followed by some conclusions in Sect. 7.

2 � Problem description

The RCPSP/max-� considers a set of activities V ∶= {0, 1,… , n + 1} , where each 
activity i ∈ V  has to be assigned a start time Si ∈ ℤ≥0 under the consideration of 
temporal and resource constraints with the objective to minimize the project dura-
tion. Set V consists of real activities i ∈ Vr with non-interruptible processing times 
pi ∈ ℤ>0 and fictitious activities or events i ∈ Ve with pi = 0 . The start and the 
end of the project are given by the fictitious activities 0 and n + 1 , respectively, 
where V might contain further events that represent milestones of the project. All 
activity pairs (i,  j) with start-to-start precedence relationships are contained in set 
E ⊂ V × V  , where �ij ∈ ℤ specifies the time lag that has to be hold between them, 
i.e., Sj ≥ Si + �ij . It should be noted that the temporal constraints between the activi-
ties are given by minimum ( �ij ≥ 0 ) and maximum time lags ( 𝛿ij < 0 ). For each pro-
ject, a start time 0 and a maximum project duration (or completion time) d̄ ∈ ℤ≥0 
are assumed, i.e., S0 = 0 and Sn+1 ≤ d̄ . In the remainder of this paper, we call a 
sequence of start times S = (Si)i∈V a schedule and speak of a time-feasible schedule 
S if S ∈ ST , where

denotes the time-feasible region. Thereby, (n + 1, 0) ∈ E and 𝛿n+1,0 = −d̄ are 
assumed, which means that the maximum project duration d̄ is satisfied by each 
time-feasible schedule.

ST ∶= {S ∈ ℤ
n+2
≥0

| Sj − Si ≥ �ij for all (i, j) ∈ E ∧ S0 = 0}
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Besides the temporal constraints, the availabilities of the project resources have 
to be taken into account as well. The RCPSP/max-� considers partially renewable 
resources, where each resource k ∈ R is assigned to a subset 𝛱k ⊆ {1, 2,… , d̄} of 
all time periods of the planning horizon with a capacity Rk ∈ ℤ≥0 . Each resource 
k ∈ R is only consumed by an activity i ∈ V  in each time period of �k the activity 
is in execution. The amount of capacity units of a resource k that is consumed by an 
activity i per time period is given by the resource demand rd

ik
∈ ℤ≥0 . Together with 

the number of periods in �k an activity i is in execution if it starts at time Si , the 
so-called resource usage ru

ik
(Si) ∶= |]Si, Si + pi] ∩�k| , we can calculate the resource 

consumption rc
ik
(Si) ∶= ru

ik
(Si) ⋅ r

d
ik

 . Conclusively, we can state for any schedule S the 
total resource consumption rc

k
(S) ∶=

∑
i∈V r

c
ik
(Si) of a resource k ∈ R by all activi-

ties of the project, so that the resource constraints can be expressed by rc
k
(S) ≤ Rk for 

all k ∈ R . In the following, we say that a schedule S is resource-feasible if it satisfies 
all resource constraints, i.e., S ∈ SR with the resource-feasible region

The RCPSP/max-� can be stated by

Minimize Sn+1
subject to S ∈ ST ∩ SR

}
 (P)

with S ∶= ST ∩ SR as the feasible region. In the remainder of this paper, we call 
some schedule S that solves problem (P) optimal and denote by OS the set of all 
optimal schedules.

3 � Numerical example

In what follows, we illustrate how the concept of partially renewable resources can 
be used for real-life projects. As an example, we consider a small project of a soft-
ware company which is concerned with the development of a software for a cus-
tomer. The order covers the development and the implementation of the software 
and has to be done within two weeks. The software company deploys an account 
manager (A) and a programmer (P) for the fulfillment of the order. Furthermore, a 
certain amount of data (D) for a cloud service, which is used to share data with the 
customer, is allocated to the project. For the account manager and the programmer, 
different contractual working conditions have to be taken into account. The account 
manager works at most five days a week and gets a weekend off after he had worked 
the whole weekend before. The programmer instead works not more than eight days 
and at most two weekend days over two consecutive weeks. The amount of data that 
is allocated to the project is 25 GB. Since the software company has to pay less for 
volumes of data at weekends, the guideline for each project is to use at least 40% of 
the whole data volume at weekend days. For the software company, the allocation of 
activities and resources on a daily basis seems to be sufficient, so that each period of 
the planning horizon corresponds to one day of the week, where the first period is 
assumed to be a Saturday (see Fig. 2).

SR ∶= {S ∈ ℤ
n+2
≥0

| rc
k
(S) ≤ Rk for all k ∈ R}.
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Table 1 gives an overview of the partially renewable resources R = {1,… , 35} 
that are used to model the restrictions as stated above. For a better understanding, 
we separate R into the sets R̃A ∶= {1, 2,… , 18} , R̃P ∶= {19, 20,… , 34} , and 
R̃D ∶= {35} which, respectively, contains all the resources which ensure that the 
restrictions of the corresponding resource � ∈ {A, P, D} are satisfied. In Table  1, 
for the set �k of some resource k ∈ R , the definition and its corresponding capac-
ity Rk are both given in the same line. For example, from the first line, we get 
�1 = �19 = {1} and R1 = R19 = 1 with k = 1 ∈ R̃A and k = 19 ∈ R̃P . The restric-
tions for the account manager (A), the programmer (P), and the amount of data (D) 
are ensured by resources k = 15,… , 18 , k = 33, 34 , and k = 35 , respectively. For 
example, resource k = 15 restricts the working days of the account manager to at 
most five days in the first week and resources k = 17, 18 ensure that the account 
manager gets a weekend off after he had worked the whole weekend before. All 
other resources ( k = 1,… , 14, 19,… , 32 ) establish that each employee can only be 
assigned to at most one activity per day, which is equivalent to a renewable resource 
constraint with a capacity of one unit.

In Table  2, all activities i ∈ V  which have to be executed to finish the project 
are listed with their corresponding processing time pi and their resource demand 
for each resource � ∈ {A, P, D} , where r̃d

i�
= a is used for simplification to state a 

resource demand rd
ik
= a by activity i ∈ V  for all resources k ∈ R̃� . For example, 

activity i = 3 has a processing time p3 = 3 and a resource demand rd
3k

= 1 for all 
resources k ∈ R̃P and rd

3k
= 5 for all resources k ∈ R̃D . Figure 1 shows the project 

network which comprises the time lags �ij between the start times of all activities. 
The project starts with the consultation of the account manager with the customer 
to find out the specific requirements of the software ( i = 1 ) which is followed by the 
discussion of the implementation with the programmer ( i = 2 ) either directly after 
the consultation ( �12 = 3 ) or one day after ( �21 = −4 ). In the next step, the program-
mer implements the software which requires the access to the databases of the cus-
tomer ( i = 3 ). While the automated test runs ( i = 4 ) to check the functionalities of 
the software and to reveal errors can not be started before the completion of activity 

Table 1   Overview of the 
resource specifications

�k Rk

1 19 – {1} 1
2 20 – {2} 1
⋮ ⋮ ⋮ ⋮ ⋮

14 32 – {14} 1
15 – – {1, 2,… , 7} 5
16 – – {8, 9,… , 14} 5
17 – – {1, 2, 8} 2
18 – – {1, 2, 9} 2
– 33 – {1, 2, 8, 9} 2
– 34 – {1, 2,… , 14} 8
– – 35 {3,… , 7, 10,… , 14} 15

k ∈ R
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i = 3 ( �34 = 3 ), the training course for the employees ( i = 6 ) of the customer can 
take place just two days after the start of activity i = 3 ( �36 = 2 ). In order to have 
the possibility to offer more training for some employees who have difficulties with 
the software, the training course has to be completed before the end of the second 
weekend ( �60 = −8 ). The last remaining step to complete the project is given by the 
system integration of the software and the correction of the latest detected errors 
directly at the customer’s place of business ( i = 5 ) which can be started directly after 
activity i = 4 ( �45 = 2).

Table 2   Project activities
i ∈ V Description pi r̃d

iA
r̃d
iP

r̃d
iD

0 Start of the project 0 0 0 0
1 Consultation with the customer 3 1 0 0
2 Discussion of the implementation 1 1 1 0
3 Data access and implementation 3 0 1 5
4 Automated test runs 2 0 0 4
5 On-the-spot system integration 1 1 1 2
6 Training course for employees 1 1 0 0
7 Termination of the project 0 0 0 0

Fig. 1   Project network

Fig. 2   Optimal schedule
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Figure 2 shows an optimal schedule S∗ = (0, 1, 4, 6, 9, 11, 8, 12) for the software 
project with a (minimal) project duration S∗

7
= 12 . It should be noted that activity 

i = 3 has to be executed over the whole second weekend due to the guideline that 
40% of the whole required amount of data has to be used at the weekend. As a con-
sequence, activity i = 6 has to be processed at Sunday of the second weekend, which 
prevents that activity i = 1 can be executed over the whole first weekend since this 
would imply that the account manager gets the second weekend off (see resources 
k = 17, 18).

4 � Enumeration scheme

In this section, we present the enumeration scheme of our branch-and-bound algo-
rithm. So far, only two different enumeration schemes are known for the RCPSP/
max-� , which have been proposed by Watermeyer and Zimmermann (2020a, 
2020b). These procedures can be categorized in a relaxation-based and a construc-
tive approach. The relaxation-based branch-and-bound algorithm in Watermeyer and 
Zimmermann (2020a) reduces the possible resource usages of the activities of the 
project in each decomposition step. This procedure is continued until the optimal 
solution of the restricted resource-relaxation of problem (P) is either feasible or does 
not exist. An alternative approach has been developed in Watermeyer and Zimmer-
mann (2020b), which is given by a constructive branch-and-bound algorithm that 
schedules the activities of the project successively in combination with an unsched-
uling step. The constructive branch-and-bound algorithm, which is inspired by the 
serial schedule generation scheme in Franck et al. (2001), makes use of insights with 
respect to the course of the resource usage of an activity dependent on its start time. 
Actually, for the first time, it could be shown that it is sufficient to consider a subset 
of all feasible start times of an activity in each scheduling step of a serial schedule 
generation scheme, so that the completeness of the procedure remains.

In this paper, we present a new relaxation-based enumeration scheme for the 
RCPSP/max-� . This approach mainly differs from classical procedures in project 
scheduling, which enumerate based on relaxations (see, e.g., Watermeyer and Zim-
mermann 2020a; De Reyck and Herroelen 1998; Fest et al. 1999), in the sense that 
the optimal solution of the relaxation is not removed by the decomposition step. 
The main advantages of the new approach compared to the existing enumeration 
schemes for partially renewable resources, which are described in detail below, are 
as follows. The depth of the enumeration tree is polynomially bounded from above, 
each decomposition step results in a constant number of new relaxations, and no fea-
sible solution is generated more than once.

The basis of the new enumeration approach is a stepwise decomposition of the 
possible resource consumptions by the activities of the project with the resource-
relaxation of problem (P) as the starting point. The decomposition scheme results in 
a partition of the start time domains of the activities. Accordingly, the enumeration 
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approach can be illustrated by a directed outtree, where each node is represented by 
a vector W ∶= (Wi)i∈V that assigns a start time domain Wi ⊆ {0, 1,… , d̄} to each 
activity of the project. In line with Watermeyer and Zimmermann (2020a, 2020b) 
we call W a start time restriction and say that Wi is the start time restriction of activ-
ity i ∈ V  . Furthermore, we call I ∶= {a, a + 1,… , b} ⊆ ℤ a start time break of Wi 
if I ⊆ ℤ⧵Wi and a − 1, b + 1 ∈ Wi , where Bi ( B ) denotes the number of start time 
breaks of Wi (over all start time restrictions). The problem that has to be solved at 
each enumeration node corresponds to the resource-relaxation of problem (P) with 
additional unary constraints on the start times of the activities ( Si ∈ Wi ). Accord-
ingly, the problem at each enumeration node is given by

Minimize Sn+1
subject to S ∈ ST (W)

}
 (R(W))

with the feasible region ST (W) ∶= {S ∈ ST | Si ∈ Wi for all i ∈ V} . In the following, 
we say that any schedule S ∈ ST (W) is W-feasible and speak of a W-feasible start 
time Si of an activity i ∈ V  if ∃S� ∈ ST (W) ∶ S�

i
= Si . In Watermeyer and Zimmer-

mann (2020a), it could be shown that ST (W) has a unique minimal point, where a 
schedule S ∈ ST (W) is called a minimal point of ST (W) exactly if there is no other 
schedule S′ with S′ ≤ S , i.e., S′

i
≤ Si for all i ∈ V  . Furthermore, Watermeyer and 

Zimmermann (2020a) have proposed an algorithm that either proves the unsolvabil-
ity of (R(W)) or determines the unique minimal point of ST (W) with a time com-
plexity of O(|V||E|(B + 1)) . In the remainder of this paper, we assume that Algo-
rithm 2 in Watermeyer and Zimmermann (2020a) is used to solve problem (R(W)), 
where we refer the reader to this reference for further details.

Next, we take a closer look at the enumeration scheme, which is outlined in Algo-
rithm 1, where we discuss in particular how the start time domains of the activi-
ties are partitioned. For the sake of simplicity, we identify each enumeration node 
with its respective start time restriction W. In the first step of Algorithm 1, the root 
node W is initialized (if ST ≠ ∅ ) by Wi ∶= {ESi,… , LSi} for all activities i ∈ V  with 
ESi and LSi as the earliest and latest time-feasible start times of activity i. Both the 
earliest and the latest time-feasible schedules ES and LS are determined by a clas-
sical label-correcting algorithm with a time complexity of O(|V||E|) (see, e.g., 
Ahuja et  al. 1993, Sect.  5.4). Note that due to ST (W) = ST , problem (R(W)) cor-
responds to the resource-relaxation of problem (P) at the root node. Starting with 
� ∶= {W} and � ∶= � , where � contains all unexplored nodes and � all generated 
feasible schedules, in each iteration some node W is removed from set � . For node 
W, the minimal point S ∶= minST (W) is determined or rather problem (R(W)) is 
solved. If S ∈ SR , a new feasible solution has been found and is stored as a candi-
date schedule in set � . Otherwise, there exists at least one resource k ∈ R whose 
capacity Rk is exceeded by the total resource consumption rc

k
(S) of all activities, i.e, 

k ∈ R
c(S) ∶= {k� ∈ R | rc

k�
(S) > Rk� } with Rc(S) as the set of all conflict resources. 

In this case, it is checked if the existence of any feasible schedule in ST (W) can be 
excluded, i.e., S(W) ∶= ST (W) ∩ SR = � . For this, the minimum resource consump-
tion rc

k
(W) for each conflict resources k ∈ R

c(S) is determined, where it is assumed 
that each activity i ∈ V  can be started at each time in Wi between its earliest and 
latest W-feasible start time. Accordingly, the minimum resource consumption for 
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each activity i ∈ V  is given by rc
ik
(W) ∶= min{rc

ik
(�) | � ∈ Wi ∩ [ESi(W), LSi(W)]} 

with ES(W) and LS(W) as the unique minimal and maximal point of ST (W) . It 
should be noted that LS(W) is calculated with a time complexity O(|V||E|(B + 1)) 
by an algorithm that has been proposed in Watermeyer and Zimmermann (2020a). 
If rc

k
(W) > Rk for any resource k ∈ R , S(W) = � follows directly, so that node W 

represents a leaf of the enumeration tree. However, if the existence of any feasi-
ble schedule in ST (W) cannot be excluded, the feasible region ST (W) is decom-
posed. In the first step, a pair (k, i) ∈ R

c(S) × Vk with ru
ik
(Si) > ru

ik
(W) is chosen 

with ru
ik
(W) ∶= min{ru

ik
(�) | � ∈ Wi ∩ [ESi(W), LSi(W)]} . Note that for each con-

flict resources k ∈ R
c(S) , there is always one activity i ∈ Vk that satisfies condi-

tion ru
ik
(Si) > ru

ik
(W) , since otherwise the condition rc

k
(W) ≤ Rk would not have been 

satisfied. The decomposition of the feasible region ST (W) generates two descend-
ant nodes, where Wi is partitioned into two start time restrictions W ′

i
 and W ′′

i
 , i.e., 

Wi = W �
i
∪ W ��

i
 , W �

i
∩ W ��

i
= � and W ′

i
,W ′′

i
≠ ∅ . Thereby, the partition of Wi is 

based on adding a lower and an upper bound on the resource usage of resource k by 
activity i for start time restrictions W ′

i

The total correctness of Algorithm  1 is established by Theorem  1 and Lemma  1, 
where it should be noted that Lemma 1 even shows that the depth of the enumeration 
tree is polynomially bounded from above by the input length of the considered instance.

Theorem  1  Algorithm  1 is complete and sound, i.e., � ∩OS ≠ � if OS ≠ ∅ and 
� = � if OS = �.
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Proof  First, ST (W) = ST ⊇ S is given for the root node, so that the search space 
contains all feasible schedules. Next, it can be observed that Algorithm 1 ensures 
a decomposition of the search space of each node W with S ∶= minST (W) ∉ SR 
which contains at least one feasible solution. Thereby, the decomposition step 
does not remove any (W-)feasible solution which can easily be derived from 
ST (W) = ST (W

�) ∪ ST (W
��) . Noticing that the number of decomposition steps is 

finite (Lemma  1) and that S ∶= minST (W) minimizes the project duration on set 
ST (W) , with OS ≠ ∅ ⇒ S ≠ ∅ we can state OS ≠ � ⇒ � ∩OS ≠ �.

Finally, OS = � ⇒ � = � can directly be followed from the implication 
OS = � ⇒ S = � , which is given by the finiteness of S , and the fact that each candi-
date schedule is feasible, i.e., 𝛷 ⊆ S.	�  ◻

Lemma 1  The maximum depth of the enumeration tree corresponding to Algo-
rithm 1 is O(�V��R�min(p, �V��R�⌈log2 p⌉2)) with p ∶= maxi∈V pi + 1.

Proof  As it can easily be verified, the generation of some node in Algorithm 1 is 
either associated with an increase in the minimum possible resource usage ( W ′ ) 
or with a decrease in the maximum possible resource usage ( W ′′ ) of some conflict 
resources k ∈ R

c(S) by an activity i ∈ Vk . Consequently, we can state a maximum 
number of O(|V||R|p) decompositions which can be done until a leaf of the enu-
meration tree is reached.

Next, let W = (W0,W1,… ,W�) be any sequence of nodes representing a path 
in the enumeration tree. First, we assume that all nodes W1,W2,… ,W� have 
been generated by increasing the minimum possible resource usage ( W ′ ). Then, 
S = minST (W

0) = minST (W
1) = … = minST (W

�) ∉ SR can directly be followed. 
Hence, by taking into account that ūik equals the (rounded) mean value of ru

ik
(Si) and 

the minimum possible resource usage in each decomposition step, we get that the 
maximum length � of the path W is given by O(�V��R�⌈log2 p⌉) . Since, as it can 
easily be verified, ūik always equals at most the mean value of the minimum and the 
maximum possible resource usage of some resource k ∈ R

c(S) by an activity i ∈ Vk , 
any path W can contain at most O(�V��R�⌈log2 p⌉) nodes which are generated by a 
decrease in the maximum possible resource usage ( W ′′ ). Accordingly, the maximum 
depth of the enumeration tree is O(�V�2�R�2⌈log2 p⌉2).	�  ◻

It should be noted that the partition-based decomposition, which we have 
described for Algorithm  1, only represents the best way for the partition we are 
aware of. In general, any partition would result in a total correct enumeration.
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5 � Branch‑and‑bound algorithm

The enumeration scheme in the previous section represents a general framework for 
the construction of a search tree for any instance of the RCPSP/max-� . In order to 
extend this scheme to a branch-and-bound procedure, we have to specify how the 
search tree is build. For this, we have to establish a strategy to determine which 
unexplored node in the search tree should be considered next (traversal strategy) 
and which pair (k,  i) has to be chosen for the decomposition step (decomposition 
strategy).

The traversal strategy, which we use for our branch-and-bound algorithm, is an 
extension of the classical depth-first search strategy (DFS), called scattered-path 
search (SPS), which has been introduced in Watermeyer and Zimmermann (2020a). 
The SPS traverses the search tree exactly like the DFS, except that after a predefined 
time span an unexplored node with lowest level in the search tree and lowest lower 
bound on the project duration is chosen to be considered next. The idea of the SPS is 
to keep the advantage of the DFS to minimize the computing time to find a first fea-
sible solution and simultaneously to avoid the drawback to get stuck in an unpromis-
ing part of the search tree.

For the decomposition of the feasible region of some node W with 
S = minST (W) ∉ SR , the decomposition strategy establishes a priority rule to select 
some pair (k, i) ∈ R

c(S) × Vk . In what follows, we present the most promising pri-
ority rules we have investigated in preliminary computational tests. For the first 
priority rules, the conflict resource k and activity i ∈ Vk are selected successively. 
In the first step, each conflict resource k� ∈ R

c(S) is assigned a priority value �k′ , 
with �k� ∶= rc

k�
(S) − Rk� for the so-called absolute-capacity-overrun rule (ACO) and 

with �k� = (rc
k�
(S) − Rk� )∕Rk� for the relative-capacity-overrun rule (RCO). For both 

rules, the conflict resource with the greatest priority value and the smallest index is 
chosen for the decomposition, i.e., k = min{k� ∈ R

c(S) |�k� = maxl∈Rc(S) �l} . After 
the selection of the conflict resource k, each activity i ∈ Vk with ru

ik
(Si) > ru

ik
(W) is 

assigned a priority value �i , where for both the ACO and RCO rule a priority value 
�i = rc

ik
(Si) − rc

ik
(W) is used. Like for the conflict resource k, the activity with the 

greatest priority value and the lowest index is chosen. Computational tests could 
reveal that the ACO and RCO rule, which tend to reduce the capacity overruns as 
fast as possible, are both well suited to solve small instances. In contrast, for greater 
instances, we were able to find even better priority rules that are based on the idea 
to select some pair (k, i) ∈ R

c(S) × Vk that tends to reduce the maximal remain-
ing capacity Rk − rc

k
(W �) of the direct descendant node W ′ as much as possible. It 

should be noted that these priority rules can be seen to increase the probability that 
a descendant node W ′ can be removed from further considerations ( rc

k
(W �) > Rk ), 

which at least suggests a lower width of the search tree. The best of these priorities 
rules, called remaining-capacity-reduction rule (RCR), assigns a priority value

𝜋k�i� ∶=
(ūi�k� + 1 − ru

i�k�
(W))rd

i�k�

max(Rk� − rc
k�
(W), 0.1)
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to each pair (k�, i�) ∈ R
c(S) × Vk� with ru

i�k�
(Si� ) > ru

i�k�
(W) . Thereby, the nomina-

tor equals the minimum increase in rc
k�
(W) by the decomposition step with respect 

to node W ′ ( rc
k�
(W �) ) and the denominator corresponds to the maximal remaining 

capacity Rk� − rc
k�
(W) of resource k′ (or 0.1 if Rk� − rc

k�
(W) = 0 ). For the RCR rule, 

the pair (k�, i�) with the greatest priority value is chosen for the decomposition step, 
where ties are broken on the basis of lowest indices of the resources and activities.

After we have discussed how the search tree is build, we investigate differ-
ent techniques that are used to avoid that unpromising parts of the search tree are 
explored. Besides the usage of lower and upper bounds on the project duration 
to prune the search tree, we have additionally implemented consistency tests to 
improve the performance of the branch-and-bound algorithm. In what follows, we 
sketch out briefly the consistency tests that are applied in the course of our branch-
and-bound procedure. For further details we refer the reader to Watermeyer and 
Zimmermann (2020a), where all the consistency tests, we are concerned with in this 
section, have been introduced. All the following consistency tests have in common 
that they are used to reveal for some possible start time t ∈ Wi of an activity i ∈ V  
that there cannot exist any feasible schedule with Si = t in the feasible region of the 
currently considered node. Consequently, each deduced constraint by a consistency 
test can directly be expressed by a reduction rule for a start time restriction of some 
activity. As it is common practice, the different consistency tests described below 
are conducted iteratively one by one at each enumeration node until either no pos-
sible start time can be removed anymore or Wi = � is given for some activity i ∈ V  , 
i.e., a fixed point is reached.

The consistency tests, which are applied on the start time restriction W of the root 
node in a preprocessing step, are called temporal and W-interval consistency test. The 
temporal consistency test removes all times from the start time restriction W that are 
not W-feasible. Accordingly, the temporal consistency test for any possible start time 
t ∈ Wi of some activity i ∈ V can be expressed by the following condition and its 
reduction rule.

In order to remove possibly more start times from W, the W-interval consistency test 
takes also the resource constraints into account. For this, in a first step, the (indirect) 
minimum and maximum time lags d̃ij(W, t) and d̂ij(W, t) between the W-feasible start 
times for all activity pairs (i, j) ∈ V × V  are determined under the assumption that 
activity i starts at time t. Based on these time lags, a minimum resource consumption

for any activity j ∈ Vk⧵{i} can be derived if activity i starts at time t. Consequently, 
each start time t ∈ Wi of activity i can be removed if the sum of the minimum 
resource consumptions rc,min

ijkt
(W, D̃, D̂) over all activities j ∈ Vk⧵{i} together with 

rc
ik
(t) exceeds the resource capacity Rk for some resource k ∈ R . The condition and 

reduction rule for the W-interval consistency test for some activity i ∈ V  and any 
possible start time t ∈ Wi can be stated by

∄S ∈ ST (W) ∶ Si = t ⇒ Wi ∶= Wi⧵{t}

r
c,min

ijkt
(W, D̃, D̂) ∶= min{rc

jk
(�) | � ∈ Wj ∩ [t + d̃ij(W, t), t − d̂ij(W, t)]}
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Preliminary computational tests have shown that the calculation of the fixed point 
of the temporal and the W-interval consistency test at each node of the search tree 
would be too time-consuming. In addition, the tests could reveal that a restriction 
of the consistency tests to enumeration nodes with a low level in the search tree 
does not improve the performance. As a consequence, for all descendants of the root 
node, we apply consistency tests that can be performed in less computing time, but 
to the expense of a lower effectiveness (i.e., decrease in the number of start times 
which can be removed). The first of these consistency tests, which is called tempo-
ral-bound consistency test, eliminates for each activity i ∈ V  all start times from Wi 
that are lower than ESi(W) or greater than LSi(W).

The second test, called resource-bound consistency test, can be seen as a simpli-
fied version of the W-interval consistency test that skips the temporal constraints 
between the activities. The condition and reduction rule of the resource-bound con-
sistency test are given by

with rc,min

jk
(W) ∶= min{rc

jk
(�) | � ∈ Wj} and Ri ∶= {k ∈ R | rd

ik
> 0}.

For the remainder of this section, it should be noted that all described consistency 
tests take the constraint Sn+1 < UB into account if they are applied in the course of the 
branch-and-bound algorithm, where UB equals the project duration of the best found 
solution or d̄ + 1 if no feasible solution has been found yet.

The branch-and-bound procedure is outlined in Algorithm 2. First, the preprocessing 
step is performed on the start time restriction W of the root node. Afterwards, given 
ST (W) ≠ � , which means that ST (W) could still contain some feasible solution, 
stack � is initialized and the upper bound UB on the shortest project duration is set to 
UB ∶= d̄ + 1 . In contrast to the enumeration scheme in Sect. 4, each node is represented 
by a triple (W, S, LB) , which stores in addition the unique minimal point S of ST (W) 
and the lower bound LB on the shortest project duration which is given by LB ∶= Sn+1 . 
In accordance with the SPS as described before, in each iteration of Algorithm 2 some 
node (W, S, LB) is removed from set � and it is checked by LB < UB if its feasible 
region could contain a feasible solution with a lower project duration than UB . If this is 
the case, either the consistency tests from set � T or � B are applied on W, where � T con-
tains the temporal and the resource-bound consistency test, and � B the temporal-bound 
and the resource-bound consistency test. In Sect. 6, it is shown that the right choice to 
use set � T or � B depends on whether instances with general temporal or classical prec-
edence constraints are considered. Given SUB

T
(W) ∶= {S ∈ ST (W) | Sn+1 < UB} ≠ � 

after the calculation of the fixed point, either of set � T or � B , schedule S is updated by 
S ∶= minST (W) if at least one possible start time of an activity has been removed. Since 
the minimal point of the feasible region S could be changed after the application of the 

∃k ∈ R ∶ rc
ik
(t) +

∑

j∈Vk⧵{i}

r
c,min

ijkt
(W, �D, �D) > Rk ⇒ Wi ∶= Wi⧵{t}.

t < ESi(W) ∨ t > LSi(W) ⇒ Wi ∶= Wi⧵{t}

∃k ∈ Ri ∶ rc
ik
(t) +

∑

j∈Vk⧵{i}

r
c,min

jk
(W) > Rk ⇒ Wi ∶= Wi⧵{t},
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consistency tests, the resource-feasibility of S is checked, where in case S ∈ SR the new 
best solution is stored by S∗ ∶= S and the upper bound on the shortest project duration 
UB is set to S∗

n+1
 . Noticing that the resource-bound consistency test is always assumed 

to be applied, the condition ∄k ∈ R ∶ rc
k
(W) > Rk (see Algorithm 1) is assured for any 

node with S ∉ SR . Therefore, the existence of at least one pair (k, i) ∈ R
c(S) × Vk for 

any conflict resources k with ru
ik
(Si) > ru

ik
(W) , which is selected in accordance with the 

decomposition strategy, is guaranteed as well. The decomposition procedure is equiva-
lent to Algorithm 1. While descendant node W ′ is always put on stack � , node W ′′ could 
represent a leaf of the search tree if SUB

T
(W ��) = � . If this is not the case, the minimal 

point S′′ of ST (W
��) is calculated and its resource-feasibility is checked. Given S�� ∈ SR , 

S∗ and UB are updated, while otherwise node (W ��, S��, LB��) with LB�� ∶= S��
n+1

 is put on 
stack � to be explored in further iterations. After all nodes of the search tree have been 
explored, i.e., � = � , the branch-and-bound algorithm either returns an optimal sched-
ule S∗ or shows that the considered instance is unsolvable ( S = � ) with UB = d̄ + 1.
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6 � Performance analysis

In this section, we investigate the performance of our exact solution approach. For 
this, we present a comparison with all available branch-and-bound algorithms (BnB) 
and state-of-the-art heuristics from the literature that are concerned with partially 
renewable resources. The performance evaluation is based on different benchmark 
sets that cover instances with general temporal constraints (RCPSP/max-� ) and clas-
sical precedence constraints (RCPSP/� ). At the end of this section, in order to pro-
vide a starting point for the development of solution procedures, which are able to 
solve instances with renewable and partially renewable resources, we investigate to 
what extent our new BnB is able to solve instances with renewable resources.

The branch-and-bound algorithms, which are considered in this section, have all 
been coded in C++ and were compiled with the 64-bit Visual Studio 2017 C++-
compiler. The computational experiments have been conducted on a single thread of 
an Intel Core i7-8700 CPU with 3.2 GHz and 64 GB RAM under Windows 10.

6.1 � Comparison with branch‑and‑bound procedures

The settings of our BnB for the experimental performance analysis have been deter-
mined by preliminary computational tests and are given as follows. For the SPS, a 
time span of 5 s is used, consistency tests from set � T ( � B ) are applied for instances 
with general temporal (precedence) constraints, and the RCO (RCR) rule is chosen 
for instances with at most (more than) 15 real activities.

6.1.1 � General temporal constraints

In a first step, we evaluate the performance of our BnB on benchmark set UBO� , 
which has been generated by Watermeyer and Zimmermann (2020a) and provides to 
the best of our knowledge the only test instances for RCPSP/max-� . The instances of 
UBO� were generated by a procedure that is described in Schirmer (1999, Sect. 10) 
based on instances of test set UBO, which has been generated by ProGen/max (see 
Schwindt 1998a; Kolisch et al. 1999). For details, we refer the reader to Watermeyer 
and Zimmermann (2020a). Test set UBO� , which is accessible online1, comprises 
729 instances with n = 10, 20, 50, 100, 200 real activities, respectively, all of them 
with 30 partially renewable resources.

In what follows, we compare our exact solution procedure (BB1) with all avail-
able BnB for RCPSP/max-� that are, respectively, given by a constructive (BB2) 
and a relaxation-based approach (BB3) in Watermeyer and Zimmermann (2020b, 
2020a). It should be noted that in Watermeyer and Zimmermann (2020a), BB3 has 
already been shown to outperform the mixed-integer linear programming solver 
IBM CPLEX based on a binary linear program. Table 3 shows the performance of 
all BnB that have been conducted with a time limit of 300 s on each test set UBOn� 

1  https://​www.​wiwi.​tu-​claus​thal.​de/​abtei​lungen/​betri​ebswi​rtsch​aftsl​ehre-​und-​unter​nehme​nsfor​schung/​
forsc​hung/​bench​mark-​insta​nces.

https://www.wiwi.tu-clausthal.de/abteilungen/betriebswirtschaftslehre-und-unternehmensforschung/forschung/benchmark-instances
https://www.wiwi.tu-clausthal.de/abteilungen/betriebswirtschaftslehre-und-unternehmensforschung/forschung/benchmark-instances
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with n = 10, 20, 50, 100, 200 real activities. The results for BB2 and BB3 are taken 
from Watermeyer and Zimmermann (2020b, 2020a), noticing that all experiments 
have been conducted under the same conditions. The settings for BB2 and BB3 
were both determined by preliminary computational tests dependent on the instance 
size. In fact, both BnB have been conducted with a different setting on each test set 
UBOn� (see Watermeyer and Zimmermann 2020a, b).

The third column of Table 3 provides for each test set UBOn� the number of 
instances for which the earliest schedule ES is not optimal (#nTriv), so-called 
nontrivial instances. In the remainder of this section, we restrict all our inves-
tigations to nontrivial instances only, regarding that each trivial instance can 
efficiently be solved to optimality. The following columns list the number of 
instances for which an optimal solution is found and verified (#opt), a feasible 
solution is detected (#feas), the unsolvability is shown (#uns), or the solvability 
status remains unknown (#unk). The last columns of Table  3 display the aver-
age computing time ∅cpu , the average percentage deviation �lb of upper bound UB 
from ESn+1 , and the average relative gap �gap between UB and the best obtained 
lower bound LB on the shortest project duration by the BnB in relation to UB . For 
comparison purposes, the average values ∅cpu , �lb , and �gap are given with respect 
to the number of all nontrivial instances, where the percentage deviation of UB 
from ESn+1 and the relative gap are defined by zero for all instances that have 
been proven to be unsolvable. Thereby, it should be noted that for all instances 
with unknown solvability status UB = d̄ + 1 is assumed (initialization step).

As it can be seen from Table 3, BB1 dominates both other exact solution pro-
cedures over the whole benchmark set UBO� . While BB1 solves UBO10� faster 
than BB2 and BB3 and shows slightly better results for UBO20� , BB1 obtains 
superior results for all greater instances. However, it should be noted that BB2 

Table 3   Performance on benchmark set UBO� (300 s)

#nTriv #opt #feas #uns #unk ∅cpu (s) �lb (%) �gap (%)

UBO10�
BB1 534 534 159 0 0.014 53.43 0.00
BB2 693 534 534 159 0 0.065 53.43 0.00
BB3 534 534 159 0 0.032 53.43 0.00

UBO20�
BB1 542 581 40 0 25.487 63.99 2.40
BB2 621 537 581 40 0 28.086 64.67 2.27
BB3 500 578 40 3 46.149 65.09 4.57

UBO50�
BB1 238 496 6 25 167.681 83.76 17.78
BB2 527 183 491 5 31 198.016 88.16 20.00
BB3 145 486 3 38 217.958 95.49 23.12

UBO100�
BB1 134 473 0 11 222.766 156.29 25.27
BB2 484 85 472 0 12 249.827 168.68 29.11
BB3 79 465 0 19 254.409 174.30 30.90

UBO200�
BB1 120 466 0 0 227.033 200.57 28.46
BB2 466 93 446 0 20 244.808 226.70 33.57
BB3 79 466 0 0 253.934 224.03 34.49
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determines a lower average relative gap �gap than BB1 for test set UBO20� , 
where this advantage of BB2 is only given for UBO20� . Moreover, the results in 
Table 3 reveal a further advantage of BB1. While the settings of BB2 and BB3 
are chosen with respect to the instance size, which has been shown to be decisive 
for the performance of both solution procedures, the settings of BB1 are only 
adapted for UBO10� to obtain lower computing times.

In order to investigate if the BnB have different strengths regarding the genera-
tion parameters of the test instances, Table 4 gives the number of instances for 
which at least one of the BnB could determine and verify an optimal solution 
(#∪

opt
 ), was able to find a feasible solution (#∪

feas
 ), or has proven its unsolvability 

(#∪
uns

).
Taking Table 3 into account, Table 4 reveals that BB1 determines the solvabil-

ity status for each instance that could be solved to feasibility or has been shown to 
be unsolvable by at least one of the other BnB. Consequently, BB1 dominates both 
other solution procedures regarding the ability to determine the solvability status 
over all instances of benchmark set UBO� . Furthermore, Table 4 shows that there is 
a small proportion of instances that were solved to optimality by BB2 or BB3 only. A 
closer look on the results reveals that for all these instances, except for one instance 
of test set UBO50� , only BB2 was able to find and verify an optimal solution. The 

Table 4   Results over all BnB 
(300 s)

instance set #∪
opt

#∪
feas

#∪
uns

UBO20� 549 581 40
UBO50� 241 496 6
UBO100� 135 473 0
UBO200� 121 466 0

Table 5   Impact of components on the performance for the RCR rule (UBO50� , 300 s)

#opt #feas #uns #unk ∅cpu (s) �lb (%) �gap (%)

BnB (basic version) 212 495 5 27 182.530 89.03 29.25
+SPS 221 494 5 28 177.947 85.16 21.38
+Consistency tests 238 496 6 25 167.681 83.76 17.78

Table 6   Impact of components on the performance for the RCO rule (UBO50� , 300 s)

#opt #feas #uns #unk ∅cpu (s) �lb (%) �gap (%)

BnB (basic version) 147 491 3 33 219.124 94.25 35.55
+SPS 160 494 3 30 211.817 88.12 26.37
+Consistency tests 202 494 5 28 187.724 85.06 19.16
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advantage of the construction-based procedure BB2 is given for instances with a low 
cardinality of the period sets �k and a high number of resources that are demanded 
by each real activity on average. In contrast, an increasing advantage of BB1 in 
comparison with both other solution procedures over all test sets can especially be 
observed if the cardinality of the period sets �k is getting greater and the number of 
resources that are demanded by each real activity on average is decreasing.

Next, we investigate to what extend the strategy to construct the search tree and 
the applied consistency tests affect the performance of BB1. Table 5 shows the per-
formance of BB1 on test set UBO50� with a time limit of 300 s, where the RCR rule 
is applied for the decomposition. The first line of Table 5 shows the performance 
of the basic version of BB1, i.e., BB1 is conducted with the traversal strategy DFS 
without any consistency test. The following lines provide the results if the stated 
component is additionally applied for BB1. To illustrate the impact of the selected 
decomposition strategy on the performance, Table  6 shows the results for BB1 if 
the RCO rule is applied instead. Tables 5 and 6 reveal that the performance of BB1 
strongly depends on the selected decomposition strategy, where the improvement of 
the performance by the components is also strongly influenced by the decomposition 
strategy. In conclusion, while all components of BB1 are able to improve the perfor-
mance, the decomposition strategy can be identified to be most decisive. It is also 
worth mentioning that already the basic version of BB1 (with the RCR rule) is able 
to determine the solvability status for more instances than both other BnB and can 
solve more instances as well.

6.1.2 � Precedence constraints

In this section, we investigate the performance of BB1 on instances of the RCPSP/� 
or rather on instances with classical precedence constraints. In order to compare 
BB1 with all available BnB for RCPSP/� , we additionally consider the only BnB 
for RCPSP/� (BB4), which is discussed in Böttcher et  al. (1999). The results for 
BB2, BB3, and BB4 are taken from Watermeyer and Zimmermann (2020b), where 
it should be noted that a reimplemented version of BB4 has been used for the com-
putational experiments. BB2 and BB3 have been conducted with the settings for 
UBO20� or UBO50� , while BB4 was applied with both feasibility bounds from 
Böttcher et al. (1999).

Table 7 shows the performance of all BnB that are conducted with a time limit 
of 300 s on the Böttcher benchmark set, which has been provided by the authors of 
Böttcher et al. (1999) for the evaluation of heuristics in Alvarez-Valdes et al. (2006, 
2008). The benchmark set comprises the test sets P10� , P15� , P20� , P25� , and 
P30� with 10, 15, 20, 25, and 30 real activities, respectively, all of them with 30 
partially renewable resources. While P10� covers 2160 instances, all other test sets 
contain 250 instances, respectively. As it can be seen from Table 7, BB1 dominates 
all other BnB over all test sets of the Böttcher benchmark set, where BB1 solves or 
determines the solvability status for each test instance that is solved or whose solv-
ability status is determined by at least one of the other BnB. Furthermore, the results 
of the analysis reveal that all the instances that could not be solved to optimality 
or for which the unsolvability could not be shown by BB1, BB2, or BB3 were all 
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created with the same generation parameter setting that is denoted by “cell 25” in 
Böttcher et al. (1999, Table 8). In fact, the test sets P20� , P25� , and P30� contain 
only ten instances that are challenging for BB1, BB2, and BB3. These instances are 
specified by a great number of demanded resources by each real activity on average, 
a low scarcity of the resources, and a high cardinality of the sets �k , where not all 
periods in �k are consecutive.

The second benchmark set comprises the test sets J10� , J20� , J30� , J40� , and 
J60� , each containing 960 instances with 30 partially renewable resources and 10, 
20, 30, 40, and 60 real activities, respectively. All instances of the benchmark set 
were generated by the procedure described in Schirmer (1999, Sect. 10) as a part of 
the instance generator ProGen/� x (Drexl et al. 2000). The test sets J10� , J20� , J30� , 
and J40� have been generated by Schirmer (1999) and were later complemented by 
test set J60� that has been generated in Alvarez-Valdes et al. (2006, 2008) for the 
evaluation of heuristics for the RCPSP/� . It should be noted that nine instances of 
J10� , whose unsolvability has been shown in Schirmer (1999, Sect. 10.4), are not 
part of the performance analysis since these instances could not be provided to us. 
Table  8 shows the performance on the so-called Schirmer-Alvarez-Valdes (SAV) 
benchmark set, where all BnB have been conducted with a time limit of 300 s. It 
can be observed that BB1 significantly dominates all other BnB over all instances 
of the benchmark set. In fact, BB1 can considerably increase the number of optimal 
solved instances for the test sets J30� , J40� , and J60� . Furthermore, BB1 solves all 

Table 7   Performance on the Böttcher benchmark set (300 s)

#nTriv #opt #feas #uns #unk ∅cpu (s) �lb (%) �gap (%)

P10�

BB1

2108

827 827 1281 0 0.003 11.20 0.00
BB2 827 827 1281 0 0.055 11.20 0.00
BB3 827 827 1281 0 0.007 11.20 0.00
BB4 827 827 1281 0 0.023 11.20 0.00

P15�

BB1

204

188 188    16 0 0.117 37.23 0.00
BB2 188 188    16 0 1.704 37.23 0.00
BB3 188 188    16 0 1.948 37.23 0.00
BB4 181 181    16 7 12.717 38.19 1.47

P20�

BB1

165

144 145    17 3 10.143 50.60 1.05
BB2 139 142    17 6 16.464 52.69 2.40
BB3 139 142    17 6 16.920 52.66 2.40
BB4 136 139    16 10 27.124 54.71 4.38

P25�

BB1

136

113 120    14 2 19.949 67.15 2.79
BB2 112 116    14 6 22.155 69.31 3.56
BB3 112 115 14 7 22.074 68.90 3.36
BB4 105 111 11 14 46.535 74.32 7.90

P30�

BB1

122

104 108 8 6 24.632 90.05 4.35
BB2 104 104 8 10 24.655 91.99 4.71
BB3 104 104 8 10 24.615 91.99 4.74
BB4   98 104 3 15 53.327 98.53 9.90
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instances of J20� , provides the lowest computing times for test set J10� , and solves 
all instances for which at least one of the other BnB could find and verify an optimal 
solution. A closer look on the generation parameters for the test instances reveals 
that the increasing advantage of BB1 compared to all other BnB can especially 
be observed if the cardinality of the period sets �k and the number of demanded 
resources by each real activity on average are getting greater and the number of 
intervals, on which the periods in �k are consecutive without any interruption, is 
decreasing.

In order to evaluate the performance of the BnB for greater instances with prec-
edence constraints (RCPSP/� ), we have extended the SAV benchmark set by creat-
ing instances with 100 and 200 real activities and 30 partially renewable resources, 
denoted by J100� and J200� in the following. For the generation of the project 
network and the activity durations, we have used the instance generator ProGen/
max (cf. Schwindt 1998a) and applied the procedure in Schirmer (1999, Sect. 10) 
to create the partially renewable resources. At first, we created test instances with 
the same settings as for the SAV benchmark set, which result in test sets with only 
trivial instances. It should be noted that although a small number of nontrivial 
instances was to be expected, the strong increase in the number of trivial instances 
rather suggests that ProGen/max in combination with the reimplemented procedure 
of Schirmer (1999) tend to create less restrictive instances than the original proce-
dure. As a consequence, we changed the values of the generation parameters, which 

Table 8   Performance on the SAV benchmark set (300 s)

#nTriv #opt #feas #uns #unk ∅cpu (s) �lb (%) �gap (%)

J10�

BB1

808

803 803 5 0 0.047 10.37 0.00
BB2 803 803 5 0 0.063 10.37 0.00
BB3 803 803 5 0 0.060 10.37 0.00
BB4 802 802 5 1 0.541 10.54 0.07

J20�

BB1

565

565 565 0 0 0.121 5.19 0.00
BB2 563 565 0 0 1.965 5.22 0.07
BB3 564 565 0 0 2.313 5.22 0.05
BB4 509 561 0 4 35.533 7.93 3.25

J30�

BB1

453

452 453 0 0 1.388 3.75 0.04
BB2 431 453 0 0 17.603 4.37 0.86
BB3 427 453 0 0 20.723 4.18 0.78
BB4 345 435 0 18 75.767 14.18 7.50

J40�

BB1

386

378 386 0 0 8.354 4.33 0.13
BB2 347 386 0 0 35.153 6.06 1.95
BB3 341 386 0 0 38.599 6.07 1.97
BB4 261 363 0 23 100.109 21.24 10.63

J60�

BB1

346

314 346 0 0 31.032 6.05 1.32
BB2 269 346 0 0 73.353 8.91 3.91
BB3 268 346 0 0 69.313 14.06 5.90
BB4 186 309 0 37 140.073 40.50 17.37
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are given by the order strength (OS), the resource factor (RF), the resource strength 
(RS), the horizon factor (HF), the cardinality factor (CF) and the interval factor 
(IF). For a detailed description of the generation parameters, we refer the reader to 
Schirmer (1999, Sect. 10). In a first step, we assigned the values {0.3, 0.7} to each 
parameter and generated for each combination of the parameter values ten instances 
with 100 real activities (640 instances). Since this test set contained more than 50% 
trivial or unsolvable instances, we analyzed the parameters with the greatest impact 
on the number of trivial and unsolvable instances that were given by CF and RS. In 
order to determine value combinations for CF and RS with a lower proportion of 
trivial and unsolvable instances, we generated a new test set with 100 real activi-
ties for which we chose the values {0.1, 0.3, 0.5, 0.7, 0.9} for CF and RS, respec-
tively, with the same settings for all other parameters as before (4000 instances). 
After that, we determined all parameter value combinations of CF and RS for which 
the proportion of trivial instances was lower than 50% and for which at least 60% 
of all instances (trivial instances included) could be solved to feasibility by BB1, 
BB2, or BB3 within 300 s. The only parameter value combination, which satisfied 
these conditions, was given by CF = 0.7 and RS = 0.7 that was finally chosen for 
the generation of the test sets J100� and J200� . For all other generation parame-
ters, the values OS ∈ {0.3, 0.7} , HF ∈ {0.3, 0.5, 0.7, 0.9} , RF ∈ {0.1, 0.3, 0.5, 0.7} 
and IF ∈ {0.1, 0.5, 0.9} were selected. The test sets J100� and J200� are available 
online.2

Table 9 shows for all BnB the performance on the test sets J100� and J200� with 
a time limit of 300 s. For both BB2 and BB3, we chose the settings that have been 
used for the test set UBO100� (cf. Watermeyer and Zimmermann 2020a, b) since the 
settings for J60� result in more than 50% of the nontrivial instances of test set J200� 
for which the solvability status could not be determined. It should be noted that this 
observation demonstrates once more the advantage of BB1 that the setting of BB1 
does not have to be adjusted dependent on the instance size, which has been shown to 
be decisive for BB2 and BB3 (see Watermeyer and Zimmermann 2020a, b).

Table 9   Performance on test sets J100� and J200� (300 s)

#nTriv #opt #feas #uns #unk ∅cpu (s) �lb (%) �gap (%)

 J100�

BB1

 716

542 685 4 27 82.476 4.41 2.76
BB2 357 666 4 46 157.428 9.18 6.58
BB3 311 659 4 53 178.982 15.04 9.96
BB4 41 57 4 655 281.624 59.96 33.48

 J200�

BB1

 639

510 623 0 16 69.686 2.66   2.00
BB2 320 610 0 29 158.335 7.40 5.72
BB3 307 601 0   38 168.371 11.52 8.04
BB4   33 42 0 597 285.030 59.81 33.73

2  https://​www.​wiwi.​tu-​claus​thal.​de/​abtei​lungen/​betri​ebswi​rtsch​aftsl​ehre-​und-​unter​nehme​nsfor​schung/​
forsc​hung/​bench​mark-​insta​nces.

https://www.wiwi.tu-clausthal.de/abteilungen/betriebswirtschaftslehre-und-unternehmensforschung/forschung/benchmark-instances
https://www.wiwi.tu-clausthal.de/abteilungen/betriebswirtschaftslehre-und-unternehmensforschung/forschung/benchmark-instances
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From Table 9, it can be seen that the dominance of BB1 over all other BnB is get-
ting even greater if the size of the test instances increases, where the main reason for 
this may be assumed to be given by the more restrictive resource constraints com-
pared to the SAV benchmark set. As for all other test sets, BB1 determines for J100� 
and J200� the solvability status for each instance that could be solved to feasibility 
or has been shown to be unsolvable by at least one of the other BnB. Only for J100� , 
BB2 was able to solve one further instance to optimality. Interestingly, in contrast 
to the SAV benchmark set, the advantage of BB1 to all other BnB tend to increase 
if the number of demanded resources by each real activity on average is getting 
lower, while the observation remains, that the decrease in the number of intervals, 
on which the periods in �k are consecutive without any interruption, result in an 
increasing better performance of BB1.

6.2 � Comparison with state‑of‑the‑art heuristics

Based on the promising results, the question arises if BB1 can also compete with 
approximation methods. In the following, we compare our branch-and-bound algo-
rithm BB1 with the state-of-the-art heuristics for the RCPSP/� that are given by a 
scatter search (SS) and a GRASP algorithm (GR) developed by Alvarez-Valdes et al. 
(2006, 2008). It should be noted that the following investigations are restricted to 
instances with precedence constraints, since for the RCPSP/max-� no approximation 
method is available.

Table 10   Comparison of BB1 with heuristics on the SAV benchmark set

#inst Time limit Heuristics

10 s 30 s 60 s 300 s SS GR

J10�
#opt
≠

0 – – – 0 1

�opt 803 0.000% – – – 0.00% 0.00%
∅cpu 0.054 s – – – 2.5 s 0.3 s

J20�
#opt
≠

0 0 0 – 5 19

�opt 565 0.000% 0.000% 0.000% – 0.04% 0.12%
∅cpu 0.086 s 0.127 s 0.139 s – 17.0 s 1.2 s

J30�
#opt
≠

3 1 1 1 21∗ 33∗

�opt 453 0.046% 0.010% 0.002% 0.002% 0.10%∗ 0.21%∗

∅cpu 0.327 s 0.600 s 0.903 s 1.586 s 28.8 s 3.7 s

J40�
#opt
≠

14 10 6 4 31∗ 54∗

�opt 386 0.109% 0.058% 0.030% 0.022% 0.25%∗ 0.59%∗

∅cpu 0.711 s 1.754 s 2.899 s 9.548 s 51.1 s 7.2 s

J60�
#opt
≠

41 37 33 28 67 80

�opt 346 0.969% 0.553% 0.489% 0.288% 0.71% 1.16%
∅cpu 1.748 s 4.676 s 8.573 s 35.465 s 175.9 s 13.4 s
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Table  10 shows the performance of BB1, SS, and GR on the SAV benchmark 
set, where BB1 has been conducted with different time limits. The results of SS and 
GR are taken from Table 11.7 in Alvarez-Valdes et al. (2015). For a better overview, 
we only compare BB1 with the best performing variants of the two heuristics with 
respect to their solution qualities, where it should be noted that the other variants of 
SS and GR that are reported in Alvarez-Valdes et al. (2015) need lower computing 
times. At the end of this section, we will come back to this topic to take all variants 
into consideration.

Table 10 gives for each test set the number of instances for which the respective 
solution procedure could not determine the optimal solution (#opt

≠
 ), the average per-

centage deviation from the optimal solution ( �opt ), and the average computing time 
( ∅cpu ) over all nontrivial and solvable instances (#inst). The symbol “–” indicates 
that BB1 has already proven the optimality for all instances of the test set with a 
lower time limit that is given in the table. To determine the optimal solutions for all 
instances, we have solved a time-indexed formulation for the RCPSP/� based on the 
binary linear program in Böttcher et  al. (1999) with the mixed-integer linear pro-
gramming solver IBM CPLEX (12.8.0) using multithreading. While we were able to 
solve all instances to optimality, the results for SS and GR in Table 10, marked with 
“ ∗ ”, are possibly not determined in relation to the optimal solutions, since Alvarez-
Valdes et al. (2015) could not verify the optimality of the solutions for one instance 
of J30� and five instances of J40� . The solution procedures SS and GR were coded 
in C++ and conducted on a Pentium IV processor with 2.8 GHz. In order to ensure a 
fair comparison between the solution procedures, we multiplied the computing times 
of BB1 by 8∕7 corresponding to the clock pulse ration of the different workstations 
( 3200∕2800 = 8∕7).

The results in Table 10 show that BB1 determines with a time limit of 10 s more 
optimal solutions than SS and GR and obtains lower average percentage deviations 
�opt for all test sets with less than 60 real activities, while BB1 outperforms both 
heuristics as well on test set J60� with a time limit of 30 s. It is especially worth 
mentioning that BB1 can achieve much better solution qualities than SS within a 
significant lower computing time. Moreover, it should be emphasized that all other 
variants of SS and GR, which are not part of Table 10, are clearly outperformed by 
BB1 as well. For BB2 and BB3, further investigations could show that they are only 
able to achieve better results than SS and GR for test sets J10� and J20� , while for 
all greater instances already GR outperforms the solution qualities of both BnB with 
significant lower computing times.

The comparison of BB1 with SS and GR for the Böttcher benchmark set has 
shown that the preprocessing procedure that is used for both heuristics is already 
able to determine more feasible solutions for the test sets P20� , P25� , and P30� . 
As a consequence, it would be interesting for future investigations to use the prepro
cessing procedure for BB1 as well, to be able to compare the solutions with SS and 
GR.

It should be noted that the results in this section indicate that serial schedule 
generation procedures, on which SS and GR are based on, seem not to be competi-
tive with the relaxation-based enumeration scheme of our BnB. As a consequence, 
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generation schemes for the project duration problem with partially renew-
able resources should focus in the future on our new partition-based enumeration 
approach.

6.3 � Outlook

The concept of partially renewable resources is well known to generalize classi-
cal renewable resources (cf. Böttcher et al. 1999). However, the rather theoretical 
characteristic of this observation has not been emphasized in the literature so far. 
As a consequence, it might seem to be promising to apply solution procedures 
for partially renewable resources for instances with classical renewable resources. 
In fact, this approach can only be expected to be reasonable for small instances, 
since the procedure to transform the renewable resources to partially renewable 
resources (cf. Böttcher et  al. 1999) leads to a pseudo-polynomial growth in the 
instance size.

Despite the stated restriction, nevertheless, it seems to be interesting to inves-
tigate the performance of BB1 on small instances with renewable resources. Fur-
thermore, the question should be answered, up to which instance size BB1 is able 
to obtain a reasonable performance. For this, we have tested BB1 on test instances 
of the well known benchmark sets PAT (cf. Patterson 1984) and KSD (cf. Kolisch 
et  al. 1995) for the RCPSP and test sets UBO (cf. Franck et  al. 2001) and SM 
(cf. Kolisch et  al. 1999) for the RCPSP/max. Additionally, we have considered 
the new test set CV, which has been generated by Coelho and Vanhoucke (2020) 
to provide intractable instances for the RCPSP. In fact, it has been shown that 
although each test instance of CV contains only up to 30 real activities, different 

Table 11   Performance of BB1 on instances with renewable resources (300 s)

#inst #opt #feas #uns #unk ∅cpu (s) �lb (%) �gap (%)

PAT 110 110 110 0 0 1.633 18.04 0.00
KSD30 480 465 480 0   0 14.651 13.41   1.02
KSD60 480 382 480 0   0 67.716 14.01 6.32
KSD90 480 357 480 0 0 84.235 20.64 9.11
KSD120 600 161 538 0 62 229.629 127.50 30.01
CV 623 37 623   0 0 291.387 146.32 43.93
UBO10 90 73 73 17 0 0.070 18.38 0.00
UBO20 90 70 70 19   1 6.565 23.19 0.74
UBO50 90 49 73 14 3 113.919 44.55 12.04
UBO100 90 25 48 6 36 223.410 154.44 37.80
UBO200 90 6   11 3 76 283.052 336.64 65.90
SM10 270 187 187 83 0 0.119 21.93 0.00
SM20 270 179 184 85 1 12.340 17.55 0.95
SM30 270 162 183 83 4 36.732 25.77 4.39
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variants of a BnB and the solver IBM CPLEX based on a time-indexed formula-
tion were not able to solve any of the test instances after 20 h runs.

For the experimental study, BB1 has been conducted with the delayed-start-
time rule (DST) (cf. Watermeyer and Zimmermann 2020a) to choose the con-
flict resource k ∈ R

c(S) and the activity i ∈ Vk in each decomposition step, which 
has been shown to be promising for renewable resources in preliminary com-
putational tests. All other settings of BB1 were selected in accordance with the 
RCPSP/�-instances.

Table 11 shows the results of the performance analysis over all instances (#inst, 
trivial instances included) for a maximum run time of 300 s, while Table 12 pro-
vides further investigations on benchmark set CV for greater time limits ( tlim ) due 
to its intractability. Thereby, it should be noted that only the benchmark sets PAT 
and KSDn with n = 30, 60, 90 real activities contain trivial instances, where PAT 
covers three of them and the KSD benchmark sets 120, respectively. Table 12 gives 
in addition the mean percentage deviation of the best found project duration from 
the reported upper bound in Coelho and Vanhoucke (2020)3 ( �ub ), the number of 
instances for which a better upper bound could be detected (#ub

<
 ), or an equal upper 

bound has been determined (#ub= ).
The results of the performance analysis on the benchmark sets with less than 

100 real activities are indeed promising, where the performance on benchmark 
set CV should especially be emphasized, for which 27.93% of the instances could 
be solved to optimality after a maximum run time of 1  h and for which for five 
instances even better upper bounds could be determined. In contrast, a significant 
decrease in the performance of BB1 on instances with 100 or more real activities 
(KSD120, UBO100, UBO200) can be observed, especially with regard to the num-
ber of instances for which the solvability status could not be determined. For greater 
instances of benchmark set UBO with 500 and 1000 real activities (UBO500, 
UBO1000) BB1 could not be applied due to memory overloads. A closer look on 
the results over all instances with less than 100 real activities reveals that the scar-
city of the resources has the greatest impact on their intractability, while the perfor-
mance of BB1 is also significantly but less influenced by the average number of the 
demanded resources over all real activities.

In conclusion, our BnB provides a surprising good performance for small 
instances with renewable resources, noticing that no instance of CV has been solved 
by a specified BnB for the RCPSP within 20  h runs (cf. Coelho and Vanhoucke 

Table 12   Performance of BB1 
on benchmark set CV tlim (s) #opt ∅cpu (s) �lb (%) �gap (%) �ub (%) #ub

<
#ub
=

300 37 291.387 146.32 43.93 1.64 2 274
600 59 567.835 145.33 41.44 1.24 3 332

1200 98 1089.745 144.69 38.07 0.97 3 375
3600 174 2952.604 143.84 32.25 0.63 5 445

3  http://​solut​ionsu​pdate.​ugent.​be/​solut​ions-​update/​resul​ts.

http://solutionsupdate.ugent.be/solutions-update/results
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2020). However, the experimental performance analysis revealed that our BnB is 
rather not capable to handle test instances with 100 or more real activities, which 
can be assumed to be given by the pseudo-polynomial growth in the instance size by 
the transformation procedure between the resource types.

In our opinion, partially renewable resources should be considered as a concept 
that makes new types of restrictions amenable to project scheduling, instead of pro-
viding a general framework that release from the necessity to use the specific char-
acteristics of different resource types. For this reason, we are convinced that future 
research should focus on the development of solution procedures that combine 
methods for partially renewable and classical renewable resources in order to handle 
problems that cover both resource types. It should be noted that the combination of 
our BnB with a relaxation-based method for renewable resources as described in 
Fest et al. (1999), De Reyck and Herroelen (1998), or Schwindt (1998b) seems to be 
promising for this.

7 � Conclusions

We have devised a new enumeration approach for the resource-constrained project 
duration problem with partially renewable resources and general temporal con-
straints (RCPSP/max-� ) that is based on a stepwise decomposition of the possible 
resource consumptions by the activities of the project. To improve the performance 
of the branch-and-bound algorithm (BnB), we have integrated a traversal strategy 
and consistency tests from the literature, where the enumeration scheme could be 
identified as the most decisive part of the solution procedure. The results of a com-
prehensive experimental performance analysis on different benchmark sets could 
reveal that our exact solution procedure clearly outperforms all other BnB that are 
available in the open literature so far. Moreover, it could be shown that our BnB 
also dominates the state-of-the-art heuristics for partially renewable resources on a 
well known benchmark set. Finally, an outlook on the capability of our BnB to solve 
instances with renewable resources could demonstrate the limitation of the approach 
to represent classical renewable by partially renewable resources.

The experimental performance analysis has shown that the current state-of-the-
art heuristics for partially renewable resources are clearly outperformed by our new 
enumeration approach. Therefore, the development of approximation methods for 
the RCPSP/max-� that are based on our new enumeration scheme seems to be prom-
ising. Furthermore, future research should focus on instances that cover both classi-
cal renewable and partially renewable resources in order to reduce the gap to real-
life projects. For this, as our experimental investigations suggest, it is necessary to 
combine solution procedures for both resource types to be able to handle instances 
that are not only interesting from a theoretical point of view. We are convinced that 
our new enumeration scheme provides a promising starting point for this.

Funding  Open Access funding enabled and organized by Projekt DEAL.
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