
Vol.:(0123456789)

OR Spectrum (2021) 43:577–593
https://doi.org/10.1007/s00291-021-00626-z

1 3

ORIGINAL ARTICLE

The obnoxious facilities planar p‑median problem

Pawel Kalczynski1 · Zvi Drezner1

Received: 17 June 2020 / Accepted: 12 March 2021 / Published online: 27 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this paper, we propose the planar obnoxious facilities p-median problem. In the 
p-median problem the objective is to find p locations for facilities that minimize the 
weighted sum of distances between communities and their closest facility. In the 
obnoxious version, we add constraints that each facility must be located at least a 
certain distance from a partial set of communities because they generate nuisance 
affecting these communities. The resulting problem is extremely non-convex and 
traditional nonlinear solvers such as SNOPT are not efficient. An efficient solution 
method based on Voronoi diagrams is proposed and tested. We also constructed the 
efficient frontiers of the test problems, showing the trade-off between the required 
distance and the p-median objective, to assist the planers in making location 
decisions.

Keywords Location · Obnoxious facilities · Continuous location · Voronoi diagrams

1 Introduction

Drezner et al. (2018) proposed the single facility median problem, (the Weber prob-
lem, Weber 1909; Drezner et al. 2002; Wesolowsky 1993; Love et al. 1988), with 
a minimum distance D requirement between the facility and communities. This is 
a practical and useful model when the facility is “obnoxious” to the communities 
(e.g., landfills, noisy and polluting factories, airports), and should not be located 
near them. However, we are interested in minimizing the operating cost of such 
facilities which is modeled as the weighted sum of distances. For example, operat-
ing cost of landfills depends on the total distance traveled by the disposal trucks. 
In this paper, we investigate the multiple facility model. The unrestricted model in 
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the network or discrete space is termed the p-median model (for example, Daskin 
and Maass 2015), and in the plane, it is also called the multi-source Weber problem 
(Brimberg et al. 2000; Kuenne and Soland 1972). In this paper, we propose to add 
to the p-median model a requirement of a minimum distance D between some com-
munities and facilities.

The problem is non-convex and may have many local optima depending on the 
value of D; see Fig. 1. The feasible area for D = 0 is convex, and the feasible region 
is non-convex and shrinks as D increases. If D is quite small the feasible region is 
well connected and solving the unconstrained p-median problem may constitute a 
good starting solution for a follow-up phase incorporating the obnoxious constraints. 
When D is large, the whole convex hull of the communities becomes infeasible and 
the solution is to locate the facilities at the periphery of the infeasible region.

The most challenging problem seems to be moderate values of D. For a moderate 
value of D, the feasible region is a union of disconnected areas. If a starting solution 
includes a facility in one of these disconnected feasible areas, standard nonlinear 
procedures will not move such a facility to another feasible area. To get a “good” 
solution, the feasible areas for the facilities need to be properly selected.

The proposed model can be classified as an obnoxious facility model. Obnoxious 
location models involve locating one or more facilities as far as possible from a set 
of communities. The problem is investigated on: (i) the plane (Hansen et al. 1981; 
Goldman and Dearing 1975a, b; Shamos and Hoey 1975; Antunes et al. 2008; Eiselt 
and Marianov 2015; Drezner et al. 2019b; (ii) a network or discrete space (Church 
and Garfinkel 1978; Erkut and Neuman 1989; Church and Meadows 1979; Batta 
and Chiu 1988; (iii) location in the interior of a network (Drezner and Wesolowsky 
1996; Drezner et  al. 2009; (iv) location on the sphere (Drezner and Wesolowsky 
1983). For recent reviews of obnoxious facility location models see Church and 
Drezner (2020) and Carrizosa and Toth (2019). In most applications, the nuisance 
propagates “by air” and not along network links and thus are best modeled using 
Euclidean distances. Many other objectives such as squared Euclidean distance, 
p-center, competitive facilities locations can yield useful models by adding the mini-
mum distance requirement.

Drezner et  al. (2019b) considered the location of p obnoxious facilities in the 
plane maximizing the minimum distance between facilities and demand points. No 
consideration of providing good service by the closest facility, which is the objective 
function in this paper, is included in the Drezner et al. (2019b) model.

Fig. 1  Configuration of 100 communities for various values of D 



579

1 3

The obnoxious facilities planar p-median problem  

A related field of research is location among forbidden regions. In forbidden regions 
models, a facility is not allowed to be located in some regions in the plane. Communi-
ties may be located there and travel is allowed through such regions. Therefore, the 
distance measure is not altered. Papers that consider forbidden regions solve problems 
with convex objectives (Hamacher and Schöbel 1997; Aneja and Parlar 1994; Batta 
et al. 1989; Butt and Cavalier 1996; Katz and Cooper 1981). The optimal solution with-
out forbidden regions can be found. If it is not in a forbidden region, this is the optimal 
solution. For convex problems, it is shown that if the unconstrained solution is in a for-
bidden region, then the optimal solution is on the boundary of a forbidden region. This 
property does not necessarily hold for non-convex objectives. For example, the second-
best local optimum for the unconstrained problem may be feasible and better than all 
solutions on the boundaries of the forbidden regions.

The paper is organized as follows. In the next section, the model is formulated. In 
Sect. 3, we show how to find the feasible area and in Sect. 4 we detail the proposed 
solution algorithm. In Sect. 5, we test the solution algorithm and compare it to standard 
nonlinear solvers on a set of test problems. In Sect. 6, we find and depict the efficient 
frontier. In Sect. 7, we investigate and solve the problem in the State of Colorado. We 
conclude the paper and propose ideas for future research in Sect. 8.

2  Model formulation

Two sets of points exist in the plane. The set Nd includes points that generate demand 
wi > 0 for i ∈ Nd , and the set No includes points that the facility is obnoxious to them. 
The set of all n points is N = Nd ∪ No . It is possible that Nd = No , when all points gen-
erate demand and are also negatively affected by the facilities, or Nd ∩ No = � , and all 
possibilities in between.

A set N= Nd ∪ No of n communities located in the plane with an associated weight 
wi ≥ 0 are given. The Euclidean distance between demand point i and location Y is 
di(Y) . The required minimum distance is a given D. The problem is to find p locations 
for facilities X = {Xj = (xj, yj), 1 ≤ j ≤ p} such that:

3  Finding the feasible areas

Drezner et al. (2018) proposed the “Big Arc Small Arc” algorithm for solving the 
single facility location problem which has a convex objective function. All feasible 
arcs on the periphery of circles are found and evaluated by a global optimization 

(1)

min
X

∑
i∈Nd

wi min
1≤j≤p

�
di(Xj)

�

Subject to:

di(Xj) ≥ D for i ∈ No; 1 ≤ j ≤ p
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algorithm. Lower and upper bounds are found on each feasible arc. The upper bound 
is a feasible solution at a point on the arc. The arcs are scanned in the order of their 
lower bound. If the lower bound of an arc is smaller than the best found solution, 
the arc is divided into two arcs and the iterations continue. If the lower bound times 
1 + 𝜖 > 0 is greater than the best known solution, the arc is discarded. The iterations 
are stopped when all arcs are eliminated. This approach is similar to many global 
optimization algorithms widely used to solve non-convex location problems: Big 
Square Small Square (Hansen et al. 1981), Big Region Small Region (Hansen et al. 
1995), Big Triangle Small Triangle (Drezner and Suzuki 2004; Suzuki 2019), Big 
Cube Small Cube (Schöbel and Scholz 2010), Big Segment Small Segment (Ber-
man et al. 2011).

For a convex objective, if the optimal location of the facility is not feasible (if it is 
feasible it is optimal for the constrained problem), then the optimal solution must be 
on a feasible arc of a circle. However, for multiple facilities, this property does not 
necessarily hold because the problem is not convex. Some facilities may be located 
on feasible arcs and some may be located in “open” feasible areas. We therefore 
propose a different approach for heuristically solving the multiple facility version of 
this problem.

In order to find the distinct feasible areas, we employ the concept of the Voronoi 
diagram (Suzuki and Okabe 1995; Okabe et al. 2000; Voronoï 1908; Aurenhammer 
et  al. 2013) generated by the points in No . The plane is partitioned into triangles 
(termed Delaunay triangulation; Lee and Schachter 1980) so that the centers of the 
triangles are equidistant from the three vertices of the triangles (which belong to No ) 
and are termed Voronoi points. These Voronoi points can be found by Mathematica 
(Wolfram 2020) and other available software (Ohya et  al. 1984; Sugihara and Iri 
1992). Each point (a vertex of a triangle) is closest to a Voronoi point located at 
that triangle. There are V Voronoi points. Voronoi point Vj is at distance Dj from 
the closest community in No for j = 1,…V  . The Voronoi points can be sorted from 
the largest minimum distance down creating a list of distances D1 ≥ D2 ≥ ⋯ ≥ DV . 
Shamos and Hoey (1975) used this scheme to find the location for a facility which 
is farthest from all communities by choosing the Voronoi point with minimum dis-
tance D1 . Drezner et al. (2019b) used the list of Voronoi points to heuristically solve 
a multiple obnoxious facilities problem.

In Figs.  2, 3 and 4, the infeasible areas are depicted for the problems used in 
the computational experiments with n = 100 communities; D = 0.95 , n = 500 ; 
D = 0.42 , and n = 1000 with D = 0.3 . The feasible Voronoi points (the Voronoi 
points for which Di ≥ D ) are marked by black dots. One may have the impression 
that many feasible Voronoi points are inside the gray infeasible regions. However, 
they are located in very small feasible regions so that the white area is smaller than 
the black dot. It will be very difficult for conventional approaches to identify such 
small feasible areas without identifying the Voronoi points.

To illustrate this phenomenon, consider an equilateral triangle, whose vertices are 
communities, depicted in Fig. 5 for which the distance to the Voronoi point Di is 1.05D. 
The radii of the circles (infeasible areas) are D. The feasible area is at the center of the 
triangle outside the circles. The bottom side of the long narrow triangle is 2D sin � . The 
distance to the center of the tiny triangle (the Voronoi point) is at distance Di from the 
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Fig. 2  Infeasible areas for n = 100 , D = 0.95 , and 50 feasible Voronoi points

Fig. 3  Infeasible areas for n = 500 , D = 0.42 , and 245 feasible Voronoi points
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top vertex. Therefore, D(1 − cos �) + Di − D =
1√
3
D sin � leading to the relationship 

1√
3
sin � + cos � =

Di

D
 . Multiplying by 

√
3

2
 and solving for �:

Note that if Di >
2√
3
D the circles do not intersect.

The area of the small triangle is 
√
3D2 sin2 � . The area of the part of the circle which 

is inside the triangle (non-feasible) is D2
� − D2 sin � cos � . The area A of the feasible 

region is therefore

Assuming a small � , � ≈ sin � ≈
√
3
Di−D

D
 , and thus by approximating Eq. (2):

1

2
sin � +

√
3

2
cos � =

√
3Di

2D
→ sin

�
�

3
+ �

�
=

√
3Di

2D
→ � = arcsin

�√
3Di

2D

�
−

�

3
.

(2)

A =
√
3D2 sin2 � − 3[D2

� − D2 sin � cos �] = D2
�√

3 sin2 � − 3[� − sin � cos �]
�

=2
√
3D2 sin �

�
1

2
sin � +

√
3

2
cos �

�
− 3�D2 = 3D[Di sin � − D�] .

(3)A ≈ 3
√
3(Di − D)2.

Fig. 4  Infeasible areas for n = 1000 , D = 0.3 , and 473 feasible Voronoi points
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For example, for D = 1 Di = 1.05 , the exact area is 0.013727 and the approximated 
area is 0.012990. For D = 1 Di = 1.01 the areas are 0.000525 and 0.000520. The 
exact results were confirmed by simulating randomly generated one billion points.

The largest distance dmax between the Voronoi point and the feasible area is

For D = 0.95 and n = 100 there are 10 Voronoi points satisfying 
0.95 < Di < 0.95 × 1.05 = 0.9975 (see Table 1). These points are at most at distance 
0.05 from the boundary of their feasible area and clearly appear as black points sur-
rounded by a gray area in Fig. 2. Recall that the square size is 10 by 10, and such a 
distance is 1

200
 of the square’s side. The side of the square in the figure is about 4 in. 

and thus this distance is 0.02 in. or 0.5 mm.

4  The proposed solution algorithm

We propose to find all the Voronoi points, identify which ones are feasible, find the p 
feasible Voronoi points that yield the best value of the objective function, and use these 
points as a starting solution for nonlinear solvers.

All the Voronoi points for which Di ≥ D form a region of feasible area (if Di = D 
the region is one point). Actually, if D > D1 , the whole convex hull of points is infeasi-
ble. Suppose that the first m ≥ p sorted Voronoi points satisfy Di ≥ D . We propose to 
find the p-median solution for facilities located at p of these m Voronoi points and use it 
as a starting (feasible) solution for nonlinear optimization procedures. This is a discrete 
p-median problem that can be solved by the following Mixed Binary Linear Program 
(MBLP) or Binary Linear Program (BLP) (Daskin 1995; ReVelle and Swain 1970).

Let dij be the distance between community i and potential location (Voronoi point) j. 
We minimize the value of the objective function by the best selection of the set P of the 
p out of the m potential locations. The standard formulation for the discrete p-median 
problem is:

Let xj ∈ {0, 1} be a binary variable. xj = 1 if location j is selected and otherwise 
not selected. For MBLP 0 ≤ yij ≤ 1 are continuous variables for i ∈ Nd , j = 1,… ,m . 
For BLP yij ∈ {0, 1} . The MBLP/BLP optimization problem is:

(4)dmax =
D√
3
sin � ≈ Di − D.

(5)min
P

{
∑

i∈Nd

wi min
j∈P

{dij}

}
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Note that this formulation can be used for any distance measure. In the solution 
yij ∈ {0, 1} because for each point yij = 1 for the closest facility and all others are 

(6)

min

�
∑
i∈Nd

m∑
j=1

�
widij

�
yij

�

subject to:
m∑
j=1

xj = p

yij ≤ xj for i ∈ Nd; j = 1,…m
m∑
j=1

yij = 1 for i ∈ Nd

xj ∈ {0, 1}

For MBLP: yij ≥ 0

For BLP: yij ∈ {0, 1}

Table 1  The first 50 Voronoi points ( n = 100)

i x
i

y
i

D
i

i x
i

y
i

D
i

1 0.00000 3.61453 1.66317 26 0.00000 6.55464 1.06636
2 0.00000 4.20781 1.58368 27 1.48262 3.06965 1.06367
3 10.00000 2.57239 1.54282 28 2.81536 5.46099 1.04744
4 8.02745 10.00000 1.51738 29 7.49008 9.35686 1.04029
5 4.40903 7.87825 1.50887 30 8.72091 2.38579 1.03312
6 10.00000 2.61785 1.50845 31 1.52648 3.10114 1.02905
7 8.01192 9.83008 1.48404 32 6.58788 5.10980 1.02189
8 0.57979 3.21438 1.35640 33 6.57244 5.02285 1.01770
9 4.38806 8.52444 1.34780 34 1.22238 10.00000 1.01729
10 4.38830 8.52487 1.34754 35 2.19860 7.28931 1.01632
11 2.88799 6.75677 1.33824 36 5.61395 2.90214 1.01100
12 4.09488 7.69328 1.33587 37 10.00000 1.21758 1.00960
13 5.11154 7.42616 1.32914 38 2.85770 5.42785 1.00813
14 2.85594 6.33755 1.28668 39 2.48189 10.00000 1.00538
15 7.75331 9.43913 1.26415 40 2.86769 5.42369 0.99864
16 2.76281 6.11411 1.24170 41 9.04853 6.86445 0.99270
17 5.17172 7.25598 1.24036 42 9.55826 6.84567 0.99187
18 9.03540 2.57075 1.17843 43 2.17176 7.35019 0.98631
19 3.68326 7.33910 1.14609 44 0.78639 4.70746 0.98361
20 8.77401 2.50362 1.13482 45 5.89198 2.55987 0.96952
21 0.00000 10.00000 1.11488 46 7.71137 7.91767 0.96482
22 3.65520 0.00000 1.10668 47 5.63950 2.97363 0.96324
23 2.96654 0.00000 1.10096 48 1.87471 8.25026 0.95853
24 0.00000 8.28398 1.09517 49 7.82576 0.00000 0.95394
25 10.00000 6.70342 1.08818 50 4.69156 2.92776 0.95169
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zeros. If there is a tie in the minimum distance, yij can be non-integer but the objec-
tive function is the same as the integer solution. Therefore, an equivalent formula-
tion is to require that yij are binary variables yielding a BLP formulation. The MBLP 
and BLP formulations were solved by CPLEX (CPLEX, IBM ILOG 2019). The 
BLP performed faster and thus was used in the computational experiments.

4.1  The algorithm

1. Find all Voronoi points generated by the set of points the facility is obnoxious to, 
and for each one find its minimum distance to the generating points.

2. Remove from the list of Voronoi points those whose minimum distance is less 
than D getting a list of m potential feasible locations.

3. Solve the MBLP/BLP optimization (in future comparisons) for the list of potential 
locations getting a starting feasible solution.

4. Solve (1) by SNOPT from this starting solution.

We concentrate on medium values of D which are the most difficult to solve. We 
therefore ignore the possibility that a facility will be located outside the convex hull. 
It may be an issue if m is not much larger than p. It is, of course, an issue if m < p . 
It is possible to add all feasible intersection points which are outside the convex hull 
of points. However, this may increase the size of the BLP (6) so it may have to be 
solved heuristically rather than optimally.

5  Computational experiments

In all the computational experiments, it is assumed that Nd = No = N . The number 
of communities is denoted by n. CPLEX (CPLEX, IBM ILOG 2019) and SNOPT 
(Gill et al. 2005) were run on an Amazon EC2 instance with 32 CPUs and 70 GB 
of RAM. The BLP was implemented with the OPL and run on IBM’s CPLEX Opti-
mization Studio 12.8 environment. We used the default CPLEX MIP solver settings. 
The unconstrained p-median problem algorithm was coded in FORTRAN using 
double precision arithmetic. The programs were compiled by an Intel 11.1 FOR-
TRAN Compiler with no parallel processing. They were run on a desktop with the 
Intel i7-6700 3.4 GHz CPU processor and 16 GB RAM.

To allow for easy replication in future comparisons, we tested randomly gen-
erated instances by the method proposed in Drezner et al. (2019a, b). A sequence 
of integer numbers in the open range (0, 100,000) is generated. A starting seed r1 , 
which is the first number in the sequence, is selected. The sequence is generated by 
the following rule for k ≥ 1:

• Set � = 12219rk.
• Set rk+1 = � − ⌊ �

100000
⌋ × 100,000 , i.e., rk+1 is the remainder of dividing � by 

100,000.
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For the x coordinates, we used r1 = 97 and for the y-coordinates we used 
r1 = 367 . To define the coordinates in a 10 by 10 square, rk is divided by 10,000.

The 50 Voronoi points (out of the V = 202 Voronoi points) with the largest val-
ues of Di for the n = 100 problem are depicted in Table 1. These are all the Voronoi 
points whose Di ≥ 0.95 miles (in a 10 by 10 square mile). Recall that all Voronoi 
points for which Di ≥ D are feasible.

For the p-median problem we use all wi = 1 . 1000 points are generated and the 
first n points selected. Three value of n were tested, n = 100, 500, 1000 with corre-
sponding values of D = 0.95, 0.42, 0.3 . These values of D yielded 50, 245, and 473 
feasible Voronoi points, respectively. See Figs. 2, 3 and 4.

We first solved the unconstrained p-median for p = 2, 3, 4, 5, 10, 15, 20 , and 
n = 100, 500, 1000 communities, by the best available heuristic solution method 
(Drezner and Drezner 2020). Each instance was solved 10 times from randomly gen-
erated starting solutions and the best solution was found in all 10 replications for 
every instance. Then we found by solving BLP (6) the optimal obnoxious p-median 
solutions when facilities are restricted to the set of feasible Voronoi points. These 
solutions where used as starting solutions for applying SNOPT (Gill et  al. 2005) 
once. The SNOPT results using the BLP results as starting solutions serve as bench 
mark values for the obnoxious p-median solutions.

We then applied SNOPT from 1000 randomly generated starting solutions for 
each instance. This process took about 1000 times longer and yielded very poor 
results. These results of random starting solutions (feasible or not) are not reported. 
We therefore randomly generated 100,000 random points and selected a subset 
of these getting a set of feasible points for each n. We then solved the obnoxious 
p-median problem by SNOPT using randomly selected p points from the subset 
of feasible points as starting solutions. This approach produced significantly better 
results than those obtained by randomly generating 1000 starting solutions, whether 
feasible or not. However, run times are still 1000 longer than starting from Voronoi 
points.

The results of these experiments are depicted in Table  2. Using the BLP (6) 
results as starting solutions performed best both in terms of run times and quality of 
results. Run times (not reported) are about 1000 times shorter. The random results 
matched the BLP starting solution results in only one instance out of 21 instances 
and are as much as 15% higher.

The reason for the underperformance of randomly selecting feasible points is 
that there are many very small feasible areas. The black dots in Figs.  2, 3 and 
4 represent Voronoi points which are all feasible but many look like they are 
located in an infeasible gray area. When a Voronoi point distance to the clos-
est community is Di , see Fig.  5, the feasible area by Eq. (3) is approximately 
5(Di − D)2 . For D = 0.95 and Di = 0.96 the area is about 5 × 10−4 which is about 
1/200,000 of the area of the 10 by 10 square. There are three Voronoi points for 
which Di < 0.96 ; see Table  1. The feasible area has an area of about 5. There-
fore, the probability that the generated feasible point is in that small area is about 
10−4 . Even when 1000 random feasible points are generated, the chance that even 
one point is in such a feasible area is very low (9.5%). Therefore, if a good solu-
tion has some facilities located in such small areas, it is likely to be missed even 
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when 1000 random feasible starting solutions are used. Even if a particular small 
area is selected, it is unlikely that the additional required areas for locating other 
facilities will all be selected as well. When the Voronoi points are used, there is a 
candidate location in every feasible area and the BLP selects the best set of candi-
date locations. Note also that if the good solution has a point in a small area, the 
final location of this facility is very close to the Voronoi point, Eq. (4), and thus 
the value of the objective function changes very little and the “correct” feasible 
regions are likely to be selected by the BLP.

6  The efficient frontier

An interesting useful tool to support our model is the efficient frontier. For each 
D we find the best solution and the efficient frontier will give the planner a trade-
off between the minimum distance D and the total cost. They may choose the best 
strategy by their own judgment. We constructed the efficient frontiers by applying 
SNOPT on the best Voronoi points. The efficient frontiers for n = 100, 500, 1000 
are depicted in Figs. 6, 7 and 8. As the number of facilities p increases, the dete-
rioration of the value of the objective function is faster when D increases.

For example, in Fig.  6 the efficient frontiers for p = 2, 3, 4, 5, 10, 15, 20 , 
n = 100 are depicted. Suppose that the plan is to build p = 15 facilities. When 
no minimum distance constraints are imposed ( D = 0 , the black circle in the fig-
ure), the objective function is 74.47 (see Table 2). When a minimum distance of 
D = 0.2 is required, the objective function increases a bit to 75.04 which can be 
easily justified. When the planner wishes not to exceed a cost of 80 (see Fig. 6), a 
minimum distance D = 0.43 is possible yielding an objective of 79.81. D = 0.44 
has an objective of 80.03. If the planner is forced not to have facilities closer than 
D = 1 mile from the communities, the objective function is almost doubled to 
136.74, and for D = 1.1 it increases to 173.46. The planner has to apply his best 
judgment and select the best trade-off option.

Fig. 5  The triangle example

2θ
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Table 2  Objective function 
results

(1) For reference: unconstrained solution
(2) For reference: best value at Voronoi points
(3) SNOPT result run once from (2) solution
(4) Best of 1000 SNOPT runs (random feasible points)
(5) % of (4) solution above (3) solution

p (1) (2) (3) (4) (5)

n = 100

2 288.99 293.66 292.62 292.62 0.00%
3 228.67 242.10 241.15 242.20 0.44%
4 192.25 209.54 207.52 210.63 1.50%
5 164.60 188.00 185.80 191.06 2.83%
10 100.76 142.60 139.40 148.54 6.56%
15 74.47 131.57 126.23 133.79 5.99%
20 59.48 127.48 119.48 133.69 11.89%
n = 500

2 1476.06 1501.01 1497.92 1497.96 0.00%
3 1154.12 1175.26 1169.50 1181.80 1.05%
4 950.36 965.45 964.11 974.19 1.05%
5 856.12 879.95 874.82 908.34 3.83%
10 575.67 619.30 614.91 667.67 8.58%
15 449.89 515.68 508.18 574.97 13.14%
20 382.69 452.57 445.04 510.57 14.72%
n = 1000

2 2912.11 2945.71 2943.87 2948.43 0.15%
3 2304.30 2324.58 2323.52 2367.86 1.91%
4 1920.37 1922.81 1921.37 1954.25 1.71%
5 1731.63 1752.09 1750.51 1798.90 2.76%
10 1177.97 1219.96 1215.08 1367.36 12.53%
15 942.47 993.98 988.84 1110.75 12.33%
20 798.55 868.66 863.50 996.90 15.45%

Fig. 6  The efficient frontiers for n = 100
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7  Case study: locating obnoxious facilities in the state of Colorado

There are 355 municipalities (cities) and 55 national and state parks in the state 
of Colorado for a total of 410 affected communities. We obtained the list and 
coordinates of cities and parks, and population counts, in Colorado from Wolf-
ram Alpha Computational Knowledge Engine (Wolfram Alpha LLC, 2020. 
Wolfram|Alpha).

The map of the cities, the parks and the best found solution for locating 20 facili-
ties at least 15 miles away from all 410 cities and parks is depicted in Fig. 9. The 
weights for the demand in the 355 cities are proportional to the populations. To get 
presentable values (not in the millions) we divided the weights by 663,862, the pop-
ulation of the largest city. The total Colorado population is 4,552,352. The demand 
at parks is zero so that in this case the set of points generating demand is different 
from the set of points affected by the negative impact of the facilities. The Voronoi 
points and the infeasible areas (shaded) are depicted in Fig. 10. The large concen-
tration of urban areas in the middle north of the state is infeasible in its entirety so 
no facilities can be established there to service these communities. Six facilities are 
located around the large metropolitan area at feasible points closest to this popula-
tion center.

In Table 3 we depict the results of the Voronoi approach as well as the best results 
by applying SNOPT from 1000 randomly generated feasible starting solutions. In 
one case, starting from 1000 random feasible solutions yielded a slightly better 
solution. However, the average above the best known solution is 0.03%, while the 

Fig. 7  The efficient frontiers for n = 500

Fig. 8  The efficient frontiers for n = 1000
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average of the best solution from 1000 feasible starting solutions is 4.13% above the 
best known solution and ran about 1000 times longer.

8  Conclusions

In this paper, we proposed the obnoxious facilities p-median problem. A minimum 
given distance D between facilities and a partial set of communities is required. The 
objective is to find p locations for facilities that minimize the weighted sum of dis-
tances between communities and their closest facility subject to the minimum dis-
tance requirement. The resulting problem is extremely non-convex and traditional 
nonlinear solvers applied in a multi-start approach do not perform well. An effi-
cient solution method based on Voronoi diagrams is proposed and tested. It signifi-
cantly outperformed standard nonlinear solvers both in run times and quality of the 
solutions.

We also constructed the efficient frontiers of the test problems to assist planners 
in making location decisions. As expected, when the minimum required distance 
between facilities and communities increases, the objective function deteriorates. 
The planner can use the efficient frontier in order to select the best trade-off solution.

Fig. 9  Colorado cities, parks, 
and 20 facilities

Fig. 10  Feasible areas and 
Voronoi points
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8.1  Suggestions for future research

The obnoxious p-median problem can be formulated for other distance measures 
such as Manhattan ( �1 ) distances, general �p distances or location on the sphere. The 
methodology developed in this paper can be applied to such problems as long as the 
Voronoi points for such metrics can be obtained.

In a network environment, we can replace the Voronoi points by two points on 
links connecting negatively affected communities that are at least 2D long. If such 
a link is less than 2D long, the whole link is infeasible. Links that are B > 2D long 
have a segment centered at the center of the link of length B − 2D and its endpoints 
are candidate locations for the facilities. The problem reduces to the discrete p 
median problem. Another variant is locating facilities on a planar network but dis-
tances to demand points, that may be off the network, are measured by the Euclid-
ean norm. A single facility location model in this setting is proposed and solved in 
Drezner et al. (2016).

Locating obnoxious facilities minimizing other objectives can also apply the 
Voronoi points approach. For example, the obnoxious p-center problem is defined in 
a similar fashion. In the standard p-center problem (Kariv and Hakimi 1979; Chen 
and Chen 2009; Calik et al. 2015), rather than minimizing the sum of the weighted 
distances to the closest facility, the objective is minimizing the maximum weighted 
distance to the closest facility. The BLP formulation is changed to minimizing L and 
adding constraints widijyij ≤ L . The MBLP formulation cannot be used because we 
must have yij ∈ {0, 1}.

The conditional version of the problem (Minieka 1980; Berman and Simchi-Levi 
1990; Ogryczak and Zawadzki 2002) can be useful in many circumstances. This 
means that several facilities already exist in the area and p additional facilities need 
to be located. Each community receives its services from the closest facility which 
may already exist or is a new one. The objective is to minimize total cost subject to 
distance constraints. The BLP formulation is modified so that the existing facilities 
are assigned xj = 1 and are no longer variables, and the new facilities are restricted 

Table 3  Results starting with 
Voronoi points and best of 1000 
random feasible points

†Objective function value
‡Percent above best found solution

p Best found Voronoi Best random

† ‡ † ‡

2 330.761 330.761 0% 330.761 0%
3 270.701 270.701 0% 271.291 0.22%
4 250.906 251.387 0.19% 250.906 0%
5 230.512 230.512 0% 242.580 5.24%
10 204.348 204.348 0% 222.779 9.02%
15 194.632 194.632 0% 210.594 8.20%
20 190.151 190.151 0% 202.013 6.24%
Average: 0.03% 4.13%



592 P. Kalczynski, Z. Drezner 

1 3

to the Voronoi points. An interesting variant is that some of the existing facilities 
violate the distance constraints and should be considered for removal.
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