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Abstract
The multi-depot vehicle routing problem with inter-depot routes is studied in this 
paper, where vehicles may reset their capacity at any depot during the working day. 
Due to the complexity of this problem, exact approaches are limited to small-size 
applications. In order to overcome this limitation, we propose a matheuristic which 
integrates a mixed integer linear programming formulation with a set of relax-and-
fix strategies. This solution approach is shown to be very efficient, and for the first 
time, large-size benchmarking instances are solved.
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1 Introduction

Complex logistics systems often entail the use of several depots, where goods are 
stored and vehicles are allocated, from where they perform distribution activities. 
Such logistics networks also include storage facilities (like warehouses) that are not 
directly involved in distribution activities and therefore have no allocated vehicles. 
The major difference between a depot and a warehouse is that, by convention, the 
former serves as origin and final destination of vehicles, whereas the latter usually 
only serves as an intermediate facility within a vehicle’s routes. In a multi-facility 
scenario, this distinction leads to four different routing problems (see Table 1 and 
Fig. 1):

(1) the vehicle routing problem with intermediate facilities (VRPIFs) where one 
facility acts as depot and the remainder as warehouses,

(2) the multi-depot vehicle routing problem (MDVRP) where all facilities act only 
as depots,

(3) the multi-depot vehicle routing problem with intermediate facilities (MDVRPIFs) 
where some facilities act as depots and some as warehouses,

(4) the multi-depot vehicle routing problem with inter-depot routes (MDVRPIs) 
where all facilities can act simultaneously as depots and as warehouses.

A VRP (see Table 1) is characterized by a logistics network with a single depot 
and no warehouses. The VRP has been extensively studied in the literature, and sev-
eral algorithms have been proposed to solve it. Laporte (2009) and Toth and Vigo 
(2014) give a comprehensive overview of the problem. Due to its combinatorial 
nature, several heuristics have been developed to solve this problem, spanning from 
classical heuristics to metaheuristics and, more recently, matheuristics. Classical 
heuristics were classified by Laporte and Semet (2002) into three categories: con-
structive [e.g. Clarke and Wright (1964)]; two-phase [e.g. Gillet and Miller (1974), 
Renaud et al. (1996a)]; and improvement heuristics (e.g. Lin (1965), Lin and Ker-
nighan (1973), Van Breedam (2001)]. Metaheuristics were classified by Laporte 
(2009) into three categories: local search (e.g. tabu search, simulated annealing and 
variable neighbourhood search); evolutionary algorithms (e.g. genetic algorithms 

Table 1  Characteristics of five types of routing problems

a Depots act as warehouses for vehicles based at other depots

Depots Warehouses Type of problems

Single None (0) Vehicle routing problem (VRP)
Single Single or multiple (1) Vehicle routing problem with intermediate facilities (VRPIF)
Multiple None (2) Multi-depot vehicle routing problem (MDVRP)
Multiple Single or multiple (3) Multi-depot vehicle routing problem with intermediate facilities 

(MDVRPIF)
Multiple Nonea (4) Multi-depot vehicle routing problem with inter-depot routes 

(MDVRPI)
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and adaptive memory); and learning mechanisms (e.g. neural networks and ant col-
ony optimization). Matheuristics are the result of a hybridization between heuristics 
and mathematical programming (Maniezzo et al. 2009), which exploit mathematical 
programming techniques within a heuristic framework.

Additionally, for the single-depot case (see Table 1 and Fig. 1), the existence of 
intermediate facilities allows drivers to reset the capacity of their vehicles during a 
shift without having to return to the central depot. In such logistics systems, a fea-
sible route sequence starts at a central depot, visits a subset of customers, may refill 
at one of the intermediate facilities before visiting more customers, and returns to 
the depot. Refilling is allowed when required and vehicles only return to the original 
depot at the end of the route. The refill may occur at an intermediate facility or at the 
central depot. The same vehicle can perform multiple trips per day, which relates 
this problem with the Multi-Trip VRP. Several methods have been proposed in the 
literature for solving the Multi-Trip VRP. Brandao and Mercer (1997) developed a 
tabu search, Petch and Salhi (2003) developed a constructive heuristic, Mingozzi 
et al. (2013) developed an exact algorithm based on the set partitioning formulation, 

(1) VRP with Intermediate Facili
es (2) Mul
-Depot VRP

(3) Mul
-Depot VRP with 
Intermediate Facili
es

(4) Mul�-Depot VRP with          
Inter-Depot Routes

Depot

Warehouse

Act simultaneously as depot, and as warehouse 
for the vehicles based in other depots

Customer

Fig. 1  Schematic representation of four types of routing problems
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and Cattaruzza et  al. (2014) proposed a memetic algorithm, just to name a few 
works.

The term “intermediate facilities” was first introduced by Angelelli and Speranza 
(2002); however, some years prior, Bard et al. (1998) used the term “satellite facili-
ties”. Note that, “intermediate facilities” and “satellite facilities” are considered as 
having the same meaning in logistics. Bard et al. (1998) introduced the VRP with 
satellite facilities as a mixed integer linear programming formulation and developed 
a branch-and-cut algorithm to solve it. Angelelli and Speranza (2002) tackled the 
same problem, calling them intermediate facilities instead of satellite facilities, in a 
collection context. In this problem, a vehicle departs from the depot to collect goods 
from customers. When the vehicle is at full capacity, it heads towards an intermedi-
ate facility in order to unload the goods, after which it may start another collection 
route until the work shift ends, when it must return to the central depot. The authors 
develop a tabu search algorithm to solve the periodic VRP with intermediate facili-
ties and present computational results on a set of instances. Similar collection prob-
lems have also been addressed by Kim et al. (2006), Benjamin and Beasley (2010), 
and Hemmelmayr et al. (2013). Tarantilis et al. (2008) also addressed the VRP with 
intermediate facilities and proposed a three-step algorithmic framework to solve 
the problem, which is based on a set of metaheuristic procedures. The developed 
approach was applied to a set of large-scale test instances.

Finally, the existence of multiple depots allows vehicles to be based at different 
depots (instead of at a central depot). In the classical MDVRP, routes start and end 
at the same depot, and only customers are visited in between. Stops at intermedi-
ate facilities are not allowed. Several works have been published addressing this 
problem, where mainly heuristic approaches have been developed [see Chao et al. 
(1993), Renaud et al. (1996b), Cordeau et al. (1997), Lim and Wang (2005), Dondo 
and Cerda (2009), Vidal et al. (2012), Tu et al. (2014)]. Using exact approaches, the 
works of Laporte et al. (1984, 1988) and Baldacci and Mingozzi (2009) also solved 
the MDVRP problem. The introduction of intermediate facilities can be considered 
an extension of the classical MDVRP. This problem has been modelled either as 
a MDVRP with intermediate facilities (where only warehouses act as intermediate 
points), or as a MDVRP with inter-depot routes (when depots, other than the vehi-
cle’s home depot, also act as intermediate points). To the best of the authors’ knowl-
edge, the MDVRP with intermediate facilities has only been addressed in the work 
of Markov et al. (2016), while the MDVRP with inter-depot routes was introduced 
by Crevier et al. (2007) and later studied by Muter et al. (2014).

Markov et  al. (2016) addressed a real case of a complex recyclable waste col-
lection system. In this problem, each vehicle route starts and ends at one of several 
depots, not necessarily the same for each vehicle. A sequence of collections followed 
by disposals at the available dumps (the intermediate facilities) was observed. In this 
case, since several depots are involved, the problem can be framed as a MDVRP 
instead of VRP. In addition, given that all routes must pass through a dump (inter-
mediate facility) before returning to a depot, the problem is classified as a MDVRP 
with intermediate facilities. With the introduction of a flexible assignment of desti-
nation depots, it follows that a vehicle can start and end its route at different depots. 
A mathematical model based on the three-index formulation was developed, and 
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as solution approach, a multiple neighbourhood search heuristic was designed and 
tested on literature instances, leading to the solution of a real case.

Crevier et al. (2007) introduced the MDVRP with inter-depot routes and the con-
cept of “rotation”. A rotation is defined as “the set of routes assigned to the same 
vehicle, which are constrained by a preset maximum duration”. A rotation has to 
start and end at the same depot and may include single-depot routes (a route starting 
and ending at the same depot), inter-depot routes (a route connecting two different 
depots) or a combination of the two. Crevier et al. (2007) proposed a set partitioning 
approach to solve the problem. This requires an a priori definition of all single-depot 
and inter-depot routes, a so-called herculean task. The solution method developed 
by the authors entailed the use of a tabu search heuristic, previously proposed by 
Cordeau et  al. (1997), in order to select the set of routes to be considered in the 
partitioning formulation. Given the novelty of the work, new benchmark instances 
were generated to demonstrate the model’s adequacy. Under the assumption that it 
is rarely cost-effective to use inter-depot routes when vehicles are based at differ-
ent depots, the authors considered, in the solved instances, that vehicles were solely 
located at the central depot and that all other depots were used only as intermediate 
replenishment facilities. In fact, Crevier et al. (2007) solved a problem that was later 
re-named as VRPIF by Tarantilis et  al. (2008), to emphasize “both the replenish-
ment role of the intermediate facilities and the use of a single central station for the 
fleet of vehicles”. Later, Muter et  al. (2014) tackled the MDVRPI where vehicles 
could be based at multiple depots rather than at a single central depot. A branch-and-
price algorithm with two different pricing strategies was proposed and tested on new 
instances based on the benchmarking instances developed by Crevier et al. (2007). 
These instances have 25 and 40 customers, and 4 and 6 vehicles, respectively. Sum-
ming up, Crevier et al. (2007) developed benchmarking instances for the MDVRPI 
but solved them as a VRPIF, while Muter et al. (2014) solved the MDVRPI but only 
for smaller instances (with 25 and 40 customers). Thus, the original benchmarking 
instances developed for the MDVRPI (with 48–288 customers) have not yet been 
solved as a MDVRPI, in which vehicles are based in multiple depots. This estab-
lishes a research opportunity.

In this paper, we aim to explore this research opportunity and our contribu-
tion is threefold: Firstly, we propose a new formulation for the MDVRPI through 
a flow formulation, where both routes and rotations are simultaneously defined by 
the model. Therefore, we overcome the need of generating routes beforehand. We 
define “rotation”, “single-depot route” and “inter-depot route” as defined by Crevier 
et al. (2007): “the set of all routes assigned to a vehicle is called a rotation whose 
total duration cannot exceed a preset value”, “a single-depot route starts and ends 
at the same depot while an inter-depot route connects two different depots”. Our 
model addresses tactical-operational decisions as the strategic decisions regarding 
the number and location of the facilities in the network were already defined, but the 
role of each facility (depot, intermediate facility or both), as well as the home depot 
for each vehicle, is to be defined while simultaneously defining the routing plan to 
be implemented for a medium-term period.

Secondly, to overcome the computational burden associated with the type 
of problem being studied, we develop a matheuristic procedure that explores a 
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decomposition approach based on the relaxation of some constraints of the full pro-
posed mathematical model. This matheuristic is capable of solving the majority 
of the instances used by Muter et  al. (2014), in addition to the original MDVRPI 
instances with vehicles based at multiple depots which, to the best of our knowl-
edge, were solved for the first time in this work. We choose this specific type of 
heuristic because we want to explore the mathematical formulation as much as pos-
sible, since this provides a generic form of structuring and formulating these prob-
lems, exploring the problem characteristics. The advantages of matheuristics are, on 
the one hand, granting to mathematical programming approaches the robustness and 
time effectiveness that characterize heuristics and, on the other hand, exploiting the 
mathematical programming model formulation in the customization of a heuristic 
for specific problems.

Lastly, and considering the applicability of the problem in hand, the economic 
benefit of stationing vehicles at multiple depots rather than at a central depot is 
assessed. The characteristics of a MDVRPI occur in real problems such as grocery 
distribution problems as addressed by Crevier et al. (2007); recyclable waste collec-
tion networks with multiple facilities, where trucks may unload the collected recy-
clable waste at any depot of the network; or the management of an electric fleet 
of vehicles, which have to recharge their batteries during a working day (Schneider 
et al. 2015).

The remainder of the paper is structured as follows: in Sect. 2, the mathematical 
formulation for the MDVRPI is presented, followed by the discussion of the solution 
methodology developed in Sect.  3. Computational results obtained for benchmark 
instances are reported in Sect. 4. Finally, Sect. 5 concludes the paper and proposes 
some suggestions for further research.

2  Problem formulation

The MDVRPI can be defined as the problem of designing a set of vehicle rotations 
which optimize a predetermined objective, such as the minimization of a total rout-
ing cost, while assuring that: (1) a rotation starts and ends at the same depot; (2) the 
duration of a rotation (including travel, service and loading times) does not exceed 
a preset limit; (3) a route starts at a certain facility but may end in a different one; 
(4) each customer is visited exactly once; and (5) the total demand covered by each 
route does not exceed the vehicle capacity. Note that, while a rotation must start and 
end at the depot where vehicles are parked, routes can start and/or end at any type of 
facility. Any facility may act as depot, as an intermediate facility or as both.

The MDVRPI problem is formulated in this work exploring the two-commodity 
flow formulation concepts (Baldacci et  al. 2004). An undirected graph G = (V ,E) 
is considered, where V = Vc ∪ Vf ∪ Vg , being Vc = {1,… , n} a set of n customers, 
Vf = {n + 1,… , n + w} a set of w facilities, Vg = {n + w + 1,… , n + 2w} a replica 
of the facility set and E =

{
(i, j) ∶ i, j ∈ Vc ∪ Vf ∪ Vg, i ≠ j

}
 the edge set. The facil-

ity replica set is needed because, in the two-commodity flow formulation, routes are 
defined by paths between the real facilities and the replica ones. To establish the 
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routes, this formulation requires two flow variables that, in turn, define two flow 
paths for any route. One of the paths, from the real facilities to the replica ones, 
designed through the flow variable, represents the load of the vehicle, which 
decreases along the route in a distribution problem. The other path, from the replica 
facilities to the real ones, corresponds to the second flow variable and represents the 
empty space on the vehicle, which increases along the route.

Each customer is characterized by their demand Pi and service time Si . Each 
route k of set K = {1,… , s} has a capacity of Q units, and each rotation r of set 
R = {1,… ,m} has a maximum duration of T  . Each edge (i, j) has an associated cost 
Cij and a travel time Fij . We also consider a loading time L to account for the time it 
takes to fully load a vehicle at the start of each route.

The following decision variables are defined:

yijkr  Flow variable representing the vehicle load when travelling from nodes i to j 
on route k that belongs to rotation r. The flow yjikr represents the empty space 
on vehicle route k that belongs to rotation r

eijkr  Exit time from node i to node j on route k on rotation r
aijkr  Arrival time at node j from node i on route k on rotation r

The mathematical formulation also includes the following auxiliary variables:

xijkr

{
1, if edge (i, j) is traversed on route k that belongs to rotation r

0, otherwise

zikr

{
1, if node i is visited by route k on rotation r

0, otherwise

gikr

⎧⎪⎨⎪⎩

2, if route k starts and ends at depotion rotation r

1, if route k starts or ends at depotion rotation r

0, otherwise

�ikr

{
1, if route k does not start nor ends at depotion rotation r

0, otherwise

�ikr

{
1, if route k starts or ends at depotion rotation r

0, otherwise

�ikr

{
1, if route k starts and ends at depotion rotation r

0, otherwise
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The solution for the MDVRPI is a set of at most m constrained cycles (called 
rotations) on graph G which minimizes the total cost while ensuring that every cus-
tomer is visited. The cycles are smaller than or equal to a maximum duration T, and 
each segment of the cycle (single-route or inter-depot route) is feasible with respect 
to the vehicle capacity Q. Figure  2 depicts a feasible solution for the MDVRPI, 
where three rotations are defined through eight routes. Rotation 1 includes three 
routes (one single-depot and two inter-depot routes—in blue), rotation 2 has two 
routes (all single-depot routes—in black) and rotation 3 has three routes (all inter-
depot routes—in orange).

The MDVRPI formulation is then:

�ir

{
1, if rotation r starts at depot i

0, otherwise

(1)minimize
1

2

∑
i∈V

∑
j∈V

∑
k∈K

∑
r∈R

xijkrCij

(2)subject to
∑
j∈V

(
yjikr − yijkr

)
= 2Pizikr, ∀i ∈ Vc, k ∈ K, r ∈ R

(3)
∑
i∈Vf

∑
j∈Vc

∑
k∈K

∑
r∈R

yijkr =
∑
j∈Vc

Pj

(4)
∑
i∈Vf

∑
j∈Vc

∑
k∈K

∑
r∈R

yjikr ≤ |K|Q −
∑
j∈Vc

Pj

(5)
∑
j∈Vc

yijkr ≤ Q, ∀i ∈ Vg, k ∈ K, r ∈ R

1 

4 

3 

2 

Rota�on 1 
Rota�on 2 
Rota�on 3 

Fig. 2  Representation of a feasible solution for the MDVRPI (color figure online)
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(6)yijkr + yjikr = Qxijkr, ∀i, j ∈ V , k ∈ K, r ∈ R

(7)

∑
i ∈ V

i ≠ j

xijkr = 2zjkr, ∀j ∈ Vc, k ∈ K, r ∈ R

(8)
∑
k∈K

∑
r∈R

zikr = 1, ∀i ∈ Vc

(9)
∑
r∈R

zikr ≤ 1, ∀i ∈ Vc, k ∈ K

(10)
∑
k∈K

zikr ≤ 1, ∀i ∈ Vc, r ∈ R

(11)
∑
k∈K

∑
r∈R

xijkr ≤ 1, ∀i, j ∈ V , i ≠ j

(12)
∑
i∈Vf

∑
j∈V

xijkr ≤ 1, ∀k ∈ K, r ∈ R

(13)eijkr + Fijxijkr = aijkr, ∀i, j ∈ V , i ≠ j,∀k ∈ K, r ∈ R

(14)

∑
i ∈ V

i ≠ j

(
ejikr − aijkr

)
= 2Sjzjkr, ∀j ∈ Vc, k ∈ K, r ∈ R

(15)eijkr −
∑

h∈V�{i,j}

ahikr ≤ Sixijkr, ∀i ∈ Vc,∀j ∈ V , i ≠ j,∀k ∈ K, r ∈ R

(16)eijkr ≤ Txijkr, ∀i, j ∈ V , k ∈ K, r ∈ R

(17)aijkr ≤ Txijkr, ∀i, j ∈ V , k ∈ K, r ∈ R

(18)
∑
j∈V

∑
i∈Vg

∑
k∈K

ajikr +
∑
j∈V

∑
i∈Vg

∑
k∈K

xjikrL ≤ T , ∀r ∈ R

(19)
∑
j∈V

∑
k∈K

∑
r∈R

xijkr + xjikr =
∑
j∈V

∑
k∈K

∑
r∈R

x(i+w)jkr + xj(i+w)kr, ∀i ∈ Vf
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The objective function (1) minimizes the total routing cost where, due to the two 
flow paths that define a route, each edge is counted twice. Therefore, the total rout-
ing cost has to be divided by two to translate the actual cost.

Constraints (2)–(6) model the flows that implicitly define the routes. Constraint 
(2) models the inflows and outflows for each customer, assuring that the inflow 
minus the outflow equals twice the demand, since two paths cross each customer. 
The total outflow of real facilities must equal the total demand [Constraint (3)], and 
the total inflow is less than or equal to the residual capacity of the used routes [Con-
straint (4)]. The cardinality of route set K must be sufficiently large not to constrain 
the solution. Route capacity must not be exceeded, and this is guaranteed by Con-
straints (5) and (6). Constraint (7) assures that any feasible solution contains two 

(20)
gikr =

∑
j ∈ V

j ≠ i

xijkr +
∑
j ∈ V

j ≠ i

xj(i+w)kr, ∀i ∈ Vf , k ∈ K, r ∈ R

(21)gikr = �ikr + 2�ikr, ∀i ∈ Vf , k ∈ K, r ∈ R

(22)�ikr + �ikr + �ikr = 1, ∀i ∈ Vf , k ∈ K, r ∈ R

(23)
gikr ≤

∑
k� ∈ K

k� ≠ k

�k�ir + 2�ir, ∀i ∈ Vf , k ∈ K, r ∈ R

(24)
∑
i∈Vf

�ir ≤ 1, ∀r ∈ R

(25)yijkr ≥ 0, ∀i, j ∈ V , k ∈ K, r ∈ R

(26)xijkr ∈ {0, 1}, ∀i, j ∈ V , k ∈ K, r ∈ R

(27)zikr ∈ {0, 1}, ∀i ∈ Vc, k ∈ K, r ∈ R

(28)eijkr, aijkr ≥ 0, ∀i, j ∈ V

(29)gikr ∈ {0, 1, 2}, ∀i ∈ Vf , k ∈ K, r ∈ R

(30)�ikr, �ikr, �ikr ∈ {0, 1}, ∀i ∈ Vf , k ∈ K, r ∈ R

(31)�ir ∈ {0, 1}, ∀i ∈ Vf , r ∈ R
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incident edges for each customer node due to the two paths that characterize each 
route. Constraint (8) ensures that all customers are visited.

Constraints (9)–(11) relate routes with rotations, ensuring that all routes belong 
to a rotation. Constraint (12) guarantees that each route starts, at most, at one of the 
real facilities.

Constraints (13)–(18) model the duration of routes and rotations. The arrival 
time at each node is equal to the exit time from the previous node plus the travel 
time Fij [Constraint (13)]. The difference between the exit time and the arrival time 
within each customer is equal to the service time [Constraint (14)]. Time continu-
ity is ensured by Constraint (15). If edge (i, j) is not crossed, then the arrival and 
exit times of that edge are equal to zero [Constraints (16) and (17)]. Constraint (18) 
guarantees that the maximum time for a rotation is not exceeded.

Since inter-depot routes may be a part of the solution for this problem, Con-
straint (19) ensures route continuity among inter-depot routes by enabling a rotation 
in these cases. Therefore, the number of outbound edges at each real facility must 
equal the number of inbound edges at the corresponding replica facility.

Constraints (20)–(22) define the values for variables gikr , �ikr , �ikr and �ikr . Varia-
ble gikr assumes the value two if route k starts at facility i and ends at the same facil-
ity replica. If route k only starts or ends at facility i, gikr takes value one [Constraint 
(20)]. Variable gikr is also a function of binary variables �ikr , �ikr and �ikr [Constraint 
(21)], which act as discretization variables. Notice that variable �ikr can be omitted 
since it models gikr when it is equal to zero. Being discretization variables, only one 
of them can assume the value one [Constraint (22)]. Constraint (23) ensures that if 
a closed route belongs to the solution (whenever gikr = 2 ), either two inter-depot 
routes are part of the same rotation or the rotation starts at depot i. Each rotation 
must only start at one depot [Constraint (24)]. Finally, Constraints (25)–(31) define 
the variables’ domains.

3  Solution Methodology

To solve the MDVRPI, we develop a matheuristic approach, which adopts a relax-
and-fix strategy supported by the previously presented formulation (see Fig.  3). 
First, the duration constraints and the number of vehicles available are relaxed, and 
then, if the solution satisfies the relaxed constraints, the corresponding variables are 
fixed. The main idea behind this relaxation step is to solve a less constrained prob-
lem, which is expectedly easier to solve. Moreover, the relaxed problem also pro-
vides a lower bound for the MDVRPI.

The matheuristic is composed of four main modules, where a different mathemat-
ical formulation is solved in each one, plus a post-optimization module:

(1) Module 1 solves a MDVRPI Relaxation I (MDVRPI without duration constraints 
and unlimited vehicle fleet). This module provides the lower bound;

(2) Module 2 solves an Assignment Problem, where routes are assigned to rotations;
(3) Module 3 solves a MDVRPI Relaxation II (MDVRPI with duration constraints 

and unlimited vehicle fleet);
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(4) Module 4 solves a MDVRPI Relaxation III (MDVRPI without duration con-
straints and single vehicle/rotation);

(5) Module 5 applies 2-opt and 3-opt moves within and between rotations.

Analysing the matheuristic shown in Fig. 3, and starting with module 1, this takes 
the concept of rotation into account while relaxing the time limit for the vehicle to 
return to its original depot. The number of available vehicles is also relaxed (equiva-
lent to the number of rotations). Single- and inter-depot routes are then designed 
without duration concerns, while guaranteeing that inter-depot routes are linked in 
order to enable rotations. Afterwards, the duration of each route is assessed, allow-
ing the definition of vehicle rotations to take place in the next module. The maxi-
mum duration for a rotation (parameter Dur) is initially set to the value T. Module 
2 is then run to define rotations. If there is a feasible solution with Dur = T, the pro-
cedure continues, and if not, then the maximum duration (Dur) is incremented by a 
value ∆ until a feasible solution is obtained. When such a solution is reached (with 
a duration for a rotation exceeding the predefined limit of T), module 3 is executed, 
imposing the duration constraints that were relaxed in module 1. This third mod-
ule is executed considering both sites that belong to rotations exceeding the time 
limit, and the sites belonging to rotations have a low duration and capacity usage. 

1. MDVRPI Relaxa�on I
• Without dura�on constraints

• Unlimited vehicle fleet

3. MDVRPI Relaxa�on II
(For the rota�ons with  dura�on > T and      

a dura�on and capacity usage < B)
• Unlimited vehicle fleet

Yes

No

STOP

Dur = T

Yes

No Dur = Dur + ∆

2. Rota�on Defini�on
• Unlimited vehicle fleet

There are 
rota�ons with 
dura�on > T?

Number 
of 

rota�ons
≤ |R|?

No

4. MDVRPI Relaxa�on III
• Without dura�on constraints

• Single Vehicle

A feasible
solu�on was

found?

2. Rota�on Defini�on
• Unlimited vehicle fleet

Dur > T?       

Yes 5. Post-Op�miza�on

No
Infeasible

No Pair List is
empty?

Yes

No

Yes

Fig. 3  Matheuristic solution methodology flowchart
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After module 3, module 2 is executed once again, in order to re-define rotations 
considering all routes that were produced until then and the maximum time limit 
allowed (T). If the number of rotations obtained is smaller than or equal to the num-
ber of available rotations (i.e. the number of available vehicles), a feasible solution 
is reached, and therefore, the solution procedure moves to the final module, where 
some post-optimization moves are applied to each rotation and between rotations. 
Otherwise, module 4 merges two rotations into a single rotation until the number of 
rotations equals the number of available vehicles. All pairs of rotations that can be 
merged are listed (called Pair List), and after a pair is merged into one rotation, the 
duration is assessed. If the duration is higher than allowed (T), then the merge pro-
cess is considered for the next pair of rotations. If all pairs have been submitted to 
module 4 (Pair List is empty) without complying with the duration limit, that means 
the matheuristic was not able to produce a feasible solution.

The mathematical formulations and details for each one of the five modules are 
provided below and in supplementary material: Appendix A.

3.1  MDVRPI Relaxation I

The relaxed version I of the MDVRPI can be formulated as follows: Let 
G =

(
Vc ∪ Vf ∪ Vg,E

)
 be an undirected graph, where Vc = {1,… , n} is the set of cus-

tomers, Vf = {n + 1,… , n + w} is the set of facilities, Vg = {n + w + 1,… , n + 2w} 
is the set of facility replicas and E =

{
(i, j) ∶ i, j ∈ Vc ∪ Vf ∪ Vg, i ≠ j

}
 is the set of 

edges. A demand Pi is associated with customer i while a travel cost Cij with the 
edge (i, j) . An unlimited fleet of vehicles with capacity Q is available, and each vehi-
cle route has a fixed cost H . This formulation uses binary variables xij equal to 1 if 
edge (i, j) is traversed, a flow variable yij representing the vehicle load when travel-
ling from node i to node j and an integer decision variable k representing the number 
of vehicle routes in the solution. The feasible solution is a set of routes (single-depot 
routes and/or inter-depot routes) which minimize the total cost (travel cost plus a 
fixed cost for each vehicle route created), ensuring that every customer is visited 
and the capacity of the vehicles is not surpassed. The formulation is given below, 
whereas Constraints (33)–(39) correspond to Constraints (2)–(7) and (19) of the full 
model.

(32)minimize
1

2

∑
i∈V

∑
j∈V

xijCij + H.k

(33)
subject to

∑
j ∈ V

j ≠ i

(
yji − yij

)
= 2Pi, ∀i ∈ Vc

(34)
∑
i∈Vf

∑
j∈Vc

yij =
∑
j∈Vc

Pj
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Since this formulation disregards the route durations, at a post-processing phase, 
the duration of each route is assessed.

3.2  Rotation Definition

Let K denote the set of all routes defined in the previous module ( K = {1,… , s} ), 
Vf  the set of depots ( Vf = {1,… ,w} ) and R the set of rotations ( R = {1,… ,m} ). 
The goal of this second module is to assign each route k to a rotation r . SDik and Oik 
define a partition of set K , where SDik ⊆ K is the set of routes starting and ending at 
depot i (single-depot routes) and Oik ⊆ K is the set of routes with one depot in i and 
the other depot outside i (inter-depot routes). Each route k is characterized by: (1) a 
duration Dk (including travel, service and loading times) and (2) the definition of the 
start and end depot given by parameter Gik . This parameter acts as the variable gikr 
of the full model. Therefore, when Gik = 2 , route k starts and ends at depot i (sin-
gle-depot route); when Gik = 1 , route k starts or ends at depot i (inter-depot route) 
and when Gik = 0 , route k neither starts nor ends at depot i. The maximum duration 
allowed for a rotation is given by parameter Dur.

As mentioned, this formulation assigns routes to rotations, where �kr is a binary 
variable equal to 1 if route k is assigned to rotation r. If rotation r is in the solution, 
the binary variable �r equals 1. Otherwise, �r = 0 . Two auxiliary variables need to 
be defined: an integer variable �ir that models the number of times rotation r visits 

(35)
∑
i∈Vf

∑
j∈Vc

yji = k.Q −
∑
j∈Vc

Pj

(36)
∑
i∈Vg

∑
j∈Vc

yij = k.Q

(37)yij + yji = Qxij, ∀i, j ∈ V , i ≠ j

(38)

∑
i ∈ V

i ≠ j

xij = 2, ∀j ∈ Vc

(39)
∑
j∈Vc

xij +
∑
j∈Vc

xji =
∑
j∈Vc

x(i+w)j +
∑
j∈Vc

xj(i+w), ∀i ∈ Vf

(40)xij ∈ {0, 1}, ∀i, j ∈ V

(41)yij, yji ≥ 0, ∀i, j ∈ V

(42)k integer
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depot i in an inter-depot route and the binary variable �ir which is equal to 1 if rota-
tion r starts at depot i. Notice that the cardinality of set R is sufficiently large not to 
constrain the solution, since an unlimited vehicle fleet is considered in this module. 
The solution is the minimum set of rotations which comply with the maximum dura-
tion allowed. The mathematical formulation to define rotations is as follows:

The objective function (43) minimizes the number of rotations, given that the 
number of rotations available is unlimited. Constraints (44)–(46) are based on the 
work of Crevier et al. (2007). Constraint (44) guarantees rotation continuity when 
inter-depot routes are in a rotation, while Constraint (45) ensures either rotation con-
tinuity or rotation starting when single-depot routes are in a rotation. Constraint (46) 
limits the total duration of a rotation. Constraint (47) guarantees that all routes are 
assigned to a rotation. Constraints (48) and (49) state that a rotation is used if a route 
is assigned to it or if a rotation starts at a depot.

The second module is solved through an iterative procedure concerning the total 
duration of a rotation (parameter Dur). The goal of this procedure is to have the 
maximum number of rotations which satisfy the maximum duration (T) in order to 
minimize the number of rotations to be worked out by module 3. Recall that, in the 
first module, no duration constraints were imposed, so solutions where the maximum 

(43)minimize
∑
r∈R

�r

(44)subject to
∑
k∈Oik

Gik�kr − 2�ir = 0, ∀r ∈ R,∀i ∈ Vf

(45)
∑
k∈Cki

�kr ≤
||SDik

||
(∑

k∈Oki

�kr + �ir

)
, ∀i ∈ Vf ,∀r ∈ R

(46)
∑
k∈K

Dk�kr ≤ Dur, ∀r ∈ R

(47)
∑
r∈R

�kr = 1, ∀k ∈ K

(48)�kr ≤ �r, ∀k ∈ K,∀r ∈ R

(49)
∑
i∈Vf

�ir ≤ �r, ∀r ∈ R

(50)�kr,�r, �ir ∈ {0, 1} ∀k ∈ K,∀r ∈ R,∀i ∈ Vf

(51)�ir integer ∀r ∈ R,∀i ∈ Vf
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duration for a rotation is exceeded might be generated. To deal with this situation, 
parameter Dur is initialized as T, and if there is no feasible solution within this time 
limit, then the value of Dur is iteratively increased by ∆ until a feasible solution is 
obtained. The value for ∆ should be the smallest possible in order to obtain rotations 
with a duration close to T. Since rotations are combinations of routes, we suggest the 
value ∆ to be the minimum duration of the routes (∆ = min

{
Dk ∶ k ∈ K} ), to allow 

the inclusion of, at least, one route in a rotation and, therefore, to reach a feasible 
solution.

3.3  MDVRPI Relaxation II

This module is activated if and only if rotations with a duration larger than T are pro-
duced in the previous module. The relaxed version II of the MDVRPI can be formu-
lated as follows: Let G =

(
V �
c
∪ Vf ∪ Vg,E

)
 be an undirected graph, where V ′

c
⊆ Vc is 

a subset of customers that belong to a rotation with Dur > T  , Vf  is the set of facili-
ties, Vg is the set of facility replicas and E =

{
(i, j) ∶ i, j ∈ V �

c
∪ Vf ∪ Vg, i ≠ j

}
 is the 

edge set. Let K denote the set of routes to be created by this module. A demand 
Pi and a service time Si are assigned to customer i ∈ V �

c
 , and a travel cost Cij and a 

travel time Fij are associated with the edge (i, j) . An unlimited fleet of vehicles with 
capacity Q is available. Let L be the fixed duration representing the time needed 
for a vehicle to dock at a depot and T  be the maximum duration for a rotation. This 
formulation uses binary variables xijk equal to 1 if edge (i, j) is traversed by route 
k , zik equal to 1 if customer i is visited by route k , a flow variable yijk representing 
the vehicle load when travelling from nodes i to j on route k , and two positive vari-
ables eijk and aijk representing the exit time and the arrival time, respectively, from 
node i to node j on route k . The solution is a set of routes (single-depot routes and/
or inter-depot route) which minimize the total cost (travel cost), ensuring that every 
customer is visited, the capacity of the vehicles is not surpassed and the duration of 
either single-depot routes and linked inter-depot routes (enabling a rotation) satisfies 
the maximum duration allowed (T).

This formulation is composed of Constraints (1)–(8) and (11)–(19) considering 
the decision variables mentioned (i.e. without index r). In order to guarantee that the 
sum of the duration of the linked inter-depot routes does not exceed the maximum 
duration for a rotation, Constraint (52) is added.

Constraint (52) is inspired by how the Dantzig–Fulkerson–Johnson constraints 
work to eliminate subtours (Dantzig et  al. 1954). This type of constraints has the 
drawback of leading to an exponential number of additional constraints. However, 
it is often the case that not all inequalities need to be added to the formulation at 
the beginning. They can be generated only as required by a separation algorithm, 
meaning that the formulation solution can start without Constraint (52), and then, 

(52)

∑
i∈V

∑
j,j�∈𝜉

∑
k∈U

(
aijk − BigM

(
1 − z(j�−w)k

)
+ ai(j�−w)k − BigM

(
1 − zjk

))
≤ 2(T − |U|L),

𝜉 ⊆ Vg, 2 ≤ |𝜉| ≤ w,U ⊆ K, 2 ≤ |U| ≤ s
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if a rotation with a duration larger than T occurs, a new cut is added to avoid that 
rotation.

At first, only the demand sites that belong to rotations exceeding T were consid-
ered. However, in preliminary tests, it was noted that better solutions were attained 
if the customers belonging to rotations with a low usage rate were also considered in 
this module. This is due to better rotations being defined by combining those which 
are overloaded with those which are under loaded. Therefore, the demand sites that 
belong to rotations with a usage rate smaller than B are also added. The usage rate 
accounts for duration and capacity simultaneously, i.e. only the rotations with both 
usage rates below B are included in this module. The value of B varies in the interval 
[0, 1]. A value near 1 will include all rotations in module three, which will have a 
negative impact on the computational results given the combinatorial complexity of 
the problem. A value near 0 implies no additional rotations for module three, which 
may result in a negative impact on the quality of the solution.

3.4  MDVRPI Relaxation III

As stated before, the previous modules have considered an unlimited vehicle fleet, 
which represents a relaxation of the original problem. Thus, if the number of rota-
tions produced by the matheuristic exceeds the number of vehicles available, mod-
ule four must be run in order to decrease that number. This is done by merging rota-
tions: firstly, all pairs of rotations that could be merged are assessed according to 
their combined duration, and then, the feasible pairs are ordered regarding the travel 
distance (considering the customers and the depots involved), from the nearest rota-
tions to the farthest rotations. In case of a similar distance, the second ordering crite-
rion is the combined duration, from the lower duration rotations to the higher ones. 
The first pair of rotations on the list is chosen to be merged through the relaxed ver-
sion III of the MDVRPI.

The relaxed version III of the MDVRPI can be formulated as follows: Let 
G =

(
V �
c
∪ V �

f
∪ V �

g
,E

)
 be an undirected graph, where V ′

c
⊆ Vc is a subset of custom-

ers that belong to the two rotations to be merged, V ′
f
⊆ Vf  is the subset of facilities 

involved in the two rotations, V ′
g
⊆ Vg is the subset of facility replicas, and 

E =
{
(i, j) ∶ i, j ∈ V �

c
∪ V �

f
∪ V �

g
, i ≠ j

}
 is the edge set. Let K denote the set of routes 

to be created at this module. Each route has a capacity Q . A demand Pi is assigned to 
customer i ∈ V �

c
 , and a travel cost Cij is associated with the edge (i, j) . This formula-

tion uses binary variables xijk and zik , integer variables gik equal to 2 if route k starts 
and ends at depot i, equal to 1 if route k starts or ends at depot i and equal to 0 other-
wise. Three auxiliary binary variables are also introduced: �ik, �ik, �ik . �ik is equal to 
1 if route k starts and ends at depot i, �ik is equal to 1 if route k starts or ends at depot 
i and �ik is equal to 1 if route k does not start or end at depot i.

The solution is a set of routes (single-depot routes and/or inter-depot route) which 
minimize the total cost (travel cost), ensuring that every customer is visited, the 
capacity of the vehicles is not surpassed and all defined routes form a cycle ena-
bling one single rotation. This formulation is composed by Constraints (1)–(8), (12), 
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and (19)–(22) considering the decision variables without index r. Constraint (23) is 
rewritten as follows:

Constraint (53) guarantees that the defined routes are all linked in order to build a 
single rotation.

Since this formulation disregards the rotation’s duration, duration constraints are 
assessed afterwards. If Dur > T, then the solution is discarded and the next pair of 
rotations from the list is chosen. If Dur ≤ T, then the new rotation is part of the final 
solution. If the number of rotations is still larger than the number of vehicles avail-
able, module 4 is run again until the number of rotations is equal to the number of 
vehicles.

3.5  Post‑Optimization

In this module, some post-optimization procedures are applied to the final solution. 
The 2-opt and 3-opt exchanges are applied within and between rotations, ensuring 
that an exchange is only accepted if the capacity and duration constraints are not 
violated. Since a rotation can include single- and/or inter-depot routes, exchanging 
edges of inter-depot routes might result in a single-depot route from another depot. 
Figure 4 illustrates this situation where rotation 4 (in red) is composed by two inter-
depot routes and one single-depot route, with a vehicle based at depot 26. The two 
inter-depot routes have two crossing edges (27,20) and (13,21), and after applying 
the 2-opt operation, these routes turn into two single-depot routes: one from depot 
27 [27-25-13-27] and the other from depot 26 [26-21-20-23-3-26]. This means that 
route [27-25-13-27] now belongs to rotation 1 (in blue), and the duration must be 
checked. In this case, including route [27-25-13-27] in rotation 1 makes it infeasible 
regarding the duration limit, and therefore, this move is not accepted, although it 
reduces the overall cost.

4  Computational results

In this section, the benchmark instances for the MDVRPI developed by Crevier 
et  al. (2007) and Muter et  al. (2014) are solved via the proposed methodology. 
Moreover, to show how the MDVRPI formulation scales, small instances are also 
solved through the full MDVRPI formulation using the branch-and-bound algo-
rithm embedded in the CPLEX solver. Both MDVRPI full model and the first four 
modules of the solution methodology were implemented in GAMS 23.7 and solved 
through the CPLEX Optimizer 12.3.0, on an Intel Xeon CPU X5680 @ 3.33 GHz. 
The CPU time was limited to 4 h in each module. The fifth module was implemented 
in Python. Since the benchmark instances do not consider any fixed cost for routes, 

(53)
gik ≤

∑
k� ∈ K

k� ≠ k

�ik� , ∀i ∈ Vf ,∀k ∈ K
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the fixed cost H is set to zero in module 1. In module 3, parameter B was set to 0.5 
after performing some preliminary tests.

In the Muter et  al. (2014) instances, the number of customers is limited to 25 
and 40 and the number of vehicles is limited to four and six. In the Crevier et al. 
(2007) instances, the number of customers is between 48 and 288 and the number 

Fig. 4  Illustrative example of the post-optimization procedure (color figure online)
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of vehicles is between three and six. To test the MDVRPI formulation, we create 
small instances based on the original ones, with the number of customers ranging 
from 10 to 18, and the number of vehicles between two and four. We selected the 
first instance “a1” and considered the first n customers for this test. The results are 
shown in Table 2. In the first column, each instance is coded as in the Muter et al.’s 
(2014) work: #–n–Q–T. The number of depots is shown in the second column and 
the number of vehicles in the third column. The following four columns present the 
results obtained when solving the MDVRPI formulation via CPLEX: lower bound 
(LB), upper bound (UP), gap between the upper and lower bound and the CPU time 
(in seconds). The last three columns are the results when solving the instances with 
the solution methodology: LB is the branch-and-bound lower bound of module 1 
(solutions proven to be optimal for module 1 are asterisked in the LB column), UB 
is the final objective function value obtained after the whole procedure has been 
applied and the CPU time, in seconds, taken by running our method.

It can be observed from Table  2 that CPLEX is only capable of solving very-
small-size instances of the MDVRPI (up to 14 customers) and takes much more 
CPU time to reach the same solution when compared to the proposed solution meth-
odology. With 16 customers (a1-16-50-450), CPLEX failed to find a feasible solu-
tion after 4 CPU hours, while the proposed matheuristic found the optimal solution 
in 2.6 s.

Given the results of Table 2, the benchmarking instances of Crevier et al. (2007) 
and Muter et al. (2014) will be solved only by our solution methodology, and the 
results compared with the work of Muter et al. (2014)—see Table 3. The results are 
only compared with the work of Muter et al. (2014) since it is the only work that 
solved the instances as a MDVRPI (with vehicles based at multiple depots). Note 
that Crevier et al. (2007) solved the original instances as a VRPIF (with all vehicles 
based at a central depot) and not as a MDVRPI. Table 3 shows the results presented 
by Muter et al. (2014): lower bound (LB), upper bound (UB) and CPU time (in sec-
onds), and the final three columns show our own results.

When analysing the results, we observe that our solution method provides a lower 
bound for all 66 instances, while the approach proposed by Muter et al. (2014) was 
not able to provide a lower bound for i1-25-50-450 and k1-25-50-450, nor was it 
able to solve the original instances (those having more than 40 customers). Focusing 

Table 2  Comparison between the MDVRPI formulation with the matheuristic for small-size instances

*Solution proven to be optimal for module 1

Instances |Vf| |R| MDVRPI formulation@CPLEX Solution methodology

LB UB Gap (%) CPU LB UB CPU

a1-10-50-450 3 2 336.248 336.248 0.0 43 336.248* 336.248 0.9
a1-12-50-450 3 2 354.315 354.315 0.0 112 354.315* 354.315 1.6
a1-14-50-450 3 4 401.899 401.899 0.0 6997 401.899* 401.899 1.8
a1-16-50-450 3 4 439.639 – – 14,400 469.369* 469.369 2.6
a1-18-50-450 3 4 508.903 – – 14,400 540.411* 540.411 5.7
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Table 3  Results for MDVRPI instances

Instances |Vf| |R| Muter et al. (2014) This work

LB UB CPUa LB UB CPU

a1-25-50-450 3 4 691.699 693.810 1967 693.810* 693.810 19
b1-25-50-450 3 4 714.405 714.405 7 714.405* 738.358 20
c1-25-50-450 3 4 825.098 845.542 25,476 845.542* 896.236 63
d1-25-50-450 4 4 750.744 755.174* 763.303 25
e1-25-50-450 4 4 789.189 803.715 223 799.722* 814.839 26
f1-25-50-450 4 4 551.828 551.828 41 551.828* 551.828 27
g1-25-50-450 5 4 654.016 654.016 41 654.016* 654.016 49
h1-25-50-450 5 4 557.610 558.646 138 547.074* 558.646 1551
i1-25-50-450 5 4 816.085* 899.345 51
j1-25-50-450 6 4 769.605 731.072*
k1-25-50-450 6 4 838.858*
l1-25-50-450 6 4 818.280 818.280 746 809.191* 855.449 21
a1-40-50-450 3 6 991.657 998.431 29,278 998.431* 998.431 893
b1-40-50-450 3 6 1053.850 1059.370 4474 1059.370* 1059.370 2225
c1-40-50-450 3 6 1140.250 1148.669* 1148.669 12,037
d1-40-50-450 4 6 1026.770 1048.560* 1061.807 15,861
e1-40-50-450 4 6 1218.140 1236.620 22,334 1229.929* 1236.620 19,609
f1-40-50-450 4 6 831.828 854.108* 854.108 6151
g1-40-50-450 5 6 1022.740 1028.460* 1054.123 20,985
h1-40-50-450 5 6 870.594 875.552 10,893 874.030* 875.552 19,328
i1-40-50-450 5 6 1211.850 1222.840 27,712 1219.724*
j1-40-50-450 6 6 890.826 888.219*
k1-40-50-450 6 6 1227.980 1234.232*
l1-40-50-450 6 6 1076.860 1085.320 35,555 1063.013*
a2-25-50-450 5 4 708.377 716.137* 727.992 22
b2-25-50-450 5 4 906.089 912.429 433 888.493* 14,469
c2-25-50-450 5 4 676.411 683.188 4330 673.647*
d2-25-50-450 5 4 864.477 876.113 1235 858.715* 890.189 14,451
e2-25-50-450 5 4 695.963 693.616* 701.609 60
f2-25-50-450 5 4 779.543 781.176 275 765.299* 823.758 14,428
g2-25-50-450 7 4 793.633 794.243 772 786.746* 793.633 19
h2-25-50-450 7 4 712.492 716.22 774 684.805*
i2-25-50-450 7 4 909.809 910.505 1508 870.897*
j2-25-50-450 7 4 609.378 609.378 447 604.955* 612.021 19
a2-40-50-450 5 6 1007.91 1010.61 5872 1008.381*
b2-40-50-450 5 6 1234.26 1238.94 8881 1230.582* 1243.321 7919
c2-40-50-450 5 6 1142.89 1156.045* 1156.045 897
d2-40-50-450 5 6 1183.18 1196.819* 1203.305 2661
e2-40-50-450 5 6 1072.35 1081.201* 1092.262 11,230
f2-40-50-450 5 6 1023.46 1046.454* 1046.454 4693
g2-40-50-450 7 6 1033.81 1035.01 6895 1027.798* 1046.867 7688
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on the 25 and 40 customers instances, our matheuristic improves the lower bound 
in 20 of the 42 instances and the same lower bound is obtained for 3 other instances 
(in bold). Also an upper bound for 13 instances, not reported in Muter et al.’s (2014) 
work, was obtained (in bold italic), four of them (c1-40-50-450, f1-40-50-450, c2-
40-50-450 and f2-40-50-450) being proven to be optimal (in bold italic underlined). 
Furthermore, when analysing the results reported by Muter et al. (2014) we noticed 
some inconsistencies. For example, in instances b1-25-50-450 and c1-25-50-450, 
our lower bound corresponds to the upper bound presented by Muter et al. (2014). 
From our analysis, we conclude that the Muter et al. (2014) solutions are unfeasible, 
as they require five vehicles and the maximum number allowed for those instances is 
four vehicles. We were able to reach a feasible solution since our approach reduces 

*Solution proven to be optimal for module 1
a The CPU reported corresponds to the CPU reported in Muter et al.’s (2014) work, where a computer 
with a 2.67-GHz Intel Westmere-EP X5650 Processor and 4 GB of RAM was used

Table 3  (continued)

Instances |Vf| |R| Muter et al. (2014) This work

LB UB CPUa LB UB CPU

h2-40-50-450 7 6 939.896 940.924 15,462 928.925* 973.971 17,346
i2-40-50-450 7 6 1155.96 1133.831* 1200.142 7818
j2-40-50-450 7 6 877.515 871.766*
a1-48-60-550 3 6 1069.498 1102.575 14,400
b1-96-210-1200 3 4 1167.858 1203.977 14,400
c1-192-360-1850 3 5 1776.140 1825.427 14,400
d1-48-80-600 4 5 1014.828* 1020.148 17,030
e1-96-230-1300 4 5 1280.707* 1293.033 20,394
f1-192-380-2000 4 4 1508.436 1556.694 14,400
g1-72-80-750 5 5 1112.332 1151.669 28,801
h1-144-230-1550 5 4 1455.586 1520.988 14,400
i1-216-380-2350 5 4 1831.927 1908.257 14,400
j1-72-100-800 6 4 1035.688 1079.273 28,801
k1-144-250-1650 6 4 1475.089 1553.064 28,800
l1-216-400-2500 6 4 1780.184 1831.465 14,400
a2-48-150-600 5 4 893.001* 900.840 14,571
b2-96-200-1150 5 4 1227.089 1266.383 28,801
c2-144-250-1700 5 4 1621.010 1683.292 14,400
d2-192-300-2250 5 3 1763.021 1849.970 14,400
e2-240-350-2800 5 3 1839.061 1915.688 14,400
f2-288-400-3350 5 3 2175.805 2258.996 28,800
g2-72-175-950 7 4 1074.764 1112.352 28,801
h2-144-250-1800 7 4 1485.507 1539.386 14,400
i2-216-325-2650 7 3 1824.002 1927.953 28,800
j2-288-400-3500 7 3 2160.304 2272.526 28,800
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the number of vehicles needed (by executing module 4). Additionally, for instance 
g2-25-50-450, we find a better feasible solution than Muter et al. (2014)—793.633 
versus 794.243.

In total, our method solved 54 out of 66 instances, 22 of them from the original 
MDVRPI instances, which are solved, to our best knowledge, for the first time in this 
work, with vehicles located at different depots. The reasons behind why all larger 
instances were solved (original instances) but not all medium instances (25-cus-
tomer and 40-customer) can be found by analysing the detailed results displayed in 
Tables 4, 5 and 6. For the 25-customer instances (Table 4), 10 out of 22 instances 
need to be worked out by module 3; for the 40-customer instances (Table 5), 15 out 
22 instances need to go through module 3; while for the original and larger instances 
(Table 6), only 7 out of 22 instances go to module 3. The performance of module 
3 depends on the number of routes involved in a rotation [set U cardinality at Con-
straint (52)]. As mentioned, Constraint (52) is implemented in a cutting-plane fash-
ion, i.e. we start with |U| = 2 ; if a feasible solution is obtained (all rotations with 
Dur ≤ T), module 3 stops; otherwise, the cardinality of set U increases by one unit 
until a feasible solution is obtained. For example, when Constraint (52) is added with 
|U| = 2 , it is guaranteed that a rotation with two inter-depot routes does not exceed 
the maximum duration allowed for any rotation. However, this does not prevent the 
appearance of a rotation with three or more inter-depot routes with a duration higher 
than T in the solution. In this case, we run module 3 again, now considering |U| = 3 , 
and so on. We noticed that worse results were obtained as the cardinality of set U 
increases due to the exponential number of constraints generated. For the original 
(and larger) instances, the cardinality of set U was always, at most, two or three. 
For the smaller instances, given the location of the customers and the large number 
of depots (3–6 depots to serve only 25 or 40 customers), rotations with a higher 
number of inter-depot routes are created, linking several depots. Consequently, |U| 
needed to be higher, and with |U| ≥ 5 module 3 fails to provide a solution.

Given that the original MDVRPI had been solved in previous works as a VRPIF 
with all vehicles located at a central depot, we are able to assess the economic ben-
efit of positioning vehicles at different depots by comparing our results with the 
best known solution (BKS) for each instance solved as a VRPIF. The BKS is avail-
able in the works of Crevier et al. (2007), Tarantilis et al. (2008) and Hemmelmayr 
et al. (2013). This comparison is shown in Table 7. We can observe that a potential 
benefit can reach values in the order of 10%. The potential benefit for the smaller 
instances, with fewer customers, is higher than that of larger instances. This fact is 
also observed in Markov et al. (2016), where the potential savings from a flexible 
assignment of destination depots and from home depot optimization are assessed. 
Comparing the average benefits gained: when vehicles are based at a central depot 
but are able to end their rotation at a different one, the average benefit is 1.77% 
(Markov et  al. 2016); when vehicles can be based at different depots, but have to 
start and end their rotation at the same depot, the average benefit is 2.13% (Table 7); 
and finally, when vehicles may be based at different depots and can both start and 
end their route at different depots, the average benefit is 2.54% (Markov et al. 2016).

To illustrate the difference between a VRPIF and MDVRPI, instance a1 is ana-
lysed in further detail. Figure  5 presents both solutions for instance a1: the one 
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obtained by solving the case as a MDVRPI (on the left) and as a VRPIF (on the 
right).

In the VRPIF solution, twelve routes are defined involving five vehicle rotations 
that must be based out of depot 49. In the MDVRPI, twelve routes are also defined 
and assigned to five vehicle rotations that are based out of the three depots (this 
solution involves two vehicles at depot 51, one vehicle at depot 49 and two vehicles 
at depot 50), representing a cost saving of 6.5%.

In order to illustrate how the solution method works, Figs. 6, 7, 8, 9 and 10 dis-
play the solutions generated by each module for instance a2. This instance was cho-
sen since its resolution requires the execution of all modules of the solution method.

The solution obtained by module 1 is comprised of seven routes as illustrated in 
Fig. 6.

These seven routes are the input for module 2 where the rotations are defined. 
In the first iteration, the total duration for a rotation (Dur) is set to 600 (T). Since 
no feasible solution was obtained, a second iteration was performed with Dur value 
reset to 650 (T + ∆) with ∆ as the minimum duration among the seven routes (i.e. 50 
for route 5). A feasible solution was obtained in the fourth iteration, with Dur = 750, 
defining five rotations (see Fig. 7).

The total duration of rotation 1 is 721, rotation 2 is 54, rotation 3 is 299, rotation 
4 is 478 and rotation 5 is 164. Since T = 600, rotation 1 needs to be re-worked by 
module 3, as it exceeds the operational time limit. Rotations 2, 3 and 5 have a dura-
tion lower than half of 600, meaning that they are possible candidates to be added to 
module 3 (since B = 0.5). However, the capacity usage of rotation 3 is 0.93 exclud-
ing this rotation from being re-worked by module 3, as it is above the assumed mini-
mum capacity usage. The other two rotations (2 and 5) have a capacity usage lower 
than B = 0.5, and therefore, the customers in rotations 1, 2 and 5 (in this case, 27 
customers) are considered as input for module 3. The solution obtained in module 3 
for the 27 customers is shown in Fig. 8, where we obtained two single-depot and two 
inter-depot routes satisfying the duration limit.

After running module 3, module 2 is executed once more with the four new 
routes created by module 3 and the three previous routes from rotations 3 (with one 
route) and 4 (with two routes). Five rotations were obtained, meaning that the maxi-
mum number of vehicles available was exceeded (|R| = 4) (see Fig.  9). Therefore, 
module 4 was executed.

Firstly, module 4 elects the pair of rotations to be merged. Given the maximum 
duration for a rotation (T = 600), four pairs of rotation could be merged: [1; 2], [2; 
3], [2; 4] and [2; 5]. For each pair, the minimum distance between each rotation is 
assessed considering both customers and depots and the pair with the lowest value is 
chosen. In instance a2, the pair with the minimum distance value is [2; 5]. The six-
teen customers belonging to this pair are the input for the mathematical formulation 
of module 4 in order to define one single rotation. The solution obtained in module 
4 is given in Fig. 10. The post-optimization procedures (module 5) were not able to 
improve the solution of instance a2, so the solution obtained at module 4 is the final 
one. This solution is to base the four vehicles out of facilities 49, 51, 52 and 53 (each 
represented by a different type of line). Therefore, these facilities act as depots and 
facility 50 remains unused.
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All the details of the final solutions produced by our approach for the original 
MDVRPI instances are available in supplementary material: Appendix B.

5  Conclusions

This paper addresses the MDVRPI, a routing problem characterized by the existence 
of multiple depots, where vehicles can reset their capacity without having to return 
to their home depot. This problem, which is very important in real logistic networks 
with applications in grocery distribution, waste collection, or when an electric vehi-
cle fleet is present, has received little attention from academia.

This gap is explored in this work where a generic MDVRPI is studied consider-
ing that vehicles are based at multiple depots. A new formulation, based on the two-
commodity flow formulation, was developed, where routes and rotations are defined 
in order to minimize the total routing cost. The location of the available vehicle 

Table 7  Potential benefit from positioning vehicles at different depots

Deviation was computed to 0% for instances f2, i2 and j2 since in the worst case, the results for the 
MDVRPI are equal to the results for the VRPIF

Instance Best known solution 
(VRPIF)

This work (MDVRPI) Deviation (%)

a1-48-60-550 1179.79 1102.575 − 6.54
b1-96-210-1200 1217.07 1203.977 − 1.08
c1-192-360-1850 1866.76 1825.427 − 2.21
d1-48-80-600 1059.43 1020.148 − 3.71
e1-96-230-1300 1309.12 1293.033 − 1.23
f1-192-380-2000 1570.41 1556.694 − 0.87
g1-72-80-750 1181.13 1151.669 − 2.49
h1-144-230-1550 1545.50 1520.988 − 1.59
i1-216-380-2350 1922.18 1908.257 − 0.72
j1-72-100-800 1115.78 1079.273 − 3.27
k1-144-250-1650 1576.36 1553.064 − 1.48
l1-216-400-2500 1863.28 1831.465 − 1.71
a2-48-150-600 997.94 900.840 − 9.73
b2-96-200-1150 1291.19 1266.383 − 1.92
c2-144-250-1700 1715.60 1683.292 − 1.88
d2-192-300-2250 1856.84 1849.970 − 0.37
e2-240-350-2800 1919.38 1915.688 − 0.19
f2-288-400-3350 2230.32 2258.996 0.00
g2-72-175-950 1152.92 1112.352 − 3.52
h2-144-250-1800 1575.28 1539.386 − 2.28
i2-216-325-2650 1919.74 1927.953 0.00
j2-288-400-3500 2247.70 2272.526 0.00
Average − 2.13
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fleet as well as the role of each facility in the network (depot, intermediate facil-
ity, or both) is also decisions made by the model. Furthermore, to allow the solu-
tion of real instances and consequently potentiate model applicability to real cases, 
a matheuristic approach was developed. Literature instances were solved, namely 

Instance a1 solved as a MDVRPI

Solu�on: 1102.58 

Instance a1 solved as a VRPIF  

Solu�on: 1179.79 (Crevier et al.,2007) 

49/52

50/53

51/54

Rota�on 1 (vehicle based at depot 49 or 51) -  Dura�on 469
49 - 8 - 3 - 4 - 54
51 - 22 - 12 - 54
51 - 37 - 6 - 47 - 43 - 25 - 52
Rota�on 2 (vehicle based at depot 51) -  Dura�on 408
51 - 1 - 26 - 34 - 15 - 13 - 54
51 - 38 - 35 - 30 - 17 - 54
Rota�on 3 (vehicle based at depot 49 or 50) -  Dura�on 400
49 - 18 - 41 - 44 - 53
50 - 23 - 40 - 46 - 14 - 21 - 52
Rota�on 4 (vehicle based at depot 50) -  Dura�on 407
50 - 5 - 24 - 29 - 2 - 16 - 19 - 53
50 - 10 - 27 - 32 - 28 - 53
Rota�on 5 (vehicle based at depot 50) -  Dura�on 417
50 - 39 - 33 - 20 - 11 - 53
50 - 42 - 9 - 36 - 53
50 - 45 - 31 - 7 - 48 - 53

49

50

51

Rota�on 1 (vehicle based at depot 49) -  Dura�on 473
49 - 3 - 4 - 1 - 30 - 35 - 51
49 - 25 - 43 - 47 - 6 - 37 - 51
Rota�on 2 (vehicle based at depot 49) -  Dura�on 542
50 - 45 - 31 - 7 - 48 - 50
50 - 9 - 2 - 16 - 36 - 50
49 - 27 - 10 - 11 - 50
49 - 32 - 28 - 44 - 50
Rota�on 3 (vehicle based at depot 49) -  Dura�on 508
49 - 14 - 40 - 23 - 19 - 50
49 - 33 - 39 - 20 - 5 - 24 - 29 - 42 - 50
Rota�on 4 (vehicle based at depot 49) -  Dura�on 204
49 - 46 - 41 - 18 - 21 - 49
Rota�on 5 (vehicle based at depot 49) -  Dura�on 451
51 - 13 - 15 - 34 - 26 - 17 - 51
49 - 8 - 38 - 51
49 - 22 - 12 - 51

Fig. 5  Solution for instance a1 solved as a MDVRPI and a VRPIF

Customer

Depot

Route 1

Route 2

Route 3

Route 4

Route 5

Route 6

Route 7

49 5150

52

53

Fig. 6  Module 1 solution for instance a2 
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those proposed by Muter et  al. (2014) and Crevier et  al. (2007)—two reference 
works in the field. For the instances proposed in the first work, some new and better 
solutions were achieved, whereas instances proposed in the latter were solved for 
the first time as a MDVRPI. When compared to the VRPIF solutions reported by 

Customer

Depot

Rota�on 1

Rota�on 2

Rota�on 3

Rota�on 4

Rota�on 5

49 5150

52

53

Fig. 7  Module 2 solution for instance a2

Customer

Depot

Route 1

Route 2

Route 3

Route 4

49 5150

52

53

Fig. 8  Module 3 solution for instance a2

Customer

Depot

Rota�on 1

Rota�on 2

Rota�on 3

Rota�on 4

Rota�on 5

49 5150

52

53

Fig. 9  Module 2 solution (after module 3) for instance a2
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Crevier et  al. (2007), Tarantilis et  al. (2008) and Hemmelmayr et  al. (2013), eco-
nomic savings up to 10% can be observed using the proposed approach.

Finally, although important results were achieved in the present work, future 
research directions can also be identified. Namely, further work on solution methods 
should be pursued, allowing the solution of all benchmarking instances published in 
the literature, as well as real problems. Moreover, other types of problems based on 
the MDVRPI should also be explored. One example is the problem that combines 
the MDVRPI characteristics with the inventory management aspects. Such studies 
will enable the consideration of multiple products’ availability at each facility. Also, 
holding costs could be accounted for into the MDVRPI problem together with rout-
ing costs, so as to model more realistic situations. Finally, the existence of uncer-
tainty should also be explored within such problems.
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