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Abstract
Disaster responses are usually joint efforts between agencies of different sizes and spe-
cialties. Improving disaster response can be achieved by prepositioning relief items
in the appropriate amount and at the appropriate locations. In this paper, we develop
a multi-agency prepositioning model under uncertainty. In particular, we develop a
model in which the prepositioning strategy developed by a major aid agency or a
local government considers sharing resources with other aid agencies. The proposed
model considersmultiple relief item types, storage capacity, budgetary and equity con-
straints while integrating supplier selection, inventory and facility location decisions.
Uncertainty is modeled using robust optimization. We provide a deterministic model
as well as its robust counterpart where demand and link disruptions are considered
uncertain. In addition, a heuristic approach for solving the uncapacitated deterministic
version of the proposed model is provided. In order to evaluate the proposed model
and heuristic, two computational experiments are presented. In the first experiment,
we assess the quality of the robust solutions by simulating a number of realizations.
In the second experiment, we test the performance of the heuristic compared to the
optimal policy.
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1 Introduction

Major natural disaster events, such as the Great East Japan Earthquake in 2011, hur-
ricane Sandy in 2012, the Nepal earthquake in 2015 and Louisiana severe storms
and flooding in 2016, certainly captured the media’s attention. However, there are
many more disasters that occur and are not publicized; an average of 375 natural
disasters were reported each year between 2008 and 2017 (International Federation
of Red Cross and Red Crescent Societies (IFRC) 2018). According to the Center for
Research on the Epidemiology of Disasters (CRED), in 2017 more than 9500 people
were killed and 96 million were reported affected by natural disasters. In the same
year, natural disasters cost $334 billion (Center for Research on the Epidemiology of
Disasters (CRED) 2018). Some types of natural disasters, such as floods and hur-
ricanes, are recurring and can be predicted within a reasonable time frame prior to
their onset (International Federation of Red Cross and Red Crescent Societies (IFRC)
2015). This time window can be used for preparedness activities in order to mitigate
the impact of the disaster. As noted by Galindo and Batta (2013a), a key part of the
preparedness activities relates to the prepositioning of emergency supplies. Preposi-
tioning strategies can improve response time in a post-disaster situation, which can
save lives and reduce economic loss. Our research is focused on the prepositioning of
supplies as a preparation strategy for such natural disasters.

In our model, demand for relief items at dispensing locations must be served;
some of this demand is served by prepositioned supplies so that it is immediately
available, while any remaining demand is served with supplies acquired post-disaster.
Considering that our model determines the location, amount and distribution of relief
items, it is important to incorporate equity into the decision process. An equitable
solution will distribute prepositioned relief items proportionately to the demand in
all dispensing locations. This means that in a perfectly equitable solution, the same
fraction of demand is served at all dispensing locations using prepositioned relief items
(versus supplies acquired post-disaster). Based on this definition of equity, we also
define a level of tolerable inequity as the rangebetween themaximumand theminimum
fraction of prepositioned demand among all dispensing locations. By controlling the
level of tolerable inequity, the modeler will be able to analyze the trade-offs between
effectiveness and equity.

Inventory prepositioning models are difficult for humanitarian organizations to
implement. First, inventory prepositioning models are becoming increasingly more
sophisticated requiring high levels of expertise in order to be used in a real-world
setting. Second, personnel in charge of humanitarian logistics activities usually lack
formal education in humanitarian logistics (Crum et al. 2011). Third, humanitarian
organizations lack adequate investment in technology including the use of methods
such as mathematical modeling (Beamon and Kotleba 2006; Gustavsson 2003). Our
approach aims to define a series of policies and condense them into a practical imple-
mentable heuristic. With this approach, we exploit the benefits of applying operations
research methods such as mixed integer linear programming and robust optimiza-
tion while making them accessible and implementable to people outside an academic
environment. The fundamental idea is that the resulting policies of this work can be
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implemented by humanitarian organizations using their own personnel with no addi-
tional investment in external consulting or optimization software.

The proposed model considers a scenario in which a major aid agency or local
government, acting as coordinator of a disaster response, must plan a prepositioning
strategy considering a multi-agency effort. The major aid agency is considered to have
a limited budget to allocate among inventory, warehousing and distribution. Affiliates
collaborate by providing relief items and are allowed to use the facilities opened by the
major aid agency. Affiliates’ supply distribution capabilities, or responsiveness, are
captured by a parameter called “inefficiency”, which is used as a factor in the objective
function. Our work shows that such supply distribution capabilities of the affiliates
affect the coordinator’s budget allocation and, thus, must be taken into consideration.
Henceforth, we refer to the decision maker (e.g., local government) as the coordinator
and the affiliates (e.g., FEMA, NGOs) as outside sources.

In this paper, we propose deterministic and robust formulations with an accompa-
nying heuristic approach in order to select suppliers, locate distribution centers and
determine the amount of relief items to be stored in the selected distribution centers.
The objective of ourmodel is tominimize the total demand-weighted distance between
distribution centers and dispensing locations. A limited budget used for opening dis-
tribution centers and procuring relief items is considered. Moreover, the solution must
meet a predefined level of tolerable inequity. Agencies participating in the disaster
response effort (i.e., affiliates) are incorporated into the model as outside sources. In
a real setting, relief items that might come from an outside source can be a result of
agreements within humanitarian organizations, inter-state agreements or federal aid.

The remainder of the paper is organized as follows: Section 2 provides a review of
the literaturewhich relatesmost closely to our problem.Section3presents a description
of the problem we intend to solve and our assumptions, while Sect. 4 contains the
model notation and mathematical formulations. Section 5 introduces the proposed
heuristic. Section 6 is organized as follows: First, we describe the methodology to
randomly generate the instances of the problem that were used in the computational
experiments. Second, we present the computational experiments under nominal data
and assess the robustness of the solutions under realizations. Third, we perform a
sensitivity analysis on several parameters. Section 7 presents our conclusions and
future research objectives.

2 Previous related work

According to Apte (2010), humanitarian logistics involves planning, implementation
anddecisions related to theflowand storageof goods and information in a humanitarian
context. Van Wassenhove (2006) identifies four phases in a disaster cycle: mitigation,
preparedness, response and rehabilitation. Inventory prepositioning, which takes place
in the preparedness phase, is identified as consisting of facility location, inventory
management and transportation decisions (Duran et al. 2011). In this section, we
review the literature on inventory prepositioning. For comprehensive literature reviews
on humanitarian logistics, see Altay and Green (2006); Galindo and Batta (2013b) and
Caunhye et al. (2012).
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We divide our review into optimization and heuristic approaches. The optimization
approaches considered in this review fall into the following categories: deterministic,
stochastic and robust models. Early models in inventory prepositioning were deter-
ministic and based on well-known facility location problems such as set covering
(Hale and Moberg 2005) and p-median (Akkihal 2006). Hale and Moberg (2005)
determine the location of storage areas for critical emergency resources to efficiently
serve multiple supply chain facilities. Akkihal (2006) identifies optimal locations for
prepositioning non-consumable inventories byminimizing the average global distance
from the nearest warehouse to a beneficiary.

Due to the complexity of humanitarian environments, uncertainty is usually con-
sidered in inventory prepositioning models. Stochastic programming is by far the
most commonly used approach in inventory prepositioning. For a review of two-
stage stochastic programming in disaster management, see Grass and Fischer (2016).
In general, two-stage stochastic inventory prepositioning models consider location
and amount prepositioned as first-stage decisions while transportation decisions are
considered in the second-stage. Objective functions used in these studies include min-
imizing expected total cost (Chang et al. 2007; Rawls and Turnquist 2010; Mete and
Zabinsky 2010; Döyen et al. 2012), maximizing satisfied demand (Balcik and Bea-
mon 2008), minimizing average response time (Duran et al. 2011) and minimizing
the number of casualties (Salmerón and Apte 2010). Stochastic programming models,
such as the ones mentioned above, require the probability distribution of the uncertain
parameters, which in many cases may be very difficult to obtain (Ben-Tal et al. 2011).

One of the standard methods used to model uncertainty is robust optimization.
Robust optimization is a methodology which is concerned with finding solutions that
perform well with respect to uncertain future conditions (Peng et al. 2011). For a
comprehensive review on robust optimization, see Ben-Tal et al. (2009), Bertsimas
et al. (2011) and Gabrel et al. (2014). Robust optimization is particularly useful in
situations where it is very difficult to identify probability distributions to model the
uncertain data (Ben-Tal et al. 2011). The complexity and unique characteristics of
each disaster response setting make inventory prepositioning a suitable candidate to
exploit the benefits of robust optimization, which is the approach used in this paper.

Robust optimization approaches have been used in humanitarian logistics. How-
ever, only a few papers have studied robust optimization approaches in inventory
prepositioning. Zokaee et al. (2016) propose a single-stage robust optimization model
that minimizes a relief chain’s total costs while ensuring a minimum percentage of
demand satisfied for all affected areas. They consider uncertainty in demand supply
and cost parameters. Instead, we focus on uncertainty in demand and link disrup-
tions. Ni et al. (2018) propose a two-stage robust optimization model that minimizes
logistics and deprivation costs for a single type of relief supply. We propose a multi-
commodity single-stage robust optimization model. Furthermore, our work differs
from these studies due to (i) the definition of the objective function (our model mini-
mizes total demand-weighted distance) and (ii) the focus on considering a coordinated
multi-agency disaster response.

Another aspect in which our work diverges from previous studies related to inven-
tory prepositioning is our interest in developing heuristic approaches. Two common
characteristics can be found in heuristics proposed in the humanitarian context. First,
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these heuristics are usually employed in conjunction with an optimization model (Yi
and Özdamar 2007; Rath and Gutjahr 2014 and Galindo and Batta 2013a). Yi and
Özdamar (2007) propose a two-phase location-distribution model where, in the first
phase, location decisions are takenusing amixed integer optimizationmodel and, in the
second phase, a heuristic is employed to determine routing decisions. Rath andGutjahr
(2014) solve a three-objective model considering location and routing decisions where
constraints are heuristically generated and added in each iteration. Galindo and Batta
(2013a) propose a heuristic approach for clustering locations allowing the optimization
model to solve larger instances. Second, the majority of the proposed heuristics are
usually employed to determine transportation and routing decisions. Berkoune et al.
(2012) develop a genetic algorithm to solve disaster relief transportation problems.
Ferrer et al. (2016) propose a multi-criteria model to determine a distribution plan for
relief aid in disaster response. To the best knowledge of the authors, there are no papers
proposing heuristics for inventory prepositioning that are not optimization-based and
consider facility and inventory decisions. One of the contributions of our paper is that
we develop a greedy heuristic with budgetary and equity constraints.

Equitable or fair distribution of relief supplies is an important aspect in inventory
prepositioning. Only a few papers in inventory prepositioning consider equity or fair-
ness. Bozorgi-Amiri et al. (2013) incorporate fairness as one of two objectives by
minimizing the maximum shortage of relief items at the dispensing locations. Rezaei-
Malek and Tavakkoli-Moghaddam (2014) incorporate a fairness level into the model
where the difference of weighted unsatisfied demands between two demand points
does not exceed a maximum considered amount of fairness level defined by experts.
Zokaee et al. (2016) consider equity by creating a new constraint ensuring that a prede-
fined minimum percentage of relief items demandmust be satisfied. Similar to Zokaee
et al. (2016), we consider the level of tolerable inequity, which is the range of fraction
of demand satisfied by prepositioned supplies, as a parameter that is specified by the
user.

Literature on inventory prepositioning models considering cooperation among
multiple relief agencies is limited. Although disaster responses usually require the
intervention of many organizations (Akhtar et al. 2012), the vast majority of inventory
models in the literature consider one agency. Furthermore, most of the papers study
coordination in the humanitarian context from a conceptual perspective (Balcik et al.
2010; Feng et al. 2010; Akhtar et al. 2012). In this paper, we propose a robust opti-
mization model for inventory prepositioning considering agency cooperation in the
form of relief aid available post-disaster.

The interaction and relationships among these different actors participating in the
relief effort are known as coordination (Balcik et al. 2010). Cooperation mechanisms
used pre-disaster including logistics decisions such as procurement, warehousing and
transportation (Balcik et al. 2010). Our proposed model focuses on the warehousing
decisions. In particular, we are concerned with the location and capacities of stor-
age facilities that are shared by several aid agencies. This coordination strategy for
warehousing facilities has low associated costs, low technological requirements and
high potential for implementation (Feng et al. 2010). Furthermore, adequate storage
facilities required during a relief effort might be difficult to find (Balcik et al. 2010;
Akhtar et al. 2012).
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Fig. 1 Schema of the proposed disaster relief chain. Solid lines represent relief item flows from distribution
centers to dispensing locations. Dashed lines represent flow from suppliers to distribution centers. Dashed
dotted lines represent flows from outside sources to distribution centers

A review of the literature reveals gaps in humanitarian logistics research. The main
contributions of our work are as follows: First, we extend the literature in humanitarian
logistics by developing a robust inventory prepositioning model that can be used in a
multi-agency disaster response. Furthermore, we develop a heuristic approach for the
uncapacitated deterministic version of our model that could be used in environments
where costly barriers to use off-the-shelf optimization software, such as training or
licensing, are present. Second,we extend the literature in robust optimization by apply-
ing Bertsimas and Sim (2004) budget uncertaintymodel to an inventory prepositioning
problem under demand and network damage uncertainty.

3 Problem description and assumptions

Let us assume that a hurricane is expected to make landfall in the upcoming days.
A local government or major aid agency, i.e., the coordinator, has decided to plan a
prepositioning strategy in collaboration with other humanitarian organizations, i.e.,
outside sources. We hypothesize that outside sources capabilities affect the coordi-
nator’s prepositioning strategy in terms of the location and amount of prepositioned
relief supplies. Therefore, the coordinator must consider outside sources in the deci-
sion process in order to improve the overall disaster response. Examples of relief
items to be prepositioned include water, ready-to-eat meals, comfort and medical
kits. An area that contains the population that could potentially be affected by a
disaster is determined and a forecast of demand for relief items has been gener-
ated. In addition, based on this preliminary assessment of demand quantity and
location, a set of potential distribution center locations and a set of suppliers are
defined.

In this paper, we study a single-period three-level multi-commodity disaster relief
chain. As shown in Fig. 1, the first level of our relief chain consists of suppliers and
outside sources, the second level contains distribution centers, and the last level is the
set of dispensing locations. Relief items provided by the coordinator are procured pre-
disaster from suppliers and prepositioned at the distribution centers. In the same level
of the suppliers, outside sources procure relief items post-disaster and use distribution
centers to serve the dispensing locations. In the second level, distribution centers have
finite capacities to store prepositioned relief items. Dispensing locations, the last level,
represent the areas where relief items are received by the affected population.
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Fig. 2 Tropical cyclone storm surge (left) and flood hazard (right) maps for Coastal North Carolina

The proposed model determines the flow of relief items through the considered dis-
aster relief chain and the location of the distribution centers in an effective and equitable
manner. To this aim, two models are proposed: a deterministic model (Sect. 4.2) and
its robust counterpart (Sect. 4.3) where demand and link disruptions are considered
uncertain. The main assumptions in our deterministic model are summarized as fol-
lows, while relaxations of these assumptions are explained when the robust model is
introduced:

1. Costs and distances are known.
2. Facilities have known storage capacity and are not affected by the disaster.
3. Demand for relief items is deterministic and known (relaxed in the robust formu-

lation).
4. Links are not affected by the disaster (relaxed in the robust formulation).

Deterministic models imply that all parameters used, such as demand, costs and
distances, are known and fixed. For instance, prior to the use of the proposed model,
demand might be forecasted based on historical data and procurement and transporta-
tion costs might be determined and agreed upon with suppliers. Distances between
locations are also assumed to be known and remain fixed post-disaster which means
that if a route is disrupted, another route of the same characteristics can be used. These
types of assumptions, such as assumptions 1 and 2, are also found in (Verma and
Gaukler 2015) and (Galindo and Batta 2013a).

Distribution centers are desired to be located near the dispensing locations. How-
ever, as they are carefully chosen prior to the disaster, they are not located in
disaster-prone areas and have the necessary infrastructure to remain operational post-
disaster (Dr. J. Casani, personal interview). There are available data regarding hazards
that might put the operation of an opened distribution center at risk. For instance, Fig. 2
shows the results of two different risks in coastal North Carolina: The left figure shows
the areas where the water level would increase due to the presence of a category-5
tropical cyclone. Themap on the right shows the flood risk caused by rain. The sources
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of the risk maps shown above come from official sites such as the National Hurricane
Center (www.nhc.noaa.gov) and theGovernment of the State of North Carolina (www.
nc.gov).

In our robust optimization model, we relax the third and fourth assumption by con-
sidering demand and link disruptions uncertain. As noted by Mert and Adivar (2010),
in real humanitarian operations, sources of uncertainty are various. Factors such as
the demand, availability and cost associated with the procurement and distribution of
relief items are uncertain. Thus, we focus on demand and link disruption uncertainty
and discuss potential extensions to include other sources of uncertainty.

4 Mathematical formulation

We propose a model that minimizes the total demand-weighted distance between dis-
tribution centers and dispensing locations subject to budget and equity constraints
where demand may be satisfied partially by the coordinator and outside sources. The
coordinator manages the available budget for the prepositioning strategy, i.e., cost of
opening distribution centers and prepositioned relief items. The outside sources, which
can also provide relief supplies, use the distribution centers opened by the coordinator
to serve the dispensing locations.

In this section, we first discuss key aspects of our models, such as equity, outsource
efficiency and costs. Then, we introduce two inventory prepositioning models. The
first model is deterministic and the second is a robust optimization model where we
assume uncertainty in demand for relief items and link disruptions.

4.1 Definitions

In this section, we discuss three key definitions of our proposed model. First, we
define equity and describe how it is modeled. Second, we discuss the outside source
efficiency and how it is incorporated into our models. Finally, we examine how the
cost parameters used in the models might be calculated.

4.1.1 The trade-off between effectiveness and equity

In ourmodel, effectiveness ismeasured as the total demand-weighted distance between
distribution centers and dispensing locations and equity is calculated based on the
fraction of demand that is served with prepositioned relief items. In order to illustrate
the effectiveness-equity trade-off, let us assume a network with one distribution center
and two demand locations located at 10 and 20 units of distance away, as shown in
Fig. 3. In addition, assume that each demand location, A and B, requires 100 units of
relief items, and we are allowed to distribute only 100 units of relief items in total. If
we want to provide a perfectly equitable solution (i.e., level of inequity = 0), we must
distribute 50% of demand to both locations, resulting in a total demand-weighted
distance of 0.5 × 100 × 10 + 0.5 × 100 × 20 = 1500. Now suppose we define a
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Fig. 3 A distribution center (shaded triangle) serving dispensing locations A and B located at 10 and 20
units of distance, respectively. Demand for relief items required to be served is 100 units at both dispensing
locations A and B

level of tolerable inequity of 0.2. In this case, we can send more items to the closer
dispensing location resulting in a reduction in the total demand-weighted distance of
0.6 × 100 × 10 + 0.4 × 100 × 20 = 1400. With this illustration, we can see that we
can improve our demand-weighted total distance by increasing the level of tolerable
inequity.

4.1.2 Outside sources and their efficiencies

Recall that the coordinator’s inventory is prepositioned,while aid from outside sources
is shipped to the distribution centers post-disaster. Parameter f is an inefficiency factor
or a penalty associated with not having supply immediately available. Inefficiencies
can occur for multiple reasons including higher procurement costs, longer travel dis-
tances, delays in transport and reduced transportation capacity. Next we show one way
to estimate parameter f considering inefficiencies related to transportation capacity.

Since outside sources may vary in size and expertise, a reasonable assumption to
make is that their efficiency—or inefficiency—in disaster response might vary as well.
For modeling purposes, inefficiency is expressed with the parameter f . Here, let the
inefficiency factor f be a unit-less ratio between the aggregated response rate of all
outside sources and the coordinator’s response rate. Response rates �i are defined
as the speed at which demand can be served by agency i . One suggestion for the
calculation of parameter f is as follows:

f = �c
∑

s∈S �s
(1)

where

�i =
(nq

t

)

i
. (2)

Equation (2) is used to calculate response rates for the coordinator (i.e., i = c)
and the outsides sources (i.e., i = s, s ∈ S). Assuming that each affiliate’s fleet is
homogeneous, n is the number of trucks and q is the capacity of each truck. Finally,
t is the sum of minimum travel times that affiliate i requires to reach all dispensing
locations.

If the inefficiency factor f > 1, this means that the affiliate is more inefficient than
the coordinator in responding to the disaster. On the other hand, if the inefficiency
factor f < 1, the affiliate is less inefficient than the coordinator in responding to a
disaster. Once the disaster occurs and the disaster response begins, outside sources
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must ship relief items to the distribution centers before they are sent to the dispensing
locations, while the coordinator’s inventory is already prepositioned at the distribution
centers. Therefore, a reasonable assumption to make regarding the outside source
inefficiency factor is that f > 1. The above ismeant to illustrate oneway to estimate f ;
ultimately, this serves as a penalty associated with not having relief items immediately
available which can cause human suffering.

4.1.3 Cost parameters

Ourmodel considers three types of cost. Cost parameter c1 includes transportation cost
fromsuppliers to distribution center andprocurement cost, cost parameter c2 represents
the transportation cost from the distribution centers to the dispensing locations, and
cost parameter c3 represents the cost of setting up a distribution center. A finite budget
for prepositioning is assumed to be available. Cost parameters are only associated with
the coordinator since it is the entity that manages the available budget for disaster
response.

4.2 Deterministic model

Table 1 contains the notation used in our proposed models. The deterministic formu-
lation is as follows:

Minimize
∑

j,k,l

d jkvkl y jkl + f ·
∑

j,k,l

d jkvklw jkl (3)

subject to
∑

i, j,l

c1i jl xi jl +
∑

j,k,l

c2jklvkl y jkl +
∑

j

c3j z j ≤ b, (4)

∑

k

vkl y jkl ≤
∑

i

xi jl ∀ j, l, (5)

∑

k,l

vkl y jkl ≤ K j z j ∀ j, (6)

∑

k

w jkl ≤ Mz j ∀ j, l, (7)

γ ≤
∑

j

y jkl ≤ θ ∀ k, l, (8)

θ − γ ≤ α, (9)
∑

j

y jkl +
∑

j

w jkl ≥ 1 ∀ k, l, (10)

y jkl + w jkl ≤ 1 − uk ∀ j, k, l, (11)

z j = {0, 1} xi jl , y jkl , w jkl , θ, γ ≥ 0 ∀ i, j, k, l. (12)

The objective function (3) minimizes the total demand-weighted distance from
distribution centers to dispensing locations. In Eq. (3), the first term represents the
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Table 1 Definitions of sets, indexes, decision variables and parameters used in the proposed models

Index sets

i Supplier, i ∈ I , |I | = m

j Potential distribution center, j ∈ J , |J | = n

k Demand location, k ∈ K , |K | = o

l Relief kit, l ∈ L , |L| = p

Decision variables

xi jl Amount of relief item l procured from supplier i and prepositioned at distribution
center j

y jkl Fraction of demand for relief item l at dispensing location k served using
coordinator’s inventory prepositioned at distribution center j

w jkl Fraction of demand for relief item l at dispensing location k satisfied post-disaster by
outsides sources using distribution center j

z j 1 if distribution center j is opened, 0 otherwise

γ Minimum fraction of demand served by coordinator’s prepositioned inventory

θ Maximum fraction of demand served by coordinator’s prepositioned inventory

Parameters

vkl Demand for relief item l at dispensing location k

c1i jl Procurement and transportation cost of relief item l purchased from supplier i
prepositioned at distribution center j

c2jkl Transportation cost of relief item l purchased from distribution center j to dispensing
location k

c3j Fixed cost associated with opening the distribution center j

d jk Distance from distribution center j to dispensing location k

b Coordinator’s available budget for the prepositioning operation

K j Storage capacity of distribution center j

uk Capacity reduction in links connecting dispensing location k

f Outside sources aggregated inefficiency factor

α Level of tolerable inequity. Acceptable difference between the maximum and the
minimum fraction of demand served by coordinator’s prepositioned relief items

M A relatively large number (M ≥ |K |)

sum of demand-weighted distances of demand served with relief items prepositioned
by the coordinator, while the second term represents the sum of demand-weighted
distances of demand servedwith relief items provided by the outside sources. Equation
(4) expresses the coordinator’s budget constraint. Equation (5) guarantees that relief
items delivered by the coordinator to dispensing locations are available at distribution
centers. Equation (6) ensures that capacities to store prepositioned relief items at
distribution centers are respected. Equation (7) ensures that outsides sources use only
opened distribution centers. Equity is modeled by Eqs. (8) and (9). Equation (8) serves
the purpose of assigning the maximum and minimum fraction of demand served by
the coordinator (i.e., using prepositioned relief items) to auxiliary variables γ and
θ , while Eq. (9) ensures that the range between the auxiliary variables γ and θ is
less or equal than the parameter α. Equation (10) guarantees that all demand must
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be met. Equation (11) limits link capacities. Equation (12) represents the binary and
non-negativity constraints.

4.3 The robust model

In this section, we introduce the robust counterpart where demand and link disruptions
are assumed uncertain. Demand uncertainty is modeled using the budget uncertainty
set approach proposed by Bertsimas and Sim (2004). Some of the advantages of using
the uncertainty budget model are (i) the robust formulation maintains the complexity
of its deterministic counterpart and (ii) the modeler can control the level of conserva-
tiveness in the solution. Uncertainty in link disruption is modeled using the interval
uncertainty set proposed by Soyster (1973).

Let us define demand ṽkl as the uncertain parameter where each ṽkl is modeled
as a symmetric and bounded random variable that takes values in [vkl − v̂kl , vkl +
v̂kl ]. Parameter vkl represents the demand nominal value, and the perturbation v̂kl

is computed as v̂kl = εvkl where ε is referred to as the demand variability. The
budget uncertainty set approach proposed by Bertsimas and Sim (2004) allows the
modeler to control the level of protection against uncertainty by defining a parameter
named �, which determines the number of uncertain parameters that are allowed to
vary.

Following Bertsimas and Sim (2004), the standard procedure to develop the robust
reformulation of a linear problem is that we first introduce the protection func-
tion in those constraints affected by the uncertain parameter ṽkl . Then, we rewrite
the added protection function in the form of an optimization problem. Finally,
the protection function in the form of an optimization problem is substituted by
its dual. Let us illustrate this procedure with the deterministic objective function
(Eq. 3).

The robust counterpart of the deterministic objective function (Eq. 3) can be written
as

Min
∑

j,k,l

vklχ jkl + β(χ jkl , �) (13)

where χ jkl = d jk(y jkl + f w jkl) and β(χ jkl , �) is defined as the protection function.
Given χ∗

jkl and assuming that protection levels (�s) only take integer values, the
protection function can be written as

β(χ∗
jkl , �) = max{S|S⊂V ,|S|≤�}

{ ∑

(k,l)∈S

v̂kl

∑

j

|χ∗
jkl |

}

(14)

where V = {(k, l)|v̂kl > 0}, � ∈ [0, |S|] and S represents the set of uncertain
parameters.

As the procedure indicates, the above formula is written as a linear optimization
problem:
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maximize
∑

(k,l)∈V

v̂kl pkl

∑

j

|χ jkl |

subject to
∑

(k,l)∈V

pkl ≤ �

0 ≤ pkl ≤ 1, ∀(k, l) ∈ V

(15)

and the dual can be written as

minimize
∑

(k,l)∈V

μkl + λ�

subject to λ + μkl ≥ v̂klγkl ∀(k, l) ∈ V

− γkl ≤
∑

j

χ jkl ≤ γkl ∀(k, l) ∈ V

λ,μkl , γkl ≥ 0 ∀(k, l) ∈ V

(16)

where λ, μkl and γkl are dual variables.
We have shown the steps needed to reformulate the objective function. By repeating

these steps with the budget, balance and storage capacity constraints, i.e., Eqs. (4)–(6),
the robust linear problem with uncertain demand can be written as follows:

Minimize
∑

j,k,l

vklχ jkl + λ� +
∑

(k,l)∈V

μkl (17)

subject to
∑

i, j,l

c1i jl xi jl +
∑

j,k,l

c2jklvkl y jkl +
∑

j

c3j z j + λ� +
∑

(k,l)∈V

μkl ≤ b, (18)

∑

k

vkl y jkl + λ� +
∑

k∈V

μkl ≤
∑

i

xi jl ∀ j, l, (19)

∑

k,l

vkl y jkl + λ� +
∑

(k,l)∈V

μkl ≤ K j z j ∀ j, (20)

λ + μkl ≥ v̂klγkl ∀(k, l) ∈ V , (21)

− γkl ≤
∑

j

χ jkl ≤ γkl ∀(k, l) ∈ V , (22)

− γkl ≤
∑

j

c2jkl y jkl ≤ γkl ∀(k, l) ∈ V , (23)

− γkl ≤
∑

j,l

y jkl ≤ γkl ∀(k, l) ∈ V , (24)

− γkl ≤
∑

j

y jkl ≤ γkl ∀(k, l) ∈ V , (25)

λ,μkl , γkl ≥ 0, ∀(k, l) ∈ V , (26)

Constraints (8)–(12). (27)
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Equation (17) represents the robust form of the objective function, i.e., Eq. (3).
Similarly, Eqs. (18)–(20) are the robust form of Eqs. (4)–(6). Equations. (21)–(26)
represent the constraints of the protection functions written in dual form, as shown in
Problem 16.

In order to incorporate uncertainty in link disruptions, let us assume that capacity can
be reduced by an uncertain value of ũk in those links connecting dispensing locations
k that belong to set L. Uncertain parameters ũk are assumed to be independently
distributed and can take any value in the range [uk, ûk]. The nominal value uk is
assumed to take the value of 0, which means that there is no link disruption.

Link capacity reduction ûk takes a value between 0 and 1, where 0 means that
the link is undamaged and 1 means that the link is broken. Given that the uncertain
parameter ũk will take the value of ûk in the worst-case scenario, a robust solution
with respect to link disruption is found if we replace ũk by ûk in those links connecting
distribution centers to dispensing locations that belong to a predefined set L.

In order to consider link disruptions uncertain in the robust model (17)–(27), we
replace constraint (11) with

∑

j

y jkl +
∑

j

w jkl ≤ 1 − ûkl ∀ (k, l) ∈ L. (28)

5 A greedy heuristic

In this section, we develop a greedy heuristic for solving the uncapacitated determin-
istic version of the proposed model. We base our algorithm on the dropping heuristic
originally proposed by Kuehn and Hamburger (1963) with the following key differ-
ences. First, we use a p−median objective function where we minimize the total
demand-weighted distance between distributions centers (DCs) and dispensing loca-
tions. Second, we add budgetary constraints in a similar fashion as proposed by Wang
et al. (2003). Finally, we introduce additional steps to ensure equity constraints are
met.

The algorithm consists of the main heuristic, i.e., the equitable inventory prepo-
sitioning heuristic, and a subprocedure, i.e., the budget reallocation heuristic. Our
proposed algorithm begins by choosing which distribution centers (DCs) to open and
a fraction δ of prepositioned demand for all dispensing locations (DLs) and relief
items considering that all DCs are available. This is considered as the initial solution.
Then, by using a cost-to-benefit ratio as a criterion, DCs are iteratively closed until no
further improvement in the objective value is achieved.

The equitable inventory prepositioning heuristic

Step 1: Initialize Define J as the set of potential distribution centers. Open distri-
bution centers at all eligible candidate sites and assign demand nodes to the
distribution center that minimizes the total demand-weighted distance.

Step 2: Allocate Assign the same fraction of demand to all demand locations given
the available budget. Then, reallocate budget using the budget reallocation
heuristic provided in Sect. 5.1.

123



Prepositioning inventory for disasters: a robust and… 771

Step 3: Drop Compute the value φ j for all opened distribution centers as follows:

φ j =
∑

k,l

f vklw jkl min{(drk − δk) : r ∈ J \ { j}}

+
∑

k,l

vkl y jkl min{(drk − δk) : r ∈ J \ { j}} (29)

where δk = min{d jk : j ∈ J }. Close the distribution center with the smallest
value of φ j/c3j . J ← J\{ j} where j = argmin φ j/c3j , reassign dispensing
locations to the opened distribution centers that minimize the total demand-
weighted distance and repeat Step 2.

Step 4: Terminate If a reduction in the objective function is found by removing a
candidate distribution center or the cost of opening distribution centers is
greater than the available budget, go to Step 3. Otherwise, take the previous
solution and STOP.

The variable φ j represents the increase in the total demand-weighted distance, while
c3j represents the savings incurred by dropping distribution center j . Therefore, the

ratio φ j/c3j represents the total demand-weighted distance (i.e., cost) that is increased
for each monetary unit saved (i.e., benefit) caused by closing distribution center j .
The distribution center with least favorable cost/benefit ratio is dropped.

5.1 Budget reallocation heuristic

The budget reallocation heuristic performed in Step 2 is presented next:

Step 1: Initialize Sort in ascending order the dispensing locations using the distance
to the openedDC thatminimizes the total distribution cost, that is c1i jl and c2jkl .
Assign 0 to the demand fraction y jkl corresponding to the dispensing location
in the first position of the sequence, calculate the saved budget and reallocate
the saved budget uniformly among all the dispensing locations (including the
one in the first position of the sequence).

Step 2: Assign Starting from the second element in the sequence of dispensing loca-
tions, assign the minimum fraction y jkl to this element, calculate the saved
budget and reallocate the saved budget uniformly among all demand fractions
y jkl

(a) If the fraction prepositioned is more than allowed, i.e., y jkl > 1, assign
a value of 1 to that element, calculate the saved budget and reallocate the
saved budget among the y jkl elements that have the minimum value.

(b) If the equity constraint is violated, i.e., max y jkl − min y jkl ≥ α, assign
min y jkl +α to the elements that havemaximum value, calculate the saved
budget and reallocate the saved budget among all y jkl .

Step 3: Repeat Repeat Step 2 for all dispensing locations.

In order to illustrate how Step 1 in the budget reallocation heuristic is computed,
consider the network shown in Fig. 4a which has n = 2 distribution centers, o = 2
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Fig. 4 Sequence of solutions when executing the proposed heuristic using the example data

dispensing locations and p = 1 relief item. Distances and the minimum total cost for
each DC–DL pair are assumed as follows:

d jk =
[
10 20
30 2.5

]

, min
i

c1i j1 + c2jk1 =
[
12 24
33 6.5

]

The minimum cost for each dispensing location (i.e., column-wise) corresponds to
the following j indices:

[
1 2

]
. Therefore, the distances used for sorting are

[
10 2.5

]
.

Once distances are sorted in ascending order, dispensing locations are ordered as
follows:

[
2 1

]
. This means that the first candidate to reduce its budget will be k = 2

which has the smallest value (i.e., 2.5) in the sorted distance vector
[
2.5 10

]
and the

last candidate to modify its budget is k = 1 with a distance of 10, taken also from the
aforementioned sorted distance vector.

5.2 Example

In this section, we explain how the heuristic works with an example. As shown in
Fig. 4a, we consider a network with 2 potential distribution centers, 2 dispensing
locations, 1 outside source and 1 relief item. For the sake of simplification, we assume
that c1i jl = 0 and c2jkl = d jk . Assigning c1i jl = 0 allows us to disregard the suppliers
located in the first level of the relief chain. Available budget is 300, and the cost of

123



Prepositioning inventory for disasters: a robust and… 773

Table 2 Comparison of optimal solutions with different values of outside source inefficiency ( f )

f Opened DCs Z Fraction prepositioned Budget Inequity

DL 1 DL 2 Warehousing Inventory

3 A 4100 75% (A) 100% (A) 100 200 0.25

2 A and B 3525 45% (A) 20% (B) 200 100 0.25

Tolerable level of inequity α is set to 0.25. When f = 2, only distribution center A should be opened, while
if f = 3, the optimal policy suggests to opened both distribution centers A and B. Letters inside parenthesis
indicate the distribution center used to preposition the relief items

opening any distribution center is 100. Tolerable inequity α is set to 0.25, and outside
source inefficiency f is set to 3.

After executing Steps 1 and 2, we obtain an objective value of 4725 and the distri-
bution network shown in Fig. 4c. Variables φ1 and φ2 calculated in Step 3 are 5600
and 1225, respectively. Likewise, since c3 = 100, ratios φ1/c3 and φ2/c3 are 560
and 122.5. Since φ2/c3 is the minimum ratio among all dispensing locations, distri-
bution center B is dropped and the objective value is updated to 4100. Since we find
an improvement compared to the previous objective value of 4725, we take the new
solution. At this point, we only have one distribution center opened so we stop.

Figure 4 shows the sequence and results of the steps executed using the inventory
prepositioning heuristic proposed in Sect. 5. Figure 4a shows the initial network, and
Fig. 4b, c shows the solutions found before and after executing the budget reallocation
heuristics in Step 2. Figure 4d shows the final solution of the algorithm which is
found in the second iteration. The results of the heuristic is that distribution center
A should be opened. The optimal flow of relief items is to preposition at distribution
center A, 75% of the relief items needed at dispensing location 1 and 100% required
at dispensing location 2. Optimal total demand-weighted distance is 4100.

5.3 Effect of outside source inefficiency

By using the same example data found in Sect. 5.2, we can observe how the outside
source inefficiency parameter f affects the final solution. Let us assume now that the
outside source inefficiency parameter f is changed from 3 and set to 2. For analysis,
we divide the budget into two categories depending on its use: Warehousing budget is
used for setting up distribution centers, while inventory budget is used for procuring
relief items. As shown in Table 2, in the case when f = 2, the optimal policy dictates
that both distribution centers should be opened and the optimal demand-weighted
distance is 3525 as opposed to only one when f = 3 was used and optimal demand-
weighted distance of 4100. Since there is a limited budget, inventory left for procuring
relief items is reduced when more budget is used for setting up distribution centers.
Therefore, the fraction of demand prepositioned is lower (45% and 20% for dispensing
locations 1 and 2, respectively) when f = 2 compared to the demand prepositioned
when f = 3 (75% and 100% for dispensing locations 1 and 2). Two additional aspects
to note are that both solutions utilize all the available budget and are at the maximum
tolerable inequity.
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Based on this example,we can conclude that if outside source inefficiency f is small
(i.e., outside source can serve almost as fast as the coordinator), more warehouses
are opened and thus disaster response—measured in demand-weighted distance—is
improved. On the other hand, if outside source inefficiency f is large (i.e., outside
sources take, on average, more time to response to the disaster than the coordinator),
less warehouses are opened and more prepositioned supplies are used; in other words,
relief supplies prepositioned by the coordinator are preferred over relief supplies
provided by outside sources.

6 Computational experiments

In this section, we evaluate the performance of the proposed robust formulation as
well as the heuristic by using randomly generated instances, based on the geography
of the state of North Carolina, USA. To this aim, we first introduce the methodology
for generating the instances used to test our proposed formulations and heuristic.
Second, the robust formulation is evaluated comparing the robust solutions with: (1)
the deterministic solution and (2) a number of simulated realizations. Third, budget
allocation decisions are analyzed for different values of outside source inefficiency
and demand variability. Finally, heuristic performance is evaluated and compared to
optimal solutions. All experiments were performed on a computer with Intel Core i5
2.4 GHz CPU and 8GBRAM. The proposed heuristic was implemented in Julia 0.5.2,
while optimal nominal and robust solutions were found using Gurobi 7.5.1.

6.1 Methodology for randomly generating instances

We consider a major aid agency or a state government agency, which acts as the
coordinator, that wants to design a prepositioning strategy for the state of North
Carolina. Suppliers, potential distribution center locations and dispensing locations are
randomly chosen from the subset of 5-digit zip codes of the state of North Carolina
which have a population greater than 3000. This results in 518 zip codes, from a
total of 806 possible zip codes. The database used to obtain population information
is found in Kay (2013). Great circle distance with a 1.2 correction factor is used to
simulate driving distance between nodes. Nodes are chosen using a demand-weighted
distribution. This means that nodes with a larger population have higher probability of
being chosen than nodes with a smaller population. As in Rawls and Turnquist (2012),
we assume relief items types to be consumables or non-consumables, and thus, two
relief item types are considered (p = 2). Nominal demand quantity is computed as
10% of the population at each dispensing location. For the case of consumable items,
we assume that we must preposition sufficient inventory to serve the needs equivalent
to five days.

Cost parameters used in the proposed models are calculated as follows: c1, which
represents the cost of prepositioning, considers the procurement cost and the pre-
disaster transportation cost. c2, which expresses the distribution cost from distribution
centers to dispensing locations, is calculated using the post-disaster transportation
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Table 3 Procurement and transportation cost rates for relief items

Relief item type Procurement cost ($/unit) Transportation cost ($/unit-mile)

Pre-disaster Post-disaster

Consumable U (13, 17) 0.0015 0.0019

Non-consumable U (23, 27) 0.0045 0.0060

Fig. 5 Randomly generated instance of a relief network with 5 suppliers, 10 potential distribution centers
and 15 dispensing locations

cost. The cost of opening and setting a distribution center (i.e., c3) is set to $150, 000.
Procurement costs as well as transportation cost pre- and post-disaster are summa-
rized in Table 3, and procurement costs are uniformly generated between 13 and 17
for consumable relief items and between 23 and 27 for non-consumable relief items.
Procurement and transportation cost calculations are based on the case study found in
Rawls and Turnquist (2012). In our model, relief items are only prepositioned at the
distribution centers, which implies that transportation of prepositioned items to dis-
pensing locations will occur after the disaster has taken place. As observed by Galindo
and Batta (2013a) and others, delivery cost after a disaster has occurred become larger
due to road and infrastructure damage. For evaluation purposes, we assume an increase
of 30% in post-disaster transportation cost compared to pre-disaster.

6.2 Optimization results

By using the methodology described in Sect. 6.1, we randomly generate one instance
of size [m, n, o] = [5, 10, 15], that is 5 suppliers, 10 potential distribution centers
and 15 dispensing locations (see Fig. 5). Since there are two relief item types, the
maximum number of uncertain demand parameters is 30. Hence, protection level �

can take any integer value in [0, 30]. Available budget b is set to $2,000,000. Outside
source inefficiency f is set to 1.5. Storage capacity at each distribution center is
calculated as 70% of the total storage space required. Disruptions at links connecting
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(a) Outside source inefficiency f = 1.5. (b) Demand variability = 10%.

Fig. 6 Sensitivity of the proposed robustmodel compared to the deterministicmodel under different demand
variabilities ε (left) and outside source inefficiencies (right)

distribution centers to dispensing locations 1, 3 and 4 are assumed to be uncertain,
i.e., L = {1, 3, 4}. Link capacity reduction is set to 0.1.

First, we compare the robust with the nominal value for two different demand
variabilities (i.e., 10% and 20%), outside source inefficiencies f and protection levels
�. Percentage change in the objective value shown in Fig. 6 is computed as (Z(�)R −
Z N )/Z N , where Z(�)R is the robust objective value as a function of protection level
� and Z N is the nominal objective value.

Figure 6a shows the percentage change in the objective value when varying demand
variability for different protection levels �. In particular, the percentage change in
objective values at protection level � = 10 is approximately 9% and 18% for demand
variability ε = 10% and 20%, respectively. At protection level � = 30, which yields
the most conservative solution, the percentage change in objective values is approxi-
mately 11% and 23%. This figure also reveals a higher rate in the percentage of change
for low protection levels compared to higher protection levels. Figure 6b shows the
percentage change in the objective value when varying outside source inefficiency for
different protection levels �. As we can observe in Fig. 6b, a similar trend is followed
when outside source inefficiency is increased.

In our model, the probability of constraint violation is the fraction of demand
realizations that a given solution is not able to fully serve due to insufficient budget or
inventory. In other words, a lower probability of constraint violation is associated with
a higher level of protection �. Figure 7 shows the probability of constraint violation
for different levels of protection. The equation used to derive the probabilities shown
in Fig. 7 can be found in Bertsimas and Sim (2004). As suggested by Bertsimas
and Sim (2004), the probability of constraint violation can be used as a guidance to
select the protection level �. For instance, if the modeler wants to find a solution
with a probability of constraint violation less than 5%, a protection level ≥ 10 should
be selected. On the other hand, if the maximum tolerable probability of constraint
violation is desired to be 1%, a protection level of at least 14 should be chosen.

Table 4 summarizes the optimal objective value when varying the set of links with
uncertain capacities L and the link capacity reduction û. As expected, higher magni-
tudes of link disruption and number of links with uncertain link capacity significantly
increase the objective value, i.e., total demand-weighted distance. Experiments con-

123



Prepositioning inventory for disasters: a robust and… 777

Fig. 7 Probability of constraint
violation under different
protection levels �

Table 4 Percentage change in objective value for different link capacity maximum reductions ûk ∀k ∈ L
and sets of links with uncertain capacity L
Set of links with uncertain capacity L Link capacity reduction ûk , k ∈ L

0.1 0.3 0.5 0.7

L = {1, 3, 4} 1.4 4.3 7.5 14.0

L = {1, 3, 4, 7, 8} 2.0 5.9 9.3 18.4

L = {1, 3, 4, 7, 8, 12, 15} 2.4 6.8 10.9 23.3

L = J 5.3 14.7 24.5 51.7

Demand variabilities ε is set to 0.3; outside source inefficiencies f is equal to 1.5. Percentage change is
calculated with respect to the optimal value considering nominal link capacities, i.e., no link disruption.
Protection level � is set to 6

ducted with different values of demand variability ε and protection level � show a
similar trend.

6.3 Simulation results

We have argued that the level of protection �, which is a parameter chosen by the
modeler, affects the quality of the robust solution. In order to properly choose the
level of protection, Dunning (2016) suggests to evaluate the performance of the robust
solution by simulating several realizations of the uncertain parameters. To this aim,
we simulate 1000 demand realizations for each robust solution found by varying the
protection level.

In order to fairly evaluate the quality of the robust solution, we must make some
assumptions. First, we assume that the amount of relief items prepositioned and the
distribution centers opened cannot be changed but the actual distribution of relief
items to dispensing locations can be changed depending on the demand realization.
The logic behind this assumption is that prepositioning and setting up a distribution
center takes time and must occur before the demand is realized while the distribution
of prepositioned supplies to the dispensing locations is done after demand is known.
Second,we assume that demand realizations are independent anduniformly distributed
in the range [vkl − v̂kl , vkl + v̂kl ]. Perturbation v̂kl is computed as follows: v̂kl = εvkl
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Fig. 8 Simulation results for maximum, minimum and expected total weighted distance for different pro-
tection levels �. Total demand-weighted distance, i.e., the y-axis, is given in millions. Outside source
inefficiency f is set to 1.5, unmet demand is penalized by a factor of 10 f , demand variability ε is set to
0.5, and no link capacity is considered uncertain

where ε is referred to as the demand variability. Lastly, unmet demand is penalized in
the objective function with a factor of 10 times the outside source inefficiency (i.e.,
10 f ).

Simulation results are summarized inFig. 8 andTable 5. Figure 8 shows the expected
objective value, the maximum and the minimum values using different robust solu-
tions. Two zones with different behavior can be identified in the figure. When the
protection level � ≤ 10, there is a consistent decrease in the expected and maxi-
mum objective values resulting in less variability. For � ≥ 10, the solution objective
becomes insensitive to the protection level. This finding indicates that the protection
level does not need to be adjusted to more than 10 to achieve the best expected results.
Table 5 shows a summary of the simulation results depicted in Fig. 8. For instance, by
setting the protection level � = 10, the expected objective value decreases by 29%
and the change in variation, measured as the standard deviation, decreases by 47%.
Similar numbers can be found for protection levels between 10 and 30.

6.4 Budget allocation

In this section, we derive some insight on how the budget is allocated for different
protection levels �, demand variability ε and outside sources inefficiencies f . As we
did in Sect. 5, for analysis purposes we divide budget into two categories depending on
its use: Warehousing budget is used for setting up distribution centers, while inventory
budget is used for procuring relief items.
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Table 5 Simulation results given by the robust solution for different protection levels �

� Prob. of
constraint
violation

Expected
objective
value

% change in
objective
value

Min.
objective
value

Max.
objective
value

Standard
deviation

% change in
std deviation

0 0.577 14.2 6.7 30.7 4.2

1 0.504 12.2 −14 6.6 26.4 3.5 −18

2 0.432 11.6 −18 6.4 25.4 3.2 −24

3 0.363 11.3 −20 6.4 25.2 3.0 −29

4 0.295 11.2 −21 6.4 24.4 2.8 −33

5 0.239 10.7 −25 6.4 23.1 2.7 −37

10 0.0499 10.1 −29 6.4 21.2 2.2 −47

15 5.40 × 10−3 9.9 −30 6.4 20.3 2.1 −51

20 1.65 × 10−4 9.9 −30 6.4 20.1 2.1 −51

25 2.40 × 10−6 9.8 −31 6.4 20.0 2.0 −52

30 0 9.7 −31 6.4 20.0 2.0 −53

Objective values and standard deviations are given millions. A total of 1000 demand realizations were
simulated for each protection level �

We consider a problem with 10 suppliers, 20 potential distribution center locations
and 30 dispensing locations. Capacities are assumed uncertain in those links connect-
ing dispensing locations 1, 3 and 4 with an uncertain link capacity reduction of 10%.
Figure 9 shows the effect the outside source inefficiency factor f has in budget allo-
cation decisions. We consider two demand variabilities ε as well as two protection
levels �. Figure 9a–d shows a similar behavior for each of these scenarios. For out-
side source inefficiencies between 1 and 2, i.e., 1 ≥ f ≤ 2, there is a steep increase
in the budget spent in prepositioned relief items resulting in less distribution centers
opened. For 2 ≥ f ≤ 5, we observe that budget allocation is insensitive to the value
of f with the exception of a phase transition at f ≈ 3.5 where budget assigned to
procure inventory reach a maximum. This phenomenon can be explained by looking
at the effect of the factor f on the objective value. The factor f is multiplying the
demand-weighted distance of the fraction of demand served by the outside sources.
Assuming f > 1, the objective value increases, i.e., deteriorates since it is a minimiza-
tion problem, when the factor f increases. Therefore, when the factor f increases,
the model tries to reduce its negative effects in the objective value by preposition-
ing more relief supplies, i.e., reducing the fraction of demand served by the outside
sources, and decreasing the number of opened distribution centers given the limited
budget.

6.5 Effects of storage capacity

In this section,we conduct a comparative analysis considering distribution centerswith
five different storage capacities and two values of penalty parameter f . The levels of
storage capacity are reported in units as well as in percentage (%) of total demand.
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(a) = 0.1, Γ = 3 (b) = 0.2, Γ = 3

(c) = 0.1, Γ = 10 (d) = 0.2, Γ = 10

Fig. 9 Budget of $4 million allocated to opening distribution centers and inventory cost when varying
outsource inefficiency f . Two different demand variabilities (i.e., ε = 0.1 and ε = 0.2) and protection levels
(i.e., � = 3 and � = 10) are evaluated. A problem with 10 suppliers, 20 potential distribution centers and
30 dispensing location is considered. Capacities are assumed uncertain in those links connecting dispensing
locations 1, 3 and 4 with an uncertain link capacity reduction of 10%

We vary this number from very low (< 3%) to very high (> 20%). We compare
resulting objective values, the number of opened distribution centers, the number of
opened distribution centers used at full capacity and the percentage of nominal demand
prepositioned.

Table 6 shows that better objective values are found using a sparse and decen-
tralized network, i.e., many small distribution centers, rather than a centralized
network with few large distribution centers. We believe this observation is due to
the definition of the objective function. Because the objective function minimizes
the demand-weighted distance between distribution centers and demand locations,
its value decreases or stays the same as the number of opened distribution cen-
ters is increased. When comparing the effect of the parameter f , we can observe
that a high value of f , i.e., f = 4.5, increases the amount of prepositioned relief
items and reduces the number of opened distribution centers compared to the results
obtained with a low f , i.e., f = 1.5. The managerial insight of these results is
that the use of prepositioned relief items, which are ready to ship immediately
after the disaster occurs, increases when outside sources’ help is highly penal-
ized.
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Table 6 Comparative analysis considering distribution centers of different sizes and setup cost

f Setup cost
($)

Storage
capacity
(units)

Storage capacity
as % of total
demand

Objective
value
(106)

No. of
opened
DCs

No. of
DCs at full
capacity

% demand
preposi-
tioned

1.5 70, 000 13, 000 2.5 23.9 17 9 38

110, 000 31, 000 6.0 23.6 12 0 36

150, 000 52, 000 10.1 24.1 12 0 33

190, 000 78, 000 15.1 24.6 12 0 27

230, 000 108, 000 21.0 25.1 11 0 22

4.5 70, 000 13, 000 2.5 57.9 16 10 36

110, 000 31, 000 6.0 58.5 11 0 35

150, 000 52, 000 10.1 61.6 10 0 29

190, 000 78, 000 15.1 64.6 10 0 22

230, 000 108, 000 21.0 67.6 10 0 19

We consider a problem with 10 suppliers, 20 potential distribution centers and 30 dispensing location.
Demand variability ε and protection level � are set to 0.1 and 10, respectively. Capacities are assumed
uncertain in those links connecting dispensing locations 1, 3 and 4 with an uncertain link capacity reduction
of 10%. A budget of $4 million is considered

6.6 Heuristic performance

In this section, we show the results of two experiments. First, we evaluate the perfor-
mance of our heuristic. Second, we characterize the cases where our heuristic works
well for capacitated problems.

In the first experiment, we evaluate how the heuristic performs using two
measures: optimality gap (i.e., error) and computational time. Error is calcu-
lated using [(Z H − Z∗)/Z∗] × 100% where Z H is the heuristic objective value
and Z∗ is the optimal objective value. Computational time is calculated in sec-
onds.

Results are reported in Table 7. Problem sizes are defined by the number of sup-
pliers |J |, the number of potential distribution centers |K |, the number of dispensing
locations |L| and two relief items. Error reported in Table 7 is the average of the error
of ten replications. Based on these results, heuristic solutions show an average error
less than 1.7% for all instances and the maximum error found is 2.9%. Regarding
computational time, all heuristic instances were solved in less than ten seconds, which
is good enough for the conditions in which the heuristic is intended to be used. Fur-
thermore, when the proposed heuristic is used to provide an initial feasible solution,
the average computational time to find an optimal solution is reduced by 40%.

In the second experiment, we evaluate optimal and heuristic solutions considering
distribution centers with five different storage capacities and two values of penalty
parameter f . We compare objective values, the number of opened distribution centers
and the number of distribution centers used at full capacity.We consider a problemwith
10 suppliers, 20 potential distribution centers, 30 dispensing locations and a budget
of $4 million. We assume demand is deterministic and no link disruptions.
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Table 7 Computational time comparison between the heuristic and the deterministic uncapacitated version
of the proposed model

|I | |J | |K | Error (%) Average computational time (s)

Average Maximum Optimal Heuristic Opt-heu

50 50 300 0.2 0.6 20 1 11

50 100 300 0.3 0.6 59 3 35

50 100 500 0.2 0.4 118 3 42

100 100 500 0.2 0.4 98 3 61

50 300 500 1.7 2.8 855 10 625

100 300 500 1.6 2.9 1036 9 627

Column Opt-heu represents the average computational time to find an optimal solution when the proposed
heuristic was used to provide an initial feasible solution. Problem sizes are considered with respect to the
number of suppliers |I |, the number of potential distribution centers |J | and the number of dispensing
locations |K |. All experiments were conducted using a 1800 seconds time limit and the default MIP gap.
In the cases where time limit was reached, final gap was less than 0.5%

Table 8 Comparison of optimal solutions considering capacity constraints with heuristic solutions

f Setup cost
($)

Storage
capacity
(units)

Optimal Heuristic

Objective
value
(106)

No. of
opened
DCs

No. of
DCs at full
capacity

Objective
value
(106)

No. of
opened
DCs

No. of
DCs that
exceed
capacity

1.5 70, 000 13, 000 22.35 17 9 21.51 13 2

110, 000 31, 000 22.03 12 0 22.04 12 0

150, 000 52, 000 22.55 11 0 22.56 12 0

190, 000 78, 000 23.03 11 0 23.05 11 0

230, 000 108, 000 23.51 11 0 23.55 11 0

4.5 70, 000 13, 000 52.92 16 11 50.16 11 3

110, 000 31, 000 53.40 11 0 53.53 11 0

150, 000 52, 000 56.53 10 0 56.67 10 0

190, 000 78, 000 59.64 10 0 59.78 10 0

230, 000 108, 000 62.75 10 0 63.05 10 0

We consider a problem with 10 suppliers, 20 potential distribution centers, 30 dispensing locations and a
budget of $4 million

Table 8 shows that heuristic solution violates capacity restrictions only for the
smallest distribution centers considered in the experiment, i.e., setup cost of $70000
and storage capacity of 13000 units, which represents 2.5% of total nominal demand.
For the remaining cases, the storage capacities are not exceeded; hence, the solution
can be fairly compared to the optimal solution which considers capacity constraints.
In these cases, the heuristic provides solutions within 0.4% compared of the optimal
policy. This occurs with both values of the parameter f studied.
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7 Conclusions and future research

In this paper, we address the problem of prepositioning supplies in preparation for a
disaster under uncertainty in demand and link disruption considering a multi-agency
disaster response. We examine an inventory prepositioning problem from the per-
spective of the main aid agency considering sharing distribution centers with other
agencies. We model a multi-commodity three-echelon relief item chain that consists
of suppliers, distribution centers and dispensing locations. The objective of our model
is to minimize total demand-weighted distance from distribution centers to dispensing
locations while considering storage capacity, budget and equity constraints. Demand
uncertainty is modeled using the budget uncertainty set approach proposed by Bert-
simas and Sim (2004). Uncertainty in link disruption is modeled using the interval
uncertainty set proposed by Soyster (1973).

Additionally, we develop and test a heuristic approach to solve the uncapacitated
deterministic version of our proposed model. The E-IP algorithm begins by choos-
ing which distribution centers to open and a fraction of prepositioned demand for
all dispensing locations and relief items considering that all distribution centers are
available. This is considered as the initial solution. Then, by using a cost-to-benefit
ratio as a criterion, the heuristic iteratively closes distribution centers until no further
improvement of the objective function is achieved. Experiments show that the heuristic
approach achieved solutions within 3% compared to the optimal policy. The heuristic
approach proposed in this paper would give practitioners the advantage of solving
the deterministic problem without the need for a mathematical model or optimization
software. In further studies, we intend to test if computational times when optimally
solving the proposed model can be reduced by using the heuristic solution, which is a
relaxed solution of the proposed model, as a lower bound.

Robust solutions are analyzed in a series of experiments showing the percentage
change in the objective function compared to the deterministic model varying the
protection level and the demand variability. We discuss the probability of constraint
violation for different protection levels and provide guidelines to choosemodel param-
eters. Simulation results show that robust solutions could reduce the expected objective
value and standard deviation by 30% and 50%, respectively, compared to the determin-
istic solutions. Additionally, a sensitivity analysis is performed on the outside source
inefficiency factor. We show that outside source inefficiency affects budget allocation
decisions; in particular, inventory budget increases and warehousing budget decreases
as the outside source becomes more inefficient. Furthermore, as demand variability
increases, more is spent on inventory, for a given level of outside source inefficiency.

In this paper, we provide a holistic view of the inventory prepositioning problem.
Disaster responses are usually a joint effort between several aid agencies. Previous
models seek to optimize the prepositioning strategy for one aid agency. In some cases,
the single-agency approach to the prepositioning problem could lead to a suboptimal
disaster response since, as we demonstrated in this paper, budget allocation deci-
sions are affected by the characteristics of the other agencies involved in the disaster
response. Several directions of future work have been identified. (1) Our heuristic
could be extended to find robust solutions considering capacitated distribution center
locations. (2) In some cases, uncertain parameters are correlated. For instance, demand
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for relief supplies may depend on where the disaster strikes. Therefore, a more real-
istic model can be constructed by considering correlated data. (3) Several sources of
uncertainty, such as supply availability and cost parameters, can be incorporated into
the model following the same approach used to model demand uncertainty.
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