OR Spectrum (2019) 41:727-756
https://doi.org/10.1007/s00291-019-00553-0

REGULAR ARTICLE

®

Check for
updates

The cafeteria problem: order sequencing and picker routing
in on-the-line picking systems

David FiiBler' . Stefan Fedtke' - Nils Boysen'

Received: 14 August 2018 / Accepted: 15 March 2019 / Published online: 22 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

This paper is dedicated to the cafeteria problem: given a single waiter operating multi-
ple counters for different dishes arranged along a line and a set of customers with given
subsets of dishes they desire, find a sequence of customers, which may not overtake
each other, and a service schedule for the waiter, such that the makespan is mini-
mized. This generic problem is shown to have different real-world applications in order
picking with blocking restrictions. We present different heuristic and exact solution
procedures for both problem parts, i.e., customer sequencing and waiter scheduling,
and systematically compare these approaches. Our computational results reveal that
the largest performance gains are enabled by not strictly processing order after order.
Instead, the waiter should be allowed to flexibly swap between customers waiting
along the line. Such a flexible service policy considerably reduces the makespan and
the total walking distance of the waiter.

Keywords Facility logistics - Blocking - Order sequencing - Scheduling

1 Introduction

Non-crossing constraints, e.g., among quay cranes processing container vessels in
harbors, have gained plenty attention in recent years. The survey paper of Boysen et al.
(2017), for instance, documents the great research effort in this field. The focus of this
research area is on obstructions among the processors of a service process, e.g., among

B Nils Boysen
nils.boysen @uni-jena.de

David Fiiler
david.fuessler@uni-jena.de

Stefan Fedtke
stefan.fedtke @uni-jena.de

Friedrich-Schiller-Universitit Jena Lehrstuhl fiir Operations Management, Carl-Zeiss-Str. 3, 07743
Jena, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-019-00553-0&domain=pdf
http://orcid.org/0000-0002-1681-4856

728 D. FiiBler et al.

Solution (a): time

n,* e R walking
B teeies N

3] Y SERERY i)

‘ [RO \ @ waiting

Solution (b): time

%nnnanmnnmunnnmm
R R REBE

0 Rae & &
o

processing

counters

=l

counters

e

| R &

Fig. 1 Example for the cafeteria problem

cranes interfering with each other when operating along the quay wall. However, there
exist other processes where rather the recipients of a service face obstructions among
each other. In this context, the paper on hand investigates a general problem setting,
which we call the cafeteria problem:

Consider a cafeteria consisting of multiple counters arranged along a straight line

each providing a unique dish (or beverage). These counters are served by a single
waiter, who walks along the line and requires a deterministic service time that varies
from counter to counter. Furthermore, we have a set of customers each demanding
a given individual meal defined by the subset of counters to be visited. Initially, all
customers queue at the start of the line and, then, enter the service area one after
another. They are only allowed to either wait behind another customer or move in
forward direction. To ensure a clearly arranged process (or due to limited space),
customers cannot overtake each other, if their way toward their next counter is blocked
by a preceding customer waiting for service in front of an earlier counter. They have
to wait for the processing of their predecessor and are, thus, blocked. We aim at a
sequence of customers entering the service area and at a detailed service schedule in
which the customers’ counter visits are processed by the waiter, such that the makespan
is minimized. The makespan is reached once the waiter, who is typically the bottleneck
resource in a cafeteria process, has readily serviced the final dish.
Example Consider a service area consisting of four successive counters operated by
a single waiter (represented by the icons in Fig. 1), where three customers have to be
served. The red, yellow, and green customer demand the dishes of counters three, two
and four, and two, respectively. Waiter and customers walk one counter per time unit,
and processing at each counter, where both waiter and customer have to be present,
takes two time units. Figure 1 depicts two alternative solutions for this example instance
of the cafeteria problem. Solution (a) with customer sequence (yellow, green, red]
results in a makespan of 14 time units, whereas in solution (b) customer sequence
(red, yellow, green] is not completed before time unit 16 has elapsed.

@ Springer

The cafeteria problem: order sequencing and picker routing... 729

| pallets of beverages

beacon| |/ 7 Iogist}cs worker
AGV
(a) AGV-assisted order picking of beverages (b) CaddyPick™ by Swisslog

Fig.2 Applications for the cafeteria problem

1.1 Applications

Our cafeteria is just a placeholder for quite a few real-world applications. Related
problems may also occur in the context of electronic circuit board assembly along
a line of successive automatic insertion machines [see Weber and Weiss (1994)], or
order picking in warehouses with narrow aisles [see Gue et al. (2006); Hong et al.
(2012)]. However, our work was inspired by the following two examples we recently
encountered in distribution centers.

e In a German distribution center that supplies liquor stores, supermarkets, and large
restaurants with beverages, an AGV-assisted order picking process is organized as
follows (see Fig. 2a). The inventory of palletized beverages is stored in successive
slots arranged along a picking aisle. Automated-guided vehicles (AGVs) travel
along the one-way path, and each vehicle conveys one or multiple trolleys dedi-
cated to a specific customer. Whenever an AGV reaches a beverage requested by
its customer, the vehicle stops, indicates the beverage with a beacon, and displays
the number of requested crates on a display. Then, the logistics worker (waiter)
operating the line segment approaches the AGV, loads the requested number of
crates on the vehicle, accredits the processed order line, and the AGV continues
its travel along the path. During the loading process, successive AGVs are blocked
since overtaking in the narrow picking aisle is not possible. Due to tight delivery
schedules the managers of the distribution center aim at an efficient picking pro-
cess. This general aim can be operationalized by minimizing the makespan, i.e.,
the point in time when the last customer order is processed. However, the worker
serving the AGVs suffers from considerable walking distances during a work shift.
Thus, reducing the physical burden of their workers is another practical aim.

e Almost the same picking process can also be realized by carriers hanging from
a monorail. The CarryPick™ system of Swisslog (see Fig. 2b) is one example
for such a system. With reference applications at a German drugstore chain and a
Swiss supermarket chain (Swisslog 2017), each carrier carries a pallet dedicated
to a specific store (customer) and automatically stops in front of a requested stock
keeping unit (SKU). In addition to a screen and an LED dot indicating the current
picking position to the picker (waiter), carriers can also be equipped with an

@ Springer

730 D. FiiBler et al.

automatic weighing mechanism to further reduce picking errors (Swisslog 2017).
The carriers utilize the same monorail for their movement along the picking path, so
that they cannot overtake each other. Thus, we have to solve our cafeteria problem,
i.e., order sequencing plus picker scheduling, to ensure an efficient picking process.

It can be concluded that our generic cafeteria problem occurs as a building block
in quite a few relevant applications.

1.2 Literature review

The name cafeteria process has previously been applied by Weber and Weiss (1994)
to denominate a related stochastic process along successive servers. In their process,
customers also block each other, but demand service at only a single station, this being
station i with probability p;. In our distribution center context, however, customers
announce their demands ahead by submitting their orders, so that we have a deter-
ministic problem. Furthermore, we also include the movement of the waiter servicing
our counters. Thus, to the best of the authors’ knowledge our cafeteria problem has
not been treated in the scientific literature before. We, therefore, only review related
fields that share some similarities with our problem. First, we review two fields of
application with similar scheduling problems.

Blocking among order pickers when routing them through a warehouse has already
been considered by Gue et al. (2006), Hong et al. (2012), and Chen et al. (2013).
The pickers blocking each other while moving in a narrow aisle equal the customers
blocking each other along the counters of the cafeteria. However, while pickers can
instantaneously access a shelf (once they are not blocked) without any further resource,
there is no self-service in our cafeteria and customers have to be served by the waiter.
Integrating the waiter considerably complicates the problem setting, so that previous
warehousing research is not transferable.

Another related field of application is the scheduling of quay cranes in container
ports, which was first described by Daganzo (1989). Here, quay cranes (un-)load
a deterministic or stochastic set of ships with some objective, e.g., minimizing the
sum of the ships’ waiting costs. The manifold exact and heuristic solution methods
developed in this area are, for instance, summarized by the recent surveys of Bierwirth
and Meisel (2010, 2015). Again, there is a major difference of this field of research
to our cafeteria problem. In quay crane scheduling, the processors, i.e., the cranes,
are mobile whereas the recipients, i.e., the ships, remain immobile during the service
process. In the cafeteria, both the waiter and the customers are mobile. Consequently,
the non-crossing constraints of both problems are different [for a survey on scheduling
under non-crossing constraints, see Boysen et al. (2017)]. In ports the cranes, i.e., the
processors, interfere, whereas in our problem it is the recipients of the service process
blocking each other. Again, the research of this area is not directly transferable to our
problem.

From a structural point of view, our cafeteria problem is closely related to flow-
shop scheduling [for a first survey and elementary complexity results see, for instance,
Graham et al. (1979) and Garey et al. (1976)]. In one problem variant, i.e., the permu-
tation flow-shop problem, jobs cannot change their position in a (global) production

@ Springer

The cafeteria problem: order sequencing and picker routing... 731

sequence, so that all production stages process jobs in exactly the same sequence (Ruiz
and Maroto 2005). In the cafeteria problem, customers (corresponding to the jobs of
the flow-shop) can also not overtake each other and thus, have to enter all counters
(corresponding to the production stages) in the same sequence. Note that if a customer
does not require a specific dish at a counter, the processing time at the correspond-
ing production stage can simply be set to zero [missing operation, see Hefetz and
Adiri (1982)] in flow-shop scheduling. Therefore, the sequencing part of the cafeteria
problem resembles the permutation flow-shop problem.

However, customer sequencing is just one part of our cafeteria problem, so that we
have to check whether existing extensions of basic flow-shop scheduling are flexible
enough to model the remaining part of our problem too. Transportation times of the
jobs when moving between stages are considered by Sawik (1995), Tang et al. (2002),
Xuan and Tang (2007). They can be applied to model the movement of customers
between counters. Also blocking between jobs has been considered in the flow-shop
context, e.g., in Liu et al. (2008), Ribas et al. (2011). Here, limited buffers between
production stages lead to obstructions, because a job finished at its current production
stage may block this machine until the successive machine is free. Note, however, that
the blockings occurring in the cafeteria are even more complicated. The counters each
have a length and each customer occupies space along the line of counters, so that
multiple customers waiting behind a blocked counter build a queue that may block
multiple preceding counters too. Even with transportation times and blockings, there is
still no counterpart to our waiter in the basic flow-shop scheduling problem. Additional
human resources operating the machines, however, have also been considered by
machine scheduling research. An additional human operator required to load each
job onto its machine during a setup time has been considered by Bruckner et al.
(2002), Brucker et al. (2005), Cheng et al. (1999), Glass et al. (2000), Hall et al.
(2000), Wang and Cheng (2001). In our setting, however, the waiter has to be present
during the whole processing time. For job-shop scheduling, i.e., jobs may vary in
the succession of machines they have to visit, and multiple human operators with
infinite velocity when moving between machines such a setting has been considered
by Agnetis et al. (2011, 2014) and Mencia et al. (2013). A similar setting in an open-
shop environment has been considered by Ciro et al. (2016). We, however, have only
a single human operator, i.e., our waiter, moving along the line of counters with a
given finite velocity. Furthermore, we have a permutation flow-shop environment and
machine transfers subject to limited transportation times and blocking. To the best
of the authors’ knowledge, such a problem has not yet been treated in the machine
scheduling literature.

It can, thus, be concluded that our cafeteria problem constitutes a novel problem
that requires dedicated solution procedures.

1.3 Contribution and paper structure
This paper is dedicated to solving the cafeteria problem with optimization procedures.

In the distribution center for beverages we encountered (see Sect. 1.1), the process was
not optimized, but the picker in each aisle had to operate according to a very simple

@ Springer

732 D. FiiBler et al.

policy. Customer orders are sequenced according to the first-come-first-served (FCFS)
policy. Given this sequence, the picker just processes order after order. Starting with the
first order of the sequence, the picker accompanies the AGV through the picking line
and loads the demanded crates until the current order is completed. Then, the picker
returns to the next AGV with the subsequent order, which is again accompanied until
completion, and so on until all orders are processed. We call this order sequencing
approach the random approach and the waiter scheduling policy the order-by-order
policy. Note that solution (b) of Fig. 1 results from the order-by-order policy for
the given customer sequence. Naturally, this leaves two levers for an optimization
procedure to improve this process:

e One problem of the order-by-order policy is that the picker always traverses
(almost) the complete picking aisle with each order. This leads to long unproduc-
tive walking times of the bottleneck resource ‘picker’. Instead, the picker could
flexibly swap between orders, which we dub the order-swapping policy. Instead
of completing order after order, the picker can process neighboring stops of dif-
ferent orders before moving to another section of the line where other orders are
waiting for processing. The potential improvement is exemplified by solution (a)
of Fig. 1, where the picker starts with the yellow customer at counter two, then
proceeds with the green customer at the same counter, before moving onwards to
counter 4 where the yellow customer is finished. We present solution procedures
for the order-swapping policy, if customer sequences are already given in Sect. 2.
Note that the order-by-order policy completely specifies the picker movement once
the order sequence is given, so that no optimization procedure for scheduling the
waiter is required under this policy. We benchmark both approaches in Sect. 4.

e The second lever for a more efficient service process is the customer sequence.
Instead of a random processing of customers according to FCFS, finding the right
customer sequence can be part of the optimization problem, which we treat in
Sect. 3. Once a suited optimization approach is available, we can apply this pro-
cedure to quantify its benefit compared to the random approach.

The remainder of the paper is structured as follows: Section 2, first, addresses
the waiter scheduling once the customer sequence is given. We formulate the result-
ing problem, prove computational complexity, and present suited exact and heuristic
solution procedures. Then, Sect. 3 extends our view on the cafeteria problem and also
integrates the sequencing of customer orders. In a comprehensive computational study,
we benchmark our algorithms (see Sect. 4) and evaluate the impact of our two levers
for an efficient service process (see Sect. 5). Finally, Sect. 6 concludes the paper.

2 Scheduling the waiter for given customer sequences

For a given sequence of customers our cafeteria problem is left with the decision
on the waiter’s processing sequence of the customers’ dish requests, i.e., routing the
waiter to the respective counters. We dub this subproblem the cafeteria waiter schedul-
ing problem (CWSP). This section tackles the CWSP by describing possible routing
approaches and introducing suitable solution procedures.

@ Springer

The cafeteria problem: order sequencing and picker routing... 733

Recall that a common method in warehousing practice is to schedule the waiter via
the order-by-order policy. Under this policy, the waiter serves each customer separately
in the order they arrive. Starting with the first dish request, the waiter accompanies each
customer along the cafeteria line until the last dish is served and the customer’s meal is
complete. Afterward, she returns to the next customer in line. This process is repeated
until all customers are served. On the positive side, this straightforward policy offers
a very simple scheduling approach that does not require any form of optimization and
can easily be communicated to the picker. On the other hand, escorting each customer
from counter to counter results in excessive (unproductive) walking time for the waiter,
which may increase the makespan.

Another approach for scheduling the waiter is the order-swapping policy. Instead
of serving each customer separately, the waiter can swap between customers and
serve dish requests in an arbitrary order (as long as they do not block each other).
This policy promises better solutions, due to the additional flexibility given to the
waiter. However, in order to determine a good or even an optimal waiter schedule
suited solution procedures are required. The following sections investigate the CWSP
under the order-swapping policy in detail. After a problem description in Sects. 2.1,
Sects. 2.2-2.4 are devoted to different solution methods.

2.1 Problem definition

Our cafeteria waiter scheduling problem (CWSP) under the order-swapping policy is
defined as follows: Let D = {1, ..., m} be a set of m dishes each served at a separate
counter. Without loss of generality, we assume that the dishes are numbered according
to their position along the line, i.e., dish d is served at the d’th counter. In line with
our warehousing example, we assume that all counters have an identical size (e.g., the
width of a standardized euro-pallet) and are successively arranged without gap along
the cafeteria line. Furthermore, let C = {1, ..., n} be the given set of n customers,
numbered according to the given customer sequence in which they are processed. Thus,
customer 1 is the first to enter the line and so on until, finally, customer » moves into
the line. Each customer i orders a meal defined by aset O; = {1, ..., m;} of m; dishes,
again, numbered in the order of their line position. The set ® = {(i, k)|i € C, k € O;}
includes the dish requests of all customers, and d; y € D specifies the k-th dish
requested by customer i. Note that d; x also corresponds to the counter index and the
counters position in the line. Due to the numbering of orders and the premise that
customers cannot overtake each other, precedence constraints restricting the waiter’s
processing sequence of dish requests can be preprocessed. Parameter A ; r), ;1) defines
these relations, i.e., obtains value 1, if (i, k) has to be a predecessor of (j, /) and value
0, otherwise:

1, ifi=jAdig <d (1)
o o ori<j/\dl-’k§dj,1 2)
@R.Gh = ori<jAdi<dig<di+(G—i—1) 3)
0, else 4)

@ Springer

734 D. FiiBler et al.

These precedence constraints define that dish d; x has to be serviced by the waiter
before dish d;;, if i and j refer to the same customer and k-th dish is available
at an earlier counter [see (1)]. If i refers to an earlier customer than j (according
to the given customer sequence), then any dish for earlier customer i served at an
earlier counter blocks dishes demanded from later counters (or the same counter) of
later customer j [see (2)]. If later customer j demands a dish served at an earlier
counter compared to earlier customer i’s current dish, then the tailback of customers
queueing behind i and blocking access to the counter has to be considered [see (3)].
Again, in line with our warehousing example, we assume that each customer requires
identical space which equals the length of a single counter (i.e., the width of a euro-
pallet). Thus, if two customers queue behind another customer waiting at counter 5,
then counters 3-5 are blocked for another customer arriving at the queue. Finally, no
precedence constraints exist, if neither of these previous conditions holds [see (4)].
The set Aj. 1 = {(, k)|A k),j,;) = 1} contains all predecessors of (j, /).

Given these precedence constraints, we seek a waiter schedule defined by a pro-
cessing sequence 7 = (7q,...,nr), with T = |®|, in which all dish requests are
serviced by the waiter. Thus, ; € ®, defines the dish served by the waiter at service
period (or sequence position) ¢ within 7. Such a solution is called feasible, if

e for each (i, k) € @ there is exactly one service period t € {1,..., T} with 7, =
(i, k) in 7, that is each dish request of customers has to be served exactly once by
the waiter,

e for each service period ¢ € {1, ..., T} there is exactly one (i, k) € ® with 7; =
(i, k) in 7, that is the waiter has to serve a dish request in each service period, and

o if A x),(j,n = 1, dish request (7, k) has to be served before dish request (j, /),
that is all precedence relations are satisfied.

For a given waiter schedule 7, we are able to determine the position p; ; € R of

each customer i during each service period ¢ of the service process as well as the
amount of (actual) time A; € Rx(required by each service period.
Customer positions At the beginning of our planning horizon, i.e., in t = 0, all
customers line up in front of the cafeteria. Thatis p; o = 1 — i foreachi € C. The
positions of each customer during the service process solely depend on the waiter
schedule . Customers move along the line as far as possible and stop at the next
counter that serves a desired dish. If a dish is to be served in service period ¢, the
customer has to be positioned at the respective counter:

7 = (i, k) = pis =dik.)

Furthermore, customers can neither move faster than their given speed v allows,
nor overtake other customers in front of them, nor pass the next relevant counter:

7 # (k) = piy
min {p,-,,_l + A VY pig =1 d,‘,k} , if (i, k) has not yet been served

cust.

min {Pi,t—l + A v pi — 1}) else.
(6)

@ Springer

The cafeteria problem: order sequencing and picker routing... 735

Service time The actual time required for processing a dish in service period t depends
on the waiter walking speed v"4!, the customer moving speed v°", and the serving
time t; ; for the respective dish (i, k). If either the waiter or the customer reaches
the next relevant counter first, she has to wait for the other one in order to serve the
respective dish. Therefore, the maximum of waiter walking time and customer moving
time has to be determined and added to the serving time:

dik — pii—1 |dix —di p|
peust ’ pWait

A, = max { } + ik, @)

where dish (i’, k') is the dish served in service period r — 1. Among all feasible solutions
CWSP seeks one waiter schedule s that minimizes the total processing time of all
customer orders

T
F(r) = ZA,. (®)
t=1

Due to the structure of our problem, objective value F' () corresponds to the makespan,
i.e., the point in time when all orders of the given order sequence are readily serviced.

Theorem 1 CWSP is strongly NP-hard.
Proof See “Appendix A”. O

Note that presupposing varying walking speeds of waiter and customers may seem
superfluous, because in a real-world cafeteria we only have human actors with similar
speed. However, in our warehouse application human waiters and mechanical AGV's
may have different speeds, so that in this application differentiating speeds is essential.

2.2 Mixed-integer programming model

To solve our CWSP to optimality with a standard MIP solver, we introduce a mixed-
integer program first.

Given the notation summarized in Table 1, a mixed-integer program for our CWSP
is defined by objective function (9) and constraints (10)—(22):

CWSP-MIP
T
Minimize F(Z, P, A) = » A,)
t=1
subject to
T
Y ziki=1 Vi.ked (10)

t=1

@ Springer

736

D. FiiBler et al.

Table 1 Notation for CWSP

D
C
O;

Set of dishes with D = {1, ..., m}
Set of customers with C = {1, ..., n}

Set of dish requests of customer i with O; = {1, ..., m;} and
dijg <dijpp1Vk=1,....m; —1

Set of all dish requests with ® = {(i, k)|i € C,k € O;}

Number of service periods witht =1, ..., T = |D|

Dish required by dish request (i, k) with d; € D

Processing time of dish request (i, k)

Walking speed of the waiter

Moving speed of customer

Big integer,e.g, M =m +n + 1

Binary variable: 1, if dish request (i, k) is executed in service period ¢; 0, else
Continuous variable: position of customer i at the end of service period ¢

Continuous variable: actual duration of service period ¢

Y giki=1V¥e=1..T (11)
(i.k)ed
dik — pis_
A= (“kTﬁ’“Hi,k)—M-(l—z,;k,t) Vi=1,....T; (i,k) e @
(12)
di 1
AIZZ war T U]z 13)
ie0 v
D Gibed dik - Zike = D kyed ik - Ziki—1
A, > (i,k)e o (i,k)e + Z Tik - Zik
(i.k)ed
Vi=2,...,T (14)
D ised dik Ziki—1 = D pew dik * Zikt
A, > (i,k)e S (i,k)e + Z Tik - Zik
(i.k)ed
Vi=2,...,T (15)
-1
pia <din+M- (Y ziap) Yi=l...on t=1..T (16)
t'=1
-1 -1
pia <dip+M- (1= ziq o |+ M- D zigr | Yi=1....m
t'=1 =1
k=2,....mj; t=1,...,T a7
Pit < Pia—1+A V" Vi=1,....mt=1,...,T (18)
Pit <picia—1 Vi=2....nt=1,...T (19)

@ Springer

The cafeteria problem: order sequencing and picker routing... 737

Pit = pir—1 Yi=2,...,nm;t=1,...,T (20)
Pia=>dix—M-(1—-zipy) Vi, k)ed;t=1,...,T 2D
Zikr €{0,1} V@, k)ed;r=1,...,T (22)

Our objective function (9) minimizes the makespan, i.e., the point in time when
all customers are served. Constraints (10) and (11) ensure that each dish request is
executed exactly once and that a dish is served within each service period. The actual
processing time required by service period ¢, A;, is defined by (12)—(15). First, A;
depends on the time required by the customer to move from its initial position to the
relevant counter, stated in (12). Moreover, the waiter has to move from the counter,
where she served the last dish, to the next relevant counter, stated in (13)—(15). In
both cases, the processing time 7; ; at the respective counter is added too. The exact
positions of customers throughout the process are modeled via constraints (16)—(21).
Hereby, (16) and (17) ensure that the customer served in period ¢ does not pass the
relevant counter. The moving speed of customers is considered in inequalities (18).
Due to (19), customers are not able to overtake each other, and due to (20), they can
only move in forward direction. Furthermore, constraints (21) ensure that customers
have reached their targeted counter whenever the waiter serves them a demanded dish.
Finally, (22) define the domain of the variables. Note that additional constraints to
ensure the precedence relations A x),(j,7) among dish requests are redundant due to
the exact modeling of customer positions.

2.3 A dynamic programming procedure

This section presents an alternative to solve our CWSP to optimality with the help of
a dynamic programming (DP) procedure.

Our DP is composed of |T| 4+ 1 stages, each representing a service period, i.e.,
processing a dish request of a customer by the waiter (plus a virtual initial stage). Each
stage contains states Z = (J, w, p) with J C o' = U {0,0)}, w e {0,...,m},
and p € ([1 —n,m] U {oo})" defining the set of already served dish requests, the
current waiter position along the line, and the array of current customer positions,
ie., p = (p1, p2, ..., Pn), respectively. Note that p; < 0 means that a customer is
still queuing in front of the cafeteria and p; = oo that she has left the cafeteria. The
partial objective value for each state is denoted by f(Z) or f(J, w, p) and represents
the completion time of all served dish requests so far. There is a transition from state
Z=(,w,p)tostate Z' = (J',w', p),if3(j, 1) € dwithAj;\ J = and

e J'\'J = {(j, D)}, that is an additional dish request is served during the service
period,

o w =d .1» that is the waiter is currently at the correct counter, and
e the customer movement is well defined, i.e.,

p' = (p)iec with p} =d;j;and p; = min{a, B, y} Vi € C,i # j with (23)

@ Springer

738 D. FiiBler et al.

oy d;i i+ with k* = min{k|(i, k) € @\ J}, if {(, k)|, k) e P\ J} > 1
N 00, else
(24)
A A Z, Z/ . cust’ f . A Z, Z/ . pcust <
g P AZZ) i A2 Z) o s m 03)
00, else
y = pi_y — 1 with py = o0, (26)

that is the served customer is at the correct counter (23), customers do not pass
their next relevant counter (24), customers cannot move faster than their speed
allows (25), and customers cannot pass each other (26).

The additional processing time A(Z, Z') associated with such a transition amounts
to

lw' —wl| d;;— p;j

7 B

A(Z,Z") = max { T —" + T 27
Given the initial state Zy = (4, 0, (0, —1, ..., —n)) with f(Zp) = 0 and the transi-

tions’ contribution to the objective value, we have the basic Bellman recursion

f(Zh=_min {(f(2)+AZ, Z"} (28)
Z=(J,w,p):

1I\J|=1

After a stage-wise forward recursion, we can determine the final objective value by
comparing all states of the final stage:

F = min {f(2)}. 29)
Z=J,w,p):
J=a0

Via a simple backward recursion, an optimal order sequence can be extracted.
Regarding the computational effort of our DP, we have a maximum of O (2!®!.m-m™)
states, at most O (2!®.m -m™ - | ®|) transitions, and each transition requires an iteration
through all customers n. Thus, we have an exponential worst-case runtime, which is
in line with our complexity result.
Example (cont.) Consider the example presented in Fig. 1b. We extend the example
by a fourth customer which enters the list first. She demands dishes at counters one
and four, followed by customers red (dish three), yellow (dishes two and four), and
green (dish two). A brief summary of relevant instance parameters and the resulting
DP graph are depicted in Fig. 3. One of two optimal solutions is given by dish request
sequence (1,1) — (2,1) - (1,2) - (3,1) —» (4, 1) — (3,2) with an optimum
makespan of 21.

@ Springer

The cafeteria problem: order sequencing and picker routing... 739

Parameters: Predecessors:
m=n=4 {g Aany =11}
D=C={1234} (0.-1,-2-3) Aaz) =A@z =Asny = (LD}
@ ={(1,1),(1,2),(21,31,32) 41} 5 13 Agz) =Aeyy ={(11),(1,2),(21),(3,1)}
1 4
3 - 1.1)
di = (2 4) @y
5 o (1,0-1-2)
8 8 o R 8
{(1.1).(1.2)} {@.1).(21)} {(1.1).(8.1)}
4 3 2
(4,3,2,1) (4,3,2,1) (4,3,2,1)

11 /124 11 / 3 - 11 e 3 1
{(1.1),(132).(2.1)} {(1.1).(1.2).(3.1)} {(1'1)'(1);2)'(2'1)} {(1,1).(2;)'(3.1)} {(1.1).(1.2).(3.1)} {(1.1),(251),(3,1)}
2 4
(0,3.2,1) (0,3,2,1) (43.2,1) (43.2,1) (4.3.2,1) (4.32.1)

3 il 3 3 4 7 3 —
“ene2en e {11,216} | (a0.62,e0.60
3
(00, 0,2,1) (0,3,2,1) (4.3.2.1)
3 4 _— R e
18 {10.02,@1.61.62} || {1.D.02.2D.ED @0} 17
(00, ©,4,2) (00, ©,4,2)

22 /4 ‘\ 21 f
{(1,1),(1,2).(2,1)5(3,1),(3,2).(4,1)} {(1,1),(1,2).(2,1)‘,‘(3.1),(3,2),(4,1)} J
w
(00, 0, ®,2) (00, ,4,3) P

Fig.3 Dynamic programming/beam search graph for CWSP

2.4 Beam search approach

Because the number of states grows exponentially with the number of dish requests,
we modify our DP approach to obtain a heuristic beam search procedure (BS). Beam
search requires less computational time and memory as it only branches the ¢ (beam
width) most promising states, according to their partial objective value, of each stage
in the DP tree. Hence, if ¢ is sufficiently small, space and CPU time required for
solving our CWSP are polynomially bounded. However, it is not guaranteed that the
approach finds an optimal solution.

Example (cont.) Consider the graph given in Fig. 3. When applying the beam search
procedure with a beam width of { = 4 to the same example, we derive a smaller graph
without the highlighted states (lighter gray color). In this example, we still find an
optimal solution, which is not generally the case.

3 Sequencing the customers
In the distribution center for beverages we visited (see Sect. 1), the customer sequence

is not optimized and orders are just processed according to a FCFS policy. Since
FCFS does not consider any order characteristics, but simply sequences incoming

@ Springer

740 D. FiiBler et al.

orders according to their arrival times, we emulate this approach by a random order
sequence (dubbed the random approach). Beyond this status quo, this section suggests
different straightforward optimization procedures for the sequencing part of our cafe-
teria problem. We seek a suited sequence of customers in which they enter the line of
counters. Recall that this sequence remains unaltered during the whole cafeteria pro-
cess, because customers cannot overtake each other. If the waiter processes customers
according to the order-by-order policy and strictly serves customer after customer
according to their sequence, the whole cafeteria problem reduces to the sequencing
of customers. In this case, the whole cafeteria problem can be solved by a modifica-
tion of the famous algorithm of Gilmore and Gomory (1964) for sequencing transport
requests on the line. This is elaborated in Sect. 3.1. Naturally, this order sequence can
also be applied under the order-swapping policy, where the waiter may flexibly swap
between orders. However, we also suggest a simple priority rule-based approach (see
Sect. 3.2). Once these solutions procedures are available, we can evaluate whether
order sequences are a suited lever for a more efficient cafeteria process (see Sect. 5).

3.1 Iterative Gilmore and Gomory approach

When applying the order-by-order policy, the waiter iteratively serves customers in
the same order as they enter the cafeteria. Therefore, each customer i defines a job
job; = (d;.1,d; m;) which starts at the first counter d; 1 and ends at the last counter
d; m; she demands a dish from. The goal of our customer sequencing problem (CSP)
under the order-by-order policy is to schedule these jobs such that the makespan of
the serving process is minimized.

At first glance, this problem resembles a popular special case of the traveling sales-
man problem (TSP), the TSP on the line. The famous solution procedure of Gilmore
and Gomory (1964) solves this special case to optimality in polynomial time [see also
Burkard et al. (1998)]. Specifically, it can be applied to sequence transport requests
along a line, such that the total travel distance (of the waiter, in our case) is minimized
in O (n?). However, the TSP on the line and our CSP differ in two points:

e The TSP on the line looks for a round trip, i.e., a tour through all jobs along the

line with a final return to the start position. Within a solution of our CSP, however,
the waiter starts at the beginning of the cafeteria and ends at the last counter she
serves a dish at. Thus, we have to solve the path version of the problem, which
can be obtained by embedding the approach of Gilmore and Gomory (1964) in
an iterative solution procedure with a runtime in O (n?), dubbed “IGG”, given by
Algorithm 1.
Example (cont.) Consider our example of Fig. 1. In solution (b), the waiter follows
the order-by-order policy for customer sequence (red, yellow, green], which results
in a total walking distance of 8 and a makespan of 16 time units including the 8
time units for serving the four dish requests for two time units each. When applying
IGG, we derive solution (c) and customer sequence (green, yellow, red] depicted
in Fig. 4 with a total walking distance of 5 and a makespan of 14 time units.

e IGG optimizes the customer sequence according to the walking distance of the
waiter. In general, this solution is not optimal according to our makespan objective,

@ Springer

The cafeteria problem: order sequencing and picker routing... 741

Algorithm 1: Iterative Gilmore-Gomory approach (IGG)
input: set of n customer jobs (on the line)

1 add virtual starting job jobg = (0, 0)

2 initialize best customer sequence 7 *

3 foreach customer job job; do

// construct optimal sequence, which ends at d;

4 add virtual customer job jobfl 41 = (di,m; » 0) from the last dish of customer i to the beginning
of the cafeteria

5 apply the approach of Gilmore and Gomory (1964) to determine an optimal tour

6 delete jobil 11 from the tour

7 divide the tour at jobg and receive sequence

// check for new best solution

8 if F(r) < F(mr*) then

9 | =*

10 end

11 end
return: best customer sequence 7 *

=T

Solution (c): time

%EBHBHHBHEEEEE

K &G) &
S & & &
RO () waiting

Fig.4 Gilmore—Gomory solution with minimal waiter walking distance

5& walking

& processing

counters
(& w]m]=]

because the additional travel of the customers is not considered. The optimal IGG
solution of Fig. 4, for instance, results in an optimal walking distance of 5 plus
the 8 time units for serving the four dishes; this suggests a makespan of 13 time
units. The actual makespan, however, is 14 time units, because the single time unit
the waiter remains idle until the arrival of the yellow customer at counter two is
not included. However, if we presuppose that the customers are fast enough that
they always wait at their first counter once the waiter returns to the next customer,
then IGG can directly be applied to solve our customer sequencing problem for
the order-by-order policy. If this is not the case, IGG serves as a heuristic approach
for CSP.

Naturally, IGG can also be applied to determine a heuristic solution for CSP, if the
waiter follows the order-swapping policy. The next section, however, introduces an
alternative approach.

3.2 A priority rule-based approach considering customer blockings

We tried out quite a few simple priority rule-based approaches, but only report the one
working best. This approach is based on the following two simple observations. First,

@ Springer

742 D. FiiBler et al.

with much more customers than counters, i.e., n > m, there tend to be clusters of up
to m customers potentially blocking each other. Furthermore, to fairly distribute the
blocking over these clusters, each cluster should contain a mix of customers causing
many, medium and few potential blockings. To realize these basic characteristics in a
customer sequence, we proceed as follows:

First, we quantify the number of potential blockings W; for each customer i € C.
This is done by determining the total number of all other customers j € C, with j # i,
which are potentially blocked. Specifically, we determine W; = ;- ¥ij, where

I, ifd; < dj,l

T Vi,jeC. 30
Vij 0. else L] (30)

Then, we sort all customers i € C according to non-increasing W; values. Finally,
we successively consider this intermediate sequence, assign the j-th customer of this
intermediate sequence to cluster j mod m, and bring the resulting clusters into a
random sequence, which constitutes our final customer sequence.

Note that our computational study presented in the following section shows that
this straightforward approach for customer sequencing is only slightly outperformed
by a metaheuristic, i.e., a multi-start simulated annealing procedure, with a runtime
of several hours. This metaheuristic is described in “Appendix B.” Due to this result,
we abstain from presenting even more elaborate sequencing approaches.

4 Computational performance

In this section, we elaborate on the computational performance of our solution proce-
dures. Specifically, we determine the runtimes and optimality gaps for our exact and
heuristic solution procedures for differently sized test instances. Before we describe
the results of these tests in Sects. 4.2 and 4.3, we, first, elaborate on the generation
scheme for deriving our test instances in Sect. 4.1.

4.1 Instance generation

Unfortunately, there exists no established testbed for our cafeteria problem. Therefore,
we had to generate our own instances. Specifically, we proceeded as follows: The
values listed in Table 2 are combined in a full factorial manner, which leads to 27
unique parameter settings. For each setting, instance generation is repeated 10 times,
so that in total 270 instances have been obtained.

Each instance is generated as follows: First, the amount of requested dishes is
drawn from interval [y; y] for each single customer. Then, according to this result,
the specific dishes per customer are randomly drawn from the m dishes available. All
random numbers follow a uniform distribution. The size of each counter and each
customer are normalized to one distance unit, and both waiter and customers move
one distance unit per time unit. Note that, later when investigating managerial aspects
in Sect. 5, we also address the impact of varying speeds.

@ Springer

The cafeteria problem: order sequencing and picker routing... 743

Table 2 Parameter values for instance generation

Parameter Description Values
n Number of customers 10, 30, 50
Number of counters 10, 30, 50
ly:v1 Interval of requested dishes per customer [1; 3], [7; 10], [1; 10]

Table 3 Performance criteria

Criterion Description

#best Number of best solutions among all procedures

#feas Number of instances where a feasible solution is found

#opt Number of instances where a proven optimal solution is found
agap Average gap to best solution in %

asec Average computational time in CPU seconds

All procedures have been coded in Visual Basic (Visual Studio 2012 Ultimate) based
on Microsoft’s .NET Framework 4.6, and all computations have been performed on a
personal computer with Intel Core 17-3770 processor with 4 x 3.4 GHz clock speed
and 8 GB DDR-3 RAM. As a standard solver, we apply Gurobi Optimizer 7.5.

4.2 Performance tests for the CWSP

First, we address the solution approaches dedicated to the waiter scheduling prob-
lem CWSP for a given customer sequence (see Sect. 2). Specifically, we benchmark
standard solver Gurobi solving CWSP-MIP (see Sect. 2.2), our exact dynamic pro-
gramming (DP) procedure (see Sect. 2.3), and our beam search (BS) heuristic (see
Sect. 2.4) executed with abeam width ¢ = 300. Since CWSP is an operational problem
with a rather short-term planning horizon, each solution approach receives a timeout
of 300s. Note that for Gurobi we only restrict the (pure) solution time, so that by
adding the time required by the standard solver to prepare the model, a total time
requirement larger than the time out may result. Also for our DP runtimes larger than
the timeout may occur, because we measure time after completing each stage only.
For these three competitors, we report the performance criteria listed in Table 3. The
performance results summarized in Table 4 suggest the following findings:

o Among the exact solution procedures, Gurobi is clearly outperformed by DP. In
total, the latter solves 98 instances to optimality (i.e., 36.3%) within the given
runtime and even finds 15 optimal solutions for the largest instances with n = 50
customers. Gurobi only finds 28 proven optimal solutions for the smallest instances
with n = 10 customers, i.e., 10.4%. On the negative side, DP either finds an
optimal solution within the given runtime or returns unsuccessfully without a
feasible solution, i.e., in 63.7% of all instances. Therefore, we only report #opt

@ Springer

744 D. FuBler et al.

Table 4 Computational performance for CWSP of Gurobi solving CWSP-MIP, dynamic programming
(DP), and beam search (BS)

n m Gurobi solving CWSP-MIP DP BS
#best #feas #opt @gap Jsec #opt Jsec #best @gap Dsec

10 10 12 30 10 7.55 20231 30 30.66 29 0.03 1.51
10 30 10 30 9 11.63 220.62 16 198.35 30 0 4.68
10 50 9 30 9 1227 21832 11 254.54 30 0 6.33
Total 31 90 28 1048 21375 57 161.18 89 0.01 4.17
30 10 0 30 0 3579 30429 18 162.56 30 0 23.84
30 30 0 30 0 77.11 308.49 7 300.5 30 0 63.99
30 50 0 30 0 76.28 309.96 1 365.76 30 0 83.29
Total 0 90 0 63.06 307.58 26 276.27 90 0 57.04
50 10 0 30 0 3943 319.02 15 203.57 30 0 87.61
50 30 0 20 0 90.56 340.64 0 376.46 30 0 172.79
50 50 0 20 0 112.39 345.8 0 396.04 30 0 201.05
Total 0 70 0 80.79 335.16 15 32536 90 0 153.82

for DP; in all other cases DP fails. Gurobi finds feasible solutions in 92.6% of all
instances and only struggles with the very largest instances.

e With regard to the heuristic solution performance, it can be concluded that BS
delivers convincing results even for the largest instances of real-world size. It
misses just a single optimal solution among those instances where the optimal
objective value is known and clearly outperforms the heuristic values obtained by
Gurobi for all larger instances. However, BS too requires a considerable solution
time for the largest instances, i.e., an average of 154 s over all instances withn = 50
customers.

To further benchmark the quality of the solution procedures introduced for waiter
scheduling, we extend the computational results and compare lower bounds. Table 5
shows the gap of each solution approach compared to the LP-relaxation, which proved
best among the lower bounds we tested. Other lower bounds, e.g., based on the mini-
mum spanning tree-relaxation of the TSP [see Held and Karp (1970)], performed even
worse. Unfortunately, already the best lower bound is not tight and for all instances
solved to optimality (see Table 4) the gap is about 55%. This gap increases among all
instances, see Table 5. Whether more sophisticated lower bounds for the sequential
ordering problem, e.g., described in Ascheuer et al. (1993), lead to considerably better
results for waiter scheduling remains questionable. It can be concluded that finding
tight lower bounds for waiter scheduling is a challenging task and should receive more
attention in future research. Preliminary computational tests confirm this finding for
the overall cafeteria problem. This result is not astounding, since the cafeteria problem
extends waiter scheduling and also includes customer sequencing.

@ Springer

The cafeteria problem: order sequencing and picker routing... 745

Table 5 Gap to the LP-relaxation of CWSP-MIP for Gurobi solving CWSP-MIP, dynamic programming
(DP), and beam search (BS)

n m Gurobi solving CWSP-MIP DpP BS
agap agap agap
10 10 56.44 53.37 53.39
10 30 63.52 59.45 59.71
10 50 64.98 59.89 61
Total 61.65 57.57 58.03
30 10 69.48 61.03 58.67
30 30 81.76 71.48 67.79
30 50 83.83 73.37 71.84
Total 78.36 68.63 66.1
50 10 70.82 62.3 59.32
50 30 84.94 No solution found 69.66
50 50 88.26 No solution found 71.88
Total 81.34 62.3 66.96

4.3 Performance tests for the holistic problem

Next, we skip to the overall cafeteria problem where also determining the customer
sequence is part of the problem. Note that we formulated a MIP model for the
holistic problem including customer sequencing and waiter scheduling under the
order-swapping policy, but, unfortunately, not even for tiny instances with a hand-
ful of customers standard solver Gurobi could obtain reasonable results, even with
a much larger runtime of several hours. Gurobi even struggled with finding lower
bounds, which is in line with our investigation of bound quality for waiter scheduling
presented in the previous section. Therefore, we decided to benchmark our three com-
petitors [i.e., a RANDOM sequence, the customer sequence obtained by our iterative
Gilmore—Gomory (dubbed IGG, see Sect. 3.1), and our priority rule-based approach
(dubbed PRIO, see Sect. 3.2)] against the results of the multi-start simulated anneal-
ing metaheuristic (see “Appendix B”) executed with a runtime of 2h. In relation to
this benchmark, we report the average gap (@gap) and the number of best solutions
obtained by the respective procedure (#best) for all three competitors in Table 6.
Note that all three procedures only evaluate a single customer sequence and solve the
remaining waiter scheduling problem (CWSP) under the order-swapping policy with
BS and beam width ¢ = 300. Thus, there is no (significant) difference in the solution
time, and in all three cases, the share of the sequencing parts is negligible compared
to the execution time of BS.

The results of Table 6 lead us to the following conclusions. Our priority rule-based
approach for determining the customer sequence clearly outperforms both competitors.
The worst results are obtained by the random customer sequences, which resemble the
status quo in the distribution center we visited. IGG leads to more best solutions and
a much smaller average gap, but for the largest instances with n = 50 customers and

@ Springer

746 D. FiiBler et al.

Table 6 S(.)lgtlon Perf(.)rmance B m RANDOM GG PRIO
for the holistic cafeteria problem
(i.e., customer sequencing and #best @gap #best Ogap #best Dgap

waiter scheduling under the

order-swapping policy) for 10 10 0 1397 2 5713 455
competitors random solution 10 30 0 19.3 1 7.1 7 3.69
(RANDOM), iterative 10 50 0 1755 0 84 12 3.06
Gilmore—Gomory (IGG), and
the priority rule-based approach Total 0 16.94 3 709 22 3.76
(PRIO) in relation to the 30 10 0 1064 O 2.74 16 0.43
multi-start simulated annealing 30 30 0 17.69 0 8.02 29 0.04
heuristi
metaheuristic 30 50 0 287 0 1071 30 0
Total 0 17.07 0 7.16 75 0.16
50 100 0 9.59 0 2.54 28 0.09
50 30 0 1844 0 8.58 30 0
50 50 0 2344 0 14.06 30 0
Total 0 17.16 0 8.4 88 0.03

m = 50 counters the average gap is substantial (i.e., 14.06%). PRIO leads to the best
results. In fact, due to the large solution space and the long runtime of BS for solving
the waiter scheduling problem, not even metaheuristic mSA with a runtime of 2h is
able to considerably improve these results.

It can be concluded that our BS heuristic seems well suited to solve even large-sized
instances of real-world size of the waiter scheduling problem. Moreover, our simple
rule-based approach delivers acceptable objective values for the sequencing part of the
cafeteria problem. Therefore, we apply these two approaches throughout the further
tests elaborated in the following section, if not explicitly stated otherwise.

5 Managerial aspects

This section addresses important managerial aspects and supports managers having
to setup and operate a cafeteria system. First, Sect. 5.1 explores the impact of our two
levers (i.e., optimized customer sequences instead of random sequences and flexible
order swapping of the waiter instead of the order-by-order policy, see Sect. 1.3) on the
system performance. Then, we take the waiter’s perspective and address the question
whether optimized schedules also reduce the total walking distance (see Sect. 5.2).
Finally, we explore whether faster AGVs can considerably improve the system per-
formance (see Sect. 5.3).

5.1 Impact of levers

The status quo in the distribution center we consider is to process random customer
sequences according to the order-by-order policy. This section explores the perfor-
mance gains if optimized order sequences are applied and the waiter follows the more
flexible order-swapping policy instead. Table 7 summarizes the impact of these two

@ Springer

The cafeteria problem: order sequencing and picker routing... 747

Table 7 Performance gains for n = 10/30/50 customers for both sequencing and both waiter scheduling
approaches in relation to the status quo in percent

Customer sequencing

Random Optimized
Waiter Order-by-order Status quo IGG
scheduling 0/0/0 —0.48/0.08/ — 0.07
Order-swapping RANDOM + BS PRIO + BS
45.18/50.5/51.73 51.18/56.99/57.98

levers on the system performance. Specifically, we report the relative decrease of
makespan compared to the makespan obtained by the status quo solution in percent
forn = 10, n = 30, and n = 50 customers. The following three approaches are
benchmarked with the status quo:

e Our iterative Gilmore—Gomory procedure (IGG, see Sect. 3.1) applied to a ran-
dom customer sequence represents the case where only the customer sequence is
optimized, but the waiter still processes the customers order by order.

e The case where customer sequences are not optimized (e.g., they are processed
according to FCES), but the waiter follows an optimized order-swapping schedule
is represented by approach ‘RANDOM + BS’.

e Finally, both customer sequences and the waiter schedule under the order-swapping
policy can be optimized. This approach is denoted ‘PRIO + BS’.

The results of these four solution approaches averaged over all our 270 data
instances elaborated in Sect. 4.1 are summarized in Table 7. The following conclusion
can be drawn from these results:

e Only optimizing the customer sequence, if the waiter still follows the order-by-
order policy cannot improve system performance. Recall that the IGG presented
in Sect. 3.1 minimizes the walking distance of the waiter if customers are strictly
serviced one after another. However, this approach neglects additional waiting
time of the waiter until the customers have arrived at the respective counters.
Obviously, this simplification deteriorates the objective values to such an extent,
that IGG cannot even outperform random customer sequences. In fact, forn = 10
and n = 50 customers the average makespan delivered by IGG is even larger than
that of a random sequence.

e A similar result with regard to the impact of customer sequences can be concluded
if the waiter operates under the order-swapping policy. In this case, too, the per-
formance gains of optimized customer sequences are not overly large. However,
at least about 6% additional performance can be gained by customer sequences
optimized with our priority rule-based approach.

e The largest performance gains, however, are promised by allowing the waiter
to flexibly swap among orders. An optimized waiter scheduling under the order-
swapping policy almost halves the makespan compared to the status quo where the
waiter processes customer after customer according to the order-by-order policy.

@ Springer

748 D. FiiBler et al.

It can be concluded that among our two levers, especially, the order-swapping policy
promises a large improvement. It about halves the makespan compared to the order-
by-order policy, whereas optimizing the customer sequences only promises just 6%
additional reduction.

5.2 Impact on picker walking

In the distribution center we visited, another concern of the managers was the excessive
walking of the pickers during their shifts. Their calculations have shown that regularly
a dozen kilometers per shift were exceeded. Consequently, this section is dedicated to
the question whether optimizing the waiter schedule under the order-swapping policy
not only boosts the picking performance, but also considerably reduces the picker’s
total walking distances. To explore this question, we setup the following experiment.

To emulate a realistic on-the-line picking environment, we apply the following
data. The picker is assumed to walk v™3' = 1.36 m/s (about 5km/h). This is a typical
moderate walking speed that is often agreed with the trade unions as an average target
speed (FiiBler and Boysen 2017). The AGVs are assumed to have the same speed
vt = 1.36 m/s. Due to safety reasons, many AGV:s are restricted to walking speed
if they interfere with human pickers. The counters (storage positions for crates of
beverages) are assumed to be 1 m wide, which is enough space to store a standardized
euro-pallet (i.e., 80 cm) with maneuvering space to the left and right. We presuppose
m = 50 counters (storage positions), which is about the size we observed in our dis-
tribution center. Assuming an average processing time (picking duration) of 15 s/dish
(order line), preliminary tests have shown that about 100 (27) customers can be served
within an hour, if the number of order lines per order is drawn from interval [y;] =
[1;3] ([y; ¥1=1[7;10]). To emulate different shift lengths, we therefore apply n = 100
(n =27),n =200 (n = 54), and n = 800 (n = 216) customers for shifts of lengths
of 1, 2, and 8h, respectively, if we have just a few (many) order lines per customer
with [y; 71 = [1; 3] ([y; 71 = [7; 10)).

In this environment, we benchmark the following competitors:

e IGG: We apply the iterative Gilmore—Gomory approach (IGG, see Sect. 3.1) for
optimizing the customer sequence, while the waiter follows the order-by-order
policy.

e PRIO + BS — M: This approach optimizes the customer sequence according to
our priority rule-based approach (see Sect. 3.2) and optimizes the waiter schedule
under the order-swapping policy with the help of our beam search procedure (BS,
see Sect. 2.4) applied with beam width ¢ = 300. The aim of this approach is to
minimize the makespan.

e PRIO + BS — W: To explore to what extent the waiter’s total walking distance can
be reduced, we adapt our dynamic programming scheme for optimizing the waiter
schedule under the order-swapping policy to the walking distance objective (see*
Appendix C”). The resulting beam search approach minimizes the total walking
distance of the waiter for a given customer sequence, which is again derived by
applying our priority rule-based approach of Sect. 3.2.

@ Springer

The cafeteria problem: order sequencing and picker routing... 749

Table 8 Reduction of the waiter’s total walking distance (W) and makespan (M) of our three optimization
approaches IGG, PRIO + BS — M, and PRIO + BS — W in relation to the status quo approach in % for
different shift lengths and varying numbers of order lines

[y:7] Shift (h) IGG PRIO + BS — M PRIO + BS — W
w M w M w M
[1; 3] 1 15.01 7.41 84.12 46.16 84.48 45.99
[1; 3] 2 15.05 7.61 84.24 46.02 84.36 45.83
[1; 3] 8 14.72 7.71 84.03 45.95 84.39 45.8
[7; 10] 1 0.48 0.16 76.98 31.81 77.93 31.7
[7; 10] 2 0.34 0.11 77.11 32.27 77.87 32.11
[7; 10] 8 0.09 0.03 76.6 32.24 77.12 32.04

e Finally, we have the status quo where random order sequences are processed
under the order-by-order policy. We report the improvement over this policy for
the previous three approaches (i.e., the reduction of the respective approach in
relation to either the makespan or the total walking distance of the status quo
policy in %) in Table 8.

The results of this test summarized in Table 8 suggest the following findings:

e Only optimizing the customer sequence by IGG while still applying the order-by-
order policy improves over the status quo only if each customer demands just a
few order lines. In this case, the total walking distance is reduced by 15% and also
a better makespan can be achieved. If, however, each customer demands plenty
order lines, then there is a high probability that the picker has to pass the whole
line anyway when processing each order according to the order-by-order policy.
Optimizing the customer sequence has not much flexibility in this case, and only
negligible improvements over the status quo can be realized.

e In line with our previous results, optimizing customer sequences and waiter sched-
ules under the order-swapping policy with our PRIO + BS — M leads to a
considerable reduction of the makespan compared to the status quo. Note that
the relative reductions here are slightly smaller than our previous 50%, because in
this test a processing time of 15 s/dish is included. The reductions of the waiter’s
total walking distance is even more impressive. Even for plenty order lines the
reduction is by more than 75%.

e If we directly minimize the total walking distance of the waiter by applying PRIO
+ BS — W, we reach almost the same results as for PRIO + BS — M. As expected,
the total walking distance is even smaller, but just to a tiny extent well below 1%.
With regard to the makespan, PRIO 4+ BS — W is slightly outperformed by PRIO
+ BS — M, but, again, just to a very small extent. Since computational tests (we
do not report here) have shown that the solution performance of both approaches
is almost identical, we can conclude that there is a strong correlation among both
objectives. Minimizing the makespan also tends to minimize the waiter’s walking
distance and vice versa.

@ Springer

750 D. FuBler et al.
[:7)=[1:3] [71=[7:10]
7,000 —=—status quo 7,000 —=—status quo
—=—PRIO+BS —=— PRIO+BS
6,000 - 8 6,000 + 8
c c
© ©
o o
w w
£ s.000] 1 2 s000p \'_____ |
[} (3]
€ S
4,000 |- 8 4,000 |- 8
M — ™ ~
37000 L L L L L 31000 L L L L L
0.5 0.75 1 1.25 1.5 0.5 0.75 1 1.25 1.5

AGV speed in relation to waiter

AGV speed in relation to waiter

Fig.5 Impact of AGV speed on the makespan for the status quo approach and optimization procedure PRIO
+ BS

It can be concluded that optimization also promises a great relief for the waiter.
Our average result for an 8-h shift suggests a total walking distance of about 17 km
for the current process in our example distribution center. By optimization, this can
be reduced to an average walking distance of just about 4 km/shift.

5.3 Impact of faster AGVs

Instead of implementing the order-swapping policy steered by an optimization pro-
cedure, a distribution center seeking better system performance could also consider
investing into a technical solution. Faster AGVs, for instance, also promise a reduction
of the makespan. This section explores whether the gains of faster AGVs can com-
pete with the huge improvement promised by optimization. We apply the same setting
as is elaborated in the previous section, and only vary the velocity of the AGVs.
Specifically, we vary v°"' by applying values (0.5;0.75; 1; 1.25; 1.5) - ™4, with
vWait — 1 36m/s. Furthermore, we distinguish between a large and a small number
of dishes per customer [y; ¥], assume m = 50 counters and n = 27, or n = 100
customers for 1-h shifts. Figure 5 shows the results for the status quo (i.e., random
customer sequences processed under the order-by-order policy) and our beam search
approach PRIO + BS, which optimizes customer sequences and waiter schedules
according to the order-swapping policy.

It can be concluded that investing additional budget into faster AGVs is only a
worthwhile idea if operating under the order-by-order policy and only until the velocity
equals the speed the waiter. However, the money seems much better spent into an
optimization procedure enabling the order-swapping policy. This approach promises
a much lower makespan, which cannot be considerably improved by faster AGVs.

6 Conclusion

This paper explores the cafeteria process: A given set of customers demanding deter-
ministic subsets of dishes served at the counters of a cafeteria are processed by a single

@ Springer

The cafeteria problem: order sequencing and picker routing... 751

waiter. We show that optimizing the customer sequence, in which the customers enter
the cafeteria, and the waiter schedule, in which the waiter serves the dish requests
of queuing customers, considerably improves the performance compared to a non-
optimized system. We introduce suited solution procedures for both problem parts,
i.e., customer sequencing and waiter scheduling, and test them in a comprehensive
computational study. The main findings of these tests are the following:

e Large performance gains are obtainable by optimizing customer sequences and
waiter schedules compared to non-optimized solutions. The makespan is almost
halved. Especially, allowing the waiter a flexible swapping among customers
greatly improves the results. This is good news for managers of a cafeteria, but also
for the waiter. Our results show that the makespan is closely related to the waiter’s
walking distance. Thus, by minimizing the makespan also the waiter’s ergonomic
strain while walking between the counters can be considerably reduced.

e When having to improve the performance of a cafeteria process, money is much
better spent for optimization procedures determining suited customer sequences
and waiter schedules compared to investing into faster AGVs. Their impact is
shown to quickly diminish.

These findings may help to improve order picking in the real-world distribution
center supplying liquor stores, supermarkets, and large restaurants with beverages
where we saw the cafeteria process in action.

Future research could challenge our solution procedures. For instances of real-world
size determining good waiter schedules takes considerable time, so that the evaluation
of many different customer sequences is even more time-consuming. Thus, solving
very large instance of the cafeteria problem remains a challenging task. Furthermore,
future research could also support the layout design phase. By altering the assignment
of dishes to counters even larger performance gains may be obtainable.

Appendix A: Complexity of CWSP

This appendix shows that our CWSP, i.e., the scheduling of the waiter once the cus-
tomer sequence is given, is strongly NP-hard. The reduction is from the 3-Partition
problem, which is well known to be NP-complete in the strong sense (Garey and
Johnson 1979).

3-Partition Given an integer B € Z" and a set A (with |A| = 3¢) containing integers
B/4 <aj < B/2,Vj=1,...,3q. The problem is to find a partition of set A into ¢
disjoint subsets {Ay, Az, ..., Ay}, such that ZjeA,- aj = Bforeachi =1,...,qor
to prove that no such partition exists.

Proof Our pseudo-polynomial transformation scheme for deriving an instance I’ of
CWSP from an instance I of 3-Partition is as follows: We introduce n = 3qg + 1
customers. For each integer value of 7, we introduce one customer demanding just
a single dish. These customers build the counterparts to the integer values and are,
thus, called the counterpart customers. The single additional customer interrupts the
waiter again and again when serving the counterpart customers, so that we call her
the stop customer. All customers move with a velocity of vt = % along the

@ Springer

752 D. FiiBler et al.

dishes of the stop customer

wait dish g stop dishes counterpart dishes
| |
Q
S
1] --- [1 1IIII1 .
line
L] J L] J

12g-1 12g-1 3q

unused unused counterpart

counters counters counters

Fig.6 Schematic cafeteria layout of transformation

counters, which all have a normalized length of one distance unit. The line consists of
m = 12¢g* 4 3¢ + 2 counters, and our single waiter moves with infinite velocity. Note
that it is easily possible to give the waiter a finite velocity in this proof, which, however,
makes the calculations a bit more complicated. The first 3g customers, which enter the
line according to the given customer sequence, are the counterpart customers. They
each demand a single dish served at the end of the line. i.e., at the last 3g counters
before the final one. The first counterpart customer, thus, demands the dish served at the
second to last counter, the second customer the third seen from the end of the line and
so on. Servicing each dish demanded by a counterpart customer requires the waiter a
processing time that equals the corresponding integer value, so that we have 7; 1 = a;
forall j =1, ..., 3¢. The stop customer is the last to enter the line. She demands g +2
dishes. Her first dish is served at the very first counter and lasts until all counterpart
customers have passed the line and reached their successive counters at the end of the
line. We call this dish request the wait dish, which takes the waiter a processing time
of 73541,1 = g B. Her next g dishes are the so-called stop dishes, which, starting at
counter 12¢g + 1, are served at counters having 12¢g — 1 unused counters between them.
The processing times at these stop counters are 13441, = 1 foralli =2,...,q + 1,
and it takes the stop customer exactly B time units to move from stop counter to stop
counter. Finally, the stop customer is serviced at the very last counter with what we call
the final dish. Servicing the final dish takes the waiter a processing time of one time
unit. Figure 6 schematically depicts the setup of the resulting cafeteria. The question
we ask is whether there is a solution to I’ with makespan Z < g + % +2gB+q+1.

A feasible solution for an instance / of 3-Partition can be transformed to a feasible
solution of the corresponding instance I’ of CWSP by pursuing the following waiter
schedule. At first, the waiter remains idle for % + % time units until all counterpart
customers have passed the first counter and the wait dish of the stop customer can
be serviced. The latter requires g B time units. Once processing the wait dish ends,
all counterpart customers have exactly reached their 3g counters of the end of the
line where they aim to receive their respective dish. Afterward, the stop customer
moves onwards and passes 12g — 1 counters toward her first stop dish. At a velocity
of veust = 127", the movement from wait dish to the first stop counter (and later on
between two successive stop counters) takes her exactly B time units. During these B

@ Springer

The cafeteria problem: order sequencing and picker routing... 753

time units, the waiter is not occupied by the stop customer, but can rush (with infinite
velocity) to the counterpart customers, where she can serve exactly the three dishes
of the counterpart customers corresponding to an integer subset of 3-Partition. In this
way, the waiter successively services all subsets of dishes corresponding to subsets of
3-Partition each time interrupted by one time unit servicing the stop customer once
having reached the next stop dish after exactly B time units. Once the stop customer
has received her last stop dish, it takes her g + % time units to pass the last 3¢
counters and another single time unit to be served tile final dish at the last counter.
Thus, we have % + % time units at the start until the wait dish can be serviced.
This takes ¢ B time units to be processed, and then, another ¢ B 4+ ¢ time units are
required to processes all counterpart customers (i.e., serviced in g subsets of duration
B) interrupted by g stop dishes of the stop customer. Finally, it takes the stop customer
another % + % time units to pass the last 3¢ counters and an additional time unit at

the last counter. Altogether, this leads to a makespan of Z = % + % +2¢gB+q+1
and a feasible schedule for I'.

On the other hand, a feasible solution for an instance I’ of CWSP is also a feasible
solution for the corresponding 3-Partition instance /. A makespan of Z < g + % +
2¢gB + g + 1 for I’ can only be reached if the stop customer reaches the end of
the line without any waiting at a counter. Thus, once the wait dish at the start is
serviced, this leaves exactly B time units for servicing counterpart customers, before
the stop customer reaches another stop counter. If these gaps of B time units are
not exactly filled with three counterpart customers whose processing time of their
respective dishes adds up to exactly B time units, then there remains at least one dish
for a counterpart customer to be serviced after the stop customer has left her last stop
counter toward the end of the line. Even if there is just one remaining dish and this
final dish is the one with the shortest processing time among all counterpart customers
and serviced at the second to last counter, then due to the restrictions of the integer
values of 3-Partition, i.e., B/4 < a; < B/2, this dish cannot be completed before
the stop customer reaches this job (because the way from the last stop counter to the
second last counterpart counter takes her just % — % time units). She is blocked, and

a makespan Z < g + % 4+ 29 B + g + 1 cannot be realized. Only if all counterpart
customers are already serviced, once the stop customer leaves the final stop counter,
no blocking occurs. This, however, is only possible if sets of three dishes dedicated to
three counterpart customers are serviced in each of the ¢ gaps of duration B. These
three dishes directly correspond to a feasible subset of 3-Partition, which completes
the proof. O

Note that the same proof also holds for the case where the sequencing of customers
is part of the problem. No other sequence than the one applied in the previous proof
can reach the applied bound on the makespan. All other sequences lead to cases where
customers block each other and the makespan bound is exceeded.

@ Springer

754 D. FiiBler et al.

Appendix B: A multi-start simulated annealing algorithm

In this appendix, we introduce a straightforward multi-start simulated annealing
approach for benchmarking our other (even more) basic approaches to determine
customer sequences. We follow the basic simulated annealing scheme introduced by
Kirkpatrick et al. (1983). First, we apply the priority rule-based approach (see Sect. 3.2)
to find an initial customer sequence, which is evaluated under the order-swapping
policy with beam search (see Sect. 2.4). Neighborhood solutions are determined by
swapping the positions of two randomly selected customers within current customer
sequence €. This leads to a new solution €pey, Whose objective value F(€pey) is deter-
mined by applying the beam search procedure for waiter scheduling. This new solution

€new 1S accepted if a random number of interval [0,1] with uniform distribution is
F(egld)—F (enew) . .
smaller than exp ™ and refused otherwise. Temperature T P is controlled

via the traditional cooling scheme of Kirkpatrick et al. (1983) with an initial temper-
ature of 50, a stop temperature of 1, and a cooling factor of 0.99, which is multiplied
with the current temperature in each iteration. When reaching the stop temperature,
we restart the procedure with the best customer sequence found so far. If no improved
solution is found in the next iteration, we draw a new customer sequence randomly
and restart the procedure. The procedure ends after a total runtime of 2 h (7200 CPU
seconds).

Appendix C: A dynamic program for CWSP minimizing the waiter’s
total walking distance

In this appendix, we derive a DP scheme that can be applied to our CWSP when
minimizing the waiter’s walking distance. This approach is a simple modification of
the DP approach described in Sect. 2.3 which minimizes the makespan for a given
customer sequence.

The DP consists of |T'| 4+ 1 stages, each representing a service period. As we
minimize the walking distance of the waiter, we can neglect the exact positions of the
customers during the process. Note that customers are assumed to always be at the
respective counter currently demanded, because potential waiting times of the waiter
are not relevant. This leaves us with states Z = (J, w) defined by set J of finished
dish requests and current waiter location w. The partial objective value of a state
f(Z) or f(J, w) represents the total walking distance of the waiter after completing
all dish requests in J. We have a transition from state Z = (J, w) to another state
Z' = w),if3(G, D e dwithAj\J=0,J'\J={{,D},andw =d,,.
The additional walking distance of such a transition amounts to

AZ,7Z) =w —wl. 31

Starting from initial state Zg = (@, 0) with f(Zp) = 0, we can determine the partial
objective value for a new state with the basic Bellman recursion

@ Springer

The cafeteria problem: order sequencing and picker routing... 755

f(Zh)=fu\ wh= ZZIT(ljinw),{f(Z) + A(Z, 7). (32)
AT =1

After a forward recursion through all stages, we compare all final states in order to
determine the optimal solution value

F = min
=J,w
J=a0

@y (33)

Finally, an optimal order sequence can be extracted by a backward recursion. Analo-
gously to the previous dynamic program for our CWSP when minimizing the makespan
(see Sect. 2.3), we derive a heuristic beam search procedure from the DP scheme by
applying the alterations defined in Sect. 2.4.

References

Agnetis A, Flamini M, Nicosia G, Pacifici A (2011) A job-shop problem with one additional resource type.
J Sched 14:225-237

Agnetis A, Murgia G, Sbrilli S (2014) A job shop scheduling problem with human operators in handicraft
production. Int J Prod Res 52:3820-3831

Ascheuer N, Escudero LF, Grotschel M, Stoer M (1993) A cutting plane approach to the sequential ordering
problem (with applications to job scheduling in manufacturing). SIAM J Optim 3:25-42

Boysen N, Briskorn D, Meisel F (2017) A generalized classification scheme for crane scheduling with
interference. Eur J Oper Res 258:343-357

Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container
terminals. Eur J Oper Res 202:615-627

Bierwirth C, Meisel F (2015) A follow-up survey of berth allocation and quay crane scheduling problems
in container terminals. Eur J Oper Res 244:675-689

Brucker P, Dhaenens-Flipo C, Knust S, Kravchenko SA, Werner F (2002) Complexity results for parallel
machine problems with a single server. J Sched 5:429-457

Brucker P, Knust S, Wang G (2005) Complexity results for flow-shop problems with a single server. Eur J
Oper Res 165:398-407

Burkard RE, Deineko VG, van Dal R, van der Veen JA, Woeginger GJ (1998) Well-solvable special cases
of the traveling salesman problem: a survey. SIAM Rev 40:496-546

Ciro CG, Dugardin F, Yalaoui F, Kelly R (2016) Open shop scheduling problem with a multi-skills resource
constraint: a genetic algorithm and an ant colony optimisation approach. Int J Prod Res 54:4854—4881

Chen F, Wang H, Qi C, Xie Y (2013) An ant colony optimization routing algorithm for two order pickers
with congestion consideration. Comput Ind Eng 66:77-85

Cheng TCE, Wang G, Sriskandarajah C (1999) One-operator-two-machine flowshop scheduling with setup
and dismounting times. Comput Oper Res 26:715-730

Daganzo CF (1989) The crane scheduling problem. Transp Res B 23:159-175

Fiiiler D, Boysen N (2017) Efficient order processing in an inverse order picking system. Comput Oper
Res 88:150-160

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.
Freeman, New York

Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and jobshop scheduling. Math Oper
Res 1:117-129

Gilmore PC, Gomory RE (1964) Sequencing a one state-variable machine: a solvable case of the traveling
salesman problem. Oper Res 12:655-679

Glass CA, Shafransky YM, Strusevich VA (2000) Scheduling for parallel dedicated machines with a single
server. Naval Res Logist 47:304-328

@ Springer

756 D. FiiBler et al.

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. Ann Discrete Math 5:287-326

Gue KR, Meller RD, Skufca JD (2006) The effects of pick density on order picking areas with narrow
aisles. IIE Trans 38:859-868

Hall N, Potts C, Sriskandarajah C (2000) Parallel machine scheduling with a common server. Discrete Appl
Math 102:223-243

Hefetz N, Adiri I (1982) A note on the influence of missing operations on scheduling problems. Naval Res
Logist 29:535-539

Held M, Karp RM (1970) The traveling-salesman problem and minimum spanning trees. Oper Res 18:1138—
1162

Hong S, Johnson AL, Peters BA (2012) Batch picking in narrow-aisle order picking systems with consid-
eration for picker blocking. Eur J Oper Res 221:557-570

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671—
680

Liu B, Wang L, Jin YH (2008) An effective hybrid PSO-based algorithm for flow shop scheduling with
limited buffers. Comput Oper Res 35:2791-2806

Mencia C, Sierra MR, Varela R (2013) An efficient hybrid search algorithm for job shop scheduling with
operators. Int J Prod Res 51:5221-5237

Ribas I, Companys R, Tort-Martorell X (2011) An iterated greedy algorithm for the flowshop scheduling
problem with blocking. Omega 39:293-301

Ruiz RM, Maroto C (2005) A comprehensive review and evaluation of permutation flowshop heuristics.
Eur J Oper Res 165:479-494

Sawik TJ (1995) Scheduling flexible flow lines with no in-process buffers. Int J Prod Res 33:1357-1367

Swisslog (2017) CaddyPick: picking made easy. https://www.swisslog.com/de-de/kontakt/downloads?
medialtem=5551B202AE7541FA9662BDC8A95B7041. Accessed Dec 2018

Tang L, Luh PB, Liu J, Fang L (2002) Steel-making process scheduling using Lagrangian relaxation. Int J
Prod Res 40:55-70

Wang G, Cheng TCE (2001) An approximation algorithm for parallel machine scheduling with a common
server. J Oper Res Soc 52:234-237

Weber RR, Weiss G (1994) The cafeteria process—Tandem queues with 0—1 dependent service times and
the bowl shape phenomenon. Oper Res 42:895-912

Xuan H, Tang L (2007) Scheduling a hybrid flowshop with batch production at the last stage. Comput Oper
Res 34:2718-2733

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://www.swisslog.com/de-de/kontakt/downloads?mediaItem=5551B202AE7541FA9662BDC8A95B7041
https://www.swisslog.com/de-de/kontakt/downloads?mediaItem=5551B202AE7541FA9662BDC8A95B7041

	The cafeteria problem: order sequencing and picker routing in on-the-line picking systems
	Abstract
	1 Introduction
	1.1 Applications
	1.2 Literature review
	1.3 Contribution and paper structure

	2 Scheduling the waiter for given customer sequences
	2.1 Problem definition
	2.2 Mixed-integer programming model
	2.3 A dynamic programming procedure
	2.4 Beam search approach

	3 Sequencing the customers
	3.1 Iterative Gilmore and Gomory approach
	3.2 A priority rule-based approach considering customer blockings

	4 Computational performance
	4.1 Instance generation
	4.2 Performance tests for the CWSP
	4.3 Performance tests for the holistic problem

	5 Managerial aspects
	5.1 Impact of levers
	5.2 Impact on picker walking
	5.3 Impact of faster AGVs

	6 Conclusion
	Appendix A: Complexity of CWSP
	Appendix B: A multi-start simulated annealing algorithm
	Appendix C: A dynamic program for CWSP minimizing the waiter's total walking distance
	References

