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Abstract
An optimal production flow control problem of a make-to-stock manufacturing firm
with price, cost, and demand uncertainty is studied. The objective of the flow rate
control problem is maximizing the average profit that is the difference between the
expected revenue and the expected production, inventory holding, and backlog costs.
The uncertainties in the system are captured jointly in discrete environment states. In
each environment state, the price, cost, and demand take different levels. The transi-
tions between different environment states evolve according to a time-homogenous
Markov chain. By using a continuous flow model, the optimal production policy is
stated as a state-dependent hedging policy. The performance of the system where the
production cost alternates between a high and a low cost level and the demand is
either constant or also alternates between a high and a low level is analyzed under
the double-hedging policy. According to this policy, the producer produces only when
the cost is low and the surplus is between the two hedging levels. However when the
backlog is below the lower hedging level, the producer produces with the maximum
capacity regardless of the cost. The effects of production cost, production capacity,
demand variability, and the dependence of the demand and the cost on the performance
of the system are analyzed analytically and numerically. It is shown that controlling
the production rate optimally allows producers respond to the fluctuations in price,
cost, and demand in an effective way and maximize their profits.
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1 Introduction

Developing optimal production control policies that control production to match sup-
ply and demand in an uncertain environment has received considerable attention in
the manufacturing systems control literature. The objective of this study is to extend
the one-part-type, one-machine production flow rate control problem to incorporate
uncertain sales price, production cost, and demand. The original production flow rate
control problemconsiders the problemof deciding how to control the production rate of
an unreliable machine to satisfy a constant demand for a single item to minimize costs
associatedwith holding inventory and having backlog (Bielecki andKumar 1988). The
variations of the optimal flow-rate control problem for an unreliable machine subject
to a constant demand source were analyzed in severals studies (Olsder and Suri 1980;
Kimemia and Gershwin 1983; Akella and Kumar 1986; Bielecki and Kumar 1988;
Malhamé 1993; Hu 1995). The optimal production policy in these cases is shown to be
a hedging-type policy: the machine produces with the maximum rate until the surplus
reaches a hedging level, and it does not produce if the surplus is above this level.

The flow rate control problem has been extended to study production systems under
different uncertain environments. The flow rate control problems for systems where
machine failures are modeled in a more detailed way by considering machines with
multiple failure states and production rate-dependent failure rates have been analyzed
(Sharifnia 1988; Liberopoulos and Caramanis 1994; Martinelli 2010; Francie et al.
2014). In addition to the expected cost criterion used for unreliable machine flow
rate problems, an extension that considered Conditional Value-at-Risk criterion as the
objective of the control problem was also studied (Ahmadi-Javid andMalhamé 2015).

Following the work on production control problems for failure-prone production
systems, a production control problemwhere the uncertainty is due to demandvariation
has also been studied, (Fleming et al. 1987;Ghosh et al. 1993; Sethi et al. 1997; Perkins
and Srikant 2001; Feng and Xiao 2002). This problem has been extended to study the
problem of controlling production as well as deciding on purchasing extra capacity to
meet fluctuating demand (Tan 2002b; Hu et al. 2004; Gershwin et al. 2009).

The initial motivation for the production flow rate control problem came from a
factory setting where the flow rate of a machine is adjusted based on the state of the
system in an uncertain factory environment. In recent years, the production flow rate
control problem has also been used to analyze different settings in a supply chain
where optimal production decisions are investigated in an uncertain environment.
For example, the production flow rate control problems have been used to analyze
cases where an additional source of production capacity, such as a subcontractor, can
be utilized to meet uncertain demand (Tan 2002a; Tan and Gershwin 2004; Rivera-
Gómez et al. 2016). The production flow rate problems have also been formulated
for joint production and pricing decisions when uncertainty is due to machine failures
(Shi et al. 2014).

In this study, we consider a setting where the demand rate changes depending on
the market conditions, the sales price fluctuates due to competitive market conditions
and/or changes in the exchange rates and the production cost fluctuates due to a
variety of reasons including changes in raw material and component prices, changes
in exchange rates, changes in energy prices, among other factors and a producer
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controls the production rate in order to respond these fluctuations in the most effective
way. Using a continuous flow control model, we show that the optimal policy that
maximizes the expected profit is a state-dependent hedging policy and evaluate the
performance of the system under the henging policy.

We first analyze the performance of a special case where the production cost fluc-
tuates between a high and a low level and the demand rate is constant. Then, the
performance of the system when both the production cost and the demand rate fluctu-
ate between high and low levels is analyzed. According to the state-dependent hedging
policy, the producer produces only when the cost is low and the surplus is between the
two hedging levels. However when the backlog is below the lower hedging level, the
producer produces with the maximum capacity regardless of the cost level in order to
bring the surplus level above the lower hedging level.

Through analytical and numerical results, we show the effects of the production
capacity, average cost rate, and the cost variability on the optimal cost and on the opti-
mal hedging levels for both the alternating cost-constant demand and the alternating
cost-alternating demand models. For the alternating cost-alternating demand model,
the effects of the demand variability and the dependency between the demand and cost
have also been analyzed.

The main contribution of this study is extending the original flow rate control prob-
lem setting to study problems where uncertainty is due to sales price and production
cost togetherwith the demand uncertainty and showing the effects of production capac-
ity, production cost, demand variability, and the dependency between the demand and
cost on the production policy and on the optimal profit.

The organization of the remaining part of the paper is as follows. In Section 2, the
model assumptions are given and the optimal production policy that maximizes the
expected profit is shown to be a state-dependent hedging policy. The general method-
ology to analyze the performance of the system when the optimal production policy is
used is given in Section 3. In Section 4, the performance of a specific model where the
production cost changes between a high and a low level and the demand stays constant
is analyzed. In Section 5, the performance of a model where both the production cost
and also the demand change between high and low levels is analyzed. The effects
of the production cost, production capacity, and demand on the performance of the
system are analyzed numerically in Section 6. Finally, the conclusions are given in
Section 7.

2 Model

Amake-to-stock producer that produces a single product in a continuous material flow
setting to meet random demand is studied.

At time t , the amount of surplus that is the difference between the cumulative
production and cumulative demand is x(t). The finished goods inventory is x+(t) =
max{x(t), 0} and the backlog is x−(t) = max{−x(t), 0}. The inventory holding cost
is h and the backlog cost is b.

The demand rate at time t is δ(t) and the average demand is δ. The production cost
at time t is c(t) and the average cost is m. The sales price per amount of product sold
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at time t is p(t) that is assumed to be determined by the market conditions and the
firm is a price taker. The average sales price is p. Since all the demand is satisfied
immediately, if x(t) > 0, or after a delay, if x(t) ≤ 0, the revenue from sales is
obtained immediately at the current market price but the production cost is incurred
depending on the production policy. Therefore, the uncertainty in the sales price does
not affect the production control policy. When an average profit rate criterion is used,
the expected revenue per unit time will be E[p(t)δ(t)] for all production policies.
When p(t) and δ(t) are independent, E[p(t)δ(t)] = pδ. In general, p(t) and δ(t) can
be dependent, E[p(t)δ(t)] is denoted with pδ and the fluctuations in sales price are
not considered explicitly without any loss of generality.

The state of the system at time t is s(t) = (x(t), α(t)) where x(t) is the surplus
and α(t) = (c(t), δ(t)), α(t) ∈ S, is the state of the random environment that changes
its state according to a time-homogenous irreducible Markov chain on a finite set. We
assume that there are k different environmental states. In state i , the production cost is
c(t) = ci and the demand rate is δ(t) = δi , i = 1, . . . , k. The transition times between
the environmental states are exponential and given in the state-transition rate matrix
Λ = {λi j }.

The production rate of the manufacturing facility at time t is denoted by u(t),
0 ≤ u(t) ≤ μ where μ is the maximum production rate of the manufacturing facility.
We assume that the production capacity is sufficient to meet the demand in the long
run, μ > δ. Note that if μ ≤ δ, the manufacturing facility must run at the maximum
rate all the time.

2.1 Production Control Problem

The profit rate is the difference between the revenue generated through sales and the
production, inventory carrying and backlog costs, which are assumed to be linear:

g(x(t), α(t)) = p(t)δ(t) − c(t)u(t) − hx+(t) − bx−(t). (1)

The objective is finding a feedback rule that determines the rate at which the goods
are produced at the plant at time t , u(t) depending on the state of the system (x(t), α(t))
to maximize the expected profit rate.

The profit of policy u(t) in the interval [0, T ], Ju(x, α, T ), is defined as

Ju(x, α, T ) = E

[∫ T

0
g(x(t), α(t))dt

]

where the expectation is taken with respect to the stochastic process α(t) starting from
the initial state x(0) = x and α(0) = α0. Similarly, the long-run average profit of
policy u is defined as

J
u = lim sup

T→∞
1

T
Ju(x, α, T ).
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The production control problem is

J
∗ = max

u
J
u

(2)

subject to

dx

dt
= u(t) − δ(t) (3)

0 ≤ u(t) ≤ μ (4)

c(t) = ci when α(t) = i, i = 1, 2, . . . , k (5)

δ(t) = δi when α(t) = i, i = 1, 2, . . . , k (6)

Markov dynamics for α(t) with rate matrix Λ = {λi j }. (7)

2.2 Characterization of the Policy

In the previous studies where the uncertainty is due to production capacity and/or
demand, the main objective of the production strategy is determining how to build an
inventory to protect the system for the periods when the production capacity is not
sufficient to satisfy the demand. However, in the problem considered in this study,
the uncertainty is due to the changes in sales price, production cost, and demand.
Accordingly, the objective is determining the right strategy of building an inventory
to benefit from lower production costs while meeting supply and demand in the most
effective way. When a producer has sufficient capacity to meet the demand and also
build an inventory, the producer can increase its profits by producing in advance when
the production cost is low and balancing the production cost benefit with the costs of
carrying inventory and backlog.

The problem considered in this study is similar to the flow rate control problem stud-
ied in the literature. In Equation (1), the effect of random production cost is captured
in the term c(t)u(t) where c(t) follows a Markov process and the capacity of u(t) is
constant. In the models where the uncertainty is due to random changes in production
capacity due to machine failures, c(t) is constant but the capacity of u(t) is random.

The problem of minimizing the long-run average cost of holding inventory and/or
purchasing extra capacity for a reliable single facility producing a single part-type
to meet fluctuating demand has been analyzed in the literature (Hu et al. 2004). Hu
et al. (2004) study a problem where a Markov chain modulates the capacity bound,
the demand rate, and the production cost. By using the general results for optimal
production planning in a stochastic manufacturing system with long-run average cost
(Sethi et al. 1998), they show that the optimal policy is a hedging type policy where
there is a hedging level for each state. In a discrete state space and continuous time
model, Karabağ and Tan (2018) analyze the purchasing, production, and sales poli-
cies for a continuous-review discrete material flow production/inventory system with
fluctuating and correlated purchasing and sales prices, exponentially distributed raw
material and demand inter-arrival times, and processing time and prove that the opti-
mal purchasing, production, and sales strategies are state-dependent threshold policies
for the infinite-horizon Markov decision process under the average reward criterion.
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The structure of the optimal control problem (2)-(7) is similar to the model for
a single reliable producer meeting fluctuating demand by controlling its production
rate and purchasing extra capacity when there are k demand states where the demand
rate is δi is state i , the rate matrix for transitions among demand states is Λ, and
the cost of production in state i is ci (Hu et al. 2004). The main difference is that
the production capacity of the system analyzed in this study is not always sufficient
to meet the demand rate, as opposed to the case with the option of purchasing extra
capacity to meet the demand when it is necessary. The possibility of not meeting the
demand in certain states was addressed by Sethi et al. (1998).

As a result, the proofs of the convexity of the differential cost function, uniqueness
of the optimal cost, and the optimality of the hedging policy given in the literature,
(Sethi et al. 1998) and (Hu et al. 2004), allow us to state the the optimal control policy
for our model as a state-dependent hedging policy.

The optimal policy states that there is a hedging level for each state i , denoted
with Zi . When the surplus level is above the hedging level for the current state, the
production stops. When it is below this level, the production facility operates with the
maximum rate μ. In order to avoid switching between 0 and μ back and forth just
above and just below Zi , it is reasonable to set u = δi when x = Zi (Gershwin 1994).

As a result, the optimal production control policy for the production control problem
with price, cost, and demand uncertainty is described as

u∗(x, i) =
⎧⎨
⎩
0, x > Zi

δi , x = Zi

μ, x < Zi

, i = 1, 2, . . . , k. (8)

3 Analysis of the General Model

Let the hedging levels ordered from the smallest one, Z(1) to the largest one, Z(k):
Z(1) ≤ Z(2) ≤ · · · ≤ Z(k). The states in S are then indexed according to this order,
i.e., Z1 ≤ Z2 ≤ · · · ≤ Zk .

The internal equations are analyzed in k+1 regions defined by the hedging levels
Z j , j ∈ {1, . . . , k}. The region where x > Zk will be transient since the surplus level
will decrease to Zk in all states. Therefore there will be k − 1 internal regions to be
analyzed in the steady-state.

The time-dependent probability density when the surplus is in region j where
Z j−1 < x < Z j is defined as

f j (x, i, t) = ∂

∂x
prob[x(t) ≤ x, α(t) = i], Z j−1 < x < Z j , j = 1, . . . , k − 1.

It is assumed that the process is ergodic and the steady-state probabilities exist. The
steady-state density functions are defined as

f j (x, i) = lim
t→∞ f j (x, i, t), j = 1, . . . , k − 1. (9)
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The steady-state distribution is determined by analyzing the continuous time, con-
tinuous and discrete state space Markov process. First, the differential equations that
describe the dynamics of the systemwhen the buffer is in an interior region are derived
and then the probability masses at the hedging levels are determined.

Relating the probability density of the state at time t + δt to the probability density
of the state at time t yields the following equations for all i ∈ S and j = 1, . . . , k−1:

f j (x, i, t + δt) = f j (x − (u(x, i) − δi )δt, i, t)

⎛
⎜⎜⎜⎝1 −

k∑
i ′ = 1
i ′ �= i

λi i ′δt

⎞
⎟⎟⎟⎠

+
k∑

i ′ = 1
i ′ �= i

f j (x − (u(i ′, x) − δi ′)δt, i
′, t)λi ′iδt . (10)

The above equation can also be written in differential form by setting δt → 0 as

∂ f j (x, i, t)

∂t
+ (u(x, i) − δi )

∂ f j (x, i, t)

∂x

= − f j (x, i, t)

⎛
⎜⎜⎜⎝

k∑
i ′ = 1
i ′ �= i

λi i ′

⎞
⎟⎟⎟⎠+

k∑
i ′ = 1
i ′ �= i

f j (x, i
′, t)λi ′i . (11)

In the steady state, the above equation yields k(k − 1) equations given below:

(u(x, i) − δi )
∂ f j (x, i)

∂x
= − f j (x, i)

⎛
⎜⎜⎜⎝

k∑
i ′ = 1
i ′ �= i

λi i ′

⎞
⎟⎟⎟⎠

+
k∑

i ′ = 1
i ′ �= i

f j (x, i
′)λi ′i , i ∈ S, j = 1, . . . , k − 1.

(12)

When the producer uses the optimal production policy, the production rate u(x, i)
is set to either 0 if x > Zi , to δi if x = Zi , or to μ if x < Zi as given in Equation (8).

Accordingly, the coefficient of
∂ f j (x,i)

∂x in Equation (12) will be −δi if x > Zi , and 0
if x = Zi , and μ − δi if x < Zi .

Let the steady-state probabilities in Region j be arranged in column vectors as

f j (x) = { f j (x, i)}, for i ∈ S, Z j−1 < x < Z j , j = 1, . . . , k − 1 (13)
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where Z0 is set to −∞.
Then the internal equations given in Equation (12) can be written in a matrix form

for each region as
∂f j (x)

∂x
= Ω j f j , j = 1, . . . , k − 1. (14)

The solution of this first-order matrix differential equation is

f j = eΩ j xw j , j = 1, . . . , k − 1 (15)

where eΩ j x is the matrix exponential determined by matrix Λ j and w j is a column
vector of length k. Since the length of w j is k, k(k − 1) equations are needed to
determine the weights uniquely.

The necessary boundary equations are derived with a level crossing analysis (Tan
andGershwin 2009). Let L(x, i, T ) denote the number of level crossings in state (x, i).
The expected number of level crossings per unit time in the long run is determined by
the densities and the flow rates as

lim
T→∞

L(x, i, j, T )

T
= |u(x, i) − δi | f (x, i). (16)

In state i and region j , if u(x, i) > δi , (u(x, i) − δi ) f j (x, i) is the expected
number of upward crossings at buffer level x per unit time and if u(x, i) < δi , (δi −
u(x, i)) f j (x, i) is the expected number of downward crossings per unit time.

The probability of state (Z j , i) at time t is denoted by prob(Z j , i, t) and the
corresponding steady-state probability is denoted by

prob(Z j , i) = lim
t→∞prob(Z j , i, t). (17)

The probabilitymasses at the hedging levels are determined by the probability densities
in the neighbor regions and the expected time spent at the hedging level each time the
surplus reaches that level.

4 Analysis of the Alternating Cost and Constant DemandModel

In this part, a special case of the model described in Section 2 is analyzed when the
production cost alternates between a high and a low level and the demand is constant
and equal to δ < μ.

4.1 Model Description

In this case, the state of the environment is determined by the state of the cost at time
t which is either high (H) or low (L), i.e., S = {H,L}. When the cost is high, the cost
rate is c(t) = cH and when the cost is low, the cost rate is c(t) = cL, cH > cL.

Following the optimal policy given for the general model in Equation (8), the
optimal policy for the alternating cost model is described by two hedging levels ZH
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Fig. 1 Sample Path of the System with the Double Hedging Policy (μ = 1, δ = 0.8, cH = 1.5, cL = 0.5,
ZL = 3, ZH = −2, λHL = 0.08, λLH = 0.02

and ZL for the cost states H(igh) and L(ow) respectively. Figure 1 depicts the sample
path of the system when the production rate is set according to the optimal policy.

The times to switch from a high cost state to a low cost state and from a low cost
state to a high cost state are exponentially distributed random variables with rates λHL
and λLH.

With the high and low levels of cost and the switching rates, the average cost rate,
m is

m = cL + (cH − cL)
λLH

λLH + λHL
. (18)

The asymptotic variance of the cost per time Vc, (Tan 1997), is given as:

Vc = lim
t→∞

Var [∫ t0 c(τ )dτ ]
t

= 2(cH − cL)2
λLHλHL

(λLH + λHL)3
. (19)

As a measure of cost variability, the squared coefficient of variation of cost cv2 is
used. It is defined as

cv2m = lim
t→∞

Var [∫ t0 c(τ )dτ ]t
E2[∫ t0 c(τ )dτ ] = Vc

m2 . (20)

The alternating renewal process for the cost with exponential switching times
describes a stationary cost process with temporary mean shift due to market condi-
tions. Although there are two discrete levels in this model, the accumulated production
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cost in a given time interval is asymptotically normal (Tan 1997). Accordingly, the
first and the second moments of the cost can be used to analyze the effects of cost
variability on the performance of the system.

4.2 Hedging Levels for the Optimal Policy

In the long run, the system operates with two hedging levels ZH ≤ 0 ≤ ZL. Since
cH > cL, ZL must greater than or equal to ZH. Otherwise, when ZL < ZH, the
manufacturer produces when the production cost is high. This in turn decreases the
profit. When ZL ≥ ZH and the optimal policy is followed, x stays between the lower
hedging level ZH and the upper hedging level ZL. Since ZH ≤ x ≤ ZL, the profit
cannot be optimal if ZL < 0. Because when ZL < 0, it is possible to increase ZL to 0
and decrease the average backlog. Similarly, the profit cannot be optimal if ZH > 0.
Because when ZH > 0, it is possible to decrease ZH to 0 and lower the average
inventory.

The process when x < ZH and x > ZL will be transient and the buffer level stays
between these two hedging levels: ZH ≤ x ≤ ZL.

4.3 Analysis of theModel

The analysis of the model when ZL = ZH = 0 is straight forward. When ZL = 0,
the producer cannot build an inventory by producing in advance during the periods
where the production cost is low. If there is no benefit of setting ZH < 0, when
ZL = ZH = 0, the producer produces all the time regardless of the instantaneous
level of the production cost; the average inventory is 0, and the average backlog is 0.
As a result, for the case ZL = ZH = 0, the average profit per unit time in Equation
(2) is

J = (p − m)δ. (21)

When ZH �= ZL and ZH ≤ 0 ≤ ZL, the probability distribution of x(t) is necessary
to determine the average profit rate. The probability distribution is given in the next
section.

4.3.1 Probability distribution

In the alternating cost and constant demandmodel, there are two states and twohedging
levels. Since μ > δ, the dynamics in the regions where x > ZL and x < ZH will be
transient. As a result, there will be one region, ZH < x < ZL to be analyzed.

When the cost is low (state L), the producer will produce with the maximum rate
and the surplus will increase with rate μ − δ. When the cost is high (state H), the
producer will stop production and the surplus will decrease with rate δ. Accordingly,
the matrix Ω1 that defines the differential equations for the probability densities

f1(x) = [ f1(x,H), f1(x,L)]T ,
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for the interior region is given as

Ω1 =
[

λHL
δ

−λLH
δ

λHL
μ−δ

− λLH
μ−δ

]
. (22)

Once the steady-state densities are determined, the probabilitymasses at the hedging
levels ZH and ZL can be determined. Since the surplus level increases when the cost
is low and the producer produces with the maximum rate, ZL can be reached only
in state L and the process stays there until the cost becomes high and the producer
stops producing. Therefore, the steady-state probability that the process stays at ZL,
denoted with PZL , is equal to the average number of times the process reaches ZL in
state L times the average time it stays there. By using Equation (16), we can write

PZL = lim
t→∞prob[x(t) = ZL] = μ − δ

λLH
f1(ZL,L). (23)

Similarly, the surplus decreases and reaches the lower hedging level ZH only when
the cost is high and the producer stops producing. Accordingly, the steady-state prob-
ability that the surplus is equal to ZH, PZH can be written as

PZH = lim
t→∞prob[x(t) = ZH] = δ

λHL
f1(ZH,H). (24)

Two boundary conditions are necessary to determine the weight vector w1 that
yields the solution for the steady-state density functions given in Equation (15). In the
long run, the number of upward crossings at a surplus level x must be equal to the
number of downward crossings. By using Equation (16) that gives the number of level
crossings based on the steady-state probability density functions, the first boundary
equation is given as

δ f1(x,H) = (μ − δ) f1(x,L). (25)

The second boundary condition is the normalization:

∫ ZH

ZH

( f1(x,H) + f1(x,L)) dx + PZH + PZL = 1. (26)

The solution for the probability density functions is given as

f1(x,H) =
{
keηx η �= 0
k η = 0

, ZH < x < ZL, (27)

f1(x,L) =
⎧⎨
⎩
k δ

μ−δ
eηx η �= 0

k δ

μ−δ
η = 0

, ZH < x < ZL (28)

where

η = λHL

δ
− λLH

μ − δ
(29)
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and k is given as

k =

⎧⎪⎨
⎪⎩
((

δ
λHL

− μ

η(μ−δ)

)
eηZH +

(
δ

λLH
+ μ

η(μ−δ)

)
eηZL

)−1
, η �= 0(

δ
λLH

+ δ
λHL

− μ

μ−δ
(ZH − ZL)

)−1
, η = 0

.

4.3.2 Evaluation of the Objective Function

In order to determine the optimal values of the hedging levels, the average profit rate
is determined by using the probability distribution derived in the preceding section.

The probabilities that the process is in the interior region in the long run when the
cost is high, PH, and when it is low, PL, are defined as

PH = lim
t→∞prob[ZH < x(t) < ZL, c(t) = H] =

∫ ZL

ZH

f1(x,H)dx, (30)

PL = lim
t→∞prob[ZH < x(t) < ZL, c(t) = L] =

∫ ZL

ZH

f1(x,L)dx . (31)

The average profit rate excluding the inventory and backlog costs, Π is evaluated
from Equation (1) as

Π = pδ −
(
μPL + δPZL

)
cL − δPZHcH. (32)

In the above equation, the first term is the revenue obtained from sales. Since backlog
is allowed, all the demand is satisfied either instantly from the available inventory or
after a delay if the inventory is not available. As a result, in the long run, the revenue
rate generated from demand is pδ. The second term is the cost rate due to production
when the cost is low. In this case, the producer produces with the maximum rate in the
interior region and with the demand rate at the upper hedging level. Finally, the last
term is the cost rate due to production when the cost is high and the backlog is at the
lower hedging level.

Since the production rate is equal to the demand rate in the long term,

μPL + δPZL + δPZH = δ.

With this equality, Π can be written as

Π = δ (p − c) (33)

where the average production cost incurred under the policy c is

c = (1 − PZH)cL + PZHcH. (34)

Note that when ZH is set to −∞, PZH approaches to 0, and the average production
cost incurred turns out to be cL since the producer produces only when the cost is
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low. Since producing only when the production cost is low causes a high backlog cost,
the optimal policy determines the optimal hedging levels based on the sales price,
production, holding, and backlog costs so that the average production cost is balanced
with the other costs and the revenue.

The average inventory level E[x+] and the average backlog level E[x−] are given
as

E[x+] =
∫ ZL

0
x f1(x,H) + f1(x,L))dx + ZLP

ZL , (35)

E[x−] = −
∫ 0

ZH

x f1(x,H) + f1(x,L))dx − ZHP
ZH . (36)

Finally, the average profit per unit time defined in Equation (2) is

J = Π − hE[x+] − bE[x−]. (37)

Since the probability distribution of x is given in Equations (27)-(31), a closed-
form expression for J is available. The optimal values of ZL and ZH are determined
by solving the following maximization problem:

max
ZL,ZH

J

subject to

ZH ≤ 0 ≤ ZL. (38)

4.4 Analytical Solution of a Special Case

In order to examine the effects of variability, the average cost rate and the asymptotic
squared coefficient of variation of the cost, m and cv2m given in Equations (18) and
(20) respectively, are used to set λLH and λHL. In order to simplify the discussion, the
number of system parameters is decreased by defining new units for normalization
without loss of generalization. The average sales price p is set to 1 by normalizing
the unit of money. The demand rate δ is set to 1 by normalizing the unit for volume of
material. For the given average cost per timem, expressed with the new unit of money,
and the given coefficient of variation of the cost, cv2, cH is set to 1 and cL is set to 0
by normalizing the unit of time.

In this setting, the switching rates are determined by the average and coefficient of
variation of cost through Equations (18), (19), and (20) as:

λLH = 2(1 − m)

cv2
,

λHL = 2(1 − m)2

cv2m
.

First, the analysis of a special case where the lower hedging level, ZH, is 0 and
η = 0 is given. This special case yields a compact closed-form expression for the
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hedging levels in terms of the system parameters. This expression is then used to gain
insights about the overall effects of system parameters.

When the backlog cost is high compared to the sales price, production, and inventory
holding costs or when the firm wants to meet all the demand without a backlog, the
lower hedging level is set as ZH = 0. Since the producer produces with the demand
rate when ZH = 0 and the cost is high, all the demand is satisfied without a backlog
and prob[x(t) < 0] = 0. Furthermore, η defined in Equation (29) is assumed to be 0.
Under this setting, μ = 1

1−m and J can be written in closed-form as a function of ZL
as

J = (1 − m)
−h(m − 1)Z2

L + (
2(1 − m) − cv2hm

)
ZL − cv2m

2(1 − m)2ZL + mcv2
. (39)

Since ZL ≥ 0, the optimal hedging level is derived in terms of the systemparameters
as

Z∗
L = max

{
0,mcv

√
(4(m − 1)2 + cv2h(2m − 1)) − cv

√
h

2
√
h(m − 1)2

}
. (40)

By using Equations (39) and (40), we can show that the optimal upper hedging
level is positive if h <

2(1−m)

cv2
and 0 if h ≥ 2(1−m)

cv2
. In words, in order to benefit from

producing in advance and holding inventory when the cost is low, the holding cost
should be lower than a threshold that depends on the average cost and the squared
coefficient of the cost. Furthermore, when ZL > 0, as the holding cost increases
the upper hedging level decreases. For this case, as the cost variability increases, the
behavior of the upper hedging level depends on the other parameters.

The performance of the alternating cost-constant demand model is analyzed for a
range of system parameters in Section 6.

5 Analysis of the Double-Hedging Policy for the Alternating Cost and
Alternating DemandModel

We now consider the case where both the production cost and also the demand fluc-
tuates between two levels. We will analyze the case where the production capacity is
sufficient to meet the average demand but not sufficient to meet the demand when it
is high. Note that the dynamics of the system when μ is greater than the high demand
rate is similar to the model analyzed in Section 4.

The state of the cost at time t is either high (H) or low (L) and the state of the
demand at time t is also either high (H) or low (L). When the cost is high, the cost rate
is c(t) = cH and when the cost is low, the cost rate is c(t) = cL, cH > cL.

When the demand is high, the demand rate is δ(t) = δH > μ and when the demand
is low, the demand rate is δL < μ. The average demand rate δ and the coefficient
of variation of demand cv2d are determined based on δL, δH, and the transition rates
between the low and high demand rates by using Equation (18) and (20) after substi-
tuting the demand parameters for the corresponding cost parameters.

In this case, there are four states in the environment S = {(c(t), d(t))} ∈
{LH,LL,HL,HH}. The state-transition rates are given in matrix Λ = {λi j } where
j ∈ {1, 2, 3, 4} according to the ordering of states in S. This model allows captur-
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Fig. 2 Sample Path of the System with the Double Hedging Policy (μ = 1, δH = 1.2, δL = 0.4, cH = 1.5,
cL = 0.5, ZL = 3, ZH = −2, λHL = 0.08, λLH = 0.02, λ′

HL = 0.1, λ′
LH = 0.1)

ing possible dependency between the demand rates and production costs in different
states.

Since there are four states in the environment, the optimal policy will use four
hedging levels. Based on the dynamics of the system, the hedging levels will be
ordered as ZLH > ZLL > 0 > ZHL > ZHH. Since μ > δL, the region above ZLL will
be transient. In the steady-state, the optimal policy will operate with three hedging
levels and there will be probability masses at only two of the hedging levels ZLL and
ZHL.

In order to compare the performance of the alternating cost-alternating demand
modelwith the alternating cost-constant demandmodel, the performance of the system
is analyzed under the double-hedging policy that is based on the cost state: an upper
hedging level at ZL = ZLL and a lower level at ZH = ZHH = ZLH.

Since μ < δH, in the region ZHL > x > ZHH, not producing when the demand is
high decreases the surplus with rate δH and producing decreases the surplus with rate
δH − μ. Since the surplus decreases in both cases, setting the hedging levels ZHH and
ZLH to the same level will have limited effect on the performance of the system.

Since the demandfluctuates, the dynamics in the interior regions need to be analyzed
in two regions ZL > x > ZH and ZH > x . Figure 2 depicts the sample path of the
system when the double hedging policy is used for the alternating cost-alternating
demand case.
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5.1 The Steady-State Probability Distribution

Since there are four states in the environment state space and two regions, there will be
four differential equation for each region resulting in a total eight differential equations
to be solved.

In the first region, ZL > x > ZH, the surplus will be increasing with rate μ− δL in
the state LL where the cost is low and the demand is low and the producer produces
with the full capacity. In all other states, the surplus will be decreasing with rates
δH − μ, δL, and δH for states LH, HL, and HH respectively.

In the second region, ZH > x , the producerwill producewith themaximumcapacity
in all states. Therefore the surplus will be increasing with rate (μ − δL) in the states
LL and HL where the demand is low. When the demand is high, the surplus will be
decreasing with rate (δH − μ), in states LH, HH respectively.

Then thematricesΩ1 andΩ2 that define the differential equations for the probability
densities

f j (x) = [ f j (x,LH), f j (x,LL), f j (x,HL), f j (x,HH)]T , j ∈ {1, 2}

for the first and the second region are given as

Ω1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ12+λ14
μ−δH

λ21
μ−δH

0 λ41
μ−δH

λ12
μ−δL

−λ21+λ23
μ−δL

λ32
μ−δL

0

0 −λ23
δL

λ32+λ34
δL

−λ43
δL

−λ14
δH

0 −λ34
δH

λ41+λ43
δH

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)

and

Ω2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ12+λ14
μ−δH

λ21
μ−δH

0 λ41
μ−δH

λ12
μ−δL

−λ21+λ23
μ−δL

λ32
μ−δL

0

0 λ23
μ−δL

−λ32+λ34
μ−δL

λ43
μ−δL

λ14
μ−δH

0 λ34
μ−δH

−λ41+λ43
μ−δH

⎤
⎥⎥⎥⎥⎥⎥⎦

. (42)

5.2 Boundary Conditions

Eight boundary conditions are required to determine the steady-state probability den-
sity functions. The first two boundary conditions are determined by the equivalence
of the upward and downward level crossings in each region. Since at any given buffer
level, the expected number of upward and downward crossings are equal in the long
run, we can write

(μ − δL) f1(x,LL) = (δH − μ) f1(x,LH) + δL f1(x,HL) + δH f1(x,HH) (43)
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and

(μ − δL) ( f2(x,LL) + f2(x,HL)) = (δH − μ) ( f2(x,LH) + f2(x,HH)) . (44)

In the first region, since the surplus only increases in state LL, it reaches the upper
hedging level ZL in this state and leaves immediately when the cost switches to the
high state that leads to stopping production or when the demand switches to the high
statewhere although the producer produceswith the full capacity, the surplus decreases
since it is not sufficient to meet the high demand.

Accordingly, the ratio of the times the surplus leaves the upper boundary in state HL
or LH is equal to the ratio of the downward level crossings in these states. Therefore,

δL f1(ZL,HL)

δL f1(ZL,HL) + (δH − μ) f1(ZL,LH)
= λ23

λ21 + λ23
. (45)

In addition, the number of times the surplus reaches the upper hedging level in state
LL must be equal to the number of times the surplus leaves the upper hedging level is
states HL and LH. So,

(μ − δL) f1(ZL,LL) = δL f1(ZL,HL) + (δH − μ) f1(ZL,LH). (46)

In other words, it is not possible for the process to leave the upper hedging level in
state HH. Therefore, the number of level crossings at ZL in state HH is 0:

f1(ZL,HH) = 0. (47)

The surplus reaches the lower hedging level ZH either from the first region in state
HL, where the surplus decreases with rate δL since the producer does not produce
when the cost is high, or from the second region in state HL, where the producer
produces with the maximum capacity although the cost is high to increase the surplus
with rate μ − δL. At the lower hedging level, the producer produces with the rate δL
that keeps the surplus at this level. In this state, if the cost switches to the low state,
the producer starts producing with the full capacity and the surplus increases into the
first region. On the other hand, again in the same state HL, if the demand switches to
the high state, although the producer switches to full capacity production, the surplus
decreases with rate δH − μ since the production capacity is not sufficient to meet the
demand.

The next boundary equation is related to the level crossings at the lower hedging
level in state LH. When the cost is low and the demand is high, the producer produces
with the maximum capacity in both regions but the surplus decreases. As a result, the
number of crossing from region 1 at ZL in state LH must be equal to the number of
level crossing to region 2 in the same state:

f1(ZH,LH) = f2(ZH,LH) (48)
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The probability masses at the upper and lower hedging levels are calculated from
the average number of times per unit time the surplus reaches these levels and the
expected time the surplus stays there:

PZL = μ − δL

λ21 + λ23
f1(ZL,LL), (49)

PZH = δL f1(ZH,HL) + (μ − δL) f2(ZH,HL)

λ32 + λ34
. (50)

Since backlog is allowed, in the long run, the production rate must be equal to
the demand rate. This equality given in Equation (54) is used as the next boundary
condition. Furthermore, since there is sufficient capacity to meet the demand, if there
is a negative eigenvalue of Ω2 that describes the dynamics in the region x < ZH, its
weight should be zero.

The last equation is the normalization equation. The sum of all the probabilities
must be equal to 1.

ZL∫
ZH

u f1(x)dx +
ZH∫

−∞
u f2(x)dx + PZL + PZLH = 1 (51)

where u is the row vector of ones.
Solving the above equations forw1 andw2 given in Equation (15) yields the solution

for the density functions. Once the density functions are obtained, the probability
masses at ZL and ZH are determined by using Equations (49) and (50).

5.3 PerformanceMeasures

In order to determine the profit rate, the average production cost incurred through
implementing the optimal production policy needs to be determined. According to
the production policy, when the production cost is low, the producer produces with
the full capacity until the upper hedging level is reached. At the upper hedging level,
it produces with the low demand rate in order to keep the surplus level at this level.
Accordingly, the production rate when the cost is low, denoted with ρL is

ρL = δLP
ZL + μ

⎛
⎜⎝

ZL∫
ZH

( f1(x,LL) + f1(x,LH))dx

+
ZH∫

−∞
( f2(x,LL) + f2(x,LH))dx

⎞
⎠ . (52)

When the production cost is high, the producer only produces when the backlog
reaches the lower hedging level. When the surplus level is lower than ZH, it produces
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with the maximum rate. When the surplus increases to ZH with the maximum rate,
the producer decreases its production rate to the low demand rate in order to keep the
backlog at that level. Accordingly, the production rate when the cost is high ρH is

ρH = δLP
ZH + μ

⎛
⎝

ZH∫
−∞

( f2(x,HL) + f2(x,HH))dx

⎞
⎠ . (53)

Since the producer has sufficient capacity to meet the demand in the long run,
μ > δ, all the demand is satisfied either immediately from the inventory or later after
being backlogged. Therefore, the production rate when the cost is high and low must
be equal to the demand rate:

δ = ρH + ρL (54)

Accordingly, the average production cost, c incurred through using the optimal pro-
duction policy is

c = cL
ρL

δ
+ cH

ρH

δ
(55)

The average profit rate excluding the inventory and backlog costs, Π is evaluated
from Equation (1) as

Π = δ p − δc (56)

The average inventory level E[x+] and the average backlog level E[x−] are given
as

E[x+] =
ZL∫
0

xu · f1(x)dx + ZLP
ZL , (57)

E[x−] = −
∫ 0

ZH

xu · f1(x)dx −
∫ ZH

−∞
xu · f2(x)dx − ZH PZH . (58)

Finally, the average profit per unit time defined in Equation (2) is

J = Π − hE[x+] − bE[x−]. (59)

The optimal hedging levels are determined by solving the optimization problem
given in Equation (38).

6 Numerical Results

In this section, we analyze the effects of system parameters on the performance of the
system.We focus on the effects of average production cost, production cost variability
and production capacity for the alternating production cost-constant demand and for
the alternating production cost-alternating demand models. The effects of the demand
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variability and the dependence between the demand and production cost are analyzed
for the model with alternating cost and alternating demand.

The optimal profit and the optimal hedging levels are determined for different values
of the system parameters being analyzed. In order to capture the effects of a wider
range of all the system parameters, the holding cost and backlog parameters are varied
in different cases.

6.1 Effect of the Production Capacity

The level of production capacity with respect to the demand rate determines how
much a producer can benefit from the optimal production policy. When the production
capacity is high with respect to the demand, the producer can produce more when the
cost is low and keep the inventory if this is more profitable. However, if the production
capacity is low compared to the demand, the producer cannot produce a sufficient
level of inventory when the production cost is low. If the demand is also uncertain,
the production capacity is used to respond to the changes in the demand as well as to
produce in advance to benefit from the low cost periods.

Figure 3 depicts the effect of the production capacity on the optimal profit and on
the upper and lower hedging levels for the alternating cost-constant demand model.
When the maximum production rate is equal to the demand rate of δ = 1, the producer
does not have the capacity to benefit from producing in advance and runs all the time.
Accordingly, the upper and the lower hedging levels are set to 0. As a result, the
producer produces all the time and makes a profit of J = (p − m)δ = 0.2. As
the maximum production rate increases, the producer can produce more in advance
when the production cost is low and build an inventory. In order to benefit from this
flexibility, the upper and lower hedging levels are set accordingly. Consequently, the
optimal profit increases with the maximum production rate.

Figure 4 depicts the effect of production capacity on the optimal profit (J
v
) and on

the upper and lower hedging levels (Zv
U and Zv

D) for the alternating cost-alternating
demand model. The figure also gives the profit (J

c
) and the hedging levels (Zc

U and
Zc
D) resulting from the alternating cost-constant demand model that has the same

average demand rate.When the demand alternates between the high and low levels, the
production policy allows using the production capacity to build more inventory when
the demand is low compared to using the production capacity to meet the constant
demand that has the same average demand rate. This alternative is more profitable
when the inventory holding cost is lower compared to the production cost. In order
to benefit from this opportunity, the lower hedging level is set to a lower level and
the production is used more when the cost is low. Accordingly, the production policy
yields a higher average profit for the case with the alternating demand.

6.2 Effect of the Production, Holding, and Backlog Cost

We now focus on the effect of the production cost. Figure 5 shows the effect of average
cost on the optimal profit and on the upper and lower hedging levels, ZU = ZL and
ZD = ZH, for the alternating production cost-constant demand model. Since the
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Fig. 4 Optimal Profit and Upper and Lower Hedging Levels vs. Production Capacity for the Alternating
Cost-Alternating Demand and Alternating Cost-Constant Demand Models (δ = 1, cv2d = 0.5, δH = 1.5,

δL = 0.5, p = 1, m = 0.8, cH = 1, cL = 0, cv2m = 2, h = 0.05, b = 0.01)

average sales price is set at 1, as the average cost increases, the profit from sales
decreases. When the average cost is low, the profit from sales is high. In this case, the
producer does not produce in advance and produces without holding inventory. When
the average production cost increases above a certain level, the production policy is
used to balance the inventory and production costs. When the average production cost
increases, the production policy sets the lower hedging level at a higher level to limit
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the production when the production cost is high. In order to balance the supply and
demand, it increases the upper hedging level to keepmore inventory for the production
when the cost is low.

For the same alternating production cost-constant demand model, Figure 6 shows
the effect of the backlog cost on the optimal profit and on the upper and lower hedging
levels, ZL and ZH while the holding cost is kept constant. When the backlog cost is
much smaller than the holding cost, ZL is set to a low level and thus it does not affect
the production decisions. However, as b increases, the lower hedging level approaches
0 level where no backlog is allowed. The average profit decreases with the increasing
backlog cost and reaches a limit since no backlog is allowed when the backlog cost is
sufficiently large.

When the demand also alternates between high and low demand levels, the produc-
tion capacity is used to balance the inventory and backlog costs and to benefit from
the low production cost simultaneously by determining the hedging levels optimally.
Figure 7 depicts the effect of average cost on the optimal profit and on the upper and
lower hedging levels for the alternating production cost-alternating demandmodel. As
opposed to the case shown in Figure 5 where there is sufficient capacity (μ = 2.8 for
δ = 1), in the case depicted in Figure 7, the production capacity is limited (μ = 1.3
for δ = 0.7). In this case, the upper hedging level increases while the lower hedging
level decreases with the increasing average cost. However, the change is limited since
the production policy is used mainly to respond to the demand fluctuations.

In addition to the average production cost, the variability of the production cost
also affects the performance of the system. Namely, Equation (20) shows that as the
squared coefficient of variation of the demand increases the average time spent in
low and high cost states also increases. The production policy sets the hedging levels
accordingly.
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Figure 8 shows the effects of the squared coefficient of variation of the produc-
tion cost on the optimal profit and on the optimal hedging levels for the alternating
cost-constant demand model. Figure 8 shows that the optimal profit decreases with the
increasing cost variability. In this particular case, the producer would make a profit of
(p−m)δ = 0.2 (as given in Equation (21)) by producing at the demand rate and incur-
ring the instantaneous production cost. Therefore, the producer makes a significantly
higher profit by adjusting its flow rate depending on the production cost. However,
its profit decreases with the increasing cost variability. As the figure shows, the lower

123



1080 B. Tan

0 0.5 1 1.5 2
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 0.5 1 1.5 2
-4

-2

0

2

4

6

8

10

Fig. 8 Optimal Profit and Upper and Lower Hedging Levels vs. Cost Variability for the Alternating Cost
and Constant Demand Model (μ = 2, δ = 1, p = 1, m = 0.6, cH = 1, cL = 0, h = 0.03, b = 0.03)

hedging level decreases and the upper hedging level increases with the increasing cost
variability. This means that as the cost variability increases, the producer produces
more when the cost is low and keeps in the inventory according to the optimal produc-
tion policy. When the cost is high, it stops production and allows the arriving demand
to be backlogged. The increasing backlog cost is negated with the production cost
benefit.

When the demand also alternates between high and the low levels, the effect of
the production cost variability is similar. Figure 9 depicts the effect of cost variability
on the optimal profit and on the upper and lower hedging levels and on the optimal
profit for the alternating demand case respectively. As the production cost coefficient
of variation increases, the upper hedging level increases and the lower hedging level
decreases to produce more when the cost is low and keep the inventory for the periods
where the cost is high.

6.3 Effect of the DemandVariability

As the demand squared coefficient of variation (cv2d ) increases, the average time
spent in high and low demand states increases for the same average demand rate.
Accordingly, the available production capacity can be used more effectively to build
an inventory when the demand is low. Similarly, the need to produce when the demand
is high also decreases.

Figure 10 shows the effect of demand variability on the optimal profit and on the
upper and lower hedging levels for the alternating demand case respectively. As the
demand variability increases, the lower hedging level decreases since the producer can
build more inventory when the demand is low. Accordingly, the optimal production
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and Alternating Demand Model (μ = 1.3, δ = 0.7, cv2d = 2, δH = 1.1, δL = 0.3, p = 1, m = 0.4,
cH = 1, cL = 0, h = 0.01, b = 0.09)
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Fig. 10 Optimal Profit and Upper and Lower Hedging Levels vs. Demand Variability for the Alternating
Cost and Alternating Demand Model (μ = 1.3, δ = 0.8, δH = 1.2, δL = 0.4, p = 1, m = 0.8, cH = 1,
cL = 0, cv2m = 2, h = 0.01, b = 0.09)

policy is more effective and the the average profit rate increases with the increasing
demand variability.

6.4 Effect of the Dependency between Demand and Cost

In our model, the random environment tracks the state changes in demand and produc-
tion cost jointly. This model can be used to analyze the effects of possible dependency
between the demand and cost states. Namely, if the time period where the production
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cost is low and also the demand rate is low is longer, the producer can benefit from
the optimal policy more by building an inventory during these periods. However, if
the time period where the demand is high and the production cost is low is longer,
the producer cannot build an inventory since its capacity is not sufficient to meet the
demand.

In order to analyze the possible correlation between demand and cost, we study the
effect of the fraction of the time spent in the low demand-low cost state (state LL) on
the optimal cost when the double hedging policy is used. As the fraction of the time
in the low demand-low cost state increases, the optimal production policy can benefit
from producing in advance and building an inventory that will be used for the periods
where the production cost is high.

We design an experiment where the average demand and the average cost stay the
same but the fraction of time spent in state LL, denoted with πLL, changes. Once πLL
is given, the fraction of times in other states can be determined accordingly in a way
to keep the average demand δ and average cost m the same:

πLH = 1 − m − πLL (60)

πHL = 1 − δ − πLL (61)

πHH = 1 − πLL − πLH − πHL. (62)

After determining the fractions of time spent in each state,we change three transition
rates in order to get the steady-state probabilities that are equal to the fractions of time
spend in each state. When λ41, λ43, λ32, λ34, λ12, λ14 are given, we determine λ14,
λ23, and λ21 through the following equations:

λ14 = 1

πLH
(πHH(λ14 + λ43) − πHLλ34) (63)

λ23 = 1

πLL
(πHL(λ32 + λ34) − πHHλ43) (64)

λ21 = 1

πLL
(πLH(λ312 + λ14) − πHHλ41) (65)

Finally, since all the steady-state probabilities and the transition rates should be
greater than zero, we determine the rangewe can changeπLL from the above equations
in order to get non-negative results for all parameters.

Figure 11 illustrates the effect of the fraction of the time spent in low cost low
demand state on the optimal profit for the alternating demand case. As expected,
as the fraction of the time spent in low demand low cost state increases, the optimal
profit also increases. In other words, the producer can benefit from positive correlation
between demand and cost.
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Fig. 11 Optimal Profit vs. Fraction of Time Spent in Low Cost Low Demand State for the Alternating Cost
and Alternating Demand Model (μ = 1.3, δ = 0.8, cv2d = 2, δH = 1.5, δL = 0.5, p = 1, m = 0.4,
cH = 1, cL = 0, h = 0.01, b = 0.09, λ12 = 0.8,λ12 = 0.1, λ34 = 0.024, λ41 = 0.443, λ43 = 0.263)

7 Conclusion

In this study,we consider the optimal productionflowcontrol policy of amanufacturing
firm that builds a product to stock to meet demand when the sales price, the production
cost, and the demand rate are uncertain.We show that the optimal policy thatmaximizes
the expected profit is a state-dependent hedging policy and analyze the performance
of the system under the optimal production policy.

First, the performance of a special casewhere the production cost fluctuates between
a high and a low level and the demand rate is constant is analyzed.When the cost is low,
the manufacturer produces with the maximum production rate until an upper hedging
level is reached. The manufacturer produces with the demand rate at the hedging level.
When the cost is high, themanufacturer stops producing until the backlog level reaches
a lower hedging level. At the lower hedging level, the manufacturer produces with the
demand rate even if the cost is high to keep the backlog at that level.

Next, the performance of the systemwhen both the production cost and the demand
rate fluctuate between high and low levels is analyzed.When the production capacity is
sufficient to meet the low demand rate but not sufficient to meet the high demand rate,
the optimal policy is also a state-dependent hedging policy. The performance of the
system under a double-hedging policy is evaluated. According to the double-hedging
policy, the producer produces only when the cost is low and the surplus is between
the two hedging levels. However when the backlog is below the lower hedging level,
the producer produces with full capacity regardless of the cost level in order to bring
the surplus level above the lower hedging level.
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The effects of the production capacity, average cost rate, and the cost variability on
the optimal cost and on the optimal hedging levels are analyzed for both the alternating
cost-constant demand and for the alternating cost-alternating demand models. For the
alternating cost-alternating demand model, the effects of the demand variability and
the dependency between the demand and cost have also been analyzed.

This model can be extended in a number of ways. For example, it is possible to
include uncertainty not only in sales price, production cost, and demand but also
uncertainty in machine reliability. In addition, procurement and sales decisions can be
separated from production flow decisions. In the model presented in this note, there
is no input inventory for the producer and the sales decision is not considered. In a
system with an input inventory and possibility of deciding on the timing of sales, a
control problem where a producer sets the procurement rate, the sales rate as well
as the production rate can also be discussed. With this model, the inter-dependency
between price and cost, price and demand can be incorporated in the rate matrices.

This study shows that the results from the rich literature of optimal flow rate control
problems can be used to analyze settings where the source of uncertainty is not only
machine reliability or demand fluctuations but also sales price and production cost
variability.

This model shows that the production rate can be controlled optimally to benefit
from producing in advance when the production cost is low while meeting the supply
and the demand in the best way. The benefit of the policy depends on the interaction
between the production, inventory holding, and backlog costs and the availability of
excess production capacity in comparison to the demand rate.
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