
OR Spectrum (2018) 40:837–873
https://doi.org/10.1007/s00291-018-0530-6

REGULAR ART ICLE

Flexible estimation of time-varying effects for frequently
purchased retail goods: a modeling approach based
on household panel data

Bernhard Baumgartner1 · Daniel Guhl2 · Thomas Kneib3 ·Winfried J. Steiner4

Received: 28 February 2017 / Accepted: 5 September 2018 / Published online: 27 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In most previous applications of brand choice models, possible time-varying effects
in consumer behavior are ignored by merely imposing constant parameters. How-
ever, it is very likely that trends or short-term variations in consumers’ intrinsic brand
utilities or sensitivities to marketing instruments occur. For example, preferences for
specific brands or price elasticities in product categories such as coffee or chocolate
may vary in the run-up to festive occasions like Easter or Christmas. In this paper, we
employ flexible multinomial logit models for estimating time-varying effects in brand
choice behavior. Time-varying brand intercepts and time-varying effects of covari-
ates are modeled using penalized splines, a flexible, yet parsimonious, nonparametric
smoothing technique. The estimation is data driven; the flexible functions, as well
as the corresponding degrees of smoothness, are determined simultaneously in a uni-
fied approach. Ourmodel further allows for alternative-specific time-varying effects of
covariates and canmimic state-space approaches with randomwalk parameter dynam-
ics. In an empirical application for ground coffee, we compare the performance of the
proposed approach to a number of benchmark models regarding in-sample fit, infor-
mation criteria, and in particular out-of-sample fit. Interestingly, the most complex
P-spline model with time-varying brand intercepts and brand-specific time-varying
covariate effects outperforms all other specifications both in- and out-of-sample. We
further present results from a sensitivity analysis on how the number of knots and
other P-spline settings affect the model performance, and we provide guidelines for
the model building process about the many options for model specification using P-
splines. Finally, the resulting parameter paths provide valuable insights for marketing
managers.
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1 Introduction

The theory and practice of brand choice plays a crucial role in modern marketing
science (Chandukala et al. 2008; Elshiewy et al. 2017). Influenced by the seminal
paper of Guadagni and Little (1983), which was the first one to show how to use
household scanner panel data for estimating brand choice models, a large number of
applications and extensions of discrete choice models directed at explaining consumer
brand choice decisions emerged. For example, Gupta (1988) analyzed the impact of
sales promotions on brand choice, Winer (1986), Lattin and Bucklin (1989), and
Kalyanaram and Little (1994) incorporated reference price effects, Kamakura and
Russel (1989) and Jain et al. (1994) unobserved preference heterogeneity into brand
choice models, Abe (1998, 1999) and Kneib et al. (2007) used flexible nonlinear
function of covariates in semiparametric brand choice models, and Villas-Boas and
Winer (1999) and Chintagunta et al. (2005) accounted for price endogeneity in brand
choice models. Among discrete choice models, the multinomial logit (MNL) model
has been appliedmost frequently and is considered one of themost importantmodeling
approaches in marketing and related fields nowadays (Chandukala et al. 2008).

In a brand choice context,1 the deterministic utility function in the MNL model
captures the effects of the brands themselves (i.e., intrinsic brand utilities) as well
as effects of covariates (like price, promotional activities, and advertising) on a con-
sumer’s utility. Therefore, these models help to understand why consumers choose
a specific brand out of several competing alternatives by linking a consumer’s brand
choice decision to brand preferences and observable marketing instruments. Further-
more, it has been shown that current decisions of consumers are affected by past
decisions due to brand loyalty effects (Guadagni and Little 1983) or by past prices due
to psychological reference price effects (Winer 1986).

Even though the latter two constructs (i.e., brand loyalty and reference price effects)
induce some inter-temporal effects in brand choice, most applications of choice mod-
els in marketing ignore dynamic effects beyond that. In particular, in almost all MNL
applications estimated parameters are restricted to be constant over time (i.e., equal
across all purchase occasions). This is a strong assumption, and the marketing litera-
ture provides rationaleswhy consumer choice behaviormay change in the short or long
term and consequently why estimated model parameters should be allowed to vary in
time.

In the context of retail and consumer goods, it seems plausible to assume that con-
sumers become more price sensitive and more prone to promotions after periods with
less intense and less frequent promotional activities (e.g., Foekens et al. 1999; Kopalle
et al. 1999). Preferences for certain brands can further be strengthened through adver-
tising investments (Sriram et al. 2007), and advertising may at the same time reduce
price elasticities for those brands (e.g., Erdem et al. 2008). Further, situational events
like upcoming festive occasions (Christmas, Easter) may lead to a short-term increase

1 We focus on brand choice here because most of the effects of marketing variables (e.g., price, promotion
activities) on demand can be attributed to changes in secondary demand (i.e., brand switching) as opposed
to primary demand (i.e., purchase incidence and purchase quantity). See in particular Gupta (1988) and
Bell et al. (1999).
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in preferences for higher-tier brands in certain product categories like coffee (as
considered later in our empirical application). The proposed semiparametric approach
can handle all these exemplary situations in an explorative way since it can model
evolutions of both brand intercepts and (alternative-specific) covariate effects even if
the drivers for those parameter evolutions are not observable or included in the data at
hand.

From amanagerial point of view, ignoring time-varying effects concerning intrinsic
brand utilities may leave competitive trends in a product category undetected with the
risk of misjudging the competitive structure between brands. It is further important for
retailers to recognize short- or long-term changes in price and promotional sensitivities
of their consumers as a basis for adjusting their marketing mix adequately and in due
time. All these arguments suggest that dynamics are important in marketing (Leeflang
et al. 2009) and should be considered in brand choice models.

Only a few papers have so far considered the possibility of time-varying coefficients
in brand choice models. The different model specifications that have been proposed
in the literature can be classified into the following three groups:

(1) Reparameterization approaches Parameters that are supposed to be dynamic are
reparameterized as functions of time-varying covariates (so-called process functions,
see Foekens et al. 1999). For instance, Papatla and Krishnamurti (1996) have mod-
eled price and promotional coefficients as to depend on previous purchases made in
the presence of promotional activities. Jedidi et al. (1999) also proposed a varying
parameter model allowing consumers’ responses to price and promotional activities
to depend on changes in marketing activities over the long term. Heilman et al. (2000)
explained the time variation of parameters by changes in the category experience of
consumers measured by the number of purchases already made in the respective cate-
gory. All these models are easy to apply and highly valuable for measuring medium-
or long-term effects of marketing activities, but they cannot explain, for example,
short-term fluctuations due to situational factors. Another drawback of this modeling
approach is that only the temporal variance of the dynamic variables is modeled and
not their course in time (van Heerde et al. 2004).

(2) Data splitting/rolling window/before–after analyses In this category, models are
fitted only on (successive) subsets of the data. Gordon et al. (2013) split up a rather
long period of 6 years into several quarters and estimated models for each quarter
separately to investigate the variation over time in price elasticities in multiple product
categories. Here, a crucial decision is the selection of the interval length; while a
shorter (longer) interval allows for more (less) flexibility and variation over time, it
also leads to less (more) stable estimates due to smaller (larger) data subsets for each
interval. Furthermore, to circumvent abrupt jumps in the results (due to the piecewise
constant approximation of a conceptually continuous process) some researchers opt
for a rolling-window approach (Mela et al. 1997). Moreover, parameter estimates in
logit models are not comparable in their magnitude across datasets (here across the
different subsets) because of differences in scale (Mela et al. 1997). This reduces the
usefulness of this kind of approaches to comparable measures, e.g., marginal effects

123



840 B. Baumgartner et al.

or elasticities. Also, data splitting always lowers the statistical efficiency since it uses
the data only in parts.

(3) State-space models and nonparametric methods There is a current trend in market-
ing to account for specific effects in a more flexible way. State-space models are the
most comprehensive method to account for time-varying parameters (Leeflang et al.
2009) because they do neither rely on a parametric function of time-varying covari-
ates nor is data splitting necessary. Here, parameters follow a dynamic process (e.g.,
random walks, vector autoregressions, or dynamic random effects) and the parameter
paths over time are estimated using the Kalman filter. Lachaab et al. (2006) proposed
a Bayesian multinomial probit model with time-varying parameters and showed that
all model parameters vary over time. Rutz and Sonnier (2011) expanded the model of
Lachaab et al. (2006) with a factor analytic structure of random effects, which allows
for time-varying effects in the latent space of product properties. Kim et al. (2005)
used an MNL model and estimated extremely volatile parameter paths in the deter-
gent category. Closely related to state-space models are nonparametric methods that
employ splines. Nonparametric methods share the advantages of state-space models
but offer the additional benefit of more control over the degree of smoothness for each
estimated parameter path. This is important because it facilitates the interpretation of
results. To the best of our knowledge, Baumgartner (2003) was the first to apply non-
parametric methods to brand choice models in order to estimate time-varying brand
intercepts. A shortcoming of the approach is that one has to fix the reasonable level
of smoothness by optimizing some information or cross-validation criterion. Estimat-
ing time-varying coefficients for both brand intercepts and covariates would afford
extensive search procedures in multidimensional parameter spaces.

All previously proposed approaches in this category (state-space models, nonpara-
metric methods) indeed revealed that parameters can change a lot over time and that
the resulting patterns can be highly complex mixtures of short-term fluctuations (e.g.,
because of situational factors) and long-term trends (e.g., because of advertising).
Therefore, reparameterization approaches are most likely not flexible enough and as
mentioned do not yield explicit parameter paths, while data splitting or rolling-window
approaches suffer from lower statistical efficiency. Flexible nonparametric methods
instead borrow strength from neighboring time intervals and allow for more or less
smooth parameter paths without imposing too much structure and therefore seem
promising for modeling time-varying parameters. Also, state-space models with ran-
dom walk parameter dynamics are included in our proposed nonparametric approach
as a special case, as will be discussed in more detail later.

In the following, we propose flexible MNL models with time-varying parameters
to uncover effects in consumer brand choice that change over time. Both time-varying
brand intercepts representing intrinsic brand utilities as well as time-varying effects
of covariates (generic or alternative specific) are modeled nonparametrically using
P(enalized)-splines (Eilers and Marx 1996). Estimation is likelihood based and uses a
penalized Fisher scoring procedure. An approximate marginal likelihood procedure is
employed to determine the unknown smoothing parameters that control the trade-off
between too much flexibility and too much smoothness of each of the nonparametric
function estimates in the model. Stated otherwise, both the shape and the degree
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of smoothness of the nonparametrically estimated time-varying effects—separate
for each parameter path of interest (i.e., brand intercepts or covariate effects)—are
determined simultaneously within a unified approach. That way, we particularly
overcome the limitation of the spline approach of Baumgartner (2003) that requires
an extensive search procedure to select the right amount of smoothness for the
unknown smooth curve estimates. Our proposed approach is also directly connected
to state-space models with random walk dynamics since penalized splines comprise
random walks as a special case but allow to introduce differentiability conditions
for the estimated time-varying effects leading to potentially smoother effects and
enhanced interpretability. The latter is particularly useful when considering smooth
temporal variations over a longer period of time, as we would expect to come along
with a successful advertising campaign, for instance. On the other hand, the random
walk model as proposed in Lachaab et al. (2006) is obtained when considering splines
of degree zero (i.e., piecewise constant step functions) which allow the function
estimates to evolve rather wiggly.

We structure the remainder of the article as follows: In Sect. 2, we first briefly review
the standard MNL model with constant parameters and subsequently introduce more
flexible MNL model variants based on the P-spline methodology for the estimation
of time-varying effects. We further provide details about the maximum likelihood
procedure used for estimation and illustrate how the P-splines approach works. In
Sect. 3, we compare the fit and predictive performance of our proposed framework in
an empirical study for the ground coffee category to a number of benchmark models.
To provide managerial implications, we also focus on market share results on the
individual brand level and the evolution of parameter paths of covariates. In Sect. 4,
we identify avenues for future research.

2 Methodology

2.1 Themultinomial logit model

The MNL model is the most widely used brand choice model to analyze scanner
panel data. In such data, we observe purchases of brands in a product category for a
sample of households over a certain time horizon. Brand choices are modeled by an
unordered categorical response variable Ynt ε Cnt where Cnt �{1, …, J} represents
the set of brands available in the product category at the store visited by house-
hold n(n � 1, . . . , N ) at purchase occasion t(t � 1, . . . , Tn). Each household’s brand
choice depends on her/his latent utilities Unjt , for j � 1, . . . , J , and the household is
assumed to choose that brand i which offers maximum utility across all brands, i.e.,

Ynt � i ⇔ Unit � max
j∈Cnt

Unjt . (1)

According to random utility theory, the utility of household n for brand j depends
on both observable covariates (constituting the deterministic utility Vnjt) and unob-
servable factors (represented by a stochastic error term 2njt) via
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Unjt � α j +
K∑

k�1

βk · xknjt + εnjt � Vnjt + εnjt . (2)

In this linear additive (indirect) utility function, the parameters αj represent the
intrinsic utilities of the J brands also referred to as brand intercepts, whereas the coef-
ficients βk denote (in a first step generic) effects of K independent variables, like
brand prices or promotional instruments.2 Note that each covariate xknjt varies in the
three dimensions households, brands, and choice occasions, and a setup using brand-
specific intercepts and generic effects of covariates (i.e., homogeneous coefficients
across brands) is the standard scenario in the brand choice literature (see, e.g., Baltas
and Doyle 2001). One potential reason for this is that even in case of a large number of
brands themodel remains parsimonious.Also, one can argue based on economic theory
that the price parameter should be equal across brands because the price effect in the
(indirect) utility function comes from the budget constraint of the household, where the
values of the brands enter inmonetary units (Chandukala et al. 2008).However, the util-
ity function (2) can also account for alternative-specific covariate effects if x is defined
as follows (see, e.g., Erdem et al. 2008 for a marketing application of a brand choice
model with brand-specific covariate effects): The column vector xknt contains the J
stacked values of covariate k from household n at choice occasion t. We then create the
J ×J diagonal matrix Xknt by inserting xknt on the diagonal (i.e., Xknt � diag(xknt )).
Accordingly, Xknt contains J “expanded” covariate vectors as columns, where only
the jth entry is nonzero, and thus, the corresponding J parameters for the covariate
k are brand-specific. In our empirical application, we examine whether such a model
specification leads to additional insights and a better out-of-sample fit (see Sect. 3.4.4).

The random error term 2njt captures unobserved influences not covered by the
data. We obtain the MNL model for i.i.d. standard extreme value distributed error
terms.3 Accordingly, the choice probability Prnit of household n for brand i at purchase
occasion t results as (e.g., McFadden 1974; Train 2009):

Prnit � exp(Vnit )/
J∑

j�1

exp(Vnjt ). (3)

As the choice probability is invariant to adding a constant value to the deterministic
utility, only differences in utilities can be identified. For estimation, we, therefore, set
one of the J brand intercepts to zero. Without loss of generality, we choose brand 1 in
our empirical application to constitute this reference brand.

Note that our model does not account for endogeneity of covariates (Villas-Boas
and Winer 1999; Petrin and Train 2010) and unobserved consumer heterogeneity

2 Please note that even though the latent utility is a linear function of the covariates, the choice probability
is a nonlinear function of the latent utility in the MNL model [see Eq. (3)]. Therefore, marginal effects
response variables (e.g., demand or market share) are nonlinear functions of the covariates (see Train 2009,
pp. 57–59).
3 Using normally distributed error terms would lead to the multinomial probit (MNP) model (Train 2009;
Paetz and Steiner 2017). The probit model, if correlations are allowed, does not exhibit the IIA assump-
tion. However, it lacks a closed-form solution for choice probabilities, and thus, estimation is much more
complicated and time-consuming.
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(Kamakura and Russel 1989; Jain et al. 1994). Both aspects can be relevant in a brand
choice context; however, adding household-specific parameters largely increases the
computational burden for the proposed nonparametric approach in an application with
several thousand households (like ours), and accommodating endogeneity may lead to
worse results than ignoring endogeneity if suitable instruments are not available (Rossi
2014). Further note that we incorporate the dynamic constructs brand loyalty and ref-
erence price in our empirical application (see Sect. 4 for more details). Both covariates
are household specific and hence account for heterogeneity in choice behavior to a
certain degree (Guadagni and Little 1983; Kalyanaram and Little 1994).

2.2 MNLmodels with time-varying parameters

The standard MNL model [Eq. (3)] completely ignores potential time dependencies
of a household’s brand choice decisions over successive purchase occasions. Con-
sequently, each household’s observations are treated as independent over time, and
coefficients are assumed to be constant over the entire observation period. To allow
for time-varying parameters in the MNL model, we introduce time dependency for
both brand intercepts and covariate effects.

First, we allow for time-varying brand intercepts by replacing the parametric brand
intercepts αj with (a priori unknown) smooth time-dependent functions f α

j (τ ), leading
to the utility function

Unjt � f α
j (τnt ) +

K∑

k�1

βk · xknjt + εnjt . (4)

That way, the brand intercepts can accommodate changes in intrinsic brand utilities
across calendar time (τ ), which might be caused by long-term trends or short-term
fluctuations in brand choice behavior. Notice that for each household n the purchase
occasion t takes place at a specific time τ nt and in our empirical application τ indexes
weeks. In most cases, however, the tth purchase occasion takes place at different τ

across households. Nevertheless, one household might purchase multiple times within
the same τ and, of course, several households can purchase within the same τ . For
such observations, the value of f α

j (τ ) is the same.
Further, we allow for time-varying effects of covariates by replacing the K time-

constant effects βk with (a priori unknown) smooth time-dependent functions f β

k (τ ),
too:

Unjt � f α
j (τnt ) +

K∑

k�1

f β
k (τnt ) · xknjt + εnjt . (5)

Accordingly, we will be able to explore if effects of marketing instruments (like
price) or if effects of time-varying behavioral covariates (like brand loyalty and ref-
erence price) are changing over time. Since the unknown time-varying functions for
both brand intercepts and covariate effects will be modeled nonparametrically using
P(enalized)-splines while the error term as before follows a parametric distribution
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(i.i.d. standard extreme value distributed error terms), the utility functions (4) and (5)
can be referred to as semiparametric models.

Like in the basic parametric MNL model, brand 1 is treated as the reference brand
for identifiability reasons (i.e., setting f α

1 (τ )�0). Therefore, the estimated trajectories
of the time-dependent functions f α

j (τ ) for j ��1 have to be interpreted w.r.t. brand
1. We chose brand 1 as the reference brand in our empirical application because it
showed the least variation over time and hence this choice facilitates a straightforward
interpretation of the results.

2.3 Penalized splines

P(enalized)-splines originally introduced by Eilers and Marx (1996) have been previ-
ously used as a nonparametric technique to flexibly estimate effects of covariates in
a retailing context. Most of those applications, however, focused on aggregate retail
scanner data and were concerned with price response modeling (e.g., Steiner et al.
2007; Brezger and Steiner 2008; Weber and Steiner 2012; Haupt et al. 2014; Lang
et al. 2015; Weber et al. 2017). To the best of our knowledge, only one approach so far
applied P-splines in the context of disaggregate scanner panel data in order to estimate
nonlinear price–utility effects (Kneib et al. 2007).

The idea of P-splines in the present context is to represent the time-varying functions
f (τ ) (dropping the indices for simplicity) in terms of a high-dimensional parametric
basis and to add an appropriate penalty term to the likelihood for the sake of regular-
isation. Specifically, we assume that the unknown function f (τ ) can be approximated
by B-spline basis functions with equally spaced intervals within the considered time
horizon, leading to

f (τ ) �
M∑

m�1

γm · Bm(τ ; δ), (6)

with Bm(τ ; δ) representing themth B-spline basis functions of degree δ and γm denot-
ing the regression coefficient to be estimated for the mth B-spline basis function (see
De Boor 2001). As our default choice, we suggest cubic splines (i.e., B-splines with δ

�3), because cubic splines are twice continuously differentiable and therefore visually
smooth. The use of cubic splines is also fairly standard for smoothing in generalized
additive models, see, for example, Wood (2017). However, in some situations the
resulting functions may turn out “too” smooth and more flexibility can be achieved
using lower degrees for the spline (see Fahrmeir et al. 2013). Eilers and Marx (1996)
have suggested using a “relatively large” number of intervals to ensure enough flex-
ibility for the unknown functions on the one hand, which allows in the context of
our problem setting to capture, for example, short-term fluctuations in consumers’
brand choice behavior. We first use M �40 equidistant intervals in our empirical
application (with T �50) as a default choice and subsequently provide some sensi-
tivity analyses to evaluate the effect of different numbers of M on the results.4 On

4 From our experience, M � 40 generally works well for datasets with weekly data and a time span of
52–78 weeks. For datasets with longer time windows, we suggest starting with at least M � 0.3 · T as a
default value to ensure sufficient flexibility.
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the other hand, the authors recommended adding a penalty term to the likelihood
to enforce sufficient smoothness for the estimated curve and to avoid overfitting. A
suitable penalty term can be derived from squared rth-order derivatives, and accord-
ing to B-spline theory (see, e.g., De Boor 2001), we can approximate the derivative
penalty with a roughness penalty based on first- or second-order differences on adja-
cent regression coefficients γm leading to the penalty terms λ

∑M
m�2 (γm − γm−1)

2 or
λ

∑M
m�3 (γm − 2γm−1 − γm−2)

2, respectively.
The so-called smoothing parameter λ ≥ 0 controls the trade-off between too much

flexibility (λ small) and sufficient smoothness (λ large) of the P-spline. For statistical
inference, as discussed subsequently, the compact representation of the difference
penalties in terms of quadratic forms λγ ′P (r)γ will be helpful, where the vector γ

contains the M regression coefficients γm and P (r) � D
′
(r)D(r) corresponds to the

penalty matrix constructed from the first- or second-order difference matrix

D(1) �

⎛

⎜⎜⎜⎝

−1 1
−1 1

. . .
. . .
−1 1

⎞

⎟⎟⎟⎠ and D(2) �

⎛

⎜⎜⎜⎝

1 −2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

⎞

⎟⎟⎟⎠. (7)

Figure 1 illustrates the fit of a penalized spline along Gaussian response data.5 The
upper left panel shows some simulated data (gray circles) and the true underlying
function (dashed line), i.e., the data-generating mechanism. The upper right panel
shows a full set of 40 B-spline basis functions of degree 3 (i.e., cubic splines) superim-
posed to the data. Estimating the unknown regression coefficients γm(m � 1, . . . , 40)
from the data implies nothing else than weighting each of the B-spline basis functions
Bm according to the data, resulting in positive weights (regression coefficients) in
areas with positive data and negative weights in areas with negative data (left panel,
middle row).

Summing up the weighted B-spline basis functions [i.e., computing the linear com-
bination

∑40
m�1 γmBm(τ ; 3) given by Eq. (6)] yields an unpenalized spline fit f (τ )

(solid gray line) with much variability due to the variation of the B-spline basis
functions (right panel, middle row). When eventually imposing the penalty term and
switching fromB-splines to P-splines, adjacent B-spline basis functions are coupled to
each other in their magnitudes and the estimated regression coefficients vary smoothly
over the domain of the covariate (lower left panel). As a consequence, the curve esti-
mate is much smoother and—for an optimized value of 1.122 for the smoothing
parameter (using the methodology outlined in Sect. 2.4)—approximately coincides
with the true function (lower right panel).

The P-spline framework has several strengths and advantages. First, the approach
is “data driven” in the sense that flexible time-varying functions along with their
corresponding smoothing parameters are estimated from the data (see next subsection).
Hence, the researcher does not need to have prior knowledge about the shape of
specific parameter evolutions or how smooth or volatile these functions are. This is in

5 Note that in case of brand choice data only discrete responses are available and the continuous utility
values are latent.
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Fig. 1 Working of the P-spline approach (based on Fahrmeir et al. 2013)

particular beneficial in cases where time-varying parameter trajectories are complex.
Second, using a large number of knots enables the researcher to approximate even
complex time-varying functions reasonably well, but because of the penalization, the
framework is in addition extremely robust, thereby guarding against overfitting. Third,
the researcher can still modify certain settings beyond the number of knots (i.e., the
degree of the spline and the order of penalization), increasing further the capabilities
of the approach. A higher number of knots, as well as a lower degree of the spline or a
lower order of penalization, ceteris paribus increase the flexibility for the estimation of
time-varying parameters. In particular, using a B-spline with degree zero, a first-order
penalty term, and as many knots as time periods enables an approximation of a state-
space model with random walk parameter dynamics (Fahrmeir et al. 2013, p. 452).
Hence, using such a specification, we can “mimic” state-space brand choice models
(Kim et al. 2005; Lachaab et al. 2006) which are typically estimated using the Kalman
Filter (or its nonlinear variations).6

2.4 Statistical inference

Statistical inference of the flexible time-varying parameter MNL model is based on
maximizing the penalized log-likelihood

6 We focus on continuous parameter evolutions instead of particular discrete states and consequently do not
consider hidden Markov models or regime-switching models (see, e.g., Poulsen 1990; Netzer et al. 2008;
Park and Gupta 2011).

123



Flexible estimation of time-varying effects for… 847

LLpen(γ ,λ) � LL(γ ) −
J∑

j�2

λα
j γ

α′
j P (r)γ

α
j −

K∑

k�1

λ
β
k γ

β ′
k P (r)γ

β
k , (8)

where j and k index brands and covariates, respectively, the vector γ �(
γ α
2 , . . . , γ α

J , γ
β
1 , . . . , γ

β
K

)
captures the regression coefficients related to the

time-varying effects f α
2 (τ ), . . . , f α

J (τ ), f β
1 (τ ), . . . , f β

K (τ ), and LL(γ ) is the log-
likelihood of the MNL model

LL(γ ) �
N∑

n�1

Tn∑

t�1

J∑

j�1

ynjt ln
(
Prnjt (γ )

)
. (9)

In Eq. (9), ynjt is a dummy variable indicating whether household n chooses brand
j at purchase occasion t. Each time-varying effect is assigned a separate smoothing
parameter (stacked in the vector λ), implying that each of the functions can accom-
modate a different amount of smoothness. The smoothing parameters are determined
based on restricted maximum likelihood (REML) estimation via a mixed model rep-
resentation of penalized splines [see Kneib et al. (2007) and Guhl et al. (2018) for
details]. The basic idea is to recast the P-splines as a mixed model where the smooth-
ing parameter turns into a variance component which can then be estimated from the
corresponding marginal (or restricted) likelihood. This restricted maximum likelihood
estimation approach is now well established in statistics for determining smoothing
parameters (Ruppert et al. 2003; Fahrmeir et al. 2004;Wood 2017). In particular, when
re-estimating the model with the same model specifications, one will always end up
with exactly the same smoothing parameter estimates. Of course, there are alterna-
tives such as generalized cross-validation that will yield (often only slightly) different
results. Given the smoothing parameters, estimation of the penalized MNL can be
achieved by a simple modification of the usual Fisher scoring algorithm. A detailed
description of the Fisher scoring algorithm for exponential family generalized addi-
tive models is provided in Fahrmeir et al. (2004), while the extension to categorical
regression settings is described in Kneib and Fahrmeir (2006).

3 Empirical study

3.1 Data

In this section, we present results from an empirical application of our proposed frame-
work to a household panel dataset referring to the product category coffee. The coffee
data were provided by the GfK group in Nuremberg, Germany, and we chose this
product category because employees of market research companies reported consid-
erable fluctuations in brand shares in the run-up of events like Christmas.7 The dataset

7 Note that retailers have nowadays access to similar datasets at the disaggregated level given the rise of
loyalty card programs in which individual transactions can be associated with households.
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Table 1 Summary statistics for the coffee dataset (4183 households; 50 weeks)

Branda Number of purchases
(market shares)

Observed prices in
DM/500 g

Estimation Validation Mean Standard deviation

1 4705 (0.290) 4788 (0.295) 8.214 0.875

2 3674 (0.226) 3587 (0.221) 8.580 0.738

3 3770 (0.232) 3696 (0.228) 7.667 0.921

4 2532 (0.156) 2588 (0.159) 8.517 0.870

5 1552 (0.096) 1576 (0.097) 7.485 0.892

Total 16,233 16,235

aThe GfK group provided the data under the condition that no inference on brand names is possible

provides information on the date of the households’ purchase occasions, the brand
chosen by a household as well as observed (paid) prices. The raw dataset includes
49,083 purchases of 6407 German households for the five largest national brands of
ground coffee over a time span of all 53 weeks in the year 1998. The five national
brands account for 75% of all purchases of national coffee brands, and we focus on
these five brands since they were available in the assortment of all retailers covered
by the data and have as a rule the standard pack size of 500 g.

We use the first three purchases of each household (in sum 12,549 purchases) to
initialize the dynamic constructs brand loyalty and reference price that we consider as
additional covariates (see the next subsection). Consequently, we discard households
with a total of only three or fewer purchases during the whole year 1998 from our
analysis (2224 households with 4057 brand purchases). Furthermore, we exclude the
first three weeks from the analysis because of the very low number of observations (9
purchases) left after the initialization step. The remaining 4183 households made on
average 8 coffee purchases (Q0.25 �3 and Q0.75 �11; excl. the first three purchases
used for initialization of the dynamic covariates), and the median interpurchase time is
about 28 days (Q0.25 �19 andQ0.75 �42). The final dataset contains 32,468 purchases
from the 4183 households, andwe split these observations randomly into an estimation
and validation sample of roughly the same size (16,233 and 16,235). Table 1 shows
for each brand the mean price and the standard deviation of prices for 500 g coffee,
which is the typical package size in the German market. The table also contains
information on the final estimation and validation samples we used to assess the
statistical performance of the analyzed brand choice models (with and without time-
varying parameters).

Brand 1 has the highest number of purchases, followed by brands 2 and 3. There is
no really dominating brand in terms of market share, and shares of the five brands lie
between 10 and 30%. Brands 3 and 5 are slightly less expensive (below 8 DM/500 g)
as compared to brands 1, 2, and 4. However, the standard deviations of prices indicate
that the distribution of prices across brands overlaps to some extent and hence the
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price positioning of the brands is fairly comparable.8 Further, the magnitude of the
standard deviations of the price attribute indicates that brand prices vary considerably
in the ground coffee category, and a significant part of this variation can be attributed
to promotions.9

To assess the performance of the MNL models with time-varying parameters, we
employ a prediction-oriented approach. In our opinion, a more complexmodel (like an
MNL model with time-varying parameters) should be preferred only if it outperforms
a more parsimonious model in validation samples. Because we are interested in the
evolution of parameter paths over time, we randomly split our observations in the
dataset across all weeks. Each observation of each household has the same probability
of 50%of being in the estimation or validation sample, irrespective of its position in the
choice sequence and point in timewhen it occurred. This enables us to evaluatewhether
estimated parameter dynamics also persist in the validation sample or whether flexible
models just pick up random fluctuations in the time dimension (e.g., due to a specific
sample composition in a particular week). As given in Table 1, the distribution of the
market shares of the brands is very similar in the estimation and validation samples
after splitting the dataset randomly into two halves.

3.2 Specification of covariates

Whereas observed prices are readily available from our data, brand loyalties and ref-
erence prices have to be computed from each consumer’s purchase history. Previous
research has documented the importance of incorporating purchase event feedback
effects in brand choice models (Ailawadi et al. 1999), and following Guadagni and
Little (1983), we recursively calculated loyalty values by exponentially smoothing
past purchases ynj,t−1 of brand j made by household n at purchase occasion t − 1
using smoothing constant θloy according to:

loyaltynjt � θloy · loyaltynj,t−1 +
(
1 − θloy

) · ynj,t−1, (10)

where ynj,t−1 �1, if household n purchased brand j on her/his last store visit (otherwise
ynj,t−1 �0),

∑J
j�1 loyaltynjt � 1, and θloy (0 ≤ θloy ≤ 1) determining the general

persistence of brand loyalty. Using a grid search based on the standard MNL model,
we obtained a value of θloy � 0.75 which is close to estimated values reported in
other applications (e.g., Briesch et al. 1997). The exponential smoothing approach

8 We divided the brands into two classes (brands 1, 2, and 4 versus brands 3 and 5) to test whether estimation
results stay robust as compared to the full set of brands. We estimated both MNL models with constant
parameters and MNL models with time-varying parameters for the different subsets of brands. Our results
indicate that differences between estimated parameters and parameter paths are not overly sensitive to the
particular sets of brands, implying that the IIA property inherent to models of the MNL type is not a major
concern in our application. Detailed results can be obtained from the authors upon request.
9 Since observed prices and the use or non-use of promotions are strongly correlated, and as a result, the
correlations between promotions and related behavioral price terms like reference prices, gains, and losses
(see Sect. 3.2) also turn out substantial, we do not explicitly consider information on promotions for model
estimation to prevent multicollinearity problems.
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of Guadagni and Little has shown its high ability to increase model fit and predictive
performance inmany applications and has beenwidely used in themarketing literature
to capture brand loyalty (see, e.g., Ailawadi et al. 1999). We initialize the loyalty
variable for each brand and household at t �0, with a value of 0.2 (i.e., loyaltynj0 �
1/J or equal market shares across brands).

It is alsowell established to incorporate referenceprice terms in brand choicemodels
(Kalyanaram and Winer 1995). Reference prices constitute internal prices consumers
have in their mind and compare observed prices to when shopping for brands. Conse-
quently, similar to observed prices, lower (higher) reference prices are associated with
higher (lower) choice probabilities. Observed prices lower than the reference price are
perceived as gains andmay additionally stimulate a purchase, whereas observed prices
higher than the reference price are perceived as losses and should further decrease
choice probabilities. Prospect theory posits asymmetric effects of gains and losses,
and that consumers should be more responsive to losses than to gains (Kahneman and
Tversky 1979). Accordingly, two additional price terms representing those losses and
gains should be considered in brand choice models to allow for different effect sizes
of gains and losses. Researchers have provided conflicting empirical results about the
existence of (asymmetric) reference price effects. For example, Kalyanaram and Little
(1994) and Bell and Lattin (2000) found no empirical support for asymmetric refer-
ence price effects, while Abe’s (1998, 1999) estimation results were in accordance
with prospect theory.

We follow the widespread framework of adaptive expectations to build a house-
hold’s reference prices (refprice) based on the household’s purchase history (e.g.,
Lattin and Bucklin 1989; Briesch et al. 1997; Abe 1998):

refpricenjt � θref · refpricenj,t−1 + (1 − θref) · pricenj,t−1, (11)

where 0 ≤ θref ≤ 1. Once the reference price of household n for brand j and pur-
chase occasion t is determined, gains and losses can be computed as gainnjt �
max

(
refpricenjt − pricenjt , 0

)
and lossnjt � max

(
pricenjt − refpricenjt , 0

)
, respec-

tively. To determine the smoothing constant θref, we again used a grid search based on
the standardMNLmodel with constant parameters and obtained a value of θref � 0.57.
This value is similar to results reported in the relevant literature (e.g., Briesch et al.
1997). Reference prices are initialized for each brand with observed prices at the first
purchase occasion of each household.

We follow Kalyanaram and Little (1994) and include refprice, gain, and loss as
price covariates. Considering both refprice, gain, loss and observed price would result
in perfect collinearity by definition since gain and loss are linear transformations of
reference price and price.We chose to incorporate reference prices instead of observed
prices because of much lower (absolute) correlations of refprice with gains and losses
as compared to price with gains and losses, which in turn improves the statistical
efficiency (smaller standard errors).

Altogether, all model specifications considered in our empirical application include
brand intercepts, and reference price, gain, loss, as well as loyalty as covariates. Effects
on deterministic utilities and brand choice probabilities are expected to be positive for
gains and brand loyalties. On the other hand, the effects of reference prices and losses
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are supposed to be negative. If no additional effect of gain or losswould exist, reference
prices should be equal to observed price and, hence, we expect the isolated effect of
reference prices (analogously to observed price) to be negative. In addition, according
to prospect theory, the effect of gains should be smaller than that of losses (in absolute
terms). Also note that all covariates are household specific. Therefore, even though
we do not account for unobserved heterogeneity in parameters, these covariates help
to explain differences in choice behavior across households w.r.t. brands and prices.
Furthermore, all four covariates are dynamic: They vary over time and link purchase
occasions. Hence, they help to understand inter-temporal correlations in choice behav-
ior and make sure that if we find time-varying parameters that this variation is not an
artifact because of omitted dynamic constructs.

3.3 Statistical measures for model comparison

For model comparison, we employ several statistical performance measures. We use
more than one measure because different measures have different properties and mul-
tiple measures contribute to the confidence of a model’s performance. In particular, we
apply the log-likelihood, Brier score, and spherical score as individual scoring rules to
assess model fit and predictive validity. All three measures are strictly proper and well
established in the statistical literature (Gneiting and Raftery 2007; Kneib et al. 2007).
Moreover, it seems promising to aggregate choice probabilities to market shares to get
a more holistic view of the brand choice behavior of the households. Accordingly, we
use the average root mean squared error (ARMSE) in market shares as a scoring rule
on the aggregate level. The measures are computed as follows:

log−likelihood �
N∑

n�1

Tn∑

t�1

ln
(
P̂rnit

)
, (12)

Brier score � −
N∑

n�1

Tn∑

t�1

J∑

j�1

(
ynjt − P̂rnjt

)2
, (13)

Spherical score �
N∑

n�1

Tn∑

t�1

P̂rnit√∑J
j�1

(
P̂rnjt

)2 , and (14)

ARMSE � 100

J

J∑

j�1

√√√√ 1

T

T∑

τ�1

(
ms jτ − m̂s jτ

)2
, (15)

with i denoting the brand household n has chosen on purchase occasion t. Whereas
the log-likelihood only considers the logs P̂rnit of brands chosen by households (but
not of the brands not chosen by households), Brier and spherical scores utilize the
entire predictive distribution of choice probabilities (i.e., P̂rn1t , . . . , P̂rnJ t ) computed
according to the estimated model (see Gneiting and Raftery 2007 for more details). In
other words, the log-likelihood does only partly utilize the information contained in
the predictive distribution and therefore is rather sensitive w.r.t. extreme observations.
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msjτ denotes the actual market share of brand j in week τ (computed from observed
brand purchases), and predicted market shares m̂s jτ are computed as the average of
predicted choice probabilities of households with a purchase act in week τ . We expect
the ARMSE to be less sensitive to differences (and errors) on the household level
because the predicted household probabilities are aggregated first before calculating
the errors. Thismeasure is in particular important for retailers because predictedmarket
shares are relevant for category management, inventory decisions, and marketing mix
optimization.10

Sincemore complexmodels are generally expected to perform better in-sample (but
not necessarily out-of-sample), we further compute AIC and BIC based on in-sample
log-likelihoods to penalize the model complexity and to provide a fair comparison
of the different models in the estimation sample. For parametric models, the penalty
term is simply based on the number of model parameters, while for the semiparametric
models the effective number of parameters has to be determined (see Fahrmeir et al.
2013, p. 474).11 Finally, we also report computational times needed for estimation, as
this might be a relevant criterion for practitioners, too.

3.4 Discussion of results

In the following, as the number of compared models is rather large, we discuss our
estimation results in several steps. First, we comparemodels with time-varying param-
eters (for brand intercepts only, for covariate effects only, for both) with the standard
(static) MNL model (Sect. 3.4.1). Next, we compare the results with some dynamic
benchmark models that do not use P-splines (e.g., models with deterministic seasonal
effects, the nonparametric model of Baumgartner 2003) (subsection 3.4.2). Subse-
quently, we analyze in a sensitivity analysis the influence of different numbers of
knots (i.e., ranging from 10 to 50) in the MNL model with time-varying parameters
and continue by assessing the impact of varying degrees of P-splines (i.e., zero degree
versus third degree) as well as different orders for the roughness penalty (i.e., first
order versus second order) on the model performance (Sect. 3.4.3). Lastly, we analyze
models (with and without parameter dynamics) where all covariate effects are allowed

10 Note that purchases of multiple packs (even of the same brand) are considered in our dataset as multiple
single brand choices, however we do not account for quantity effects (in the sense that consumers may
have chosen different pack sizes) in our market share calculations. Given that most coffee purchases are
single-unit purchases of the most popular package size of 500 g, we argue that our market share calculations
are (fairly) representative. On the other hand, we acknowledge that this is a limitation of our empirical study
and incorporation of primary demand effects would be desirable for applications in a retailing context. We
thank one reviewer for pointing this out.
11 Via the smoothing parameter, we can continuously vary the effective number of parameters between the
total number of basis functions (smoothing parameter equal to zero) and the dimension of the polynomial
that is left unpenalized by the difference order (corresponding to a total of r parameters for rth-order
differences). For example, with 50 basis functions and a second-order difference penalty, the effective
number of parameters can vary continuously in the range between 2 and 50. The effective number of
parameters can then be determined as the trace of the product between the unpenalized Fisher information
and the inverse of the penalized Fisher information, see Gray (1992) for details.
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Table 2 Model comparison (MNL, MNLTVP1_i, MNLTVP1_c, and MNLTVP2)

MNL MNLTVP1_i MNLTVP1_c MNLTVP2

Runtime (s) 43.00 5053.00 5168.00 6847.00

Number of
parameters

8.00 71.20 22.11 79.36

Estimation

Log-likelihood −13,859.17 −13,629.95 −13,806.32 −13,589.72

Brier score −6933.98 −6826.73 −6912.17 −6809.23

Spherical score 12,084.82 12,157.82 12,096.66 12,165.75

ARMSE (market
shares)

3.45 2.46 3.40 2.45

AIC 27,734.30 27,402.30 27,656.90 27,338.20

BIC 27,795.90 27,950.20 27,827.00 27,948.90

Validation

Log-likelihood −13,978.74 −13,868.40 −13,935.53 −13,832.61

Brier score −6943.66 −6886.64 −6930.35 −6876.81

Spherical score 12,081.80 12,121.70 12,086.22 12,125.25

ARMSE (market
shares)

3.20 2.77 3.19 2.75

Bold values indicate the best model within a scoring rule or information criterion

to be alternative or brand specific (instead of generic, Sect. 3.4.4).12 In the following,
we concentrate our discussion of results on the estimated time-varying parameters
and abstain from the interpretation of results for time-constant parameters which are
also part of some of the models. The corresponding results, as well as the estimated
smoothing parameters of all P-spline MNL models, can be obtained from the authors
upon request.

3.4.1 Time-varying parameter MNLmodels

Table 2 summarizes the performancemeasures for the standardMNLmodel versus the
competing flexible models with either time-varying brand intercepts (MNLTVP1_i),
or time-varying (generic) covariate effects (MNLTVP1_c), or both (MNLTVP2).

As expected, the more flexible models yield an improved (unpenalized) fit in the
estimation sample, with the most flexible MNLTVP2 model (all parameters are time
varying) performing best according to all scoring rules (compared to the standard
MNL with a relative improvement of about 2% for the log-likelihood and an absolute
improvement of 1% in market share prediction, for example). Somewhat surpris-
ingly, the improvement in fit of the MNL model with time-varying brand intercepts
(MNLTVP1_i) over the standard MNL model is higher as compared to the improve-
ment in fit of the MNL model with time-varying covariate effects (MNLTVP1_c).

12 All models based on P-splines were estimated using the free software package BayesX (Belitz et al.
2015), which also has a convenient R-interface R2BayesX (Umlauf et al. 2015). We ran the models on a
Windows computer with Intel Xeon Processor E5-1650 v3 (15 M Cache, 3.50 GHz) and 32 GB RAM.
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This holds for all four scoring rules. One potential reason for this finding might be
the fact that the MNLTVP1_c model assumes generic covariate effects (i.e., homoge-
neous across brands), and in case of brand-specific covariate effects, a different picture
might be obtained. We extend our comparison to such models in Sect. 3.4.4.13 Based
on the ARMSEmeasure the model with time-varying brand intercepts (MNLTVP1_i)
performs de facto as good as the model where all parameters are allowed to vary over
time (MNLTVP2).

A real test whether the flexible MNL models actually outperform the standard
MNL model consists of a comparison of model performances in holdout (validation)
samples. Here, all tendencies observed in the estimation sample are confirmed. In
particular, there is an improvement in predictive validity for all time-varying parameter
MNL models over the standard MNL model. Furthermore, the fully time-dependent
MNLTVP2model provides the highest predictive validity according to all scoring rules
(compared to the standard MNL with a relative improvement of still 1% for the log-
likelihood and an absolute improvement of 0.45 in theARMSEmeasure, for example).
Again, the gain in predictive validity is higher when allowing for time-varying brand
intercepts instead of (generic) time-varying covariate effects only.

Using information criteria for assessing the model fit provides somewhat different
results.WhereasAIC supports a highermodel complexity and favors as before themost
complexMNLTVP2model, the BIC instead tends to the standardMNLmodel without
time-varying parameters. This conflicting finding can be explained by the fact that the
BIC penalizes the complexity of a model much more strongly by considering (among
others) the sample size for the penalty term, which is very large in our case. Since
the out-of-sample performance also improves considerably for all models with time-
varying parameters, we conclude that accounting for time-varying parameters pays
off in the ground coffee category and that changes in consumer behavior over time are
obviously inherent to the data. Stated otherwise, we believe that the penalization via
BIC is too strong in our context.

Figure 2 depicts estimated coefficients, with calendar time τ (in weeks) on the hor-
izontal axis and estimated coefficients for brand intercepts or covariate effects on the
vertical axis. The solid lines represent point estimates of the most flexible MNLTVP2,
whereas the dashed lines refer to the constant coefficients from the estimated standard
MNL model. Also shown are the 95% pointwise confidence intervals (shaded inter-
vals) for the time-varying parameters. For the brand intercepts, we use the same range
of scale for the y-axis to facilitate comparisons and further plotted the zero line cor-
responding to the intercept of brand 1 which constitutes the reference brand. Hence,
the variation of the reference brand over time is implicitly included in the intercepts
of brands 2 to 5.

The top four diagrams show the estimated brand intercepts for the coffee brands
2 to 5. Concerning the time-varying intercepts of coffee brands 2 and 4, we obtain
rather smooth curves suggesting long-term trends in the development of the intrinsic
brand utilities. Specifically, while the brand intercepts of brands 1 and 2 were almost
on the same level at the beginning of the year, the intrinsic utility of brand 2 increased
during the first half of the year and then stabilized at this higher level toward the

13 We thank one reviewer for suggesting this model extension.
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Fig. 2 Parameter estimates (MNL versus MNLTVP2)

end of the year. Also, brand 4 slightly gains in brand utility compared to brand 1 in
the second half of the year (after a loss in utility in the first half of the year). If the
firm offering brand 1 would be aware of those developments early enough, it could
react in due time to strengthen its own position or at least to prevent a further loss in
consumer preference. For coffee brands 3 and 5, in contrast, we obtain a completely
different pattern regarding the evolution of the brand intercepts. The estimated curves
are very wiggly and reveal a lot of short-term fluctuations. Analyzing the local up- and
downturns in time, we found that the most distinct local minima of the curves occurred
in the run-up to (i.e., one or two weeks before) important festive occasions like Easter
(week 14), Pentecost (week 21), or Christmas (week 51). This indicates that coffee
brands 3 and 5 are not perceived to be first class brands for festive days. Furthermore,
the intrinsic utilities of those brands are lower than that of brand 1 (the reference brand)
almost throughout the year. Thebottom four diagrams refer to the covariates included in
the model. The estimated coefficients for refprice and loss show the expected negative
signs and the estimated coefficient for gain the expected positive sign throughout the
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observation period. The (negative) reference price coefficient decreases over the year
indicating an increasing price sensitivity of consumers. This increased price sensitivity
comes along with an increasing responsiveness toward gains (at least in the first and
last 4 months in the year) and a decreasing responsiveness toward losses. We assign
the increased price sensitivity of consumers to an overall decreasing price level for all
five coffee brands over the year. We further find asymmetric reference price effects for
gains and losses. For example, toward the end of the year, we observe an increasing
responsiveness concerning gains but a decreasing responsiveness concerning losses.
An explanation for this asymmetry is that decreasing price levels for brands over time
involve increased gains for consumers. The result of an increased price sensitivity
also coincides with our finding of a decreasing impact of brand loyalty on choice
probabilities.

A comparison with the estimated parameters of the standard MNL model reveals
that the constant parameters of the MNL model can be considered as average values
of the time-varying parameters of the MNLTVP2 model. We conclude that models
with time-varying parameters fit and predict the data better compared to models with
constant parameters (except for BIC) and that the resulting parameter trajectories are
informative and insightful.

3.4.2 Further benchmark MNLmodels

The discussion of results in the previous subsection has revealed that (a) seasonal
effects play a major role in the coffee category (brands 3 and 5) and (b) time-varying
brand intercepts have a larger impact on model fit (in- and out-of-sample) than time-
varying covariate effects. Therefore, we next compare the results of the previously
most flexibleMNLTVP2model with simpler, but still dynamic benchmarkmodels that
explicitly account for seasonal effects or exclude time-varying covariate effects. Firstly,
we estimate an MNL model with constant parameters but with brand-specific dummy
variables for the seasonal effects of Easter, Pentecost, and Christmas (MNLS). This
model is readily applicable because the corresponding dates for the festive occasions
are known a priori. The MNLS model should be a reasonable benchmark candidate
because, as discussed above, seasonal effects seem to differ across brands. Hence,
brand-specific dummies are an option to capture seasonal effects per brand. Further-
more, we estimate the model of Baumgartner (2003), referred to asMNLTVPB, which
is comparable to ourMNLTVP1_i as it alsomodels time-varying brand intercepts non-
parametrically. However, it employs a different form of splines (i.e., thin-plate splines
instead of P-splines) and uses a different estimation strategy (i.e., a grid search over
all possible values for the degrees of freedom, and conditional on a particular value for
the degrees of freedom the iterative algorithm of Abe (1999) for estimating the brand
choice model as a generalized additive model). Lastly, we calibrate an MNL model
with brand–week fixed effects (MNLTVPFE). Hence, brand intercepts are allowed to
vary weekly without any restrictions. The latter model represents the most flexible
model for the brand intercepts, and we expect this model to suffer from overfitting,
which should be reflected by a worse out-of-sample performance. Table 3 summarizes
the comparison of these four models.
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Table 3 Model comparison (MNLTVP2, MNLS, MNLTVPB, and MNLTVPFE)

MNLTVP2 MNLS MNLTVPB MNLTVPFE

Runtime (s) 6847.00 52.00 216.00 143.00

Number of
parameters

79.36 12.00 169.00 204.00

Estimation

Log-likelihood −13,589.72 −13,803.76 −13,462.03 −13,392.49

Brier score −6809.23 −6909.02 −6748.54 −6717.69

Spherical score 12,165.75 12,102.79 12,209.88 12,232.83

ARMSE (market
shares)

2.45 3.23 1.29 0.00

AIC 27,338.20 27,631.50 27,262.10 27,193.00

BIC 27,948.90 27,723.90 28,562.50 28,762.70

Validation

Log-likelihood −13,832.61 −13,943.01 −13,760.02 −13,764.83

Brier score −6876.81 −6928.45 −6828.61 −6829.84

Spherical score 12,125.25 12,092.75 12,161.77 12,161.62

ARMSE (market
shares)

2.75 3.03 2.16 2.19

Bold values indicate the best model within a scoring rule or information criterion. The reported runtime for
the MNLTVPB model refers the single run with 42 df for each brand intercept. The runtime including the
search over all possible df values (i.e., 1–50) takes more than 2 h

First of all, the MNLS model with parametric seasonal effects fits the data clearly
better in- and out-of-sample as compared to the staticMNL (cf. Table 2, but worse than
the MNLTVP2). This indicates that the seasonal effects are indeed important for the
choice of coffee brands. On a side note, the estimates for the seasonal effects are−0.42
(se�0.16) for brand 2, −0.85 (se�0.11) for brand 3, −0.33 (se�0.11) for brand 4,
and −1.34 (se�0.16) for brand 5. Hence, we here also find statistically significant
seasonal effects for brands 2 and 4 (compared to the reference brand 1). The seasonal
effects are, however, strongest for brands 3 and 5, replicating the results of the flexible
models in Sect. 3.4.1. Also, note that the MNLS model has a better AIC and BIC than
the standard MNL model without seasonal effects. Second, the MNLTVPB model of
Baumgartner (2003) showed the best out-of-sample fit regarding the log-likelihood
for 42 degrees of freedom, and hence, we only refer to the results conditional on this
df value in Table 3. Most interestingly, this model clearly outperforms the proposed
MNLTVP2 model. This finding indicates that the MNLTVP2 model with only 40
knots might not be flexible enough to capture the variation in brand intercepts for the
coffee data. Also, it might be the case that the choice of the degree of the splines (i.e.,
cubic splines) or the order of penalization (i.e., the second-order penalty) limits the
flexibility. We will explore both points in the next subsections. Third, theMNLTVPFE
model with brand–week fixed effects shows by far the best in-sample fit, as expected.
In particular, it has an ARMSE value of 0 because it can perfectly fit the aggregated
data (i.e., market shares) on the brand/week level. Out-of-sample it performs, however,
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Fig. 3 Parameter estimates (MNLTVPFE versus MNLTVP2)

marginally worse than theMNLTVPBmodel of Baumgartner (2003) which shows the
best predictive performance across all four models. The results for the information
criteria resemble those of Table 2. While the AIC favors the model with the largest
number of parameters (MNLTVPFE), the BIC tends to the most parsimonious model
(MNLS).

Figure 3 contrasts the estimated time-varying brand intercepts resulting from the
MNLTVP2 model with those obtained from the MNLTVPFE model. We abstain
from depicting the trajectories of the brand intercepts for the model of Baumgart-
ner (MNLTVPB), since the latter virtually coincide with those of the MNLTVPFE
model. As expected, the fixed-effects MNL model has very volatile brand intercepts.
This holds not only for brands 3 and 5, where the results are quite similar compared
to the estimates of the MNLTVP2 model, but also for brands 2 and 4. While the
MNLTVP2 model captures the long-term trends in intrinsic brand utilities, the fixed-
effects model now also fits extreme week-to-week variation. However, we cannot find
any additional meaningful seasonal patterns for those two brands.

3.4.3 Sensitivity analysis: number of knots, degree of spline, and order
of penalization

The P-splinemodels used so far (MNLTVP1_i,MNLTVP1_c,MNLTVP2)were based
on 40 knots in a datasetwith 50 distinct time periods.As described before,we think that
this default setting works well in applications of time-varying models using scanner
panel datasets of typical dimensions for two reasons: Through the penalization, the
risk of overfitting is low, and the rather high number of knots enables the model
to be flexible enough to detect reasonable parameter variation over time. However,
the number of knots can influence the results, and therefore, we vary the number of
knots next to gain more profound insights regarding this sensitivity. In particular, we
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Fig. 4 Parameter estimates (MNLTVP2_10 versus MNLTVP2 _50)

re-estimate the best-performing model from Sect. 3.4.1 (the MNPTVP2 model) in
addition with 10, 20, 30, and 50 knots. In order to save space, we only focus on the
most extreme specifications (i.e., 10 and 50 knots) in the following.14

The estimated paths for the time-varying parameters of both models are depicted
in Fig. 4. Interestingly, the main differences between the MNLTVP2 models with 10
and 50 knots almost exclusively apply to the intercepts of brands 3 and 5; all other
time-varying effects turn out highly similar. This demonstrates that cubic P-splines
are quite robust against too much variation and provide rather conservative estimates
(50 knots, brands 2 and 4). On the other hand, specifying too few knots in case of
actually volatile parameter paths provides too smooth trajectories that are not able to
capture the short-term fluctuations (10 knots, brands 3 and 5). Of course, a higher
number of knots involve longer computational times for estimation (cf. Table 4). For

14 We thank one reviewer for suggesting this sensitivity analysis. The full results are available from the
authors upon request.
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Table 4 Model comparison (MNLTVP2_10, MNLTVP2_50, MNLTVP3_cubic/p1, MNLTVP3_zero/p2,
and MNLTVP4)

MNLTVP2_10 MNLTVP2_50 MNLTVP3
_cubic/p1

MNLTVP3
_zero/p2

MNLTVP4

Runtime (s) 314.00 8790.00 12,659.00 11,888.00 21,511.00

Number of
parameters

34.07 86.62 123.23 109.49 191.86

Estimation

Log-likelihood −13,755.42 −13,564.23 −13,496.59 −13,505.14 −13,343.83

Brier score −6884.88 −6797.61 −6767.22 −6772.29 −6697.64

Spherical score 12,113.47 12,173.90 12,193.18 12,190.06 12,239.18

ARMSE (market
shares)

3.20 2.29 2.01 1.89 1.19

AIC 27,579.00 27,301.70 27,239.70 27,229.20 27,071.40

BIC 27,841.10 27,968.30 28,187.90 28,071.70 28,547.70

Validation

Log-likelihood −13,921.03 −13,812.26 −13,770.12 −13,776.89 −13,703.06

Brier score −6923.76 −6866.55 −6845.53 −6849.04 −6811.07

Spherical score 12,090.50 12,132.33 12,145.39 12,144.06 12,168.31

ARMSE (market
shares)

3.15 2.68 2.51 2.52 2.14

Bold values indicate the best model within a scoring rule or information criterion

this reason, we do not recommend to start with the maximum number of knots (in
particular if the number of weeks in the dataset is	50).

Table 4 (columns 1 and 2) shows the fit and predictive validity statistics for the
models. The numbers in Table 4 indicate that more knots lead to a better performance
of the MNLTVP2 model both in- and out-of-sample. Consequently, the model with
50 knots has the best fit (also compared to the version with 40 knots, cf. Table 2), but
also the model with only 10 knots slightly outperforms the standard MNL model with
time-constant parameters in all four scoring rules (cf. Table 2). Therefore, accounting
for time-varying effects seems crucial for the dataset at hand. As before, the AIC
supports the most complex model (50 knots), while the BIC tends to the least flexible
model (10 knots).

Please note that the performance measures are worse compared to both the model
of Baumgartner (MNLTVPB) and the brand–week fixed-effects model (MNLTVPFE)
even when using 50 knots (cf. Table 3). This is interesting because these two models
only allow for time-varying brand intercepts. Stated otherwise, even though a higher
number of knots increase the performance in- and out-of-sample, the MNLTVP2
model with 50 knots still lacks some flexibility that the models above provide. For
this reason, we now analyze the impact of two additional settings for P-splines: the
degree of the spline and the order of penalization. All subsequent models discussed in
this subsection are specified with 50 knots.
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Table 4 summarizes in columns 3 to 5 the estimation and validation results of
three additional models: the MNLTVP2 model with cubic splines but first (instead of
second)-order penalization (MNLTVP3_cubic/p1), a model with zero-degree (instead
of cubic) splines and second-order penalization (MNLTVP3_zero/p2), and a model
with zero-degree splines and a first-order difference penalty (MNLTVP4). The latter
model corresponds to a state-space model with random walk parameter dynamics.15

Again, we observe that still higher model flexibility pays off: The most flexible
MNLTVP4 model clearly outperforms all other model specifications across all per-
formance measures, in particular out-of-sample. As before, the AIC supports the most
flexible model (MNLTVP4), while the BIC is conservative and tends to the most par-
simonious model (MNLTVP2). A comparison with Table 3 further reveals that the
MNLTVP4 model now outperforms both the model of Baumgartner (MNLTVPB)
and the brand–week fixed-effects model (MNLTVPFE). Importantly, the MNLTVP4
model provides not only a still better in-sample fit than theMNLTVPFEmodel (except
for ARMSE), but also a somewhat better out-of-sample fit than the model of Baum-
gartner (MNLTVPB).

Figure 5 contrasts the time-varying parameter estimates obtained for theMNLTVP4
model with those resulting from the MNLTVP2 model with 50 knots. Concerning the
brand intercepts (see the top four diagrams), we observe highly similar parameter paths
for brands 3 and 5. For brands 2 and 4, the MNLTVP4model identifies more “wiggly”
parameter paths, similar to the MNLTVPFE model (see Fig. 3). However, a closer
look reveals that the amplitudes of the parameter evolutions based on the MNLTVP4
model are considerably lower. Hence, even though the very flexible MNLTVP4model
captures weekly variation in the brand intercepts for brands 2 and 4, themodel does not
overfit due to its excellent out-of-sample performance at the same time (see Table 4).

Thebottom four diagrams show the time-varyingparameters of the covariate effects.
While the trajectories for the refprice and loyalty effects are very similar for both mod-
els, gain and loss effects turn outmore volatile for theMNLTVP4model. Nevertheless,
for these two covariates, the parameter paths of the less flexible MNLTVP2 at least
capture the general courses of the trajectories (i.e., the long-term trends) obtained by
the MNLTVP4 model. Importantly, except for some single weeks for the loss effect,
the trajectories of theMNLTVP2model for both gain and loss effects always lie within
the 95% pointwise confidence intervals of the MNLTVP4 model.

3.4.4 Alternative-specific effects of covariates

Finally, we now analyze models with alternative-specific effects of covariates. The
motivation for this model extension is based on the observation that accounting for
time-varying generic covariate effects so far improved the model performance only
marginally as compared to a model with time-varying brand intercepts only (see
Table 2).16 Accommodating brand-specific covariate effects seems reasonable if con-

15 We have further estimated corresponding model versions with time-varying brand intercepts only and
with time-varying covariate effects only. However, these versions showed a worse performance (in- and
out-of-sample), thus replicating the order of models as in Sect. 3.4.1. Results are available from the authors
upon request.
16 We thank one reviewer for pointing us to this model extension.
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Fig. 5 Parameter estimates (MNLTVP2 versus MNLTVP4)

sumers have different reference price effects for different brands, or if loyalty effects
of consumers differ by brand. Note that in nearly all applications of brand choice mod-
els in marketing only “generic” parameters for brand-specific covariates (e.g., price
or loyalty) have been estimated, and to the best of our knowledge, no brand choice
model with flexibly estimated brand-specific time-varying covariate effects has been
published yet.

In particular, we compare the following models with alternative-specific covariate
effects: the standard MNL model (MNL_b), the MNL model with seasonal dummies
(MNLS_b), the flexible time-varying parameter model based on cubic splines, second-
order penalization, and 50 knots (MNLTVP2_b), aswell as themodelwith zero-degree
P-splines, first-order penalization, and also 50 knots (MNLTVP4_b). Remember that
the MNLTVP4 model with generic effects of covariates is so far the best-performing
model, as far as the four scoring rules and theAICare concerned (cf. Table 4).However,
the MNLTVP2 model also performed well and provided smoother parameter paths
(evenwith 50 knots)which are easier to interpret and have smaller confidence intervals.
In Table 5, we summarize the results.
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Table 5 Model comparison (MNL_b, MNLS_b, MNLTVP2_b, and MNLTVP4_b)

MNL_b MNLS_b MNLTVP2_b MNLTVP4_b

Runtime (s) 52.00 58.00 19,716.00 24,523.00

Number of
parameters

24.00 28.00 157.02 339.77

Estimation

Log-likelihood −13,675.47 −13,626.09 −13,300.00 −12,913.61

Brier score −6837.11 −6814.44 −6658.45 −6471.47

Spherical score 12,149.28 12,165.41 12,261.14 12,384.12

ARMSE (market
shares)

3.44 3.23 2.50 1.25

AIC 27,398.94 27,308.18 26,914.00 26,506.80

BIC 27,583.62 27,523.63 28,122.30 29,121.20

Validation

Log-likelihood −13,829.02 −13,796.42 −13,663.03 −13,438.08

Brier score −6860.88 −6847.05 −6775.68 −6658.08

Spherical score 12,132.78 12,142.42 12,186.48 12,264.61

ARMSE (market
shares)

3.18 3.02 2.75 2.08

Bold values indicate the best model within a scoring rule or information criterion

Estimating alternative-specific effects for the covariates improves the statistical
performance of all model variants as compared to their counterparts with generic
covariate effects (except for the ARMSE statistic in some cases). Because this also
holds out-of-sample, we conclude that the models with alternative-specific effects
of covariates do not suffer from overfitting, too. Further note that the MNLTVP2_b
model provides a better in- and out-of-sample performance as compared to the pre-
viously best-performing MNLTVP_4 model w.r.t. all individual-level scoring rules
and regarding the AIC and BIC. On the other hand, the MNLTVP_4 model shows a
better ARMSE performance. A potential reason for this might be that the additional
short-term parameter variation enabled by the MNLTVP_4 model works exception-
ally well for aggregate predictions, whereas the brand-specific effects in combination
with smoother time trends, as provided by the MNLTVP2_b model, work better
on the individual level. However, the most flexible model with alternative-specific
covariate effects, the MNLTVP4_b, is now the model with the overall best fit and
predictive performance. Consistently, the AIC again supports the most flexible model
(MNLTVP4_b), while the BIC tends to the muchmore parsimoniousMNLS_bmodel.
Across all model comparisons, the MNLTVP4_b shows the best AIC, whereas the
MNLS_b the best BIC. Also, as expected, because of the very large number of param-
eters to be estimated, models with alternative-specific covariate effects needmore time
for estimation.

Next, we turn to the estimated parameter paths to get a better understanding of
the consequences of modeling brand-specific covariate effects. We proceed in two
steps: in Fig. 6, we first compare the parameter paths obtained from the MNLTVP2
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Fig. 6 Parameter estimates (MNLTVP2 versus MNLTVP2_b)

and MNLTVP2_b models to illustrate what happens if a model with initially generic
covariate effects is extended to account for alternative-specific covariate effects. After
that, we compare the MNLTVP2_b and the overall best-performing MNLTVP4_b
models in Fig. 7.

On the one hand, the estimated paths of both models are often quite similar (e.g.,
refprice of brand 5, gain of brand 3, loss of brand 4, or loyalty of brand 5). In all these
cases, the parameter paths obtained from theMNLTVP2_b model are almost identical
as compared to the generic covariate effects resulting from the MNLTVP2 model. On
the other hand, differences between the two models become evident. The alternative-
specific loss effect for brand 5 shows a decreasing trend (it becomes stronger over
time), while the generic loss effect has a positive slope. Also, the alternative-specific
loss effect for brand 2 now turns out very volatile and nonmonotonic which is harder
to interpret. It is further not significantly different from zero for many time periods.
Moreover, in some cases, the estimated alternative-specific effects turn out (almost)
constant over time (e.g., the loyalty effect for brand 4). Intuitively, the generic covariate
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Fig. 7 Parameter estimates (MNLTVP2_b versus MNLTVP4_b)

effects seem to be a weighted average of the alternative-specific effects, where larger
brands seem todominate the “average” shape (see, e.g., the gainparameters for brands 1
and 3, or the loyalty effects for brands 2 and 3). In addition, also the averagemagnitude
of the effects varies in some cases. For example, the alternative-specific loyalty effect
for brand 2 is above average, whereas brands 1 and 3 have lower alternative-specific
loyalty effects as compared to the generic loyalty effect. Also, the alternative-specific
loss effect for brand 1 is stronger than the average effect predicted by the MNLTVP2
model. The estimated intercepts of both models are very similar for brands 2 and 5.
However, the intercept of brand 3 (brand 4) shows considerably less (more) variation
over time in theMNLTVP2_bmodel. Therefore, because now brand-specific covariate
effects are added, brand-specific intercepts of the model can adapt, too.

Figure 7 finally contrasts the estimated parameter trajectories of the MNLTVP2_b
and MNLTVP4_b models. We observe parallels to Fig. 5; either the shapes virtually
coincide (e.g., see the intercepts for brand 4 and 5, the reference price effects for brands
2 and 3, the gain and loss effects for brand 2, or the loyalty effects for brand 1), or in
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cases where the more flexible model (MNLTVP4_b) provides more volatile parameter
paths, the less flexible model (MNLTVP2_b) still captures the general courses of the
more wiggly trajectories by more smooth parameter evolutions (e.g., see the intercepts
for brands 2, 3, and 4, the reference price effects for brands 1 and 5, the gain effects for
brands 1 and 3, the loss effects for brand 1, or the loyalty effects for brand 3). Except
for only a few weeks across all intercepts and covariates, all parameters paths of the
MNLTVP2_b model lie within the corresponding 95% pointwise confidence intervals
of theMNLTVP4model. Therefore, even though theMNLTVP4_bmodel outperforms
the MNLTVP2_b model both in- and out-of-sample, the substantive insights are quite
similar.

3.4.5 Overall comparison

In the preceding sections, we have comparedmanymodels and followed a step-by-step
model building process (Leeflang et al. 2015). Even though the proposed approach is
entirely data driven and explorative in the sense that the user does not have to decide
a priori about the shapes of the time-varying parameters or the amount of smoothing,
still multiple optional model settings are available (i.e., the number of knots, degree
of the spline, order of penalization).

The comparisons have revealed that models with time-varying parameters perform
better than the static versions for our coffee data. In particular, brand intercepts vary
substantially over time, and for some coffee brands, several models clearly suggested
the presence of seasonal effects at (or before) important festive occasions like Easter
(week 14), Pentecost (week 21), or Christmas (week 51). This knowledge by augment-
ing the standard MNL model by dummy variables is used to capture those seasonal
patterns, improved fit, and predictive validity. However, because our semiparametric
time-varying parameter models revealed additional time variation in all parameters
(i.e., for brand intercepts and covariate effects), they outperformed the MNL model
with seasonal effects easily. The resulting parameter paths also provide interesting
insights for marketing managers because changing brand preferences, varying sensi-
tivities w.r.t. perceived price constructs, or time-varying brand loyalty effects imply
different optimal marketing mix strategies for retailers as compared to a situation with
constant parameters over time.

Because of the large cross section in our data with more than 4000 households,
we next analyzed whether the data support still more complex models, in a first step
for time-varying brand intercepts only. Specifically, we estimated the thin-plate spline
model of Baumgartner (2003) as well as a parametric MNL model with brand–week
fixed effects. Bothmodels turned out to be highly flexible and outperformed our default
cubic P-spline model with time-varying brand intercepts and covariate effects. As a
consequence, we further increased the flexibility of models within our P-spline frame-
work by using more knots, zero-degree splines, and a first-order penalization. Indeed,
the best-performing model so far was now a model that mimics a state-space choice
model with random walk parameter dynamics. This model provided parameter paths
with a lot of variation over time and did not suffer from overfitting, as indicated by its
very good out-of-sample performance. Nevertheless, many of the estimated parameter
paths revealed similar shapes across the diverse model specifications, thereby suggest-
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ing comparable insights acrossmodels. Differences occurmainlyw.r.t. the smoothness
of the shapes, only seldom w.r.t. the general courses of the parameter evolutions. This
underlines not only the robustness of the estimation results but also the robustness
of the proposed P-spline approach for estimating time-varying parameters in brand
choice models.

Finally, extensions with alternative-specific covariate effects led to a further
improvement in fit and predictive performance and provided in some instances interest-
ing additional insights for specific brands, too. The most flexible model specification
overall (as many knots as time periods, zero-degree splines, first-order penalization,
alternative-specific covariate effects) provided the best in- and out-of-sample perfor-
mance, although the resulting parameter paths are mostly very similar in their general
course (but much wigglier) as compared to the less flexible counterpart model with
cubic splines and second-order penalization.

Overall, we conclude that for the analyzed coffee dataset parameter dynamics are
indeed present and important for understanding the brand choice behavior of the
households (see also the next subsection for specific managerial implications). In our
particular case, we find that very flexible specifications worked best. However, the
coffee dataset is quite large and given that the simpler semiparametric models yielded
comparable parameter paths, we generally recommend to start the modeling process
with a medium number of knots (e.g., 40), cubic splines, second-order differences for
penalization, and generic effects of covariates (i.e., MNLTVP2). This should lead to
a first clear impression whether parameter dynamics are relevant for the dataset at
hand. If this model performs well (i.e., providing reasonable parameter paths, and no
overfitting), we advise modelers to try even more flexible specifications and to check
whether estimation results remain plausible and meaningful and whether in particular
the out-of-sample performance can be further improved.

Besides model fit, other criteria can be relevant (e.g., applicability). More complex
models need more time for estimation and the range in our application for the coffee
data spans from a few seconds to several hours.

3.5 Managerial implications

Instead of overall fit and predictive validity statistics, retailers or brand managers may
be more interested in findings at the brand level and improvements from applying a
more complex model. Figure 8 displays barplots with in- and out-of-sample RMSE
values regarding market shares (based on brand purchases) for each coffee brand and
reveals to which extent the brands benefit from the higher flexibility of the MNL
models with time-varying parameters. We compare the standard MNLmodel with the
best-performing MNLTVP4_b model.

As expected, the more flexible MNLTVP4_b model yields an improved in-sample
fit for all individual brands, with errors in estimated market shares not larger than 2.22
market share points across brands and of about only 1 percentage point for brands 2 to
5. The highest improvement of a 3% better RMSE value (in absolute terms) is obtained
for coffee brand 3, one of the two brands with the largest fluctuations in the brand inter-
cepts. The plot also indicates a better predictive validity of theMNLTVP4_bmodel for
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Fig. 8 RMSE at the individual brand level (MNL versus MNLTVP4_b)

Fig. 9 Actual and predicted market shares (illustrated for coffee brand 3)

all brands, with improvements in RMSE over the standard MNL ranging from about
0.5 up to stately 1.75 market share points, with the highest absolute improvements
for brands 1 and 3 here. Note that the MNLTVP4_b model not only fits and predicts
individual market shares better, but the errors also show less variation across brands.
Further, the RMSE values of the MNL model turn out smaller (larger) for brands with
low (high) market shares (see Table 1). For a retailer, this is not preferable, because
the applied model should work well for a wide variety of brands in the assortment.
The dynamic MNLTVP4_b model also works better in this point. The RMSE results
at the brand level confirm our aggregate level results on model performance for the
coffee data for these two models (cf. Tables 2 and 5).

Figure 9 contrasts actual market shares (solid lines) and market shares predicted
fromboth theMNLTVP4_bmodel (dashed lines) and the standardMNLmodel (dotted
lines) in the holdout sample. The plot refers to coffee brand3,which shows a substantial
improvement in the predictive validity when allowing for time-varying coefficients.
Here, the MNLTVP4_b model often provides more accurate predictions in weeks
where fluctuations in market share are particularly large (e.g., weeks 28/29, 32, 39/40,
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44, and 46/47). The plot further confirms that the low intrinsic utility of brand 3
in weeks surrounding festive occasions (cf. Fig. 2) coincides with very low market
shares of this brand at these times [compare the vertical gray lines for Easter (week
14), Pentecost (week 21), and Christmas (week 51)]. In general, we observe for all
coffee brands that especially large variations in market shares are better predicted by
the MNLTVP4_b model.

Figure 9 also reveals that the standard MNL model seems to be able to predict the
general variation in market shares quite well; however, it is not capable of catching the
strong amplitudes of the market share fluctuations. Hence, the lack of fit stems from
an underestimation of the variability in market shares, which can lead to problems
for retailers because of potential out-of-stock situations (underpredicted demand) or
wasted shelf space (overpredicted demand).

Besides more accurate demand predictions, which help retailers with inventory
management, shelf space allocation planning, and preventing out-of-stock situations,
the models with time-varying parameters also provide relevant insights regardingmar-
keting mix strategies. For instance, all models with generic time-varying covariate
effects estimated decreasing effects of brand loyalty over time (see Figs. 2, 4, 5, and
this also holds for many brands and weeks for the time-varying parameter models
with alternative-specific effects, see Figs. 6 and 7). Given that brand loyalty values
are more or less stable (which is the case for the present coffee dataset), this implies
that it becomes easier for retailers to stimulate households to switch brands which
has direct implications for optimal pricing strategies. Dubé et al. (2009) found that
as brand loyalty increases optimal prices either rise or fall depending on the relative
strengths of the harvesting (i.e., high regular prices) and the investment motives (i.e.,
deep price promotions) of the retailer’s category manager. Furthermore, changes in
gain and loss effects also lead to alternative optimal pricing plans (Kopalle et al. 2012).
As gain effects increase (see, e.g., Figs. 2, 5), price promotions become more effective
because households react stronger to savings from (temporarily) lower prices. At the
same time, when loss effects decrease in absolute terms (again, see Figs. 2, 5), the
negative effect of a subsequent increase from the promotion price back to the regu-
lar price is also smaller. Note, however, that a change in behavior would also imply
a change in reference prices [see Eq. (11)] and hence for specific implications the
dynamic pricing problem of the retailer has to be solved.

Overall, our findings suggest the use of time-varying parameter models and should
encourage firms and managers to adopt more flexible models to detect such time-
varying effects. Nevertheless, it is important to note some limitations of our study
which may have an influence on the relative performance of the less complex
parametric MNL models versus the more sophisticated flexible time-varying MNL
specifications. First, measurement errors are inherent to marketing data and the mag-
nitude ofmeasurement errorsmight be larger than the improvements achieved bymore
complex models. This holds in particular when differences in fit or predictive perfor-
mance between models are not huge, as observed in our empirical study especially for
errors in market share predictions in some cases (e.g., compare the rather small dif-
ferences in RMSE values in the validation sample between the parametric MNL with
brand–week fixed effects and the more sophisticated P-spline MNL models). Second,
although we accounted for multiple pack purchases of households in a given week
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and not only for brand choice in a multinomial sense, we still neglect kinds of primary
demand effects like choosing different pack sizes. And third, our coffee dataset covers
only 75% of all purchases of national coffee brands during the considered time span.
Thus, whether it is reasonable to employ amore complex approach depends ultimately
on the empirical data at hand, and careful model comparisons are always in order.

4 Future research

We see several avenues for further research: (1) Of course, applications to other
product categories are necessary to provide empirical generalizations about time-
dependent effects in consumer choice behavior. (2) Further, an important step would
be to incorporate unobserved consumer heterogeneity in our approach. Although a
few approaches have already considered heterogeneity and dynamics by additively
decomposing parameter variation into time variation and cross-sectional heterogene-
ity (Kim et al. 2005; Lachaab et al. 2006; Guhl et al. 2018), more interesting would be
to decouple those two dimensions to accommodate individual household parameter
evolutions. (3) Instead ofMNL-based time-varying parameter models, it would also be
interesting to apply MNP models that relax the IIA assumption. However, the estima-
tion of a flexible probit model using the proposed P-spline framework would require a
huge computational effort and might be intractable. (4) It would further be interesting
to consider modeling other types of limited dependent variables within our frame-
work, such as including time-varying parameters in purchase incidence and quantity
choice (sub)models in order to account for primary demand effects. (5) According to
the BIC, simple models with constant parameters should be preferred, even though
these models did not perform well in the validation sample. Hence, it seems a fruitful
area for future research to study the usefulness of the BIC for model selection in the
case of models with time-varying parameters.
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