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Abstract Before reaching the store, products generally flow through the retail distri-
bution system as larger bundles, the so-called case packs (CP). In several studies these
case packs have been identified as having a significant impact on distribution logistics
efficiency. In this paper we develop a quantitative model and solution approach deter-
mining optimal case-pack sizes for non-perishable products in grocery retailing. The
model captures the relevant operative cost drivers along the internal supply chain of a
large bricks-and-mortar retailer. It explicitly represents each day of the retailer’s busi-
ness week, where the replenishment doctrine considered generalizes the well-known
periodic review reorder point (r, s, ng) policy as a stationary cyclic version. Exact
and approximate methods are developed to evaluate the costs of a model instance. In
addition, an optimization procedure is outlined that uses either exact or approximate
methods to identify optimal and near-optimal CP sizes for a single store as well as for a
network of multiple stores to be operated with one common CP. Applied to real-world
examples of a large European retail chain, the methods reveal average cost improve-
ment potential of more than 20% by adjusting the CP sizes that are currently in use.
The approach presented is thus shown to be a valuable addition to any integrative retail
supply chain planning system. Its results are directly applicable to retail practice.

Keywords Retail operations - Case-pack size - Inventory - Distribution system

B Heinrich Kuhn
heinrich.kuhn @ku.de

Thomas Wensing
thomas.wensing@ku.de

Michael G. Sternbeck
michael.sternbeck @ku.de

Department of Operations, Catholic University of Eichstitt-Ingolstadt, Auf der Schanz 49,
85049 Ingolstadt, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-018-0515-5&domain=pdf

914 T. Wensing et al.

1 Introduction

European bricks-and-mortar grocery retail companies are operating in an ever more
competitive environment. This is mainly the result of two market trends. First,
consumers are increasingly expecting higher standards. Second, persistent market
consolidation can be observed in the grocery sector. This leads to better purchasing
conditions for retailers, resulting in lower retail sales prices, which again intensifies
competition (McCarthy-Byrne and Mentzer 201 1; Kuhn and Sternbeck 2013). In such
a market environment, retail operations efficiency plays an important role in surviving
and operating profitably in a market with traditionally low margins. The topic of this
study, i.e., the optimization of case-pack sizes, is one of the promising options for
further increasing operational efficiency in grocery retailing.

Products offered by a grocery retailer generally flow through the associated supply
chain in larger product bundles, i.e., shipping units or case packs (CP). These case
packs are then unpacked in the stores, and the consumer units (CU) inside are stacked
onto the shelf.

A well-designed case pack facilitates the handling of multiple consumer units in the
supply chain and protects the products during picking and transportation (Broekmeulen
etal. 2017). The case-pack size, i.e., the number of consumer units bundled in one case,
also determines the minimum order quantity of a stock keeping unit (SKU) ordered
by a store at the distribution center (DC) and consequently defines the frequency with
which an SKU is part of a store order. Furthermore, case-pack size affects the instore
inventory level. Defining case-pack sizes thus becomes a highly relevant planning
problem in modern grocery retailing that impacts warehouse operations and especially
instore logistics (Ketzenberg et al. 2002; Wen et al. 2012; Kuhn and Sternbeck 2013).
Decisions on case-pack sizes should therefore be considered on a strategic level, or at
least on a tactical decision level (Hiibner et al. 2013).

The aim of the present study is to create an analytical framework that captures the
relevant cost drivers along the internal supply chain of a large grocery retailer and to
provide quantitative decision support for identifying case-pack sizes that maximize the
overall efficiency of operational processes. This study considers the relevant subsys-
tems of a grocery retail chain, i.e., distribution center (DC), transportation system and
instore logistics system. The main focus is on analyzing instore processes, which are
generally recognized to be most affected by the case-pack size in use. The optimiza-
tion approach identifies the optimal case-pack size of a product offered by the retailer.
This is done both from the perspective of a single store and from the perspective of
all stores of the retail chain. In grocery retailing the most common strategy applied is
“one case-pack size for all stores” (Sternbeck 2015).

The paper is organized as follows. In Sect. 2 we refer to the empirical literature
and studies to outline the main cost drivers of logistics processes and describe the
kind of system that we examine. In Sect. 3 we present the literature that relates to the
decision problem considered and outline the contribution of the paper. The insights
of Sect. 2 are then organized and contextualized into an analytical model in Sect. 4.
We elaborate an exact and an approximate method to solve the analytical evaluation
problem (Sects. 5.1, 5.2), and develop an efficient procedure to identify case-pack
sizes that minimize logistics costs (Sect. 5.3). The developed approaches are applied in
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Fig. 1 Subsystems of grocery retail networks

an empirical study on a real-world data set. The results are presented in Sect. 6. Finally,
Sect. 7 concludes our study and gives an outlook on further avenues of research.

2 Problem description

Modern grocery retailers distribute the majority of their product volumes to their stores
via distribution centers. In some cases, cross-docking and direct-to-store delivery are
also used, but these concepts play a subordinate role in grocery retailing (Fernie et al.
2010; Kuhn and Sternbeck 2013). In general, European grocery retailers—including
discounters and full-line supermarkets—operate their own distribution networks con-
sisting of central and/or regional DCs from which stores are supplied with their
complete assortment. We therefore concentrate our analysis on this distribution struc-
ture, which is a widespread network model, even applied by other retail branches in
Europe (Fleischmann 2016). Product distribution via DC consists of three relevant
subsystems: DC operations, transportation and store operations. Figure 1 illustrates
the main associated processes (Sternbeck and Kuhn 2014). These subsystems are ana-
lyzed in the following to identify relevant cost drivers affected by the size of a case
pack.

2.1 DC operations

The subsystem DC comprises all processes that are carried out in the DC, i.e., receipt
of goods, storing products, order picking, and shipping (de Koster et al. 2007). In
terms of operational DC costs these subsystems account for roughly a quarter of the
entire grocery retailers’ operational logistics costs (van Zelst et al. 2009; Kuhn and
Sternbeck 2013). The picking and packing processes are highly affected by case-pack
sizes. Here, case packs and individual products are picked onto roll cages, pallets or
into reusable boxes according to store orders. Picking generally is considered the most
costly activity in a DC, accounting for approximately 55% of operational DC expenses
(Rouwenhorst et al. 2000; de Koster et al. 2007). Depending on the size of the picking
unit, two main picking systems are of particular relevance for retail practice:

(a) Larger cartons and boxes are generally stored on pallets in racks, from which they
are brought to dedicated picking places and manually picked according to the
worker-to-parts principle. The picking and packing processes are nowadays partly
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supported by automatic tray building, automatic palletizing (parts-to-robots), and
foil shrinking. However, manual systems are still very dominant in retail practice,
and are assumed in our study.

(b) Small product units and single consumer units are stored on flow racks or in highly
automated storage-and-retrieval systems. The latter system in particular enables
the picking process to follow the parts-to-worker principle with a dynamic product
provision at the picking places. Single and small product units are usually packed
into reusable boxes that circulate between the DC and the stores.

Typically, we find that case packs supplied by manufacturers are cartons and boxes
containing several consumer units and stored on pallets. However, a case pack may
also consist of only one single consumer unit. Under these circumstances, it could be
considered whether several units of the specific product should be bundled at the DC
due to efficiency reasons.

In our study we focus on a manual picking system as described in (a). DC picking
costs for case packs can be distinguished by a fixed portion per store order and vari-
able portion per individual pick. Assuming a given delivery schedule, i.e., a specific
frequency with which a store receives deliveries from the warehouse (Sternbeck and
Kuhn 2014; Holzapfel et al. 2016), the fixed picking costs are unaffected by the size
of a case pack, but the variable portion is affected. Given a constant product demand
volume, the case-pack size influences the number of cases that have to be picked from
the product’s picking place in the warehouse. The number of case packs demanded
per period therefore influences the picking costs incurred at the DC.

2.2 Transportation

The transportation subsystem summarizes all the processes that are necessary for
bridging the geographical distance between DCs and stores. In grocery retailing, inter-
nal transportation networks are characterized by a few origins (DCs) and numerous
destinations (stores). Generally, transportation between DCs and stores accounts for
roughly 25% of grocery retail logistics costs (van Zelst et al. 2009; Kuhn and Sternbeck
2013).

Transportation costs are mainly driven by fixed costs resulting from the delivery
schedule chosen and the possibility of bundling store deliveries into one delivery tour
(Sternbeck and Kuhn 2014; Holzapfel et al. 2016). The size of a case pack, however,
may possibly influence the packaging density of an outbound pallet or roll cage, which
influences the freight space and number of delivery tours required to fulfill all store
orders. External carriers are usually paid per tour and/or per pallet or roll cage.

Varying its size will change the volume of an individual case pack. The question
thus arises whether the packaging density, i.e., the utilization of a transport pallet,
is influenced by the volume size of different case packs stacked up on a pallet. In
an accompanying unpublished study we therefore analyzed the dependence of the
packaging density of pallets on case-pack size for a sample of 398 mixed pallets
containing 6227 different SKUs packed in cases of 3921 different volumes. The sample
set originates from the case company of the present study and contains pallets loaded
to the maximum and delivered from the DC to three different stores during the time
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horizon of December 2015 to April 2016. We formulated a linear regression model with
case-pack size and case-pack volume as exogenous variables and pallet utilization as
an endogenous variable. The regression analysis on the given sample set shows a weak
correlation between case-pack volume and pallet utilization. The utilization of a pallet
can be increased by 0.0043% if the case-pack volume is increased by 1 1. However, this
result is barely significant (significance level: 1% < p < 5%). In the present study we
therefore assume that transportation costs are unaffected by modifying the case-pack
size of a single product.

2.3 Instore operations

Nearly 50% of the entire logistics costs in grocery retailing occur in the outlets of a
retail company (Simons et al. 2005; van Zelst et al. 2009; Kuhn and Sternbeck 2013).
This is due to the high manual handling effort when placing the associated roll cages or
pallets in front of a shelf, opening case packs, stacking consumer units onto the shelf,
and restocking the shelf with products from the backroom that do not fit onto the shelf
during the initial shelf-filling process. Convinced of their high impact, researchers have
increasingly investigated instore operations in the recent past (see Reiner et al. 2012;
Eroglu et al. 2013; Atan and Erkip 2015, for example), and this is often considered the
operational subsystem with the largest cost savings potential within retail networks
nowadays. Figure 2 illustrates the relevant instore process chain.

The first activity in the store is filling the shelf with the products delivered from
retail DCs. Each case pack on the loading carrier results in efforts related to identifying,
searching for and handling products. Store employees grab the case from a pallet or a
roll cage and identify the SKU. After that, the right slot on the shelf has to be found and
the slot is filled either until the space is exhausted or all units of the case are stocked.

When the new deliveries do not fit onto the shelves, the so-called overflow inventory
(Eroglu et al. 2013) has to be brought into the store’s backroom and stored temporarily
until more shelf space becomes available due to consumer purchases.

_____________________________ :
Event initiating an \

a) “offline” instore replenishment  F-------------
b) “online” instore replenishment |

Fmm—————

Backroom v
Get products Store overflow
from backroom inventory
Sales floor y Yes
product deli R Open ) Remaining [ \
roduct delivery » casepack — Fill shelf products? No-» Done |

Fig. 2 Instore operations process chain
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The case-pack size impacts restocking from the backroom in two ways. First, the
number of overflow events at the time of initially stacking products on the shelf, which
were just received from the DC, is affected as the case-pack size impacts product
delivery frequency. Second, the number of items that do not fit onto the shelf during
this initial shelf stacking process are of course also dependent on the case-pack-size
and determine the number of consumer units that take the way via the backroom onto
the shelf.

Overflow products are considered the source of several problems. First, there are
costs for the handling processes that have to be carried out, mainly internal instore
transportation, sorting and searching, backroom management, and restocking activities
(Erogluetal.2013). Second, backroom inventory and handling increase the operational
complexity, which may result in inventory inaccuracy leading to decreasing store order
quality (Raman et al. 2001a,b; DeHoratius and Raman 2008; DeHoratius and Ton
2015). That is why, third, backroom usage may also lead to higher out-of-shelf rates
(Ehrenthal and Stolzle 2013; Gruen et al. 2002). The process of restocking the shelf
from the backroom is typically organized in two different ways:

(a) Restocking from the backroom is only carried out outside store hours, e.g., at the
end of a sales day or in the morning before the shop opens (van den Berg et al.
1998; Broekmeulen etal. 2017). We denote this restocking process “offline instore
replenishment.” A retailer may prefer restocking shelves from the backroom
outside store hours to avoid the disruption for customers and regular staff. If
special shelf-stackers are employed for stacking the delivery from the DC, another
advantage of this mode is that they can also attend to the backroom restocking
activities and relieve the regular staff of those. However, the disadvantage is
that backroom inventories are out of reach during store hours, which has to be
accounted for when dimensioning the shelf space allocated to a product in order
to guarantee a sufficient service rate.

(b) Restocking from the backroom is carried out during store opening hours, i.e.,
at any time before the stock on the shelf is depleted. This restocking process is
denoted “online instore replenishment.” In this case the regular staff frequently
transfer backroom stock to the shelf during opening hours, avoiding the situation
where a product is in the store but not on the shelf, i.e., “phantom products”
(DeHoratius and Ton 2015). This approach creates more effort than the “offline
instore replenishment” approach, but a higher service level can be achieved with
lower overall stock.

The case company practices the “online instore replenishment” approach. We there-
fore assume this instore restocking policy in the current study and additionally assume
that “phantom products” can always be avoided.

Regarding the general store replenishment policy applied, we consider the case
that time and dimensioning of replenishments is decided on by an automated system
applying a replenishment policy on forecasts based on historic data. For ambient
products, such systems typically use a generalized version of the well-known (r, s, ng)
policy tailored for the special requirements of retail distribution (Kuhn and Sternbeck
2013). The original policy is discussed in textbooks such as Hadley and Whitin (1963),
Zipkin (2000), Axsiter (2006) and more recently Tempelmeier (2011). In the retail
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environment, the original policy is generalized with regard to considering subperiods,
e.g., days of the week, which may exhibit varying customer demand and serve as an
underlying demand pattern for the replenishment process (Broekmeulen and Donselaar
2009; van Donselaar and Broekmeulen 2008). In particular, retail systems may be
replenished at unequal intervals, i.e., on certain days of a week, e.g., on Monday and
Friday. Typically, these delivery patterns are externally predetermined (Sternbeck and
Kuhn 2014; Holzapfel et al. 2016).

We consider a cyclic version of the (r, s, nq) policy that works as follows. Replen-
ishment orders may be placed to the DC on a subset of weekdays or even on all of
them if it is a large store. At the end of each reorder period, the system checks whether
the relevant inventory has dropped to or below the reorder point s, which can differ
from subperiod to subperiod in our setting. If so, the system will order n case packs
of size g so as to raise the relevant inventory above s, but strictly below s + g + 1.

From the instore perspective two more relevant aspects can be derived from the
application of this replenishment policy described with regard to the case-pack size
applied. First, overall instore inventory, i.e., on the shelves and in the backroom, is
dependent on the case-pack size. This is relevant as capital tied in inventories and the
necessary space induce costs. Second, the case-pack size impacts the supply frequency
of a product within the predetermined store delivery pattern. Assuming an online
instore replenishment process this in turn impacts the number of periods in which
instore inventory is close to a minimum stock level or has even undershot it. It is
desirable to always have this minimum stock level on the shelves, even just before
new deliveries arrive. We denote this “display stock” that is intended to ensure a nice
optical impression of the shelf for the customers. The extent to which insufficient
display stock is available is dependent on the case-pack size.

3 Literature

In this section, we first review the literature that explicitly focuses on the retail problem
of selecting appropriate case-pack sizes. Second, we review the methodological liter-
ature to examine whether theoretical models can help us with the design of a solution
approach.

Zheng and Chen (1992) are one of the rare publications considering the optimal
base order quantity, i.e., case-pack size g, of an (r = 1, s, nq) policy. They assume
that s and ¢ are decision variables and develop an efficient algorithm that minimizes
inventory holding, backorder and ordering costs. However, they assume unlimited
backlogging and stationary demands which contradicts the relevant circumstances in
our case. In addition, certain logistics cost drivers, e.g., backroom activities, are not
reflected.

Optimal ship pack sizes from the perspective of the entire internal retail supply
network—consisting of DCs, transportation and stores—have been studied by Wen
etal. (2012). The authors develop a cost minimization model for the discrete selection
of packaging units within the packaging hierarchy offered by suppliers, i.e., the selec-
tion between cases (supplier shipping box), inners (subpackaging, when applicable)
or customer units. Seven cost components are included in the model derived: fixed
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store order costs, DC costs of replenishing the picking area, DC picking costs, store
receiving costs, store extra handling costs of overflow inventory, and store and DC
inventory costs. With regard to our approach, instore operations are only reflected in
very general terms.

Considering the instore perspective, Sternbeck (2015) develops an approximate
model to determine appropriate case-pack sizes based on a cost model that integrates
fixed and variable initial stacking costs, restocking costs from the backroom and inven-
tory holding costs. The approach is based on classical approaches to the analysis of
the (r, s, ng) inventory policy without taking into account the subperiod structure of
the problem that we examine. In its context, the paper generates relevant insights into
how case-pack sizes affect instore operations and how retailers could set case-pack
sizes appropriately.

Broekmeulen et al. (2017) develop a planning approach that considers the question
of where to unpack case packs: at the stores or at the DC. They assume stationary
(r,s,nq) and (r, s, S) replenishment policies when unpacking at the stores or at the
DC, respectively. In the case of an (r, s, nq) policy, they also include an approxi-
mate method for optimizing parameter g, which corresponds to the case-pack size
considered in the present study. Since their main focus is on determining the optimal
unpacking location, they assume a classical stationary inventory policy that disregards
weekly seasonal effects.

Regarding the literature on general inventory theory, the periodic review reorder
point (7, s, ng) policy was first studied by Hadley and Whitin (1963), who also connect
it to the more elementary policies of the periodic review order-up-to and continuous
review reorder point policy. While many works since then have considered the latter
two policies, less attention has been paid to the (r, s, ng) policy in spite of its wide
application in retail replenishment systems. Customer waiting times as an important
performance indicator are analyzed by Kiesmiiller and de Kok (2006) and also by Tem-
pelmeier and Fischer (2010) for (7, s, ng) systems with different specific assumptions.
Regarding costs, Larsen and Kiesmiiller (2007) determine optimal s levels when r and
q are given, and Shang and Zhou (2010) suggest heuristic and optimal procedures to
configure all three policy parameters.

Our contribution to the existing literature is as follows. We present what is to our
knowledge the first coherent framework to systematically quantify the impact of case-
pack sizes on the most important cost drivers along the internal supply chain of a
grocery retailer. The problem we discuss is most closely related to the problem of
finding optimal case packs that Broekmeulen et al. (2017) solve as a subproblem
within the larger context of identifying optimal unpacking locations. Our approach
differs in three ways. Firstly, we focus on the problem itself and model the related
cost factors in greater detail. Secondly, we consider weekly delivery schedules instead
of static replenishment frequencies. To our knowledge, no theoretical study has so
far considered a replenishment policy that distinguishes subperiods within a planning
cycle. Finally, we develop exact analytical formulae and a nonlinear optimization
procedure that ensures that the optimal case-pack size for an individual product for a
single store and the optimal common case-pack size for a network of multiple stores
can be found, reflecting a “one case-pack size for all stores” strategy.
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4 Analytical model

In Sect. 2 we described logistics processes and identified general cost drivers influenced
by the case-pack size of a product along the internal supply chain of a retailer. We
identified the picking effort at the DC, explained why transport costs can be considered
independently from case packs, and finally concluded that the main effort—backroom
activity, overall inventory (sales and backroom), shelf stocking and restocking as well
as undershoot of display stock—occurs within the stores. In this section we develop a
formal model that covers these cost drivers in order to quantify the logistics costs of
operating a particular case-pack size. From the perspective of decision making, all these
cost drivers are affected by the store’s replenishment system. We have therefore put our
focus on the stores and particularly on the inventory system that triggers replenishment
orders to the DC, and determine all relevant costs from that. Sections. 4.1, 4.2 and 4.3
thus describe the physical instore inventory system and the general replenishment
process, the sequence of events and decisions and finally the replenishment policy.
This defines the inventory model of the real system. The decision-relevant cost drivers
are specified from that model in Sect. 4.4. This allows us to define the entire logistics
cost function.

As mentioned above, many products and also entire stores exhibit significant weekly
demand seasonality. Furthermore, stores are typically replenished according to weekly
reorder patterns that may differ from equidistant intervals. These reorder patterns result
from a compromise between DC and store wishes for less frequent or very frequent
deliveries while balancing the workload at the DC. We assume that they are externally
predetermined (Sternbeck and Kuhn 2014; Holzapfel et al. 2016). To properly cover
this kind of delivery process, we analyze our system as a stationary cyclic model where
we explicitly address each period of the week p € P.

The upcoming model development uses the notation as listed in Table 1.

4.1 Inventory system outline

The physical outline of the store inventory system is as follows. Products are presented
to the customers on a shelf with limited shelf space sp. Supply that does not fit onto
the shelf is taken to the backroom.

We assume that the backroom’s storage capacity is not limited in the sense that the
store would be forced to send back excess CUs to the DC. We consider that it is always
possible to accommodate the whole delivery in the store, either on the shelf of the sales
room or in the backroom area. Scarce backroom capacity is reflected by high backroom
inventory cost factors in our approach to encourage more frequent replenishment of
a store with smaller quantities. In addition, we assume that the staff will frequently
transfer backroom stock to the shelf during opening hours, preventing a product from
being in the store but not on the shelf. The service goal is to fulfill a specific shelf
availability of a product. Shelf availability « is quantified as the minimum probability
that the inventory level I of a product is equal to or above a certain display stock, ds, on
the shelf at the end of any period, & = min{oy|p € P : max{al’gl(x; <Pr({, > ds)}}.
The display stock is regularly set for presentation purposes, but it also has an effect
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Table 1 Notation

Notation

A Vector of binary backroom activity indicators: 1 if replenishment exceeds shelf capacity in
a replenishment period, 0 otherwise (random variables), A = (A1, As, ..., A| p|)

B Vector of backroom inventory at the end of a period (random variables),
B = (By, By, ..., B|p))

Ca Cost factor per backroom activity

cp Cost factor per CU of backroom inventory at the end of a period

cd Cost parameter for handling one CP at the DC

ch Combined cost factor for handling one CP in the store and at the DC, ¢}, := ¢s + ¢q

i Inventory holding cost factor per CU of physical inventory at the end of a period

Cs Cost parameter for handling one CP in the store

cu Cost parameter related to the lack of physical inventory compared with the display stock
at the end of the period

D Vector of customer demand (random variables), D = (D1, Dy, ..., D|p|)

ds Display stock

H Vector of case packs arriving at the store (random variables), H = (Hy, Ha, ..., H|p|)

1 Vector of physical inventory at the end of a period (random variables),
1=y, Ih,.... Lp)

1P Vector of inventory positions at the end of the period (random variables),
IP = (1P, IPy, ..., IP|p))

L Vector of lead times, L = (I, 1[5, ..., l|p|)

o Vector of product units that are outstanding at the end of the period (random variables),
0 =(01,0z,...,0/p)

P Vector of periods of the week, P = (1,2, ...,|P])

q Basic order quantity of the policy, which here equals a case-pack size

R Vector of reorder period indicators, R = (r1,r2, ..., r p‘)

S Vector of reorder levels, S = (s, 52, ..., s‘p|)

sp Shelf space

U Vector of product units that undershoot display stock requirements at the end of the period

(random variables), U = (Uy, Ua, ..., U;p|)

CP case pack, CU consumer unit

as (additional) safety stock since it is of course also used to satisfy customer demand.
If even the display stock is exhausted, we assume that customer demand will be lost
(lost-sales assumption).
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Fig. 3 Sequence of events Beginning End of
within a period of period period
! |

B 1

Arrival of Customer Issue of
replenishment demand and replenishment
order refilling from order
(if arrival backroom (if order
period and if occur period and if
any order is order size > 0)

outstanding)

4.2 Sequence of events

Figure 3 depicts the sequence of relevant events in each period. Firstly, outstanding
replenishment orders arrive. Secondly, customer demand occurs and eventually exist-
ing backroom inventory is used to restock the shelf. Finally, replenishment orders are
issued. Note that arrivals and issues of orders may not occur in each period.

4.3 Replenishment policy
4.3.1 Process

The underlying replenishment process can be modeled as a generalized (r, s, ng)
policy. In the original version, an order may be issued every r periods, where the basic
order quantity ¢ is ordered n times to increase the current inventory position i p above
s, where n = min{n*|ip + n* - ¢ > s}, i.e., the smallest available amount is ordered
in each order issue period that will raise ip to at least the level s + 1. The inventory
position i p is yielded by the physical inventory plus the volume of outstanding orders.
While r and s are integer or real numbers in the original version, they are replaced in
our model by an order issue period indication vector R = (r1, 72, ..., rp), rp € {0, 1}
and a reorder point vector § = (s, 52, ..., 8|p|), Sp € Z7* to allow for specific order
patterns during the weekly cycle. For example, if the store can issue replenishments
on Monday, Wednesday and Saturday, this leads to R = (1,0, 1,0, 0, 1) in a 6-day
week starting with a Monday with corresponding order levels S that are individually
calculated, as described in Sect. 4.3.2. Parameter ¢ corresponds to the case-pack size
and lead times also take on the form of a vector L = (I, [, ..., [ p|). Finally, we
also track the demand D = (Dy, D, ..., D|p|) down to a pattern level, where we
assume that the demand distribution of each period D, is independent of the others.
The inventory position in period p, IP, in our case is defined by the sum of the physical
inventory I, plus the volume of outstanding orders Oy, i.e., IP, = I, + Op, p € P.

4.3.2 Parameter setting

We assume that the replenishment vector R is an external input that will be specified
in a superordinate planning step. Parameter ¢ will be a subject of our analysis. The
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parameter vector S is set such that the predefined service level « will at least be reached
at the end of an order cycle. We neglect the influence of g on the service level realized
and configure the system so as to meet a ready-rate criterion based on the display stock
for the special case of ¢ = 1. We do so for the following reasons. Firstly, it leads to
a clearer presentation and allows us to focus on the influence of ¢ with an entirely
predefined replenishment policy. Secondly, this approximation is common practice
within contemporary inventory management software systems and allows transparent
extension of the factors that should be considered in the safety stock determination.
Finally, it is also used within the system underlying the empirical study presented in
Sect. 6.

Let p° be the replenishment period for whi_ch we want to configure spe. Let pi
be the next replenishment period and p* = p' + [ be the period when an order
issued in p' will arrive. Ordering in p¢ will raise the inventory position to spe + 1
according to the above definition of the replenishment policy. The display stock in
period (p* — 1) is undershot if the demand from p° to p* — 1(Dype pa_17) exceeds
spe + 1 — ds. Since replenishment orders arrive before demand may occur, period
p? belongs to the next order cycle and is not considered here. We therefore set sy
according to spe := min{s*| Pr(Dppec pa_1] < s* + 1 —ds) = a}.

4.4 Logistics cost drivers

Following the studies summarized in Sect. 2, we consider the following five cost
factors to quantify the logistics impact of a case-pack size, where a single product
within a specific store underlies our definition. All five cost drivers are vectors of
random variables in our analytical model, which can significantly deviate between
different periods of the week.

Physical inventory () in the store at the end of a period

Undershoot of display stock (U) in the store at the end of a period

— Backroom inventory (B) in the store at the end of a period

Backroom activity (A) in the store at the beginning of a period

— Number of case packs (H) that arrive at the store at the end of the lead time and
that have left the DC at the beginning of the lead time

We associate the cost drivers with the following cost factors.

— Physical inventory holding costs (c;) per period that a consumer unit is held in the
store, i.e., the cost of capital that is tied up in products and the proportional costs
for storage space.

— Undershoot costs (c,) per period if one consumer unit is missing on the shelf
to ensure an attractive appearance in the salesroom that generates a favorable
shopping atmosphere (see Abbott and Palekar 2008).

— Backroom inventory handling costs (cp,) for variable backroom handling efforts
per period and consumer unit, especially the positioning and sorting of items, and
taking them to the sales room when needed. It is assumed that the inventory is
refilled whenever free space is detected on a shelf and products are still available
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in the backroom (see Sect. 2.3). The costs thus account for repeatedly removing
consumer units from the backroom to restock the shelves.

— Backroom activity costs (c,) per event for intermediate storage of consumer units
in the backroom area, i.e., conveying excess supply to the backroom (event driven).

— Handling costs (cq) per case pack at the DC for searching, taking it from storage
and safely packing it on the transportation pallet.

— Handling costs (cs) per case pack in the store for searching, picking and putting it
on the shelf, either as a whole or a fraction of the case pack.

A decision maker will typically want to focus on an aggregated total logistics cost
figure that is to be expected when a certain configuration is used. We therefore define
the expected logistics costs (C) as the sum of expectations over all periods of the week
weighted with their cost factors, where we set ¢, := cq + ¢ as the combined handling
cost factor:

C= Z[Ci “E{lp} + cu - E{Up} + v - E{Bp} + ca - E{Ap} + cn - E{Hp}] (D
peP

Note that although we assume the lost-sales case, Eq. (1) does not explicitly contain
lost-sales costs. We consider these costs included in the costs of having insufficient
display stock, where we assume that effects similar to those associated with the occur-
rence of lost sales are already induced by the lack of display stock.

In addition, note that the cost function only involves the decision-relevant costs. It
does not reflect the entire logistics costs. The costs of stacking individual CUs onto
the shelf, for example, are not included since these costs occur independently of the
size of a case pack chosen.

5 Solution approach

Within this section we develop a solution approach to determine the optimal case-pack
size that minimizes the expected logistics costs as defined in Eq. (1). The optimization
approach requires an evaluation of the individual cost drivers and then quantification
of the entire expected costs given a certain case-pack quantity. With this in mind, two
approaches are developed: first a Markov chain approach providing exact results (see
Sect. 5.1) and second a fast approximation approach based on principles of inventory
theory (see Sect. 5.2).

Section 5.3 then describes the optimization routine that applies the alternative eval-
uation approaches developed.

5.1 Exact Markov chain approach
5.1.1 States

To evaluate the cost drivers for a particular system configuration, i.e., the size of a
case pack, the shelf space and the replenishment policy assumed, we need to know the
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current period of the week (p), the physical inventory (/},) at the end of a period, and
the number of product units (0;, 05, ...) that will arrive in 1, 2, ...periods. These
three elements completely describe the state of the inventory system for our purposes,
since we can derive the relevant cost drivers as follows:

Physical inventory I, is one of the three variables for describing a system state.

— Amount of stock that undershoots the display stock is designated by U, :=
max{0, ds — Ip}.

— Backroom inventory is designated by B}, := max{0, I, — sp}.

— Backroom activity A; is 1 (i.e., occurring) in an order arrival period if 1,1 +

o [17_1 > sp in the previous period, and 0 otherwise. For reasons of simplicity we

identify the backroom activity in the period right before it takes place, since the

event is predetermined at the end of the previous period.
1

0
— Case packs Hp arriving in an order arrival period is quantified by ”T_'.

Thus, the relevant states of the discrete Markov chain are denoted by all possible tuples
(p,i, o', 02, ...), with p representing the current period of the week, i the physical
inventory level, and ol, 0%, ... the amount of outstanding orders that will arrive in the
next periods. Knowing the probability distribution of the state space means the cost
drivers defined above can be quantified.

5.1.2 Transitions

As time shifts from one period to the next, three types of event change the state of
our system: (A) replenishment orders arrive, (B) customer demand materializes (this
is the only probabilistic event, where its effect can also be neutral if demand is zero
in a period), and (C) a replenishment order is issued. While demand may occur in
every period, the other two events only occur at specific periods, depending on the
predefined replenishment vector, R, and the given lead time vector L. Four types of
transition therefore result, where p, denotes the next period after p; either in the same
or the next week:

— Nothing but demand can occur [-,B,-]: State (p1,1,0, 0%, ... will change to
(p2, max{0,i — d}, 02, .. .) with probability Pr(D> = d).

— Replenishment orders arrive and demand can occur [A,B,-]: State (p1, i, ol, 02, ..
will change to (p2, max{0, i + o' — d}, 0%, ...) with probability Pr(D, = d).

— An order with lead time | is issued and demand can occur [-,B,C]: State
(p1,i,0,0%,...,0,...) will change to (p3, max{0,i —d}, 0>, ..., 0 +0*,...)
with probability Pr(D, = d), where 0™ = n - g, n = min{n*|i +n*-q > sp,}
with i» = max{0, i + o — d}, o the total amount on order without o*.

— An order is issued, replenishment orders arrive and demand can occur [A,B,C]J:
State (p1, i, 0, 0%,....0, .. .) will change to (p2, max{0, i+o! —d}, 0%, ..., 0+
o*, ...) with probability Pr(D, = d), where 0" = n-¢q, n = min{n*|i+n*-q >
Sp,} with io = max{0, i + 0 — d}, o the total amount on order without o*.
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5.1.3 State space

An upper bound of the number of relevant states can be estimated as follows. Clearly,
we have | P| periods, which will in general be six or seven, i.e., store opening days
during a week. Inventory levels in an (r, s, nq) system cannot exceed s + g, which is
the maximum for the inventory position. In our system, we need to consider syax =
{mins*|s* > s, V p € P}. This also quantifies the maximum order size (n - q),
since we consider the lost-sales case that implies a maximum of | Smaxtd | cage packs
that can be reordered via a single replenishment. It is required to trac7< replenishment
orders along their lead time, i.e., up to for /max := max{l, € L} periods. Considering
inventory levels as well as order amounts may also be zero, we can state UB =
IPL - (max + ¢ + D( L o) < | pp Snt et DTN o6 o ypper bound to
the number of states that we have to consider.

5.1.4 Example

Figure 4 illustrates the relevant Markov chain for the following small example. We
consider a short (artificial) week of only three periods, P = (1, 2, 3). In each period
demand occurs for either zero or one product unit with equal probability. Orders will
be issued in period 2 if the inventory position is smaller or equal to 1 (s, = 1), and
they will arrive in the next period (period 3). The product is shipped in bundles of two
(g = 2). As motivated above, our example system has 3 - 4 -2 = 24 states that may be
relevant. There are three periods; the inventory level can range between 0 and 3 units,
and no more than one case pack can be outstanding because ordering two product
units will always raise the inventory position above 1. Figure 4 depicts these 24 states.
States drawn in gray are inaccessible from any other state. In periods 1 and 3 no orders
can be outstanding, so the corresponding states are disregarded. Furthermore, it is not
possible to be out of stock in period 3. In period 2, we cannot have less than 2 units
of inventory and no order outstanding at the same time. Similarly, no order will be
issued if 2 or 3 units are already at hand. Solid arrows indicate a transition probability
of 0.5, while the one dashed arrow implies a definite transition.

5.2 Approximation approach

The exact approach developed in Sect. 5.1 may involve the evaluation of large state
spaces, leading to long runtimes particularly if the approach is applied multiple times
within an optimization routine. This section therefore develops a fast approximate
approach based on methods of inventory management.

The key idea is to first analyze the inventory position and then derive all relevant
cost drivers from it in a second step. The approach is an approximation in the sense
that we consider the backorder case instead of the lost-sales case when determining
the inventory position. Furthermore, we disregard certain effects resulting from the
cyclic structure of the problem at hand which will be outlined in the following.

For a clearer presentation we distinguish the inventory position before (IP;) and

after an order is placed (IP; ), where p denotes the period of the order cycle.
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Fig. 4 Markov chain with 24 theoretical and 11 reachable states

5.2.1 Inventory position

It is shown by Hadley and Whitin (1963) for the stationary (7, s, nq) policy with
backordering that the inventory position follows a uniform distribution over the interval
[sp+1, sp+q], just after the moment that a new order is issued. However, this property
does not hold without limitation for our system due to its cyclic structure. Here, values
greater than sp+¢ can also exhibit a positive probability of occurrence if another period
uses a reorder point larger than s,. We therefore suggest recursively determining IP;
in our system, where we define a base case for one particular cycle period and derive
the characteristics of all other periods from the last respective order period.

Base case We suggest the following base case for the recursive procedure. Let p be
the order issue period that exhibits the largest reorder point, p = arg max ,cp{sp} and
sp = maxpep{sp}. We define IPY as base case following the observation of Hadley
and Whitin (1963) in that period:

Pr{1P7g<sﬁ+1}=0 )
I

Pr{IP;=Sﬁ+k}%g Viell,ql 3)

Pr{IP;>s,;+q}=0 “)

Recursion With the base case defined for period p, we suggest to determine 1P, for
all periods p # p on basis of the inventory position of the previous period, IP;_I:

Pr{lpgzi}zipr{lp;l =i+d}-Pr{Dp=d} Vi (5)
d=0
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If p is not an order issue period, then obviously IP; = IPg holds. Otherwise, we
derive IP}} as follows:

Pr{IP} <s,4+1} =0 (6)
o0

Pr{ngzi}=ZPr[1P;=i—k-q} Viss, %)
k=0

5.2.2 Derivation of cost drivers

Knowing the distributions of IP; and TP, the relevant cost drivers can be derived
as follows. To determine the distribution of physical inventory, we first consider the
order arrival periods. Within these, we find that the physical inventory is equal to IPS‘
in the corresponding order period minus the demand consumption since the order has
been placed. Let p? be an order arrival period, p°¢ the corresponding issue period and
Dipe11,p2) the cumulative demand incurred in p? after the order in p© has been issued.
The distribution of I, can then be calculated as follows:

(0.¢]
Pr{lyp =i} =Y Pr {IP;Z —i +d} Pr{Dppesip =d} Vi=0 (8
d=0
oo
Pr{ly =0} = ) Pr {IP;C - d} Pr{Dppes1 ) > d) ©)
d=0
For non-arrival periods the physical inventory can be derived from the arrival period’s

physical inventories. If p? is a non-arrival period and p® — 1 is its preceding arrival
or non-arrival period, then the distribution of Ipa is determined as follows.

o0
Pr{lpazi}=ZPr{Ipa_l=i+d}-Pr{Dpa=d} Vi=0  (10)

d=0

o0
Pr{Ipa=0] =Zpr{1pa,l =d] Pr{Dy = d) (11)

d=0
Given the distribution of I, i.e., the overall physical inventory in a period, the distri-

bution of the backroom inventory B, and the distribution of the amount of stock that
undershoots display stock requirements, U}, can easily be derived:

Pr{B, <b}=Pr{sp <1, <sp+b} Vb>0 (12)
Pr{B, = 0} = Pr{l, < sp} (13)
Pr{U, <u} =Pr{ds —u <1, <ds} VO<u<=<ds (14)
Pr{U, = 0} = Pr{l, > ds} (15)
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In our model, we only account for backroom activity in the order arrival periods.
This extra effort occurs if the physical inventory exceeds the shelf space just after a
new replenishment has arrived. This is the case if (1) an order has been placed in the
corresponding order issue period and (2) the inventory position after ordering exceeds
the shelf space enlarged by the demand that will be incurred before the replenishment
order arrives. Let p* and p® be defined as above and Dype 1 p2—1) be the cumulative
demand consumption from issue to arrival of the replenishment order. The distribution
of the backroom activity Apa can then be derived as follows:

Pr{Ap =0} = 1 — Pr{Ap = 1) (16)

o
Pr{Ap = 1} = 3 Pr{Dpe1,ps-1y = d} - Pr {IP;; > sp+d|IP; < spc} (17)
d=0

In the store, case-pack handling—analogous to backroom activity—occurs in order
arrival periods only. Since we use unified cost factors for all periods, we can also asso-
ciate the corresponding handling efforts in the DC with the order arrival period even if
they in fact occur in a different period. The number of case packs arriving in an order
arrival period p? is directly determined by the inventory position in the corresponding
order issue period before an order is placed. Following the replenishment policy the
number of reordered case packs will just suffice to raise the inventory position above
s

Pr{Hpafh}zPr{IP;c>spc—h~q} Vi>0 (18)

There is an even simpler way of calculating the overall expected value E{H} of
1 week. Since the replenishment arrivals are equal to the demand consumption in the
long term, this value can be directly derived from the expected demand per week.

E{Dy1,p}

E{H} = 19)

5.3 Optimization

In the preceding section we have developed an exact and an approximate approach
for evaluating the resulting costs of particular system configurations assuming a pre-
determined case-pack size.

This section shows how to determine optimal case-pack sizes (gopt) using these
two alternative evaluation approaches. We will first address the single-store case
(Sect. 5.3.1) and then come to the case of multiple stores (Sect. 5.3.2) that should
be replenished with one common case pack. Both problems can be solved with the
same optimization framework.

The current case-pack options may be restricted by what the consumer goods indus-
try is willing to provide and what is technically possible in terms of stability and
reasonable in terms of package efficiency. Restrictions like this are neglected here,
and we recommend considering the realizable case pack that is either next larger or
next smaller to the theoretical optimum, depending on which has lower costs.
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5.3.1 Single store

Let us first rewrite Eq. (1) according to (20), i.e., as a function of ¢ composed of five
subfunctions, C!(¢) = Zpep ci - E{Iy(g)}, CcHg) = ZPGP cn - E{Hp(q)}, etc...

Cq)=Clg)+CY%@) + @)+ g+ (g (20)

The objective (20) contains two functions decreasing in ¢, i.e., C H (g) and C v (@),
and two functions increasing in ¢, i.e., C!(¢) and C?(g). Function C4(g) contains
increasing and decreasing segments when g is increased.

The expected handling costs C (q) clearly decline when ¢ rises, see Eq. (19).
In contrast, the expected physical inventory costs C’(¢) and the expected backroom
inventory costs C5 (¢) go up as case-pack size ¢ rises due to increasing lot-sizing stock.
Since the undershooting of display stock will decrease with increased inventory levels,
CY(g) will be decreased by larger case-pack sizes. Two opposing effects, however,
influence how much backroom activity costs C4(g) are to be expected. While larger
case packs and thus higher lot-sizing stock increase the probability of excess inventory,
orders will be placed less often so that new products will arrive less frequently.

Based on these observations, we define two functions, Cgec(q) (declining) and
Cinc(gq) (increasing) that are used as termination criteria during the optimization pro-
cedure.

Caec(q) = C (@) +CY(q) (21)
Cinc(q) = C'(q) + CB(g) (22)

The outline of the procedure is then as follows: During an initial phase (Step 1:
Initialization) we define an appropriate initial case-pack size, gsiart- A possible starting
value could be: gsare = [E[Dy1,1p|1]1. However, the procedure could be started with
any positive integer value, i.e., gstart > 0. ¢ = gsart 1S the case-pack size in the
first iteration. In addition, we evaluate the associated expected total costs and set
Cus = C(g). We then know that any ¢~ < ¢ will exhibit higher costs for the
declining cost function, i.e., Cgec(¢ ™) > Cdec(g) and any greater g+ > ¢ will exhibit
higher costs for the increasing cost function, i.e., Cinc (q+) > Cinc(q).

Proceeding from the initial start value, the algorithmic idea is to evaluate
C(q), Caec(q) and Cinc(g) for smaller and larger case packs to finally arrive at lower
and upper bounds (gmin and gmax) beyond which gqp¢ cannot be found. The best g in
[gmin» gmax] is then shown to be identical with the overall optimum goyp;.

During “Step 2: Iteration left” we evaluate all smaller case packs until a gpip is
found for which Cuyg < Cdec(¢min), 1-€., gmin = max[q|Cup < Cgec(g)]. Similarly,
we evaluate in “Step 3: Iteration right” all greater case packs (¢ > ¢start) until a
gmax 1s found for which Cuyp < Cinc(gmax), 1-€., gmax = min[g|Cup < Cinc(q)].
During the evaluation process we update the minimal cost value in each iteration, i.e.,
Cus = C(g), and store the associated case-pack size, gopt = ¢, if a case pack reveals a
new smallest objective value so far. Figure 5 depicts the entire optimization procedure.
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Fig. 5 Procedure for
determining the optimal
case-pack size

Step 1: Initialization
set ¢ = gopt = gmin = gmax = gstart = [E[D[1,|p|)]]
set Cyg = C(q)
Step 2: Iteration left
ifg—1=0or Cgec(q— 1) > Cyp then

set gmin = ¢ — 1 and ¢ = gstart , 8O to Step 3
end if
set qg=q—1
if Cup > C(q) then set Cuyp = C(q) and gopt = ¢
go to Step 2
Step 3: Iteration right
if Cinc(q¢ + 1) > Cyp then

set gmax = ¢ + 1 and Cnin = Cup , stop!
end if
set q=q+1
if Cug > C(q) then set Cuyp = C(q) and gopt = ¢
go to Step 3

Figure 6 illustrates the interplay of the defined cost functions based on the example
[1/A] introduced in the next section. (Please note, for a better visualization of the
procedure we multiplied the inventory holding cost factor in this example by ten.)
Assuming the procedure starts with ggare = 27, the first and initial upper bound
cost value accounts for Cygp = 2.275, which is symbolized by Point P1 in Fig. 6.
Afterwards “Step 2: Iteration left” starts and case-pack sizes are decreased by one
in each iteration. During this process Cyp is updated in each iteration until Cgec(q)
intersects the latest Cyp between ¢ = 17 and ¢ = 18. Step 2 then terminates at
gmin = 17, which is symbolized by Point P3 in Fig. 6. The lowest cost value achieved
so far, i.e., Cygp = 1.755 (Point P2) is found at ¢ = 21, not knowing yet that this
is the optimal solution. Then, “Step 3: Iteration right” starts, and the case-pack sizes
are increased by one in each iteration, starting with ¢ = 28. Analogous to Step 2,
this step terminates at gmax = 33 (Point P4) because Cjnc(q) intersects with the latest
Cup between ¢ = 32 and g = 33. The algorithm thus evaluates all case-pack sizes
q € [17,33] and terminates with g, = 21. However, any other initially positive
integer value for ggart, 1.€., gstart > 1 would also terminate with gopy = 21.

The cost evaluation within the optimization procedure could be realized by the exact
evaluation approach (Markov chain, see Sect. 5.1) or the approximation approach (see
Sect. 5.2). When applied to the real-world case studied in Sect. 6 the approximation
delivers accurate results. In 38 of 48 cases it suggests the optimal case pack, where in all
other 10 cases the resulting case pack is one unit larger than optimal. The approximate
solution is 1.73% more expensive in the worst case and only 0.05% on average. On
an Intel(R) Core(TM) 17-6820HQ 2.7 GHz CPU, the optimization procedure took 8 s
for all 48 cases when the approximation method is used and 374 s when the exact
formulae are applied.
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Fig. 6 Illustration of the optimization procedure

5.3.2 Multiple stores

Retailers will hardly consider to customize case packs for the distinctive needs of indi-
vidual stores since this will significantly increase the logistics’ complexity particularly
at the DC. Instead they use the widespread “one case-pack size for all stores” strategy
or at most offer some few case packs to choose from. The single-store perspective
therefore is of limited value for practical decision support. Nonetheless, it provides
us with a lower bound on the total decision-relevant costs achievable and reveals the
spread of case-pack sizes that individual stores would be operated most efficiently.

Furthermore, the framework developed above for the single-store case can also be
used to solve the highly relevant decision problem of determining the common optimal
case-pack size for multiple stores. Instead of the distribution costs of a single store,
we need to consider the total costs of all subsystems involved (f € F), leading to the
adjusted objective function (23).

C@=) [C}(q) +CY @+ Cl@+Ci+CF (q)]
JEF (23)

=@+’ @+ @+ @+ @
Since the summation of multiple declining (or increasing) functions forms a declining
(or increasing) function in total, the rationales of the single-store case also apply to the

multiple store case. We can thus use the procedure outlined in Fig. 5 for the multiple
store case, where C! (g) replaces c! (g) and so on.

6 Empirical study and insights
The evaluation and optimization approach developed is applied in the present section

in a real case study of a retail chain that operates almost 3000 stores in Europe. The
key data of the case study and an overview of the results for the single-store cases
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Table 2 Characterization of products included in the empirical study

Current case-
Product ID |Product category |Sales category Sales (volume) X
pack size

1 Pet food low sales 32

2 Personal care medium sales 12

3 Pet food high sales 32

4 Personal care very low sales 6

5 Personal care very high sales 16

6 Food high sales 12

Table 3 Characterization of stores included in the empirical study

Store [Store size Store size (m’) Store sales Store sales (curr. unit)
A small medium sales
B medium low sales
C large medium sales
D medium high sales
E medium medium sales
F medium very high sales
G medium medium sales
H medium high sales

are presented in Sect. 6.1. More detailed results including insights on the shape of the
cost drivers and costs relevant to the decision problem are then discussed in Sect. 6.2.
In Sect. 6.3 we examine two parameters of our model in greater detail, shelf space
and backroom inventory costs, since their impact on the optimal case pack seems to
be very strong. Section 6.4 is dedicated to the multiple store case, where common
case-pack sizes are also compared with those that would be optimal for the individual
stores.

6.1 General view on stores and products

To illustrate the use of our approach, we apply it to a real-world test set involving six
products (1, 2, ..., 6; see Table 2) at eight grocery stores (A, B, ..., H; see Table 3).

We consider the complete 2013 sales data for each product and store, and interpret
the observed relative demand frequencies as discrete empirical distributions to use
in our analytical approach. Delivery patterns, display stock, shelf space and also the
present case-pack size are contained in the data. Finally, the reorder points sp, p € P
are set such as to ensure that the display stock will not be undershot in « = 70% of
order cycles.

Cost data are assumed as displayed in Table 4. We analyzed and quantified the
decision-relevant cost parameters together with supply chain managers of the case
company. Afterwards these cost parameters were proportionally scaled at arbitrary
levels since we were not allowed to disclose the actual cost data of the case com-
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Table 4 Cost parameters for products 1-6

DC cost factor Instore cost factors
MU . MU MU MU MU
cd [@] ci [7CU-TU} cu [7CU-TU} b [7CU»TU] calMUT o« [W]
1 3.5 0.001063 10 2 14 3.5
2 3.5 0.005785 10 2 14 3.5
3 3.5 0.000590 10 2 14 3.5
4 3.5 0.014049 10 2 14 3.5
5 3.5 0.001535 10 2 14 35
6 3.5 0.002243 10 2 14 35

CP case pack, CU consumer unit, MU monetary unit, 7U time unit

pany. The relationships between these cost parameters are congruent with those of
comparable retail studies (van Zelst et al. 2009; Broekmeulen et al. 2017).

Let us first look at the overall results for the store and product combinations. Figure 7
depicts the changes between the optimal case-pack sizes and those that are currently
in use. We observe that the optimal case-pack sizes differ between stores for the same
products, with only a few exceptions. For some products the difference between the
stores’ preferences is marginal, whereas for Product 6, for example, store B would be
best operated with a case-pack size of ¢ = 13 that is more than four times the size
of what would be best for store C, i.e., ¢ = 3. The changes recommended, however,
point in the same direction in most cases: it appears to be beneficial for all stores to
either increase or decrease the case pack currently in use. For the first product, we find
the most ambiguous situation: there is little need to adjust the case-pack size at three
stores, while it may be beneficial for the other five stores to reduce it by 5-21 units.
The sales volume of Product 1 is relatively low in general, while its current case-pack
size is quite high (32 CUs). There is therefore a general tendency to reduce the size
of this case pack, especially where those stores with scarce shelf space, e.g., Store H,
would benefit from the reduction. (See Sect. 6.2 for more insights into this case.)

Figure 8 shows the cost savings potential when switching to the optimal case-pack
size. The case-pack size seems relatively appropriate for all stores considered only for
Product 6, whereas we note significant cost savings potentials for the other products
including the ambiguous case of Product 1.

6.2 Individual product-store combinations

In this section we take a closer look at the effects that lead to the cost savings dis-
cussed above. In particular, we analyze one specific product—store combination [1/H]
in greater detail. Store H is of medium size and achieves moderate revenues and is
replenished three times a week, i.e., Monday, Wednesday, and Friday, so that the rel-
evant order pattern can be described as R = (1,0, 1,0, 1, 0). Product 1 belongs to
the low-demand volume category and is nonetheless distributed from the DCs in a
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Fig. 7 Change in current case-pack sizes when optimal case-pack sizes are applied
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relatively large case-pack size of 32 units. Display stock, shelf space, and order levels

are given as follows: ds = 3, sp = 23, § = (13,0, 13, 0, 12, 0).

We analyze the considered example in three different ways. First we track the
influence of different case-pack sizes on the five cost drivers, physical inventory (/),
backroom inventory (B), undershooting of the display stock (U), case-pack handling
(H), and backroom activity (A). Second, the resulting costs for each of these drivers are
presented along with total costs. Third, the stores’ performance using both the original
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Fig. 9 Cost factors depending on the case-pack size relative to their respective maximum values, example

[1/H]

and the optimal case-pack size is simulated using the corresponding real-world data
from the first 150 periods in 2013.

When comparing the relatively large case-pack size, ¢ = 32, with the store’s shelf
capacity, sp = 23, one can already assume that the current case-pack size does not fit
to the store’s needs well. However, it is not as readily identifiable to what extent the
case-pack size should be reduced, and what operational cost savings that would imply.
Figure 9 displays the five cost drivers depending on the case-pack size relative to their
respective maximum values for example [1/H]. In each case the associated maximum
value is selected from the results of the considered range of case-pack sizes, i.e.,
q € [1,30].

As expected, when case-pack sizes become larger, physical inventory, backroom
inventory and backroom activities increase. On the other hand, the undershooting of
display stock and case-pack handling decreases. Physical inventory increases linearly
when ¢ increases. Backroom inventory, however, does not occur at all until a case
pack reaches a certain size, i.e., ¢ = 11: it then increases overproportionally. This
initiating event can be explained as follows: the shelf space and reorder levels of
Product 1 at Store H are sp = 23 and S = (13, 0, 13, 0, 12, 0), respectively. As soon
as inventory levels drop to or below the reorder point, the product is therefore reordered
ata minimum order size of one case pack. Since Product 1 is a low volume product, it is
possible that on delivery the same quantity of 13 products that originally triggered the
replenishment may still be available on the shelf. Assuming a case-pack size of 11 and
a shelf space of 23, one item of Product 1 would therefore be taken to the backroom in
this case. Accordingly, backroom activities start as soon as the case-pack size reaches
11. The curve is then mainly influenced by two factors. First, it becomes more likely
that the shelf space will be exhausted by an arriving replenishment order, resulting in
backroom activities. Second, the arrival frequency will drop since larger case packs
need longer to be consumed by demand. The amount of case-pack handlings can of
course be significantly reduced in the range of 1 < ¢ < 5, from 100% for g = 1 to
20% for g = 5.
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Fig. 10 Cost curves depending on case-pack size, example [1/H]

Since case-pack handling and backroom inventory are the primary cost drivers,
an optimal case-pack size of ¢ = 11 results. This becomes particularly appar-
ent in Fig. 10, which illustrates the shapes of the cost functions of all factors,
including the total cost function. We observe a distinctive cost minimum for a
case-pack size of ¢ = 11. The total costs are mainly influenced by activities
and situations that result from case-pack handling, backroom inventory, and under-
shooting of display stock, respectively. As soon as backroom inventory occurs,
the total cost function increases sharply. The inventory holding costs are less
important since the product value is relatively low. In case of [1/H] this means,
decision makers should maximize case packs as long as backroom inventory gets
avoided.

Figures 11 and 12 depict the inventory level process over a time span of 200 periods
assuming a case-pack size of 32 (original value) and 11 (optimized value), respectively.
In addition, the customer demand (downward bars) and arriving orders (upward bars)
are shown for each period. The dark (i.e., red) areas below and above the horizontal
lines 3 and 23 indicate (unwanted) phases in which insufficient display stock and
backroom inventory occurs, respectively.

Comparing these charts it becomes apparent that a reduced case-pack size of 11
will certainly increase case-pack handling efforts as more case packs arrive. Note
that each (green) upward bar represents an order arrival. However, this is more than
compensated by a substantially improved backroom situation. Summarizing, since
the actual case-pack size is far too large, example [1/H] exhibits the largest total cost
reduction between the original and the optimal case-pack size of all cases considered
in the entire case study, i.e., approx. 81%.
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Fig. 12 Performance of Product 1 in Store H with an optimal case-pack size of 11

6.3 Sensitivity analysis

A strong cost driver of our model appears to be the shelf space that the store has
allocated for a particular product. In connection with the high costs of bringing product
units to the backroom and maintaining them there, the optimal case pack seems to be
the largest one that still fits onto the shelf in most cases. A sensitivity analysis confirms
this observation. Figure 13 shows the optimal case pack for different amounts of shelf
space, for example configuration [1/A], where the original backroom inventory costs
(cp = 2) are also varied to illustrate their impact.

It is interesting to see that parameter c, makes a particular difference when shelf
space is small. Once a critical space is reached—at around 30 units in the example—
the optimal case packs are very similar or even the same for the different values of
cp. At this point, any further enlargement of the shelf space results in a proportional
enlargement of the optimal case pack. Since the general inventory holding costs, cj,
are relatively low in the context of our study, the backroom inventory and activity costs
impose the only strong limiting factor on the optimal case-pack size. Ever larger case
packs are therefore optimal when the shelf space gets less scarce. Figure 14 depicts
the analogous observation for case [3/C]. Here, the critical space is reached at around
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Fig. 14 Optimal case packs of Product 3 in Store C for varying shelf spaces and backroom inventory costs

40 units, beyond which the optimal case pack is also incremented in proportion to the
shelf space.

6.4 One case pack for all stores

The case company currently applies a “one case-pack size for all stores” strategy. We
therefore applied the optimization method outlined in Sect. 5.3.2 to determine the best
common case pack for all stores. Figure 15 shows the results of our example test set.

Based on the status quo currently applied, store-tailored optimal case-pack sizes
lead to an instore cost reduction of 24.8% on the average of all product—store combina-
tions. However, by choosing the optimal one-for-all-stores case pack, total costs could
already be reduced by 21.4%. Thus, the one-for-all-stores strategy apparently leads
to operational instore costs that are close to the theoretical cost minimum, assuming
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Fig. 15 Optimal case-pack sizes (one for all stores) and cost effects

case-pack sizes tailored to each store. For our case company it therefore seems rather
unpromising to increase the logistics complexity by offering multiple case-pack sizes
to meet the specific needs of individual stores.

These results are consistent with the results of Sect. 6.1 since the individual optimal
case-pack sizes are at similar levels for the majority of stores (see Fig. 7). The “one
case-pack size for all stores” strategy induces reasonable additional operational costs
but also saves the effort of designing, managing and handling different case packs for
identical products. The studies of Gdmez Alban et al. (2015) and Broekmeulen et al.
(2017) confirm these results.

7 Summary and future areas of research

The following research steps form the main content of the paper. First, an operational
cost model is developed that quantifies the operational logistics costs along the internal
supply chain of a grocery retailer depending on the case-pack size chosen. In a second
step, a new inventory model is developed quantifying the decision-relevant drivers of
the cost model. Building on that, an exact discrete Markov chain (MC) model and
a fast heuristic solution approach are developed evaluating the inventory model for
certain instances of the model. A nonlinear optimization approach then makes use of
these evaluation approaches specifying the optimal case-pack size of an individual
product for a single store and the optimal common case-pack size for a larger group
of stores—possibly for all stores of the retail chain.

The inventory model developed comprises multiple periods within a stationary
cyclic model in order to cover demand distributions that vary within the store’s busi-
ness week. The model therefore generalizes the well-known periodic review reorder
point (r, s, ng) policy to acyclic version. The modeling approach reflects store-specific
delivery patterns and a replenishment system that is common for non-perishable prod-
ucts in retail chains. In addition, the model takes into account limited shelf space on
the sales floor and additional storage space in the backroom of an outlet and considers
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the corresponding shelf-filling and refilling processes in detail. The model quantifies
all the decision-relevant logistics processes, i.e., case-pack handling at the DC, phys-
ical inventory on the shelf, dissatisfied service level when the amount of products on
the shelf is insufficient (undershooting of display stock), case-pack handling when
filling the shelf, and activities involved in bringing excess supply to the backroom
and repeatedly removing it from there to restock the shelf. It has been shown that the
impact of varying case-pack sizes on transportation costs is negligible.

The modeling and solution approaches are applied to the real-world data set of a
leading European grocery retail chain. Cost-optimal case-pack sizes for several dis-
tinctive product—store combinations are determined. The case company may realize
substantial cost improvements when changing the current case-pack sizes accordingly.
The recommended adjustments lead in both directions: some of the case packs cur-
rently applied should be enlarged, while others should be reduced. The single-store
analysis revealed that most stores would be operated most efficiently with an indi-
vidually tailored case-pack that deviates slightly or even significantly in some cases
from the best case-pack size of other stores. Moreover, it could be shown that a large
fraction of the cost reduction potential can already be realized by switching case-pack
sizes to the best choice of a “one case-pack size for all stores” strategy, while avoiding
the extra effort for maintaining multiple case packs per product.

In some cases, as for Product 5 of the examples in Sect. 6, it seems obvious that
the current case-pack sizes are not optimal, so the store managers are most probably
aware of the problem and may easily detect possible benefits of an increased or a
decreased case-pack size. However, in the majority of instances these benefits are
much harder to identify, and most probably require the assistance of an analytical
model. The modeling and solution approach suggested can be applied in this sense.
The approach contributes to further improving operational efficiency in the future by
supporting case-pack-related decisions in retail practice.

The modeling and solution approach suggested here could be extended in several
directions, leading to new challenges for further research:

(a) Case-pack sizes do not just affect operational costs along the internal supply
chain but also logistics costs emerging further upstream from the retail supply
chain considered. In general, case packs are delivered from the manufacturer
in given sizes. Modifying them, e.g., at the DC, creates additional expenses for
the retailer. Sometimes manufacturers offer retailers different case-pack sizes
or customized case packs on request. These possibilities lead to case-pack-size-
dependent manufacturing costs or purchasing prices, respectively. The model
presented could therefore be extended with respect to one or more of these
aspects.

(b) In general, product demand, shelf space assigned and listing decisions change
over time, e.g., along the product life cycle, especially for seasonal products. In
such an environment it may be appropriate to modify case-pack sizes accordingly
in the course of time. This would result in a dynamic optimization problem asking
when and to what extent a case-pack size should be modified. Costs for resizing
case packs would have to be quantified and considered in this enhanced modeling
approach.
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(c) Related to (b) it is conceivable that several case-pack sizes could be defined
for one product and operated in parallel. Stores could then be served with their
individual, (perhaps) optimal case-pack sizes. Under these circumstances the
decision problem that arises is how many different sizes per product should be
defined, and which of the resulting case-pack sizes should be assigned to which
store. This leads to a clustering and assignment problem.

(d) The Markov model suggested assumes that shelf inventory is continuously replen-
ished from the backroom as long as inventory is available. We denote this policy
“online instore replenishment.” However, some stores may also follow the “offline
instore replenishment” policy, i.e., restocking from the backroom is only carried
out at certain instants of time. An adaptation of the Markov model reflecting this
policy may be worthwhile.

(e) The planning problem considered is highly correlated with the area of category
and assortment planning, including listing, facing and pricing decisions. For
example, a trade-off exists between the number of products listed and the shelf
capacity assigned to each of the products. Having more shelf capacity available
reduces the amount of backroom activities and backroom inventory and therefore
allows for larger case-pack sizes.
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