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Abstract This paper provides a literature overview on (direct revelation) algorithmic
mechanism design in the context of machine scheduling problems. Here, one takes a
game-theoretic perspective and assumes that part of the relevant data of the machine
scheduling problem is private information of selfish players (usually machines or
jobs) who may try to influence the solution determined by the scheduling algorithm
by submitting false data. A central planner is in charge of controlling and designing
the algorithm and a rewarding scheme that defines payments among planner and
players based on the submitted data. The planner may, for example, want to design
algorithm and payments such that reporting the true data always maximizes the utility
functions of rationally acting players, because this enables the planner to generate fair
solutionswith respect to some social criterion that considers the interests of all players.
We review the categories and characterizing problem features of machine scheduling
settings in the algorithmicmechanism design literature and extend thewidely accepted
classification scheme of Graham et al. (Ann Discrete Math 5:287–326, 1979) for
scheduling problems to include aspects relating to mechanism design. Based on this
hierarchical scheme, we give a systematic overview of recent contributions in this field
of research.
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1 Introduction and scope of review

There exists a tremendous body of literature that focuses on intersections of (algorith-
mic aspects of) computer science and game theory (as well as economic theory). The
resulting fields of intersecting disciplines are usually referred to as algorithmic game
theory (an excellent introduction and overview is given by Nisan et al. 2007). Many
research articles in this field focus on auction contexts (see Krishna 2010). Recently,
however, there has been a growing interest in taking a game-theoretic perspective on
machine scheduling problems, which has resulted in a fairly large amount of research
articles that we aim to review and classify in this article.

Broadly speaking, scheduling problems are concerned with allocating scarce
resources over time to perform a set of tasks with the objective of optimizing one
or more performance measures (Błażewicz et al. 2007; Leung 2004). Resources, tasks
and performance measures can be of very different nature. As indicated above, we will
focus on resources that (directly) represent some kind of processor or machine, i.e.,
machine scheduling problems, and set the scope of our literature review, which com-
plements the articles by Heydenreich et al. (2007) and Christodoulou and Koutsoupias
(2009), to include research on

• machine scheduling problems
• in offline-settings, where all information regarding the problem is known or has
been announced (see below) at the unique time of planning,

• in a noncooperative game-theoretic context, where players cannot form coalitions
• and have private information on their own characteristics which they directly (but
not necessarily truthfully) announce by making a single claim,

• in the presence of a central authority that is in charge of designing a rewarding
scheme and the scheduling algorithm that determines the final schedule based on
the information submitted by the players and the publicly known information.

In order to give a systematic record of the academic efforts in the above field of
research, we provide a corresponding hierarchical classification scheme. This scheme
augments the classification scheme by Graham et al. (1979) for machine scheduling
problems, which is widely used and generally accepted in the scheduling community.
We aremotivated by the fact that adoptions and extensions ofGrahamet al. (1979) have
been successfully implemented in a variety of other problem fields (see, for example,
Allahverdi et al. 2008; Boysen and Fliedner 2010; Boysen et al. 2007, 2009; Brucker
et al. 1999; Potts and Kovalyov 2000).

1.1 Scope of review

In this section, we present details on the scope of our literature review and additionally
introduce the notation used throughout this article. For the sake of brevity, we assume
the reader to be familiar with the basic theory of machine scheduling problems and
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Table 1 Notation: machine scheduling problems

J Set of jobs |J | = n

M Set of machines |M | = m

O Set of feasible solutions of scheduling problem

ti j Processing time of job j ∈ J on machine i ∈ M

• Single machine or identical (parallel) machines: ti j = t j ∀ i ∈ M

• Uniform (parallel) machines: ti j = t j /si for a given speed si

• Unrelated (parallel) machines: ti j = t j /si j for a given speed si j

w j Weight of job j ∈ J

r j Release date of job j ∈ J

d j Due date or deadline of job j ∈ J

C j Completion time of job j ∈ J C j : O → R≥0

Uj Unit penalty of job j ∈ J : 1 if j completes strictly after d j , 0 otherwise Uj : O → {0, 1}
Li Load of machine i ∈ M Li : O → R≥0

the main concepts of game theory and refer to Błażewicz et al. (2007), Leung (2004),
and Fudenberg and Tirole (1991) for comprehensive introductions to these fields of
research.

1.1.1 Machine scheduling problems

The notation used in the scheduling and (algorithmic) game theory communities is not
always compatible. Therefore,wewill sometimes deviate from the standard scheduling
notation. Basically, a machine scheduling problem is characterized by a set J of n jobs
(tasks) and a set M of m machines. A feasible schedule o assigns machines of the set
M to jobs of the set J in order to complete all jobs under a set of imposed constraints.
We denote the set of all feasible schedules of a given machine scheduling problem by
O . Jobs and machines are characterized by certain parameters, e.g., processing times
or speeds. Furthermore, there exist different performance measures. We assume the
reader to be aware of the corresponding definitions and restrict ourselves to giving an
overview of the notation relevant for this article in Table 1.

As mentioned above, Graham et al. (1979) present a widely used and gener-
ally accepted classification scheme for machine scheduling problems. It represents
a specific problem by a three-field notation, α|β|γ , where α describes the machine
environment, β refers to job characteristics, and γ relates to the (global) performance
measure (optimality criterion). Each field of the triple includes multiple elements,
e.g., α = α1, α2, . . ., which represent specific problem properties. The empty symbol,
◦, denotes the default value of an element and is skipped when a triple is actually
specified.

1.1.2 Algorithmic game theory

The games considered throughout this paper have three basic elements: players, strat-
egy spaces, and utility functions. Furthermore, wewill restrict ourselves to considering
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Players/Central Authority

AGENTS (MACHINES OR JOBS)

Stream “Algorithmic Mechanism Design”
(direct revelation)

Stream “Scheduling Games”

CENTRAL AUTHORITY/PLANNER

Machine Scheduling Prob./Rewarding Scheme

MATHEMATICAL MODEL

parameters

variables

. . .

ALGORITHM REW. SCHEME

announce agent characteristics
(private information)
select agent-specific

machine-job assignment

designs and controls

schedule “rewards”

problem instance

PUBLIC INFORMATION

Fig. 1 Algorithmic mechanism design (in case of direct revelation) and scheduling games

noncooperative games. That is, players cannot form coalitions in order to gener-
ate group decisions. In the context of machine scheduling problems, players may
be machines or jobs. More generally, one may also think of “owners” of multiple
machines or jobs that act as single players. Each player has an associated strategy
space that represents the options that the player can select from when the game is
played. For example, when the players correspond to jobs, each job may be allowed to
select a machine to be processed on. A player’s utility function assigns a utility level
to every vector of strategies, i.e., each combination of strategies that can potentially
be selected by all players. With respect to machine scheduling problems, the utility
level could, for instance, correspond to the completion time of a given job.

We will consider fairly specific problem settings in the field of algorithmic game
theory for machine scheduling problems. These settings are characterized by the exis-
tence of (rational and selfish) players, who are typically referred to as agents and can
make a single claim on some pieces of information that may affect the final schedule.
Furthermore, there exists a central authority/planner, who is in charge of designing
an interaction protocol, a rewarding scheme (e.g., payments among players), and a
scheduling algorithm that determines the final schedule. Within this scope, there are
twomain streams of literature that differ in the type of information that the agents pos-
sess and in the way that the information affects an instance of the considered machine
scheduling problem (Fig. 1).

1. In this article, we will focus on one of these streams, which presumes that the
agents have private information on some of their own characteristics. Jobs, for
instance, may privately know their due dates or job weights. The remaining data,
e.g., the number of machines and jobs, is usually assumed to be publicly known.
The central planner designs some protocol of interaction that the agents have to
follow. This protocol may be fairly general. We will, however, restrict ourselves to
considering “direct protocols” that allow the agents to solely (but not necessarily
truthfully) announce concrete values that represent their private information when
the game begins. In terms of optimization problems, these agents therefore fix a
subset of parameters. When acting selfishly, they may try to influence the solution
determined by the scheduling algorithm by submitting false information if this can

123



Mechanism design for machine scheduling problems… 587

increase their utility. However, by designing appropriate algorithms and reward-
ing schemes that set the right incentives, the central planner can extract the true
information of these players, for example, in order to generate fair solutions with
respect to some social criterion that considers the interests of all agents.

2. In the second stream, whichwe exclude from our review for the sake of brevity (the
interested reader may refer to Heydenreich et al. 2007), the (usually completely
informed) agents, again pursuing selfish goals, commit decisions on machine-job
assignments and thus implicitly fix variables of optimization problems. We can,
for example, think of jobs whose strategy spaces correspond to the set of machines,
i.e., jobs who can choose to be processed on specific machines.

We would like to stress the fact that the aforementioned fields of research are not
always clearly separated in the literature. Similarly, the terms used to identify specific
problems within these fields may differ among different articles. We will follow Nisan
and Ronen (2001), who define (algorithmic) mechanism design to aim at “study[ing]
howprivately known preferences […] can be aggregated toward a ‘social choice’ ” (see
also Nisan and Ronen 1999), which corresponds to the first stream described above.
Our focus on direct protocols is usually termed direct revelation (see, for example,
Nisan 2007). Others use the term “algorithmic mechanism design” in a more gen-
eral context, even when there is no privately owned information (see, for instance,
Immorlica et al. 2009). Problems in the second stream are sometimes referred to as
(machine) scheduling games (see, for instance, Harks et al. 2011; Roughgarden and
Tardos 2007) or loadbalancinggames (Vöcking2007). These games are closely related
to the categories of congestion games (Rosenthal 1973) and coordination mechanisms
(Christodoulou et al. 2009a). In all of these areas, one is usually interested in deciding
whether (Nash) equilibria exist, how (in-)efficient these equilibria are when compared
to socially optimal solutions, and how fast algorithms can compute them (Harks et al.
2011; Roughgarden and Tardos 2007).

1.1.3 Algorithmic mechanism design

Based on the illustration in Fig. 2, we will now describe the (direct revelation) algo-
rithmic mechanism design setting in the context of machine scheduling problems in
more detail. The corresponding notation used throughout this article is summarized
in Table 2.

Let A denote the set of rational and selfish agents. Each agent k ∈ A has a (true)
valuation function vtk : O → R that maps every feasible schedule of the considered
scheduling problem to a real value. vtk is private information of the agent and is thus
sometimes referred to as the agent’s type. Negative values can, for example, relate to
costs incurred to a (job) agent due to waiting for being completed.

Each agent k ∈ A reports a valuation function vk that may deviate from the true
valuation function vtk to the mechanism. Each valuation function vk , k ∈ A, is element
of a publicly known set Vk . We define V := V1 × · · · × V|A|. Furthermore, we denote
the vector of all valuation functions reported to the mechanism by v = (v1, . . . , v|A|)
and the vector of all valuation functions reported to the mechanism except of vk by
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Fig. 2 (Direct revelation) algorithmic mechanism design. (Reproduced with permission from Kress et al.
2017)

Table 2 Notation: algorithmic mechanism design

A Set of agents

Vk Set of potential valuation functions for agent k ∈ A

V Cartesian product of sets Vk , k ∈ A V = V1 × · · · × V|A|
V−k Cartesian product of sets Vl , l ∈ A \ {k} V = V1 × · · · × Vk−1 × Vk+1 × · · · × V|A|
f Social choice function/allocation rule f : V → O

vtk True valuation function of agent k ∈ A Vk � vtk : O → R

vk Claimed valuation function of agent k ∈ A Vk � vk : O → R

pk Payment function for agent k ∈ A pk : V → R

uk Utility function of agent k ∈ A uk (vk , v−k ) = vtk ( f (v)) + pk (v)

v−k Vector of claimed valuation functions except vk ,
k ∈ A

v−k = (v1, . . . , vk−1, vk+1, . . . , v|A|)

v Vector of claimed valuation functions v = (v1, . . . , v|A|)
v = (vk , v−k ), k ∈ A

v−k = (v1, . . . , vk−1, vk+1, . . . , v|A|). For the sake of notational convenience, we will
use v and (vk, v−k) interchangeably.

The mechanism itself is designed and controlled by a central planner. It is a pair
( f, p), composed of a social choice function f : V → O and a vector of payment
functions p := (p1, . . . , p|A|), with pk : V → R for all k ∈ A. The mechanism ( f, p)
is said to implement the social choice function f . It is efficient, if f maximizes social
welfare, i.e., the sum of the valuation functions of all agents (see, e.g., Heydenreich
et al. 2008;Mitra 2002, 2001). As described in Sect. 1.1.2, in the context of scheduling
problems, the social choice function is an algorithm that determines a feasible schedule
based on the valuation functions reported to the mechanism. It is also referred to as
the scheduling rule, allocation rule, or allocation function. As the global objective
function of a scheduling problem may be non-utilitarian, i.e., differ from aiming
to maximize the sum of the valuation functions of all agents, we will use the term
efficiency in a broader sense by referring to a mechanism as efficient whenever it
optimizes the global optimality criterion of the scheduling problem. By controlling the
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allocation rule and the payment functions, the central planner can design mechanisms
with different features.

Each agent k ∈ A selfishly aims tomaximize the utility function uk : V → R, which
is assumed to be quasi-linear, i.e., corresponds to the sumof the agent’s valuation of the
schedule (determined by the allocation rule) and the (potentially negative) correspond-
ing payment from the mechanism, uk(vk, v−k) := vtk( f (vk, v−k)) + pk(vk, v−k).
Sometimes, it is reasonable to focus on individually rationalmechanisms (also referred
to as voluntary participation mechanisms, see Auletta et al. 2004), that assume (or
feature) the utilities of each agent to always be nonnegative (see, for instance, Nisan
2007; Hoeksma and Uetz 2013).

1.1.4 Randomized mechanisms and publicly known distributions

All of the above definitions consider a deterministic problem setting and assume that
the agents have no information at all about the private information of the other agents.
Unless stated otherwise, these will also be our standard assumptions throughout the
remainder of this paper. The literature, however, also considers modified settings.
Most important, one can assume the allocation rule to be non-deterministic, i.e., let
the scheduling algorithm’s logic employ some degree of randomness, or consider
randomized payments. A resulting mechanism is then referred to as a randomized
mechanism (Nisan and Ronen 1999, 2001). Moreover, it may sometimes be appropri-
ate to assume that there exists some commonly known probability distribution over
the private information of each player (Nisan 2007). In both modified settings, agents
are usually assumed to maximize expected utilities. The definitions of the standard
setting carry over in a straightforward manner.

1.2 Article overview

The remainder of this article is structured as follows. In Sect. 2, we present an overview
of problem categories and problem features that characterize machine scheduling
settings in the algorithmic mechanism design literature. This will lay the foundation
for our extension of the classification scheme of Graham et al. (1979) in Sect. 3
and allow a structured overview of the literature in Sect. 4. The article closes with a
conclusion and an illustration of research challenges that can be identified based on
the prior classification of the literature in Sect. 5.

2 Review of problem categories and features

In addition to the classical problem categories of the classification scheme of Gra-
ham et al. (1979) and its extensions, the algorithmic mechanism design literature for
machine scheduling problems (as restricted in Sect. 1) can be structured based on
multiple categories, which we will present in the following sections, where we will
also discuss additional problem features that we have not yet introduced.
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2.1 Categories, risk attitude, and private information of agents

With respect to categories of agents, there exist two streams of publications. The first
group of articles, which follows the seminal work of Nisan and Ronen (1999, 2001),
presumes that solely the machines are selfish agents (typically referred to as machine
agents), i.e., A = M .Machine agents usually aim for small loads. Similarly, the second
stream of publications assumes that only the jobs are selfish agents (job agents), i.e.,
A = J , mostly aiming at small completion times. Prominent examples of the latter
stream are Suijs (1996) or Angel et al. (2006). The literature on job agents that are to
be scheduled on a single machine sometimes analyzes the independence of irrelevant
alternatives (IIA) property of allocation rules (see, e.g., Heydenreich et al. 2008). It
is satisfied if the relative order of any two jobs on the machine is independent of the
committed types of all other jobs.

Of course, one may also think of more general settings, where both (a subset of)
jobs and (a subset of) machines represent selfish players of the considered game. Even
more general, there might be “owners” of multiple jobs or machines that act as single
agents. However, to the best of the authors’ knowledge, this setting has not yet been
considered in the noncooperative literature.

Concerning the risk attitude, the vast majority of research articles assumes the
agents to be risk neutral. Exceptions are Kovalyov and Pesch (2014) and Kovalyov
et al. (2016), where job agents are assumed to be “fully” risk averse.

Mechanism design settings can also be classified with respect to the knowledge of
agents about the private information of the other agents. The standard case is to assume
that agents have no information at all about the other’s private information. Sometimes,
however, one assumes that there exists some commonly known distribution over the
private information of each agent (see Sect. 1.1.4) or that there are other publicly known
restrictions on the private information of each agent. An example for the latter case is
to restrict privately known speed factors of machine agents to be natural numbers that
are bounded from above by a publicly known constant (Auletta et al. 2004).

2.2 Truthfulness, VCG mechanisms, and approximability

As indicated in Sects. 1.1.2 and 1.1.3, agents selfishly aim tomaximize their (expected)
utilities and may therefore lie about their true valuation functions. To overcome this
problem, the central planner may want to design the mechanism such that agents
behave truthfully. The literature considers different concepts of truthfulness. We will
briefly outline the concepts that are relevant for this article in this section.

A mechanism is (dominant strategy) incentive compatible or truthful (Nisan 2007)
if it guarantees that reporting the true valuation functionmaximizes the utility function
of a rationally acting agent for all possible vectors of claimed valuation functions of
the other agents, i.e., if uk(vtk, v−k) ≥ uk(vk, v−k) for all k ∈ A, all vk ∈ Vk , and all
v−k ∈ V−k .

In case of randomized mechanisms, articles usually apply an adapted notion of
truthfulness, referred to as truthfulness in expectation. Formally, let E(uk(v)) denote
the expected value of the utility function of agent k ∈ A over the randomization
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of the mechanism. A mechanism is truthful in expectation if E(uk(vtk, v−k)) ≥
E(uk(vk, v−k)), for all k ∈ A, vk ∈ Vk , and v−k ∈ V−k . Alternatively, one may
slightly deviate from our definition in Sect. 1.1.4 and define a randomized mechanism
to allow distributions over deterministic mechanisms. Then, a randomized mechanism
is defined to be universally truthful if every deterministic mechanism in the support
is dominant strategy incentive compatible (Nisan 2007).

Similarly, when considering the case of publicly known probability distributions
over the type spaces of agents (that we will denote byΦk for agent k ∈ A) as described
in Sect. 1.1.4, one can apply aweaker notion of truthfulness, referred to asBayes–Nash
incentive compatibility (see, for example, Duives et al. 2015; Heydenreich et al. 2008;
Hoeksma and Uetz 2013). Here, for each agent, telling the truth must be (weakly)
dominant in expectation over the publicly known distributions over the type spaces of
the other agents.

One of the most important general results in the field of mechanism design is
the Vickrey–Clarke–Groves mechanism (VCG mechanism), which was suggested by
Vickrey (1961) and generalized by Clarke (1971) and Groves (1973). A mechanism
is called a VCG mechanism, if the social choice function maximizes social welfare
and if the payment functions pk(v), k ∈ A, are given by

pk(v) = hk(v−k) +
n∑

l=1,l �=k

vl( f (v)),

where hk(v−k) : V−k → R. Note that hk , k ∈ A, is independent of the valuation
function vk ∈ Vk reported by agent k. This general definition of the payment functions
is referred to as the Groves payments. The Clarke pivot rule specifies hk(v−k) =
−maxo∈Ô

∑n
l=1,l �=k vl(o), k ∈ A, where Ô ⊆ O is the set of all feasible schedules that

the considered scheduling algorithm may compute. The resulting payment functions
have specific desirable properties. They are, for example, non-positive, so that the
agents never receive payments from the mechanism. Furthermore, a corresponding
mechanism is individually rational if vk(o) ≥ 0 for all k ∈ A and all o ∈ Ô . The
concept of VCG mechanisms was further generalized by Roberts (1979) to social
choice functions that belong to the set of so-called affine maximizers.

A VCGmechanism is (dominant strategy) incentive compatible, but a major draw-
back is the need to find optimal solutions to the underlying problem of maximizing
social welfare, which may be NP-hard (see, for instance, Nisan 2007). Hence, in the
context of scheduling problems, VCG mechanisms are oftentimes not appropriate
even if the objective function of the specific scheduling problem corresponds to max-
imizing social welfare. Many researchers are therefore actively trying to explore the
boundary between truthfulness (in its most general sense) and computational com-
plexity for specific scheduling problems (see also Sect. 5). It is especially desirable
to derive truthful mechanisms with polynomial time computable allocation and pay-
ment functions that feature good approximation factors for specific settings, and to
determine strong dual bounds on approximation factors for truthful scheduling under
non-utilitarian objectives without restricting the analysis to polynomial time alloca-
tion functions. If one aims to design a concrete polynomial time truthful mechanism

123



592 D. Kress et al.

for some NP-hard scheduling domain, one must make use of theoretical results that
are related to incentive compatibility and that are suitable for heuristic algorithms. For
example, one may have to assure that certain monotonicity conditions are fulfilled by
the allocation rule in order to guarantee incentive compatibility (see, e.g., Heydenreich
et al. 2007; Lavi and Swamy 2009, for more details).

2.3 Models of execution and constraints on committed data

When agents possess private information on the processing times of jobs, the literature
distinguishes between differentmodels of execution. These models differ in the length
of the actual time slots that are reserved on the machines once the schedule that
has been determined by the scheduling algorithm is implemented. There are two
widely used models of execution (see, e.g., Christodoulou et al. 2007a). The strong
model of execution assumes that the schedules which are implemented based on the
computations of the scheduling algorithms always apply the true processing times of
the jobs, no matter which value has been committed by the agents. In contrast, in the
weakmodel of execution, the implemented schedules use the reported processing times.
A third model of execution is used by Koutsoupias (2014). Here, the implemented
processing times are defined by the maximum of the reported and the true processing
times. We refer to this model of execution as the maximum model of execution. The
weak and maximummodels of execution are especially relevant in applications where
the processing of all jobs can actually be observed by the agents. If the true processing
times were applied in this case, a lie of an agent who commits a processing time that is
larger than its true value would be observable by the other agents, which might not be
desirable in the considered application (Koutsoupias 2014). Similarly, there may be
applications where the strong model of execution is most suitable, for example, when
machine idle times are very costly for their owner or not allowed at all.

Additionally, onemaywant to constrain the data that the agents are allowed to report
to the mechanism without publicly revealing explicit data of their private information.
For example, in case of private processing times (release dates), it may be reasonable
to restrict the agents to commit processing times (release dates) that are bounded from
below by their true values (see, e.g., Angel et al. 2012; Christodoulou et al. 2007a).

2.4 Characteristics of payment schemes

There exist many applications, where mechanisms may be restricted to not include
payments for compensationpurposes, i.e.,where pk(v) = 0must hold for all k ∈ A and
v ∈ V (see, for example, Koutsoupias 2014). Very broadly speaking, this “constraint
can arise from ethical and/or institutional considerations: Many political decisions
must be made without monetary transfers; organ donations can be arranged by ‘trade’
involving multiple needy patients and their relatives, yet monetary compensation is
illegal” (Schummer and Vohra 2007). In a scheduling context, a setting with payments
“is easily challenged when it comes to computational settings. In particular in internet
domains payments are notoriously difficult to implement, mainly due to security and
banking issues” (Procaccia and Tennenholtz 2009).
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Other applications strive for mechanisms that have no surplus or deficit of mone-
tary payments that cannot be redistributed among the agents (Suijs 1996), i.e., where∑

k∈A pk(v) = 0 for all v ∈ V . These payment schemes are usually referred to as
budget-balanced.

Some articles aim to design Bayes–Nash or dominant strategy incentive compatible
mechanisms for scheduling problems thatminimize the sum of the (expected) payments
(see, for instance, Duives et al. 2015; Heydenreich et al. 2008; Hoeksma and Uetz
2013). Mechanisms of this type are usually referred to as optimal mechanisms (see
also Hartline and Karlin 2007). Usually, these articles focus on individually rational
mechanisms or some approximation guarantee of the scheduling algorithms (given
truthful commitments of the agents).

2.5 Other problem categories and features

There exist some mechanism design-related problem features that do not fall into the
categories of the above sections. In the following, we list the features that are relevant
for this article.

A mechanism is called anonymous if, whenever two agents switch all of their
properties, these two agents also switch positions in the resulting schedule (see, for
example, Ashlagi et al. 2012).

In a mechanism with verification, the calculation of the payments depends on the
results of the execution of the schedule (see, e.g., Nisan and Ronen 1999, 2001).
If, for example, the processing time of a job is part of the private information of an
agent, additional information on the true processing time becomes available after the
execution of the schedule, which depends on the model of execution.

Next, a mechanism is called envy-free, if no agent is able to improve her utility func-
tion value by switching both, the position in the schedule and the realized payments,
with another agent (see, for instance, Kayı and Ramaekers 2010, 2015).

Amechanism is task-independent if its allocation function decides on the allocation
of each job separately, i.e., without considering the characterizing parameters of the
other jobs (see, for instance, Christodoulou et al. 2010; Dobzinski and Sundararajan
2008).

When considering a mechanism design setting with machine agents, a mechanism
is called locally decisive, if each agent can enforce her allocation by reporting very
low or high values but cannot determine how the remaining jobs are allocated among
the other agents (see, e.g., Christodoulou et al. 2008).

3 Classification scheme

We are now ready to present our extension of the classification scheme of Graham
et al. (1979). The resulting scheme is extensible, i.e., it allows for including more
features when needed.
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3.1 Review of selected elements of Graham et al. (1979)

We will first review parts of the notation introduced by Graham et al. (1979). With
respect to the machine environment α, they define:

• Machine environment, α1 ∈ {◦, P, Q, R, . . .}
◦ Single machine, i.e., m = 1.
P Identical (parallel) machines.
Q Uniform (parallel) machines.
R Unrelated (parallel) machines.

• Number of machines, α2 ∈ {◦,N}
◦ m is variable.
positive integer m There exists a constant number m of machines.

Regarding the job characteristics β, we will only make use of a few elements
introduced by Graham et al. (1979):

• Release dates, β4 ∈ {◦, r j }
◦ No release dates are specified.
r j Release dates per job are specified.

• Processing times, β6 ∈ {◦, t j = 1, . . .}
◦ Processing times are arbitrary.
t j = 1 Each job has unit processing time.

Furthermore, we will make use of the following element (see, for example, Leung
and Li 2008):

• Eligibility constraints, β7 ∈ {◦, Mj }
◦ No eligibility constraints are specified.
Mj Each job j ∈ J is associated with a set of eligible machines Mj ⊆ M on which

it can be processed.

Finally, based on Graham et al. (1979) and with respect to the (global) optimality
criterion γ , i.e., the objective function that the scheduling algorithm aims to optimize
based on the publicly known parameters and the values committed by the agents, we
define:
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•Global optimality criterion,γ ∈ {Cmax ,
∑

C j ,
∑

w j C j ,maxw j C j ,
∑

f j (C j ),
∑

f (C j ),∑
w j f (C j ),

∑
w jU j ,

∑
f (Li ),

∑
Li , ‖L‖p,maxmin Li , . . .}:

Cmax Minimize the makespan, i.e., the maximum of the completion times.∑
C j Minimize the sum of completion times.∑
w j C j Minimize the weighted sum of completion times.

maxw j C j Minimize the maximum weighted completion time.∑
f j (C j ) Minimize the sum of functions f j of the completion times of jobs j ∈ J .∑
f (C j ) Minimize the sum of a function f of the completion times.∑
w j f (C j ) Minimize the weighted sum of a function f of the completion times.∑
w jU j Minimize the total weight of late jobs.∑
f (Li ) Minimize the sum of a function f of the load of the machines.∑
Li Minimize the sum of the loads of the machines.

‖L‖p Minimize the l p norm of the vector of machine loads L .
maxmin Li Maximize the minimum load over all machines.

3.2 Including mechanism design settings for machine scheduling problems

We can now propose additional notation that allows to include mechanism design
settings. As described in Sect. 2.1, the existing literature can be divided into two
groups of articles that either presume the existence of machine agents or job agents.
We therefore augment the first two fields of the classification scheme of Graham et al.
(1979), that represent the machine environment α and the job characteristics β, with
additional elements α̂l and β̂l , l = 1, 2, . . ., respectively. Here, the index l refers
to the l-th element that refers to mechanism design (indicated by the hat operator)
characteristics in the specific field.

First, in order to be able to indicate the risk attitude of the agents, we define the
elements α̂1 for machine agents and β̂1 for job agents:

• Risk attitude of agents, α̂1, β̂1 ∈ {◦, averse, seeking, . . .}
◦ No agents at all (no mechanism design setting) or all agents are risk neutral.
averse All agents are risk averse.
seeking All agents are risk seeking.

The elements α̂2 and β̂2 specify the set of parameters that are private information
of the agents and indicate whether the other agents have some common knowledge
about this private information.
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• Private information of machine agents, α̂2 ∈ {◦, privρ {. . .}, . . .}
◦ No machine agents.
privρ {. . .} Each element of the set {. . .} refers to an entity of private information of the machine

agents. A superscript τ for some element indicates additional restrictions or assumptions
on the agents’ commitments or their implementation that do not publicly reveal explicit
data of the private information. Multiple entries in the superscript are separated by
commas.
– sτi : Machine agent i ∈ M has private information on the speed factor si . Potential
entries in superscript τ :
– …

– tτi j : Machine agent i ∈ M has private information on the processing times ti j for
all jobs j ∈ J . Potential entries in superscript τ :
– max : The maximum model of execution is applied.
– …

– …
The subscript ρ indicates additional restrictions or assumptions (on each piece of private
information that can be committed by the machine agents) that are based on publicly
known parameters. Multiple entries in the subscript are separated by commas. Potential
entries in subscript ρ:
– Φ: A distribution of each machine agent’s private information is publicly known.
– dω: The values that can be reported by the machine agents are restricted to be
elements of publicly known discrete sets. Each element of the subscript ω
indicates additional restrictions on these sets:
– f : The sets are finite for all machine agents.
– =i : The sets are identical for all machine agents.
– = j : The sets are identical for all jobs (if relevant).
– div: The private information is divisible, i.e., it belongs to a set C = {c1, c2,

. . .}, where ci+1 is a multiple of ci ∀ i .
– c-div: The private information is c-divisible, i.e., it is a power of a given
positive constant c.

– …
– cω: The values that can be reported by the machine agents are restricted to be

elements of publicly known bounded and continuous sets. Each element of the
subscript ω indicates additional restrictions on these sets:

– =i : The sets are identical for all machine agents.
– …

– …
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• Private information of job agents, β̂2 ∈ {◦, privρ {. . .}, . . .}
◦ No job agents.
privρ {. . .} Each element of the set {. . .} refers to an entity of private information of the job agents.

A superscript τ for some element indicates additional restrictions or assumptions on the
agents’ commitments or their implementation that do not publicly reveal explicit data
of the private information. Multiple entries in the superscript are separated by commas.
– rτ

j : Job agent j ∈ J has private information on its release date r j . Potential
entries in superscript τ :
– ≥: The release date committed by job agent j ∈ J is bounded from below by

the true release date.
– …

– dτ
j : Job agent j ∈ J has private information on its due date or deadline d j .

Potential entries in superscript τ :
– …

– wτ
j : Job agent j ∈ J has private information on its weight w j . Potential entries

in superscript τ :
– …

– f τ
j : Job agent j ∈ J has private information on the function f j that maps every
possible completion time of its job to a real value. Potential entries in superscript
τ :
– …

– tτj : Job agent j ∈ J has private information on its processing time t j . Potential
entries in superscript τ :
– strong: The strong model of execution is applied.
– weak: The weak model of execution is applied.
– ≥: The processing times committed by job agent j ∈ J are bounded from

below by the true processing times.
– …

– tτi j : Job agent j ∈ J has private information on its processing times ti j that may
differ among machines i ∈ M . The potential entries of the superscript τ are
defined as above.

– …
The subscript ρ indicates additional restrictions or assumptions (on each piece of private
information that can be committed by the job agents) that are based on publicly known
parameters. Multiple entries in the subscript are separated by commas. Potential entries
in subscript ρ:
– Φ: A distribution of each job agent’s private information is publicly known.
– dω: The values that can be reported by the job agents are restricted to be elements
of publicly known discrete sets. Each element of the subscript ω indicates
additional restrictions on these sets:
– f : The sets are finite for all job agents.
– …

– …
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Finally, we define elements α̂3 and β̂3 that represent the (true) valuation functions
of the agents, i.e., their “local” objective functions related to the scheduling problem.

• Objective of agents, α̂3 ∈ {Li , . . .}, β̂3 ∈ {C j ,Uj . . .}
α̂3 = Li Each machine agent i ∈ M aims to minimize its load Li .
β̂3 = C j Each job agent j ∈ J aims to minimize its completion time C j .
β̂3 = Uj Each job agent j ∈ J aims to complete before or at d j , i.e., to minimize the unit

penalty function Uj .

As mentioned above, our classification scheme is extensible. This is indicated by
dots in the above notation, which allow for including new problem settings for exist-
ing categories, for example, when considering new entities of private information of
agents. Furthermore, when considering more general categories of agents or similar
problem generalizations or extensions, one can include new symbols to represent those
settings.

3.3 Examples

We will now illustrate the above classification scheme by presenting two examples.
P||Cmax: We are given an arbitrary number of m parallel identical machines and

a set J of n jobs. The processing time t j of any job j ∈ J is independent of the
machines. Each job can be processed by at most one machine at a time, and each
machine is capable of processing at most one job at a time. The objective is to assign
each job to exactly one machine and find non-preemptive sequences of the resulting
subsets of jobs of eachmachine, so that themakespan is minimized. There is no private
information; a mechanism design setting is not considered.

P|priv{t strong,≥j },C j |Cmax: The setting is in analogy to P||Cmax, but we now con-
sider amechanismdesign settingwith job agentswho aim tominimize their completion
times. The processing time of each job agent is private information. The processing
times committed to the mechanism are bounded from below by their true values. The
strong model of execution is applied.

4 Literature overview

Based on the classification scheme of Sect. 3, we can now present a structured
overview of the relevant literature. We will do so by presenting three tables that
refer to articles that consider problem settings with job agents (Table 3), machine
agents and unrelated machines (Table 4), and machine agents and uniform machines
(Table 5).

We will make use of some additional definitions regarding approximability results
that we briefly introduce before describing the tables in detail. For a given constant
c ∈ R, a polynomial algorithm is called a c-approximation algorithm if (in case of
a minimization problem) the objective function value determined by the algorithm is
bounded from above by c times the optimal objective function value. A polynomial
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algorithm with an additional arbitrary positive input parameter ε that guarantees an
objective function value which is bounded from above by 1 + ε times the optimal
objective function value is called a polynomial-time approximation scheme (PTAS).
If the runtime of the algorithm is polynomial in the size of the problem, denoted
by q, and in 1/ε, the algorithm is called fully polynomial-time approximation scheme
(FPTAS).Another variant of aPTAS is aquasi-polynomial-timeapproximation scheme
(QPTAS). A QPTAS has time complexity q polylog(q).

Within the tables, each article, identified by its authors and publishing year, is
classified according to the extended classification scheme presented in Sect. 3. Further-
more, the tables highlight the main contributions of each article (as explicitly stated
by the authors) by specifying whether it focuses on selected properties or restricts
the analysis to specific settings. These selected properties and restrictions slightly
differ among the tables because the literature related to each table usually takes
a fairly specific perspective on mechanism design settings for machine scheduling
problems.

With respect to the characteristics of the payment scheme (Paym.), we indicate
whether an article considers nonzero payments at all (∃) and whether the presented
payment scheme is budget-balanced (BB). Furthermore, we present information on
the question of whether or not the mechanisms presented in an article are individually
rational (IR). With regard to the considered mechanisms (Mech.), we indicate if they
are randomized (rand.) or deterministic (det.). The column “Opt. Me.” indicates if
the authors consider the design of optimal mechanisms. Similarly, the focus on dif-
ferent concepts of truthfulness is illustrated in the column “Truthfuln.”, where we
specify whether the authors present results on or restrict their analysis to dominant
strategy truthfulness (DS), focus on universally truthful mechanisms (U), consider
truthfulness in expectation (IE), or examine Bayes–Nash incentive compatibility
(BN).

Furthermore, the tables contain information on the approximability of the con-
sidered settings. Most important, we indicate results concerning dual and primal
bounds (DB/PB) on approximation factors in the “Approx. Quality” column. Note
that, with respect to the dual bounds, the studies under consideration do not restrict
to what polynomial time mechanisms can achieve, i.e., the dual bounds even hold for
exponential time allocation (and payment) functions (see Sect. 2.2). We additionally
indicate whether a primal bound presented in some article is based on a polyno-
mial time allocation function and whether a PTAS, FPTAS, or QPTAS is considered
(column “poly.”). If, in this context, the allocation function is a polynomial time algo-
rithm, but the payments are not necessarily computable in polynomial time (and this
is also highlighted by the respective authors), this is specified in the last column of a
table.

In the last column of the table, we present highlights of the articles as well as addi-
tional properties (Table 3) or additional restrictions and assumptions on the considered
setting (Tables 4 and 5) that are not covered by the preceding columns. In this con-
text, note that some articles consider relaxations of the original scheduling problems,
i.e., by allowing a job to be split into arbitrary fractions among the machines. This is
usually referred to as fractional scheduling.
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In order to precisely present the information in the tables, we use different symbols
to indicate if and how a property or restriction is handled or considered in a given
article. First, we use circles to indicate whether a given property is fulfilled or a
restriction is considered (•) or not (◦). If the authors of an article have proven a given
property to be fulfilled or restrict their analysis to a specific setting, we use a “+”, if
they have proven that a given property is not fulfilled, we use a “-”. A blank space
indicates that a property or restriction is not explicitly addressed in the corresponding
article. If a property is only fulfilled under additional constraints that are not stated
elsewhere in the table, we mark these results with a “*”.

5 Research challenges and conclusion

In this article, we have provided a classification scheme and a literature overview
on direct revelation mechanism design settings in the context of machine schedul-
ing problems. Based on our classification of the literature, we can identify multiple
potential directions and challenges for future research that we briefly outline in this
section.

First and foremost, as described in Sect. 2.2, it is challenging to better understand
the boundary between truthfulness on the one side and computational complexity and
approximation on the other side. For example, in case of R, priv{ti j }, Li ||Cmax , i.e., a
multi-parameter setting where machine agents possess more than one piece of private
information, Nisan and Ronen (1999, 2001) show that truthfulness excludes optimal
solutions to the underlying scheduling problem (even when allowing exponential time
allocation and payment functions) by providing a dual bound of 2 on the corresponding
approximation factor. This bound can, however, be beaten when allowing randomiza-
tion (see also Chen et al. 2015; Lu and Yu 2008a, b; Mu’alem and Schapira 2017),
which provides evidence for the “power of randomization in algorithmic mechanism
design” (Dobzinski and Dughmi 2013). Nisan and Ronen (1999, 2001) furthermore
conjecture that no truthful deterministic mechanism can achieve an approximation
factor better than m (see Table 4). This so-called Nisan–Ronen conjecture has been
settled by Ashlagi et al. (2009, 2012) when restricting the analysis to anonymous
mechanisms, but it is still open for the general case. A related predominant ques-
tion, which has especially been studied a single-parameter setting (see Table 5), is
whether or not truthful “efficient computation [is] fundamentally less powerful than
‘classical’ efficient computation” (Dhangwatnotai et al. 2008). Recently, for example,
Christodoulou andKovács (2010, 2013) and Epstein et al. (2013, 2015) have provided
the first truthful PTAS for Q, priv{si }, Li ||Cmax , the existence of which had been a
major open question ever since the work of Archer and Tardos (2001), who provided
a truthful exponential time deterministic mechanism for minimizing the makespan in
this setting.

There also remain plenty of open research questions with respect to classical
machine scheduling settings. The existing research presented in Tables 3, 4 and 5,
for example, solely focuses on parallel machine settings, while it may also be inter-
esting to analyze dedicated machine environments (flow shop, open shop, or job shop
problems) in a game-theoretic context. Furthermore, the literature rarely considers
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varying job characteristics, as, for example, release dates in offline-settings or prece-
dence relations.

Another interesting avenue for future research is to shift the research focus toward
new applications. Most existing research is motivated by the emergence of the internet
as a platform for computations (e.g., Nisan and Ronen 2001), for example, when
considering the problem of determining an execution sequence for (selfish) computer
tasks that have been accepted by a computing service provider. Another application
can be found in the literature on job agents that focuses on sequencing problems.Mitra
(2002), for instance, describes the following setting: There “is a large multi-unit firm
with each unit in need of the facility provided by a particular repair and maintenance
unit. The repair and maintenance unit can service only one unit at any given time.
Therefore, units which remain unattended, incur a cost for the time they are down.
In this framework, the firm’s role is that of a planner wanting to service the units by
forming a queue that minimises the total cost of waiting. Each unit’s cost parameter
is private information. The objective of the firm is to determine the order in which
the units are to be serviced.” Other applications, for example, arising in logistics or
production processes like considered by Kovalyov and Pesch (2014) can rarely be
found and might thus be an interesting field of study.

Finally, there are many additional potential research directions related to game the-
ory and mechanism design aspects. There are, for example, only very few articles that
consider risk averse agents. Moreover, as indicated in Sect. 2.1, it might be interesting
to consider more general settings with regard to the categories of agents. For instance,
one may let agents control multiple machines or jobs. Furthermore, the literature
on job agents and uniform machine agents rarely considers multi-parameter settings.
Finally, Tables 3, 4 and 5 reveal diverse literature gaps. One may, for example, analyze
budget-balanced payments or the design of optimal mechanisms in case of machine
agents. For specific problem settings, it is possible to consider different models of
execution, constraints on the committed data, local objective functions, etc.
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