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Abstract For online retailers with attended home delivery business models, the deci-
sive factor for promising dynamic time slot pricing decisions is the quality of the
opportunity cost approximation concerning incoming customer requests. For this
purpose, we present a novel approximation approach based on mixed-integer linear
programming that we integrate into the de facto standard dynamic pricing framework
prevalent in the academic literature. Our approximation combines the most current
information regarding the customers accepted to date with a forecast of expected cus-
tomers to come that is adapted during the progress of the booking horizon. Thus,
future customer requests demand management, i.e. the consequences of future pricing
decisions, is anticipated. We approximate the retailer’s vehicle routes and thus deliv-
ery costs of expected customers by a dynamic seed-based scheme in which potential
seeds’ locations as well as related distance approximations are dynamically adjusted
under consideration of the locations of already accepted customers. In a computational
study, we compare the approach to established pricing approaches in practice and to
the state-of-the-art dynamic pricing policy. We show that our approach constantly
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yields the highest profit, specifically given a tight capacity level. We further provide
implications for practical use. We show that, even for large-scale implementations in
a real-time environment, our approach is applicable by using parallel computing and
by only periodically recalculating opportunity cost. Even then, our approach leads to
very good results.

Keywords Retail · Attended home delivery · Dynamic pricing · Delivery time slots

1 Introduction

In online retailing, attended home delivery (AHD) services have gained increasing
popularity in recent years. Busy lifestyles, the incapability of leaving the house owing
to physical disability or the need for childcare necessitate homedelivery services (Hays
et al. 2005). In AHD, every delivery needs to take place in a service time window upon
which service provider and the customer have agreed in advance. For instance, the
delivery of perishable or bulky goods and/or safety reasons require customers to be
at home during service execution (Agatz et al. 2008). In this paper, we focus on the
e-grocery sector, in which groceries are delivered to customers. The growth potential
of the e-grocery sector can be illustrated by a Kantar Worldpanel investigation that
reports sales of groceries via e-commerce of $48 billion in the 12months to June 2016.
It also predicts an increase in sales to $150 billion in 2025—an annual growth rate of
20% between 2016 and 2025 (Kantar Worldpanel 2016).

The e-grocers’ business process typically works as follows: first, a customer who
is willing to place an order must log on to an e-grocer’s website. Therefore, some
basic information (e.g. the customer’s address) is revealed to the system. Second, the
customer selects groceries, fromwhich the capacity requirement (in a delivery vehicle)
and the order value can be derived. Third, the customer sees a delivery time slot list,
offering alternative slots regarding one or several potential delivery days in the near
future. For the delivery service, a delivery fee is charged, which can be a fixed or a
variable fee, depending on, for instance, the delivery time slot, the customer’s location
and/or the order value. As an alternative to a delivery fee, discounts are used in practice
to ensure a positive shopping experience for the customer (e.g. Freshdirect, Safeway
and Peapod in the USA). Finally, the customer can choose one of the offered delivery
time slots along with the corresponding fee/discount or leave the website without
booking. Internally, each potential delivery day is connected with a specific cut-off
time (quite commonly on its eve), i.e. delivery time slots on that day can only be made
available for customers’ order placement before that point in time. Once all orders
for a specific day are known, the e-grocer plans its delivery schedule (Agatz et al.
2013). Note that the order of the steps within the business process can be different,
i.e. selecting groceries might also take place after selecting the delivery time slot.

While AHD is a convenient service for customers, particularly the “last-mile” prob-
lem poses a logistical and economic challenge to retailers (Agatz et al. 2008). Service
providers face in particular the trade-off between substantial delivery cost and cus-
tomers’ high expectations regarding delivery reliability and service quality (Yang et al.
2016). To successfully meet the challenges in the e-grocery sector, cost-efficient oper-
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ations must be maintained. Customers’ delivery time slot choices strongly impact the
delivery cost, since their choices directly influence delivery routes. Thus, e-grocers
seek to actively manage their customers’ choices while anticipating the operative
delivery costs in order to maximise total profits.

For this purpose, one of the most prominent demand management concepts in
practice is dynamic time slot pricing (in the following: dynamic pricing), on which
we also focus in this paper. This concept allows an e-grocer to dynamically adjust its
delivery time slot prices for every incoming request, based on current information on
already accepted requests, a requesting customer’s location, future expected customer
requests in the remaining time until cut-off, the anticipated delivery cost and so on. The
underlying mathematical price optimisation problem has been formulated as stochas-
tic dynamic programming model in the academic literature (Yang et al. 2016). This
represents the most advanced and thus the current de facto standard dynamic pricing
framework for AHD. However, even in settings of moderate size, the model cannot be
solved to optimality owing to the curse of dimensionality. Therefore, for practical pur-
poses, some heuristic is needed. One meaningful possibility is to apply approximate
dynamic programming and so to remove the recursiveness of the stochastic dynamic
program. Specifically, when calculating the optimal prices of each possible delivery
time slot for an incoming request, the “consequences” concerning potential future
requests and the resulting routing cost (monetarily expressed in terms of opportunity
cost) are no longer calculated exactly in a recursive fashion; instead, some kind of
approximation is used.

In this context, Yang et al. (2016) propose approximating the opportunity cost by
calculating the insertion cost of an incoming customer request in a potential delivery
schedule based on a classical insertion heuristic that draws on Solomon (1987). Their
approach has two parts: the first component approximates insertion cost by alterna-
tively inserting the current incoming request in different potential schedules of the
already accepted customers and taking the cheapest one (Hindsight Policy). For the
second component, in order to incorporate expectations about future demand, a pool
of the most recent historical final schedules for the same delivery weekday is consid-
ered as a forecast of future schedules, and insertion cost is approximated by taking
the average over all potential insertions in the pool. A linear combination of these two
components, weighted depending on the progress of the booking horizon, then serves
as an opportunity cost approximation (Foresight Policy).

The approach by Yang et al. (2016) exhibits the following decisive downsides.
First, expected future demand and the customers’ time slot choice behaviour are solely
taken into account in a very simplifying way, i.e. by using historical final schedules
as forecasted schedules. Yang et al. (2016) themselves have pointed out as a future
research direction, “if past final delivery schedules are not a good approximation
of future schedules, the Foresight Policy could instead be based on final schedule
predictions derived from the demandmodel”. Second, for delivery cost approximation,
a very simple approach is used. Third, the already accepted orders and the forecasted
schedules are not directly linked, but only jointly considered by the aforementioned
linear combination of the insertion cost. In particular, the forecasted data are not
updated by incorporating the already accepted customers. Consequently, Yang et al.
(2016) have stated that their “model currently approximates the opportunity cost of
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accepting a customer order in a time slot only with regard to delivery cost, but not
with regard to lost profit resulting from reduced capacity for future orders”.

In this paper, we tackle these shortcomings and contribute to the existing litera-
ture as follows: we present a novel mixed-integer linear programming (MILP)-based
approach to approximate opportunity cost for dynamic pricing in AHD. The approach
tightly links the most current information regarding the already accepted customers
with a forecast adapted to the progress of the booking horizon. This forecast is based
on expected future demand for each delivery area from the current point in time until
the end of the booking horizon. Delivery cost of expected customers is approximated
by a seed-based scheme that builds on Fisher and Jaikumar (1981). To make this cost
approximation more accurate, we dynamise the parameters of the seed-based scheme
(i.e. the potential seeds’ locations as well as related distance approximations) under
consideration of the locations of already accepted customers. By integrating adequate
decision variables, the MILP also incorporates the anticipation of future customer
requests demand management. Concerning the delivery cost of already accepted cus-
tomers, we integrate the result from an appropriate construction heuristic into the
MILP, using customers’ exact residence information. A key advantage of our approach
is that it allows considering lost profit owing to reduced (physical or timely) capac-
ity for future customer requests when accepting the incoming one, also known as
displacement cost.

The paper on hand represents the first workwhich explicitly includes an approxima-
tion of the demandmanagement of expected future customers. Besides, the approaches
for delivery cost approximation and displacement cost determination are among the
most sophisticated ones in theAHD literature to date. Ourmodel-based approach is the
first which jointly considers the aforementioned, interdependent aspects of anticipa-
tion of future customer requests demandmanagement, delivery cost approximation and
displacement cost when making time slot pricing decisions for the current customer
request. In a computational study, we evaluate our novel opportunity cost approxima-
tion. In line with Yang et al.’s (2016) investigation, we introduce benchmark pricing
approaches in which prices are set in a simple—yet widely applied in practice—way
without considering future customer requests and hence opportunity cost (e.g. fixed
prices). Further, we benchmark our approach to the state-of-the-art dynamic pricing
policy of Yang et al. (2016). We show that our approach always yields the highest
profit, specifically given a tight capacity level on the part of the service provider. We
also provide insights how to ensure real-time applicability through parallel computing
and periodic recalculation of opportunity cost.

The remainder of the paper is organised as follows: in Sect. 2, we provide an
overview of the related literature and the underlying dynamic pricing framework we
base our work on. In Sect. 3, we introduce our new approach of opportunity cost
approximation and state the corresponding mathematical model (MILP). In Sect. 4,
we present the computational study, in which we compare our approach to different
existing approaches. In Sect. 5, we provide a summary and managerial implications.
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Table 1 Classification of demand management concepts (Agatz et al. 2013; Yang et al. 2016)

Time slot allocation Time slot pricing

Static (off-line) Differentiated slotting Differentiated pricing

Dynamic (real-time) Dynamic slotting Dynamic pricing

2 Related literature and the dynamic pricing framework

We will first briefly review the literature on attended home delivery that is closely
connected to our work and will explain how our work fits in (Sect. 2.1). Based on this,
we restate the de facto standard dynamic pricing framework for AHD, as proposed by
Yang et al. (2016), along with the required notation (Sect. 2.2).

2.1 Related literature

Since the dynamic pricing problem we consider is well defined in the literature, in our
review, we focus on publications that are very closely related to our work. For a more
general review, including more information on other decision problems that occur in
attended home delivery, we refer the reader to Agatz et al. (2013).

In the scientific literature on AHD, four demand management concepts are dis-
tinguished (see Table 1). On the one hand, differentiated slotting and differentiated
pricing are static approaches at a tactical level, which are based only on forecast data.
Hence, decisions are static and thus permanent and are not dynamically adjusted in the
progress of the booking horizon. In differentiated slotting approaches, optimisation
seeks to decide for each delivery area in a delivery region which time windows to
offer. For this purpose, Agatz et al. (2011) propose a continuous approach as well as a
nonlinear, mixed-integer optimisation model, relying on a seed-based scheme. They
assume that decisions about time windows offered in an area are subject to pre-defined
service levels that must be satisfied. Hernandez et al. (2017) formulate the problem as
a generalisation of the periodic vehicle routing problem and propose two heuristics for
its solution. Analogously, the problem of differentiated pricing aims at a static, optimal
price selection for each delivery time slot in each delivery area. Klein et al. (2017) are
among the first to study this problem and propose a mixed-integer linear programming
formulation of the problem, using a seed-based cost approximation. They incorporate
customer choice behaviour via a general nonparametric rank-based choice model.

On the other hand, dynamic slotting and dynamic pricing represent dynamic
approaches on an operational level in which real-time information is incorporated. For
every incoming customer request, dynamic approaches include the request’s oppor-
tunity cost as the basis for the service provider’s decisions. Simply stated, regarding
dynamic slotting, for every incoming request, an e-grocer must decide if it wants to
accept the request or save the capacity in hope for a more profitable request in the
future and hence reject it. Campbell and Savelsbergh (2005) are among the first to
dynamically manage customer requests via dynamic slotting—in detail, by adjusting
the offered time windows for every incoming customer request. Ehmke and Campbell
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(2014) extend this concept and propose acceptance mechanisms for customer requests
living in metropolitan areas where travel time is time dependent, i.e. dependent on the
time of the day owing to traffic, for instance. Cleophas and Ehmke (2014) propose
value-based order acceptance by applying Belobaba’s (1987) expected marginal seat
revenue heuristic. Campbell and Savelsbergh (2006) as well as Yang et al. (2016) dis-
cuss the concept of dynamic pricing for every incoming request. While Campbell and
Savelsbergh (2006)—who base their model on Campbell and Savelsbergh (2005)—
only include a simple customer choice model, Yang et al. (2016) extend and improve
this approach. They model customer choice with a multinomial logit (MNL) model
and incorporate (albeit quite simplistic) expectations of future customer requests on
the basis of past delivery schedules. Their framework can be seen as themost advanced
and thus the de facto standard of dynamic pricing in AHD. We restate it in Sect. 2.2.

Concerning the approximation of routing cost of future expected requests, Agatz
et al. (2011) and Klein et al. (2017) apply a seed-based scheme in their static demand
management approaches, drawing on Fisher and Jaikumar (1981). Both approximate
routing cost based on an aggregation of customers of the same area of origin. While
Klein et al. (2017) target the maximisation of expected total profits in their differ-
entiated pricing framework, Agatz et al. (2011) seek to minimise travel cost while
deciding about the time windows on offer for customers in a delivery area. In the
same work, Agatz et al. (2011) present an alternative approach that builds on con-
tinuous approximation models proposed by Daganzo (1987), where total travel costs
are derived by aggregating over “local” cost estimates. The most prominent heuristic
applied in dynamic settings in AHD is the insertion heuristic that draws on Solomon
(1987). Campbell and Savelsbergh (2004) propose efficient variants of this heuris-
tic enabling fast and high-quality solutions of the vehicle routing problem with time
windows (VRPTW). Thus, many researchers—e.g. Yang et al. (2016), Campbell and
Savelsbergh (2005), Campbell and Savelsbergh (2006), and Cleophas and Ehmke
(2014)—build on this heuristic in their dynamic demand management approaches in
AHD.

Our work relates to the existing literature as follows: we build on the abovemen-
tioned dynamic pricing framework proposed by Yang et al. (2016), that is, we also
model customer choice behaviour by the MNL, which allows for continuous price
optimisation for each incoming customer. However, in this optimisation problem, we
replace the calculation of opportunity cost, which turns out to be the most important
element, with a different approximation. The purpose of this approximation is to obtain
better results concerning the overall profit performance, while the related computa-
tional effort should still allow real-world large-scale implementations. Note that in a
very recent working paper, subsequently to the first version of our paper, Yang and
Strauss (2017) themselves proposed an alternative way to approximate opportunity
cost by approximate dynamic programming, enabling large-scale applications, and
potentially better incorporating displacement cost. While their approach turns out to
be computationally efficient concerning large-scale implementations, it has the draw-
back that its profit performance is not as good as their original approach Yang et al.
(2016) in most cases.

In our opportunity cost approximation, we calculate delivery cost with a variant of
the insertion heuristic (see above) for already accepted customers and tightly link this
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to a seed-based scheme for delivery cost anticipation of expected customers. Given
the dynamic, real-time nature of the problem, our approach differs significantly from
existing seed-based approaches in the sense that we dynamically adapt the scheme’s
parameters—such as the potential seeds’ locations and distance approximations—
during the booking horizon by considering information on the locations of already
accepted customers. Further, in contrast to existing works, we do not aggregate
expected customers based on their area of origin, and we incorporate the anticipa-
tion of their demand management.

2.2 Dynamic pricing framework and basic notation

Our paper is based on the stochastic dynamic program by Yang et al. (2016), which is
the de facto standard framework for dynamic pricing in AHD; we will now restate it.

We start by giving a detailed description of the underlying problem definition,
introducing the relevant notation we use. An e-grocer plans its operations for a fixed
delivery day in a delivery region which is segmented in delivery areas a ∈ A =
{1, . . . , A}. These areas do not overlap, and they cover the whole delivery region. For
delivery, the e-grocer operates with a fixed and homogenous delivery vehicle fleet
v ∈ V = {1, . . . , V } with known capacity Q per vehicle v ∈ V. The delivery tour of a
vehicle v starts and ends at a depot a = 0 ∈ A∪ {0}. The delivery day is divided into
(potentially overlapping) time slots s ∈ S = {1, . . . , S} with length ls . The booking
horizon consists of T periods and ends at a cut-off time (just) before the delivery
starts. Customers arriving during that booking horizon are assumed to have chosen the
specific delivery day in advance, meaning that potential influences that other delivery
day time slot options might have are not explicitly modelled. However, customers who
“leave” in the model may actually be re-captured in another delivery day. After period
T , no further orders are accepted. In each period, t ∈ [1, . . . , T ] at most one customer
request from a certain delivery area a can occur. For ease of explanation, the order size
e in terms of totes is assumed to be equal for all orders and the (estimated) profit of an
order before distribution r is known (e.g. from historical data). Note that for a customer
request occurring in period t , it would be possible to use the specific customer’s profit
ṙ in Eq. (4) (instead of r ), in case this value is exactly known before time slot pricing
decisions aremade. Alternatively, one could use an estimated profit based on historical
data for a delivery area or for the individual customer if he or she has already ordered
in the past (Yang et al. 2016). The occurrence probability of a request from area a is
expressed by λma , with λ denoting the arrival probability of a request in each period
and ma the probability that this request originates from area a. The components xtas
of the state vector xt = [xtas]a,s denote the number of accepted customer orders from
area a in time slot s until period t in the booking horizon. Since the state vector’s
time index t will be obvious from the embedding dynamic program, we will omit
it in the following. For every incoming customer request, the e-grocer must check
which time slots are still available. All time slots in which the incoming customer
request from area a can be served, given the already scheduled orders x, are contained
in the set Fa(x) ⊆ S. If a customer request from area a cannot feasibly be inserted
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into a time slot owing to vehicle capacity or time constraints, this time slot is not
offered.

The e-grocer manages demand via a dynamic pricing policy, i.e. by dynamically
(re)calculating the delivery price gas in each period t of the booking horizon for each
delivery area a and for each time slot s. Negative prices represent discounts. The price
vector ga = [ga1, . . . , gaS] is then exposed to an incoming customer from area a
who either chooses a slot s at price gas or leaves the website without ordering. The
probability that a customer from area a chooses delivery time slot s ∈ Fa(x) if he or
she is offered prices ga is given by Ps,Fa(x)(ga). These probabilities are derived from
a standard MNL model, i.e.

Ps,Fa(x)(ga) = euas

eua0 + ∑
w∈Fa(x) euaw

, (1)

with the parameter uas denoting the customer’s utility perception for time slot s ∈ S

(ua0 for the no purchase option, respectively), which is a linear function of the price
gas and thus can be influenced by gas .

Further, the choice probability that a slot s /∈ Fa(x) is chosen is defined as 0. The
e-grocer’s objective is the maximisation of its total profits.

The resulting dynamic program is given by

Vt (x) = max
g

⎧
⎨

⎩

∑

a∈A
λma

∑

s∈Fa(x)
Ps,Fa(x)(ga)

[
r + gas + Vt+1(x + 1as)

]

+
⎡

⎣1 −
∑

a∈A
λma

∑

s∈Fa(x)
Ps,Fa(x)(ga)

⎤

⎦ Vt+1(x)

⎫
⎬

⎭

= max
g

{ ∑

a∈A
λma

∑

s∈Fa(x)
Ps,Fa(x)(ga)

[
r + gas − (Vt+1(x)

−Vt+1(x + 1as))
]

+ Vt+1(x)
}

, for x ∈ X, t ∈ [1, . . . , T ] (2)

with the boundary conditions

VT+1(x) = −C(x) for x ∈ X. (3)

C(x) represents theminimumdelivery cost at a given statex∈X :={0, 1, . . . , T }|A|×|S|.
If state x does not lead to a feasible delivery schedule, C(x) := ∞.

Given a customer arrival from area a, the optimal pricing policy which solves the
dynamic program (Eq. 2) is given by

g∗
a = argmax

ga

∑

s∈Fa(x)
Ps,Fa(x)(ga) [r + gas − Oxtas] , (4)
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with Oxtas := Vt+1(x) − Vt+1(x + 1as) being the opportunity cost of a customer
request from area a for time slot s in period t . It can be shown that since the customers’
utilities are linear functions of the price, Eq. (4) is concave in the purchase probabilities
and can easily be solved to optimality, given fixed values of Oxtas (Dong et al. 2009).
However, owing to the large state space of the underlying dynamic program, Oxtas

cannot recursively be determined exactly, even for moderate problem sizes. Also,
the sole exact solution of the boundary condition (3) for each terminal state x ∈ X

would necessitate the solution of |X| VRPTWs. Since the VRPTW is known to be
NP-complete (Savelsbergh 1985), this task is computationally intractable. Hence, to
enable real-time pricing decisions for an incoming customer request via the pricing
policy given in Eq. (4), an approximation of the value function Ṽt+1(x) leading to an
approximation of the opportunity cost Õxtas := Ṽt+1(x) − Ṽt+1(x + 1as) is required.

3 A new model-based approximation of opportunity cost

The approximation of an incoming customer request’s opportunity cost Õxtas is the
basis for a promising pricing decision (see Eq. 4). Given a current customer request
from area a at period t of the booking horizon, we use a model-based approach
(MILP-based approach) to approximate the opportunity cost Õxtas := Ṽt+1(x) −
Ṽt+1(x + 1as) separately for each time slot the customer may choose. In detail, for
each potential time slot, we approximate the value function (Ṽt+1(x + 1as)) by an
adequate MILP as well as for the case that the customer leaves the website without
ordering (Ṽt+1(x)). The resulting approximations Õxtas for each slot s can then be
plugged into Eq. (4) in order to calculate the prices for the current customer.

We sought to incorporate all available information for the opportunity cost approx-
imation as accurately as possible while keeping the related computational effort on a
low level so as to enable real-world large-scale implementations. The available infor-
mation’s quality improves with each incoming customer request during the booking
horizon, since more information is known with certainty and the forecast can be
updated, such that the parameters of the MILP to solve are adapted accordingly. In
this context, we distinguish between two components in our model, i.e. the set of
already accepted customers and the expectations of future customer requests:

• Concerning already accepted customers, information such as customers’ exact
residences, their time slot choices and profits before fulfilment/delivery cost is
fully revealed when calculating the opportunity cost approximation. Thus, the
fulfilment/delivery cost can be calculated exactly via a variant of the insertion
heuristic and can then be adequately plugged into the MILP. We provide details in
Sect. 3.1.

• Concerning expected requests, only expectations regarding the residential areas
and the profits are known; even more, demand will depend on future pricing
decisions. Thus, we model delivery costs via a seed-based approach that also
endogenously anticipates optimal future demand management and requires only
expectations about expected customers’ residential areas. Details are given in
Sect 3.2.
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Based on the description of both components, we provide the MILP formulation in
Sect. 3.3.

3.1 Accepted customers

This section deals with the incorporation of the latest information of accepted cus-
tomers in our approximation approach. Regarding already accepted customers, in
period t , information until period t − 1 is fully revealed, i.e. the accepted customers’
exact residences and hence Euclidian distances between each other, their time slot
choices and profits before fulfilment/delivery cost are known. In line with the cur-
rent literature on dynamic problems in AHD (cf. Sect. 2.1), we apply a variant of
the insertion heuristic commonly used in vehicle routing, which efficiently yields—
even for real-world instances—reasonable solutions to the problem at hand. Note that
also other construction heuristics for the VRPTW, for instance, the nearest neighbour
heuristic or the savings heuristic, could have been alternatively used. Our adaption
of the insertion heuristic is inspired by the work of Yang et al. (2016) and Campbell
and Savelsbergh (2004). As insertion criterion, we choose the customer’s cheapest
insertion position. The insertion heuristic determines a delivery schedule for already
accepted customers, i.e. delivery tours of the delivery vehicles v ∈ V = {1, . . . , V }
in the fleet. We define the length of the tour which vehicle v ∈ V drives in time slot
s ∈ S as dv

s . We determine the corresponding delivery cost via a cost factor c (cost per
travel distance unit). Note, the delivery tours determined by the insertion heuristic are
only tentative in each period 1, . . . , T . The final operational delivery schedule can be
obtained by solving the insertion heuristic in period T + 1.

3.2 Expected customers

In this section, we elaborate on the incorporation of expectations regarding future
customer requests in the approximation approach and on the linkage of these expec-
tations to already accepted customers (see Sect. 3.1). In Sect. 3.2.1, we describe the
anticipation of expected customer requests demand management, i.e. the anticipation
of expected customers’ reactions to the service provider’s future pricing decisions. In
Sect. 3.2.2, we introduce our approach for the delivery cost approximation of expected
customer requests, which explicitly takes already accepted customer requests under
consideration.

3.2.1 Demand management of expected customers

We consider expectations about future customer requests from period t + 1 until the
end of the booking horizon T for the opportunity cost approximation. A forecast
about expected customers, for instance, their expected order size e, generated average
profit r and time slot preferences is assumed to be known from the past. The expected
number of incoming requests is adapted to the progress of the booking horizon and
can consistently be calculated from the parameters introduced in Sect. 2.2 as �W :=
λ(T − t). Given the probabilities ma , the expected number of requests originating
from area a ∈ A is then equal to �Wma .
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Now, to endogenously incorporate the pricing of expected future customer requests
and thus to anticipate future customers demand management, we use a deterministic
demand approximation that is consistent with the (MNL-based) choice probabilities
from Eq. (1) and which is inspired by the well-known choice-based, deterministic lin-
ear program (CDLP) for network revenuemanagement (Liu and Ryzin 2008),(Gallego
et al. 2004). To technically transfer the idea of the CDLP, future customers demand
management is limited to a discrete number of potential price lists that contain one
price for every time slot. For this purpose, we define a set of N potential price lists
G = {1, . . . , N }. Each price list n ∈ G contains one price ĝns ∈ R for each time slot
s ∈ S, i.e. n = [

ĝn1, . . . , ĝnS
]
. An algorithm for determining the discrete price points

of the price lists is given in “Appendix A”. Note that a combination of time slot and
price corresponds to a product of the CDLP and, hence, each price list n ∈ G to an offer
set. Analogously to the CDLP—which seeks to optimise the proportion of time a set
of products is offered to a customer segment—we aim to determine optimal numbers
πna of expected customers from area a ∈ A to which price list n ∈ G is offered.
Depending on the offered price list, the expected future customers select time slots
with different probabilities. These probabilities can be pre-calculated. The probability
that an expected customer from area a ∈ A to which price list n ∈ G is offered selects
time slot s ∈ S is denoted by qnas .

3.2.2 Dynamic seed approximation of the delivery cost

Regarding future expected customer requests from period t + 1 until period T , the
customers’ exact residences aswell as their time slot choices are not known, precluding
the application of the insertion heuristic from Sect. 3.1. Since a customer request’s
opportunity cost is strongly dependent on its influence on the delivery schedule and
hence delivery cost, expectations about the delivery schedule for serving expected
customers need to be incorporated. Therefore, we construct a seed-based scheme in
order to approximate the resulting delivery distances and finally delivery cost. Seed-
based cost approximations have a long tradition in the vehicle routing literature (cf.
Sect. 2.1). Figuratively speaking, a seed forms a “virtual” basis for a vehicle from
which future expected customers,which are assigned to the specific seed, are served. To
obtain a reasonable overall cost approximation, at each period t , we dynamically adjust
potential seeds’ locations and related distance approximations under consideration of
the locations of already accepted customers, i.e. of the insertion heuristic’s outcomes
from Sect. 3.1.

Let the tuple (a, s) denote the area–time slot combination (ATC) for each area
a ∈ A and each time slot s ∈ S. Now, to calculate the delivery cost for expected
customer requests located in an ATC, we need to define a corresponding seed for
each vehicle v ∈ V. Given this seed, we define the seed-to-customer distance ďv

as that
must be travelled in an ATC (a, s) by vehicle v ∈ V to serve each expected customer.
Since we do not know the locations of expected customers, we take one or several past
schedule(s) of the delivery day under consideration containing information regarding
the exact locations of the served customers. Hence, the distance ďv

as represents an
average distance between the seed in ATC (a, s) and the historical customers from
area a and serves as an approximation for the expected distance a vehicle v ∈ V has
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to travel to serve a customer in ATC (a, s). Further, as a vehicle needs to drive to an
area before customers in this area can be served, we additionally define the to-seed
distance d̂v

as which vehicle v ∈ V has to travel once to serve (any number of) expected
customers in an ATC (a, s).

The idea underpinning our approach is to make the approximation more accurate
by dynamically adjusting the seeds’ locations, the seed-to-customer distances and the
to-seed distances according to the already accepted customers in each period t ∈ T .
In this context, given an ATC (a, s) for which we want to approximate the cost, we
distinguish three cases, which we illustrate in Fig. 1. For clarity, in the illustration, we
only consider a single vehicle (V = 1) and a delivery region divided into four areas
(A = 4).

• Case 1 No scheduled customers in the delivery tour of vehicle v ∈ V at all
Case 1 applies at the beginning of the booking horizon, when no customers have
yet been accepted, i.e. no customers have yet been scheduled by the insertion
heuristic from Sect. 3.1. In this case, each seed’s location is calculated as the
centroid of all historical customers in the corresponding ATC (a, s), with resulting
expected average seed-to-customer distances. We calculate the to-seed distances
as the distance between the depot and the seed.

• Case 2Already scheduled customers in slot s in the delivery tour of vehicle v ∈ V

Case 2 represents the “standard case” that occurs most frequently during the book-
ing horizon. In the given time slot s, customers (at least one) have already been
accepted to be served in certain areas Âv ⊆ A by the vehicle v ∈ V under consider-
ation (Areas 1 and 3 in Fig. 1), while eventually in other areasA\Âv no customers
have been accepted yet (Areas 2 and 4 in Fig. 1). Now, in case that a ∈ Âv , i.e. a
refers to an area with accepted customers, each seed’s location is calculated as the
centroid of all accepted customers in the corresponding ATC (a, s), with resulting
expected average seed-to-customer distances. Further, we define d̂v

as := 0, since
the vehicle is present in ATC (a, s) anyway, owing to the accepted requests. In case
that a ∈ A\Âv , i.e. a refers to an area without accepted customers, we calculate
each seed’s location as the centroid of all historical customers in the correspond-
ing ATC (a, s), with resulting expected average seed-to-customer distances. To
calculate d̂v

as , we take the distance between the centroid of all historical customers
from area a ∈ A\Âv and the seed in ATC ( â, s) for each â ∈ Âv , denoted by
d̂v
âas . Then, we define the to-seed distance to be the minimum of all these dis-

tances, i.e. d̂v
as = min

â∈Âv

d̂v
âas , reflecting that ATC (a, s) should be “connected” to

the existing delivery tour at minimal cost. In Fig. 1, for instance, to travel to the
seed of Area 2, we start from Area 1 (and not from Area 3).

• Case 3 Already scheduled customers in the delivery tour of vehicle v ∈ V, but not
(yet) in slot s
Regarding case 3, customers have been accepted in one or several areas in at least
one time slot, but not in time slot s. In this case, each seed’s location is again
calculated as the centroid of all historical customers in the corresponding ATC
(a, s), with resulting expected average seed-to-customer distances. The to-seed
distance is defined as the distance between the centroid of all customers accepted
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Fig. 1 Approximation of expected delivery distances via the dynamic seed-based approach

in the closest time slots to time slot s, for instance, in time slots s − 1 and s + 1
in Fig. 1, and the seed.

The number of future expected customer requests from each area a ∈ A is updated
in each period of the booking horizon (see Sect. 3.2.1). In combination with the
anticipation of these future expected customers demand management, this yields an
expectation on the number of future customers who need to be served in ATC (a, s).
Specifically, the number πna of customers to which price list n ∈ G is offered is
multiplied by the probability qnas (the probability that an expected customer from
area a ∈ A facing price list n ∈ G selects time slot s ∈ S). By multiplying these
expected numbers of customers by the seed-to-customer distances and by adding the
corresponding to-seed distances, we get the expected delivery distances. Finally, these
delivery distances need to be multiplied by cost factor c to calculate the expected
delivery cost.

3.3 Mathematical model

In this section, we present a mixed-integer linear programming formulation to approx-
imate the value function Ṽt+1(x) for a customer request in period t ∈ T . Recall, in
order to obtain a request’s opportunity cost values Õxtas := Ṽt+1(x)− Ṽt+1(x + 1as),
we have to approximate Ṽt+1(x) separately for each time slot the current customer
may choose and for the case that the customer leaves without ordering. Hence, S + 1
instances of the MILP need to be solved. The state (i.e. x or x + 1as), for which the
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value function is approximated, is indicated by the parameter ias in the MILP formu-
lation. If the MILP approximates the value function for the state vector x + 1as (the
current customer request from area a ∈ A is served in time slot s ∈ S), ias is set to 1. In
contrast, if theMILP approximates the value function for the state vector x (the current
customer request leaves without ordering), ias is set to 0 for all a ∈ A and s ∈ S.

The model (5)–(17) combines the anticipation of expected customer requests
demand management (cf. Sect. 3.2.1) with the approximation of the delivery cost
(cf. Sect. 3.2.2). For the anticipation of expected customer requests demand manage-
ment, πna represent the decision variables taking as value the number of expected
customers originating from area a ∈ A offered price list n ∈ G. To assign the result-
ing number of expected customers from area a ∈ A choosing time slot s ∈ S to the
vehicles v ∈ V, we define the variables ψv

as . The decision variables θv
as are set to 1

if vehicle v ∈ V travels to ATC (a, s), and 0 otherwise. In case the current customer
request is served by vehicle v ∈ V, δv is equal to 1, and 0 otherwise. For delivery cost
approximation, we define the decision variables Δv

s ≥ 0 to track the total distance of
the expected delivery tour in time slot s ∈ S for vehicle v ∈ V. Regarding the input
parameters, zc is the (common) service time per customer, and zd denotes the time
needed to travel one unit of distance. The input parameters ėv

as and hv
as represent the

order size and the amount of accepted and scheduled customers in ATC (a, s) served
by vehicle v ∈ V. The order size of the current customer request is given by ė and the
expected order size is denoted by e.

The mixed-integer linear program is given by

Ṽt (x) = max
Δ,π,δ,θ,ψ

⎧
⎨

⎩

∑

n∈G

∑

a∈A

∑

s∈S
πnaqnas(ĝns + r) −

∑

s∈S

∑

v∈V
Δv

s c

⎫
⎬

⎭
(5)

subject to the constraints

∑

n∈G
πna ≤ �Wma for all a ∈ A (6)

∑

n∈G
πnaqnas =

∑

v∈V
ψv
as for all s ∈ S, a ∈ A (7)

∑

v∈V
δv = 1 (8)

ψv
as + δvias ≤ θv

as Mas for all s ∈ S, a ∈ A, v ∈ V (9)

dv
s +

∑

a∈A
d̂v
asθ

v
as +

∑

a∈A
ďv
as

(
ψv
as + δvias

) ≤ Δv
s for all s ∈ S, v ∈ V (10)

∑

a∈A

∑

s∈S

(
ėv
as + δvias ė + ψv

ase
) ≤ Q for all v ∈ V (11)

zdΔ
v
s + zc

∑

a∈A
(hv

as + δvias + ψv
as) ≤ ls for all s ∈ S, v ∈ V (12)

θv
as ∈ {0, 1} for all s ∈ S, a ∈ A, v ∈ V (13)
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δv ∈ {0, 1} for all v ∈ V (14)

Δv
s ≥ 0 for all s ∈ S, v ∈ V (15)

ψv
as ≥ 0 for all s ∈ S, a ∈ A, v ∈ V (16)

πna ≥ 0 for all n ∈ G, a ∈ A (17)

In the objective function (5), the expected total profit from periods t + 1 to T is
maximised, i.e. expected total generated profits (before delivery) minus expected total
delivery cost. Thefirst termaccounts for expected total generated profits bymultiplying
the number of expected customers from area a that are served in time slot s (πnaqnas)
by the price (ĝns) and the expected profit per customer (r). Recall that πna in con-
junction with the following constraints incorporate the anticipation of future customer
requests demand management (cf. Sect. 3.2.1). The last term depicts the expected
total delivery cost by summarising delivery cost for each vehicle v ∈ V in each time
slot s ∈ S.

Constraints (6) prevent that more price offers in terms of price lists n ∈ G are
made than the number of future customers expected to arrive from area a ∈ A during
the booking horizon ( �Wma). Depending on the offered price for a time slot s ∈ S,
customers choose slot s ∈ S with a certain probability (qnas). Thus, the left-hand side
of constraints (7) provides the number of expected customers in an ATC (a, s) who
choose time slot s ∈ S. These expected customers must be served by the vehicle fleet,
which is ensured by the right-hand side of constraints (7). The current customer request
must be served by exactly one vehicle [see constraint (8)]. To incorporate the to-seed
distance d̂v

as , constraints (9) force the decision variable θv
as to take the value 1 if vehicle

v visits ATC (a, s)—to serve expected customers and/or the current customer request.
We define the parameter Mas := �Wma max

n∈G
{qnas} + ias for all areas a ∈ A and time

slots s ∈ S to set the bound as tight as possible. Constraints (10) control the distances
Δv

s that contain the distances dv
s of the delivery tour of already scheduled customers

(first term on the left-hand side) as well as the to-seed distances d̂v
as (second term) and

the seed-to-customer distances ďv
as (third term). Note that first, the to-seed distances

d̂v
as are only included if θ

v
as equals 1, i.e. if vehicle v ∈ V travels to ATC (a, s). Second,

the seed-to-customer distances ďv
as include the incoming customer request if δv equals

1. Constraints (11) guarantee that each vehicle’s capacity is respected by adding up the
order size of the accepted customers, the incoming customer request and the expected
customers. Constraints (12) ensure that the time windows are not exceeded for any
delivery time slot s ∈ S and any vehicle v ∈ V (note that in the case of nonoverlapping
time windows, Constraints (12) need to be slightly adapted). The first term represents
the total expected travel time and the last three terms subsume the time for serving
the accepted and expected customers. Finally, (13)–(14) are binary constraints and
(15)–(17) are nonnegativity constraints for the continuous decision variables.

The MILP’s solutions for the approximated value function Ṽt+1(x) as well as the
set of available time slots Fa(x) the current request can possibly be served in are used
in conjunction with Eq. (4). This enables an easy determination of the optimal price
policy for an incoming customer request. Note that Fa(x) is determined by inserting
the incoming customer request in each time slot and solving the insertion heuristic—
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independently of the approximation of the value function. Thus, a feasible operational
delivery tour is always guaranteed owing to the fact that the current request is offered
prices only for delivery slots it can possibly be served in.

Remark At the cost of approximation accuracy, the computational effort of model (5)–
(17) can be significantly reduced by aggregating all vehicles. Thus, the constraints (10),
(11) and (12) are adequately adjusted, and the set V is re-defined to V = {1}.

4 Computational study

Wewill now evaluate the proposed approximation of opportunity cost. In Sect. 4.1, we
describe the data informed by practical settings we identified in the related literature.
In Sect. 4.2, we introduce simple yet industry standard pricing policies in AHD and the
state-of-the-art dynamic pricing policy we use to benchmark our novel approach. In
Sect. 4.3, we present and discuss the computational results concerning the introduced
benchmarks as well as for practical, large-scale and real-time implementation.

4.1 Description of the data

We conduct the computational experiments for a delivery region that is segmented into
12 equally large delivery areas served by one central depot. Inspired by Campbell and
Savelsbergh (2005) and Campbell and Savelsbergh (2006), we generate the delivery
region as a grid with a width and length of 10 km. We randomly generate 1000
potential customers on the grid with a minimum distance of 20 metres. Distances
between customers are assumed to be equal to the Euclidean distance between them
multiplied by the factor 1.5, which approximates the distances on a road network
(Ehmke and Campbell 2014). In line with Yang et al. (2016), we divide the finite
booking horizon for the delivery day under consideration in sufficiently small periods
assuming at most one customer arrival per period. In every period t ∈ [1, . . . , 700],
a customer arrival which is randomly drawn from the set of 1000 potential customers
is assumed in accordance with Yang et al. (2016) and Yang and Strauss (2017) with
probability λ = 0.814. The probability ma that a customer request originates from
a certain area a ∈ A is derived on the basis of the location of the 1000 randomly
generated customers. We define the average customers’ order sizes and order values
in line with Yang et al. (2016) and Yang and Strauss (2017) in terms of number of
totes. Hence, the revenue per tote is assumed to be e30. The average profit before
delivery cost is assumed to be 30% of the revenue.

In line with Campbell and Savelsbergh (2005) and Campbell and Savelsbergh
(2006), we consider a time slot schedule that consists of four nonoverlapping time
slots with length ls = 2 h for every time slot s ∈ S, representing a regular shift. In
line with Yang et al. (2016), we restrict the optimal prices g∗

as ∈ g∗
a for an incoming

request to the interval [−10, 10], that is, if a price is outside this interval, we project it
onto the interval’s boundary. This is a commonly used interval for delivery time slot
pricing in practice (Yang et al. 2016). We consistently derive the choice probabilities
Ps,Fa(x)(ga) of the current customer from area a ∈ A facing price vector g∗

a as well as
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the choice probabilities of expected future customers qnas facing price list n ∈ G in
the opportunity cost approximation by means of a MNL model. We adjust the MNL
model’s parameters to our setting based on parameters from Yang et al. (2016), who
have approximated them on the basis of real-world data. The applied beta factors
are β0 = − 2.6 as the base utility across all options, βd = −0.088 representing the
price sensitivity and βs=1 = 1.6, βs=2 = 1.696, βs=3 = 1.70816, βs=4 = 1.7304
denoting the utility for the respective time slot. In line with Yang et al. (2016), we
assume that all customers follow the same choice behaviour.

The time (in minutes) needed for one unit of travel (1 km) is based on an official
speed statistic and set to zd = 2, i.e. 30 km per hour (Statista 2013). The customer’s
service time zc equals 8 min (Campbell and Savelsbergh 2006; Punakivi and Saranen
2001). The cost per kilometre of travel distance c is set to e0.30. The e-grocer’s fleet
size is varied and is assumed to be 7, 8, 9 and 15 vehicles, respectively. For every fleet
size, we simulate 100 customer streams (i.e. booking horizons). The vehicle capacity
is assumed to be 120 totes. The order size of a customer follows a normal distribution
with mean 3 totes and standard deviation 2 totes. Note that, usually in AHD, time slot
length rather than physical vehicle capacity is the constraining factor (Campbell and
Savelsbergh 2005; Ehmke and Campbell 2014).

We performed all computations on an Intel(R) Xeon(R) processor with 16 cores,
3.4 GHz and 192 GB RAM. We implemented the approach in MATLAB 2016a. We
used MATLAB Parallel Computing Toolbox and CPLEX 12.6 for MATLAB Tool-
box from IBM to approximate the value function for the state vectors x and x + 1as
for all time slots s ∈ S parallel on different cores to enable real-time dynamic pric-
ing. Additionally, we applied the aggregation described in the Remark presented in
Sect. 3.3.

4.2 Pricing policies and opportunity cost approximation

To evaluate our novel approach, we compare it to several benchmark pricing policies.
First, simple yet widespread static pricing policies in AHD are defined as benchmarks,
which do not necessitate price optimisation at all:

• Fixed pricing (FP): For every incoming customer request—independent of his
or her order value and area—a single price is charged for every feasible time
slot s ∈ Fa(x). This price is fixed before the booking horizon begins. In line with
Yang et al. (2016), we examine this policy by fixing the price at a level ofe3 (FP3)
and e5 (FP5).

• Order value-based pricing (OVP): This is a commonly applied policy in prac-
tice, where the e-grocer charges a price depending on the customer’s order value.
According to practical settings,e5 is charged if a customer’s order value is below
e40, and e3 otherwise.

Second, a different dynamic pricing policy in theAHD literature is used as benchmark;
it optimises prices for every incoming customer request:

• Insertion cost-based pricing (ICP): This is based on the work of Yang et al. (2016),
who refer to it as the so-called Foresight Policy. Opportunity cost of an incoming

123



986 R. Klein et al.

request is assumed to be equal to a linear combination of the request’s insertion
cost in a schedule for already accepted customers and average insertion cost in
past delivery schedules, taken as expectations about the future (cf. Sect. 1). To
benchmark our approach to ICP, we have to generate these schedules (for details
on the schedule generation, see “Appendix B”).

We use the aforementioned policies to benchmark our pricing decisions based on the
novel and model-based opportunity cost approximation:

• Opportunity cost-based pricing (OCP): For the anticipation of future customer
requests demand management, we define a set of prices Ḡ from which we derive
the set G of price lists (cf. Sect. 3.2.1). The algorithm to define Ḡ dependent on
the capacity level is presented in “Appendix A”. For the computational study, this
procedure results in the following price sets from which we derive the price lists
for the different capacity levels: Ḡ7vans = {4.5, 5.5, 6.5, 7.5, 10} , Ḡ8vans =
{1.5, 2.5, 3.5, 4.5, 9} , Ḡ9vans = {−2,−1, 0, 1, 6} and Ḡ15vans = {−10,−9,
−8,−7, 0}.

4.3 Results

In this section, we compare the pricing approaches presented in Sect. 4.2 against each
other.We conduct all computational experiments for different levels of available capac-
ity. Thus, we assume a fleet size of 7, 8 and 9 vehicles, representing different capacity
tightness levels, and 15 vehicles representing no capacity limitation. In Sect. 4.3.1, we
compare OCP to FP3, FP5 and OVP. In Sect. 4.3.2, we benchmark OCP to the state-
of-the-art dynamic pricing approach ICP. In Sect. 4.3.3, we provide insights how to
practically apply our approachwhen customers arrive almost simultaneously. Thus,we
simulate the solution time delay by recalculating opportunity cost used for pricing deci-
sions not for every customer request, but only for every 10th, 15th and 30th customer.

4.3.1 Comparison to fixed-price policies

In this section,we compareOCPagainst FP3, FP5 andOVP. In particular,OVPwith two
different delivery price levels depending on the generated revenue is still widespread
in industry and thus a very relevant benchmark (Yang et al. 2016).

Table 2 shows the average results of all simulated customer streams at the different
capacity levels for the different policies. The policy acronym appears in column 1,
the number of available delivery vans and thus the capacity level in column 2, and the
average number of scheduled customers at the end of the simulated booking horizons
in column 3. The average value of a scheduled customer in terms of profit before
distribution (i.e. the revenue multiplied by the profit margin, plus delivery fee) and
the average total profit after distribution are shown in columns 4 and 5, respectively.
The 95% confidence interval in column 6 refers to the average total profit provided in
column 5. Delivery cost in column 7 is the average delivery cost resulting from the
schedules to serve all accepted customers. The last column shows the gap between the
average total profit obtained by the application of the respective policy and OCP (in
line with column 5).
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Table 2 Comparison of OCP to fixed-price policies

Pricing
policy

Capacity
level

Scheduled
requests

Average
value

Total profit 95% Confidence
interval (%)

Delivery
cost

Gap (%)

FP3 7 Vans 276 33.29 8981 ± 1.2 205.93 − 7.0

FP5 269 35.30 9296 ± 1.3 200.13 − 3.7

OVP 274 34.60 9274 ± 1.1 206.02 − 4.0

OCP 274 35.99 9656 ± 1.1 204.86 0.0

FP3 8 Vans 304 33.11 9834 ± 1.1 230.41 − 4.6

FP5 282 35.21 9718 ± 1.5 210.69 − 5.7

OVP 295 34.55 9972 ± 1.3 219.86 − 3.2

OCP 311 33.89 10, 304 ± 1.3 234.13 0.0

FP3 9 Vans 307 33.40 10, 030 ± 1.6 224.05 − 4.2

FP5 280 35.40 9708 ± 1.8 202.86 − 7.2

OVP 294 34.77 10, 008 ± 1.6 215.09 − 4.4

OCP 338 31.70 10, 465 ± 1.3 248.49 0.0

FP3 15 Vans 313 33.27 10, 188 ± 1.6 223.62 − 5.8

FP5 285 35.25 9843 ± 1.9 204.19 − 9.0

OVP 299 34.66 10, 149 ± 1.7 213.44 − 6.1

OCP 363 30.50 10, 811 ± 1.2 259.00 0.0

The results show that OCP outperforms both FP and OVP at all capacity levels. FP
does not favour big orders over small ones, but rather charges every incoming request
the same delivery cost. Although OVP with two-tier pricing does distinguish between
orders of different size, it does not link pricing decisions with capacity availability.
First, this canbe seen in case of very tight capacity (7 vans)whenFP5 outperformsOVP.
Apparently, it is better to always charge a price of e5 than to sell some customers
the spare capacity at e3. Hence, either the price points of OVP or the threshold
revenue value is chosen too low in conjunction with the available capacity. Second,
when there is sufficient capacity (15 vans) and the number of customers ordering at
a price level of e3 can be served, FP3 also outperforms OVP. This is because even
if a customer’s order value is below the threshold, it is on average more profitable to
sell some of the plenty capacity for e3 than offering it for e5 and thus decreasing
the probability that the customer chooses a time slot. In case capacity availability
is neither very tight nor oversupplied (8 vans), OVP outperforms both variants of
FP. In summary, we can conclude that the success of OVP and FP strongly depends
on how well delivery prices are chosen in accordance with the available capacity
level, because none of the policies can determine prices in dependence of capacity
availability.

In contrast to these policies, OCP jointly considers the available capacity (and
displacement cost) and the order value of every incoming customer request when
deciding on the delivery price. This is why OCP constantly outperforms both FP and
OVP by at least 3%, independent of the capacity level.
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Table 3 Comparison of OCP to the state-of-the-art dynamic pricing policy ICP

Pricing
policy

Capacity
level

Scheduled
requests

Average
value

Total
profit

95% Confidence
interval (%)

Delivery
cost

Gap (%)

ICP 7 Vans 278 33.55 9122 ± 0.5 204.09 − 5.5

OCP 274 35.99 9656 ± 1.1 204.86 0.0

ICP 8 Vans 313 33.27 10, 180 ± 0.8 233.33 − 1.2

OCP 311 33.89 10, 304 ± 1.3 234.13 0.0

ICP 9 Vans 333 31.52 10, 250 ± 1.6 244.45 − 2.1

OCP 338 31.70 10, 465 ± 1.3 248.49 0.0

ICP 15 Vans 360 30.71 10, 800 ± 1.2 255.03 − 0.1

OCP 363 30.50 10, 811 ± 1.2 259.00 0.0

4.3.2 Comparison to the state-of-the-art dynamic pricing policy

In this section, we compare OCP to the state-of-the-art dynamic pricing policy ICP.
Table 3 shows the same structure as Table 2 (cf. Sect. 4.3.1).

OCP constantly outperforms ICP, especially when capacity is tight. When there is
no lack of capacity (15 vans), there is almost no difference in the average total profit,
because there are no displacement costs, and thus, the difference in the opportunity cost
of a customer request determined with ICP and OCP can be reduced to the difference
of the insertion cost resulting from ICP and OCP. Since these differences are small,
pricing decisions that depend on opportunity cost are nearly the same for ICP and
OCP and thus are also the average total profits.

Figure 2 shows the average prices over time of the booking horizon for the different
capacity levels when managing customer demand with OCP (grey price path) and
ICP (black price path). For all capacity levels, the OCP price path fluctuates relatively
accurately around a certain price level over the major part of the booking horizon,
while the ICP price path continuously drops in the course of the booking horizon
when capacity is limited to a certain extent (7, 8, 9 vans). This is due to the nature
of ICP: opportunity cost is assumed to be equal to the linear combination of insertion
cost of a customer request in expected delivery schedules (assumed to be equal to
past delivery schedules) and a delivery schedule for already accepted customers. The
insertion cost of a current request in expected delivery schedules is highly weighted
at the start of the booking horizon. If a request cannot feasibly be inserted in expected
schedules, insertion cost is set to a “big value” (Yang et al. 2016) to “punish” the
infeasibility. Especially when capacity is tight (7, 8 vans), this happens very often.
The weight of insertion cost in schedules for already accepted customers increases
with increasing t (i.e. the weight of insertion cost in expected schedules decreases
with increasing t).

When a customer request can be inserted in the schedule for accepted customers,
insertion cost is normally considerably lower than the “big value” to punish the infeasi-
bility of inserting that request in an expected schedule. This is why the overall insertion
cost (assumed to be equal to the opportunity cost in ICP) and thus the price path natu-
rally decrease for tight capacity levels. The declining price path is further intensified
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Fig. 2 Average delivery prices over time in the booking horizon at different capacity levels

by the fact that displacement cost is not included, which may lead to an increasing
underestimation of the true opportunity cost and thus lower prices. This leads to the
fact that capacity (especially for popular time slots) is exhausted early in the book-
ing horizon. The following two consequences can be derived: first, even early in the
booking horizon, customers need to be rejected, i.e. no more price offers can be made
which guarantee feasibility. For instance, in case of 7 vehicles, after (on average) 89%
of the booking horizon has passed (in comparison to 98% in OCP), the first customer
is rejected, i.e. (on average) about the last 65 customer requests cannot receive a price
offer. Second, for customers who can still feasibly be served, high discounts have to
be given at the end of the booking horizon to steer them to less popular delivery slots,
which again leads to a remarkable decrease in the price path.

Through the anticipation of expected customer requests demand management and
the consideration of displacement cost, pricing decisions in OCP are not dependent
on the progress of the booking horizon; thus, the price path decreases only slightly.
Further, the price level for a certain capacity level is automatically influenced by
the considered displacement cost. If, for instance, a customer request occurs when
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Fig. 3 Periodic recalculation of opportunity cost for practical applicability

capacity is tight, prices for this requestwould generally be higher than in anunrestricted
capacity scenario (cf. Fig. 2). Thus, capacity availability is significantly better reflected
in pricing decisions of OCP than of ICP. Only in the very last periods, when some
popular time slots are already closed, OCP’s price path also decreases.

4.3.3 Practical application

To apply OCP in an online environment, we have to ensure that pricing decisions are
real-time ones. Thus, we use parallel computing in order to approximate the value
function for the state vectors x and x+1as for all time slots s ∈ S parallel on different
cores. To approximate opportunity cost in our computational study, this leads to an
average solution time of 0.141 s and a maximum solution time over all approxima-
tions of 0.647 s. In practice, it may occur that the time span between consecutive
customer requests is even smaller than these solution times. To further accelerate pric-
ing decisions, one can apply a periodic re-optimisation of theMILP and thus a periodic
re-determination of opportunity cost. This means customers do not have to wait before
they receive their price offer. The idea is as follows: already calculated opportunity
cost for a customer request originating from area a ∈ A and for time slot s ∈ S is
used for pricing decisions as long as the recalculation of opportunity cost for an area
and time slot lasts. As soon as the recalculation is finished, one uses the “updated”
opportunity cost and starts a new recalculation based on the most current information.

Figure 3 illustrates this procedure and shows an excerpt of a booking horizon.
Before the booking horizon starts in period t = 1, opportunity cost Õ1xas is pre-
calculated for customer requests from every area a ∈ A and for every time slot s ∈ S

based on expectations only. At first, we use Õ1xas for pricing decisions. In period
t = 2, we start the recalculation of opportunity cost based on the information revealed
by the first customer. All customer requests that occur while calculating Õ2xas are
offered delivery prices determined based on Õ1xas depending on their delivery area
and with the aid of the pricing policy (4).Δt̃ j represents the solution time necessary to
recalculate Õt̃ j xas where t̃ j represents period t in which the j th recalculation is started.

As soon as the calculation of Õ2xas for a delivery area a and time slot s is finished, we
use it to make pricing decisions for customer requests from area a, and the calculation
of Õt̃3xas based on the most current information in period t̃3 (i.e. information about
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Table 4 Results for practical applicability

Pricing
policy

Capacity
level

Scheduled
requests

Average
value

Total
profit

95% Confidence
interval (%)

Delivery
cost

Gap (%)

OCP10 7 Vans 275 35.62 9590 ± 1.0 206.02 − 0.68

OCP15 272 35.77 9526 ± 1.1 204.09 − 1.34

OCP30 272 35.66 9495 ± 1.2 204.58 − 1.66

OCP 274 35.99 9656 ± 1.1 204.86 0.00

OCP10 8 Vans 309 33.97 10, 260 ± 1.1 235.86 − 0.43

OCP15 310 33.80 10, 243 ± 1.1 233.71 − 0.59

OCP30 309 33.76 10, 198 ± 1.2 234.01 − 1.03

OCP 311 33.89 10, 304 ± 1.3 234.13 0.0

OCP10 9 Vans 338 31.61 10, 437 ± 1.3 247.93 − 0.27

OCP15 338 31.61 10, 435 ± 1.2 248.98 − 0.29

OCP30 336 31.59 10, 362 ± 1.1 251.27 − 0.99

OCP 338 31.70 10, 465 ± 1.3 248.49 0.0

OCP10 15 Vans 363 30.49 10, 810 ± 1.3 258.97 − 0.01

OCP15 363 30.50 10, 809 ± 1.3 262.02 − 0.02

OCP30 363 30.49 10, 809 ± 1.3 259.45 − 0.02

OCP 363 30.50 10, 811 ± 1.3 259.00 0.0

already scheduled customers) begins. This procedure is repeated until the end of the
booking horizon. Note that we still execute the insertion heuristic for every customer
request in order to determine the set of all time slots Fa(x) the customer can feasibly
be served in.

While in real-time application, the recalculation time Δt̃ j varies throughout the
booking horizon, we fix Δt̃ j to 10, 15 and 30 time periods in the following computa-
tions,which allowsus to systematically examine the influenceof different recalculation
frequency levels on expected total profits. In practice, the updated opportunity cost
can be applied as soon as they are available. Table 4 reports the results for the different
capacity levels; it has the same structure as the tables in the previous sections (cf.
Sect. 4.3.1).

The results show that the longer the time span between the updates of opportu-
nity cost is, the greater the loss in profit when applying OCP10, OCP15 or OCP30,
which confirms intuition. This may result from the approximation and hence demand
management error which increases the longer the recalculation time Δt̃ j lasts. This
error also leads to a worse capacity utilisation, which becomes clear from looking at
different capacity levels. The tighter and thus the more valuable the capacity is, the
greater the loss in profit for the same recalculation time Δt̃ j .

However, note that even if capacity is tight (7, 8, 9 vans), all results are still at least
0.17% better than the application of ICP for the same capacity level. Especially when
capacity is very tight (7 vans), the difference of 3.84% between OCP30 and ICP is
remarkable. When there is no lack in capacity (15 vans), opportunity cost can again
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be reduced to insertion cost only due to the fact that there is no displacement cost (cf.
Sect. 4.3.2). Besides displacement cost, in most cases, the profit of a customer rather
than insertion cost is the major factor that drives pricing decisions. Hence, OCP10,
OCP15, OCP30, ICP and OCP yield almost the same profit after distribution in the
15-vans scenario.

5 Managerial implications and future research

In this paper, we proposed a novel model-based approach to approximate the oppor-
tunity cost of a customer request as a basis for dynamic time slot pricing decisions
in AHD. In a computational study, we evaluated the dynamic pricing policy obtained
from the original dynamic program in combination with the proposed opportunity
cost approximation for different levels of available delivery capacity of the service
provider. Therefore, we benchmarked our approach to different and widely applied
industry standard pricing policies and to the state-of-the-art dynamic pricing approach.
Further, we examined our approach’s practical applicability.

The managerial implications of the computational study are as follows: first, the
dynamic pricing policy in combination with our novel opportunity cost approxima-
tion approach constantly yielded the highest expected average profit for all delivery
capacity levels of the service provider in our study. Specifically, over all examined
scenarios (different capacity levels), the average profit obtained with our approach is
2.3% higher than the average of the state-of-the-art dynamic pricing policy and 5.5%
higher than the average of the fixed-price policies. Specifically given a tight service
provider capacity level, i.e. a small fleet that faces high customer demand, our approach
performs better than all other pricing approaches. Owing to the fact that we considered
displacement cost, prices determined with our pricing approach did not systematically
decrease in the booking horizon’s progress. This reflects adequate saving of capacity
for the future and more valuable customer requests, and inhibits negative effects of
decreasing price paths on total profit. Second, assuming that the worst-case solution
time of 0.647 s to make a pricing decision is too long, we used periodic recalculation
of opportunity cost. This means that the same opportunity cost is used for pricing
decisions for customer requests occurring in quick succession until a new opportunity
cost approximation is determined. In the worst case of our computational study, this
procedure ended up with 1.66% less profit than updating opportunity cost for every
incoming customer request. Even though we chose the recalculation time very pes-
simistically (in practice, it would probably be faster than in theworst case of our study),
our novel approach still outperforms the state-of-the-art dynamic pricing approach and
thus also the fixed-price policies, such that it qualifies for practical application.

Several interesting future research directions remain. First, instead of using a
CDLP-based approach to anticipate future demand management, one could adapt
other linearisation techniques of choice-based approaches from revenue management
[e.g. see Talluri (2014) for the segment-based deterministic concave program and
Gallego et al. (2015) for the sales-based linear program]. Second, in addition to our
periodic re-optimisation, to increase the scalability regarding the number of time slots,
promising approaches might be an analytical procedure to reduce the number of price
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points and/or decomposition approaches. Third, one could also develop other approx-
imations in which the discrete price lists we use to anticipate the future customer
requests demand management can be replaced by continuous prices, or pricing deci-
sions for incoming customer requests can bemade based on a discrete set of prices only.
Since this would allow for an anticipation of future customers demand management
to be aligned even better with the real pricing possibilities concerning an incoming
customer request, the quality of the opportunity cost approximation should increase.
Finally, there might be further possibilities to approximate delivery cost—still includ-
ing lost profits as well as sophisticated final schedule predictions—for instance, by the
use of descriptive approaches (e.g. Agatz et al. 2011; Daganzo 1987) or mixed-integer
linear programs that anticipate the final delivery routes at a more detailed level.

Appendix A: Generation of price lists

The set of price lists G contains all
∣
∣Ḡ

∣
∣S possible combinations of prices in the set Ḡ.

When defining set Ḡ, we have to find a good compromise between the number of prices
y contained in Ḡ (too many prices result in intractable computational complexity) and
the fact that the prices must reflect real pricing decisions to a certain extent in order to
obtain a good opportunity cost approximation. Since the availability of capacity is one
of the crucial factors regarding opportunity cost of a customer request, we determine
the set of prices Ḡ depending on the expected number of customers who can be served
at a given capacity level. Thus, the intuition behind the prices contained in set Ḡ is that
the resulting number of expected customers choosing a time slot at a given price fits to
the overall capacity and at the same time the prices must reflect real pricing decisions.

For this purpose, we take the expected order size e per customer and we define an
expected time z̄ necessary to serve a customer (driving and service time). Given the
overall service time (V

∑
s∈S ls) and capacity (V Q), we determine an approximation

for the amount of customers α which can possibly be served by

α = min

{
V

∑
s∈S ls
z̄

; V Q

e

}

. (18)

Further, we define the set K as the set of potential price points for Ḡ (i.e. Ḡ ⊆ K)

and Rs(k) as the choice probability (derived from the MNL model) that a customer
chooses time slot s ∈ S when all slots are offered at a given price k ∈ K. The total
expected number of customers ᾱk who place an order if all time slots s ∈ S are offered
at the given price k ∈ K is given by

ᾱk = Tλ
∑

a∈A
ma

∑

s∈S
Rs(k). (19)

To have a promising price range in Ḡ, the minimum difference ε between each pair of
prices (k̇, k̈) ∈ Ḡ with k̇ 
= k̈ has to be defined. Besides, the parameter δ ∈ [0, 1] is
used to define a share of α in order to level out estimation mistakes (see explanation
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below). We can derive the set of prices Ḡ for the anticipation of expected customer
requests demand management by means of Algorithm 1.

In Step 0, we initialise the sets and parameters we need for the determination of set
Ḡ. For our computational study, we initialisedK = {−10,−9.5,−9, . . . , 10}, y = 5,
ε = 1 and δ = 0.75. In Step 1, we determine the prices from set K, which lead
to a minimal difference between expected customers who place an order if all time
slots s ∈ S are offered at the given price k ∈ K and who can be served at the given
capacity level. Ḡ contains only prices that differ at least by ε to get a broader price
range (if condition). In our computational study, this yields, for instance, in the case
of 8 delivery vans, the price set {1.5, 2.5, 3.5, 4.5}. At the end, we also add one price
for which only the share δ of the customers who can possibly be served at the given
capacity level would choose a time slot. This allows for realistic pricing decisions
in case the capacity of a delivery time slot becomes tight at the end of the booking
horizon owing to uncertainty in expectations. Regarding the price set for 8 delivery
vans in our computational study, we add the price 9 which results in the complete price
set Ḡ8vans = {1.5, 2.5, 3.5, 4.5, 9}.

Appendix B: Generation of expected delivery schedules

The application of ICP as dynamic pricing benchmark policy necessitates several
expected delivery schedules. In line with Yang et al. (2016), we generate 10 sched-
ules by simulating several booking horizons represented by ω ∈ � in Algorithm 2.
We randomly draw the sets of customer streams for the booking horizons from the
generated grid of potential customers (cf. Sect. 4.1).
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In Step 1 of Algorithm 2, customers are made price offers based on insertion cost
without any expectations of future customers at all [Hindsight Policy (Yang et al.
2016), cf. Sect. 1]. In Step 2 of Algorithm 2, we use the resulting schedules of the
first simulation as expected schedules, which allows the application of the Foresight
Policy of Yang et al. (2016) (cf. Sect. 1) in order to determine a request’s insertion
cost. We repeat this several times using the resulting delivery schedules of the last
simulation as expected schedules for the current one. This repetition is necessary to
eliminate the inaccuracy resulting from the very first set of past schedules, which can
only be generated by applying the Hindsight Policy.
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