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Abstract The expansion of fluctuating renewable energy sources leads to an increas-
ing impact of weather-related uncertainties on future decentralized energy systems.
Stochastic modeling techniques enable an adequate consideration of the uncertainties
and provide support for both investment and operating decisions in such systems. In
this paper, we consider a residential quarter using photovoltaic systems in combina-
tion with multistage air-water heat pumps and heat storage units for space heating
and domestic hot water. We model the investment and operating problem of the
quarter’s energy system as two-stage stochastic mixed-integer linear program and
optimize the thermal storage units. In order to keep the resulting stochastic, large-
scale program computationally feasible, the problem is decomposed in combination
with a derivative-free optimization. The subproblems are solved in parallel on high-
performance computing systems. Our approach is integrated in that it comprises three
subsystems: generation of consistent ensembles of the required input data by aMarkov
process, transformation into sets of energy demand and supply profiles and the actual
stochastic optimization. An analysis of the scalability and comparison with a state-
of-the-art dual-decomposition method using Lagrange relaxation and a conic bundle
algorithm shows a good performance of our approach for the considered problem
type. A comparison of the effective gain of modeling the quarter as stochastic pro-
gram with the resulting computational expenses justifies the approach. Moreover, our
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results show that heat storage units in such systems are generally larger when uncer-
tainties are considered, i.e., stochastic optimization can help to avoid insufficient setup
decisions. Furthermore, we find that the storage is more profitable for domestic hot
water than for space heating.

Keywords Large-scale energy system optimization · Stochastic programming ·
Uncertainty modeling · Markov process

1 Introduction

The provision of energy is continuously moving from a conventionally centralized
toward a decentralized energy supply with a significant expansion of renewable energy
sources. This fundamental, structural rearrangement of the energy system introduces
an increased fluctuation and non-negligible uncertainties on the supply side. The
resulting challenge is the actual technical and economical realization of the transi-
tion process. An additional challenge consists in the modeling of such energy systems
taking into account their uncertainties to support a reliable, cost-efficient and techni-
cally feasible transition. These new problems call for tailored quantitative solutions
to analyze and optimize energy systems (Hurink et al. 2016). In this context, energy
systems with decentralized energy provision and load shift potentials of energy stor-
age units are becoming increasingly important (Altmann et al. 2010; Kobayakawa
and Kandpal 2016; Owens 2014; Yazdanie et al. 2016). Research needs include the
development of approaches for determining the optimal dimensioning and usage of
the decentralized energy system’s components, i.e., to support long-term investment
and short-term operation decisions under uncertain conditions.

In this paper, we consider a residential quarter with photovoltaic (PV) generators
and load flexibilities using heat pumps in combination with heat storage units. Our
target is to support the investment and operation planning process of the quarter’s
energy system. In order to meet the preferences of the quarter’s residents in terms
of maximizing the share of self-generated electricity, the available roof area of the
quarter is used completely resulting in a PV system of 240 kWp in this case study.
The optimization of a 1-year period with the resolution of 15 minutes is based on real
data for a new residential quarter located in Germany considering a total time horizon
of 20years. To ensure a consistent generation and handling of these input data and
uncertainties, we present a module-based framework including three subsystems for
(1) simulating consistent ensembles of the required input data by a stochastic process,
(2) transforming these initial profiles into consistent sets of energy supply and demand
profiles and (3) using the generated profiles in a two-stage stochastic programming
optimization. In general, the framework serves as a modeling and optimizing concept
for a wide variety of decentralized energy systems with various energy supply and
demand components, all under consideration of uncertain conditions. Making use
of stochastic programming (SP) instead of deterministic programming leads to the
expected best solution with respect to the uncertainties.

Since renewable supply, such as PV generation, and energy demand essentially
depend on fluctuating and uncertain meteorological data, a Markov process is used to
generate profiles of the required meteorological parameters considering their stochas-
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tic nature. As mentioned above, our focus is not only on operation, but also on
investment optimization. Therefore, our approach needs to take into account the short-
term (intra-daily) and long-term (annual and seasonal) variations, since both can affect
the optimal investment decision. The resultingmeteorological profiles are transformed
into PV and heat pump supply and electrical and thermal demand profiles for the
subsequent optimization of the stochastic program. While the temperature- and solar-
radiation-dependent PV supply and the temperature-dependent heat pump supply are
transformedbyphysicalmodels, the electrical and thermal demand is based on a typical
day approach depending on day, season, temperature, cloudiness and building prop-
erties (VDI 4655 guideline 2008). Thereby, the so-called standard load or H0 profiles
are employed to generate electrical demand profiles. The modeling of the heat storage
units involves integer variables at the first stage. Since the employed heat pumps can
only run stepwise, there are also integer variables at the second stage leading to a
stochastic mixed-integer linear program (SMILP) with more than 100 million vari-
ables. To solve this problem with high computational intensity in reasonable time, the
resulting large-scale SMILP is decomposed into subproblems. These subproblems are
pooled by a scenario reduction technique of Growe-Kuska et al. (2003) and optimized
in parallel on high-performance computing (HPC) systems. A commercial solver is
used for the inner optimization of the subproblems. The entire problem is solved by
a derivative-free optimization (DFO) algorithm that coordinates the optimization of
the outer masterproblem on the HPC system. We also compare our results to the case
where the heat pumps’ operation can be modeled by continuous variables at the sec-
ond stage. Additionally, we contrast the gain of modeling the quarter as stochastic
program to the resulting computational expenses. Finally, we show the scalability of
the approach in comparison with a state-of-the-art dual decomposition method using
Lagrangian relaxation and a conic bundle algorithm for solving such problem types.

The paper is structured as follows: Sect. 2 gives a literature review relevant to the
developed approach which is described in Sect. 3. The focus of the paper is on the
presentation of a real-world case study in Sect. 4. In this context, we demonstrate
our approach for a residential quarter including about 70 households, a 240KWp PV
system and heat pumps in combination with heat storage units to cover the energy
demand. At the end of Sect. 4, the computational expenses and the scalability of the
approach are reflected upon. The approach itself is discussed separately in Sect. 5.
The paper finishes with a conclusion and an outlook in Sect. 6.

2 Literature review

Numerous decentralized as well as centralized energy system models are designed
for a specific system describing the interaction between energy suppliers, consumers
and storage units [for a thorough overview, see, e.g., Connolly et al. (2010), Ventosa
et al. (2005)]. Depending on the time horizon, the majority is based on time slices
from 10 up to 35,040 slices per year, which already leads to large-scale problems
when realistic energy systems are considered.1 Here, the term ‘large scale’ does not

1 For instance, see Jochem et al. (2015), who consider the operation of micro-combined heat and power
units with a resolution of 15min to model the physical system properties adequately.
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refer to the geographic size of such a system, but to the number of decision variables
which contours the complexity of the optimization model. According to Ventosa et al.
(2005), large-scale problems havemore than 10,000 variableswith high computational
expenses.

The economic profitability of energy systems generally depends on optimal energy
management, i.e., on finding the optimal capacity of individual components at the first
stage and, at the second stage, on their optimal operation over their lifetimes. Preva-
lently, energy systems are modeled deterministically to optimize the investment (Syed
2010; Vögele et al. 2009), the operation (Kanngießer 2014; Shang et al. 2017; Shirazi
and Jadid 2017) or both (Beck et al. 2017; Evins et al. 2014; Kaschub et al. 2016;
Lorenzi and Silva 2016) without uncertainty. However, the energy management and
thus the economic profitability are subject tomanifold uncertainties associatedwith the
future development of energy prices, the electrical and thermal demand and the energy
supply. In practice, the impact of uncertainties is often considered by using expected
values. The impact is otherwise estimated by sensitivity or scenario analyses since the
variation of parameters by such analyses does not increase the problem size. However,
such analyses can only provide an estimation of the effect on the optimization results,
but the complex impact cannot be captured entirely. Stochastic modeling techniques
enable an adequate consideration of various uncertainties in the investment and oper-
ation planning processes, thus supporting the assessment of the system’s performance
in both the short and long terms. There are several individualmodels of real energy sys-
tems that support optimal investment and operation, taking into account uncertainties
with SP (e.g., Göbelt 2001; Kelman et al. 2001; Kovacevic and Paraschiv 2014; Möst
and Keles 2010; Wallace and Fleten 2003). Most of them deal with continuous- or
mixed-integer decision variables and linear objective functions and constraints. There
is a lack of a general approach with a comprehensive modeling chain that generates
the required energy profiles under consideration of their mutual dependencies. The
arising large-scale SP with millions of mixed-integer variables needs an optimization
framework finding an optimal solution with reasonable computational effort.

Two-stage SP enables an adequate consideration of different sources of uncer-
tainties in the investment and operation planning processes of decentralized energy
systems. Generally, uncertainties can be defined as information not exactly known (or
neglected) at the time when the decision has to be made. There are manifold ways
to classify uncertainties; they can be abstractly categorized as aleatory or epistemic
(see, e.g., Bedford and Cooke 2001; French 1995; Goldstein 2012; Morgan and Hen-
rion 1992; Mustajoki et al. 2006).2 In our context, model results are subject to three
different sources of uncertainties:

• (Raw) Input data
• Preparatory transformation of the (raw) input data
• System modeling

2 Uncertainties are characterized as epistemic, if they could be reduced by gathering more data or by
refining models. They are aleatory, if the modeler does not see the possibility of reducing them Kiureghian
and Ditlevsen (2009).
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Each optimization model requires input data fraught with aleatory uncertainties such
as weather, prices, supply or demand. Additional aleatory or epistemic uncertainties
are introduced by the process of transforming raw input data into data required for the
optimization. Finally, uncertainties are induced by the model itself, mostly epistemi-
cally: the more it differs from the real system, the more uncertainty could be induced.
The optimization results and the subsequent decision depend on all these sources of
uncertainties. Stochasticmodeling techniques can be used to account for the associated
uncertainties of input and transformed data, resulting in a robust-sufficient solution
that is expected to be optimal. In this paper, we consider uncertainty in raw input data
and consistently model and propagate these uncertainties through the model chain to
the stochastic program that is to be optimized. An optimization under uncertain model
parameters has been initially considered about 60years ago by Dantzig (1955) and by
Beale (1955). Those parameter uncertainties are incorporated by their probability dis-
tributions through SP.3 Since the economic profitability of an energy system depends
predominantly, at the first stage, on the investment decision and, at the second stage,
on its operation, the problem can be adequately formulated as a two-stage stochastic
program with recourse (Dantzig and Infanger 2011; Kalvelagen 2003).

Two-stage stochastic linear programs without integer requirements are well studied
(Schultz 2003). Then, the recourse function is a piecewise linear convex function. A
number of algorithms have been developed for such programs (see Ruszczynski 1999).
Most of these algorithms use an extension of the Benders decomposition introduced
by Van Slyke and Wets (1969) known as the L-shaped method.4 But for many cases,
some decisions of the first and second stage can only bemade on the basis of a stepwise
selection. Then, the main challenge arises when integer variables are involved and the
convexity is no longer present Schultz (2003) [for some major results in this area, see
also Haneveld and Vlerk (1999)].

Birge and Louveaux (1997) have presented a branch-and-cut approach with the
L-shaped method for the simplest form of two-stage SMILP: first-stage purely binary
and second-stage continuous variables. For the most challenging class, with integer
and continuous variables at both stages and uncertain parameters anywhere in the
model, only few algorithms can be found in the literature. When integer variables are
involved at the second stage, the L-shaped method (that requires convex subproblem
value functions) cannot be applied directly. See Escudero et al. (2010) for a thorough
review on this subject.

Carøe and Tind (1998) and Carøe and Schultz (1999) presented a generalized L-
shaped method for models having integer variables at the second stage and either
some continuous or some discrete first-stage variables. The dual-decomposition-based
method focuses on using Lagrangian relaxation to obtain appropriate bounds. For

3 At about the same time, the principle of robust optimization was introduced by Wald (1945) besides SP.
It is an alternative approach to counteract uncertainties by minimizing the maximum risk, later termed as
optimizing the worst case (Ben-Tal et al. 2009). Furthermore, fuzzy or parametric programming can be used
as other opportunities to incorporate such uncertainties (see Zhou 1998; Verderame et al. 2010; Metaxiotis
2010).
4 The L-Shape is a specific application of the Benders decomposition to the stochastic program and gets
the name from the block structure of the extensive form of the program. The main idea is to approximate
the recourse function in the objective, i.e., a solution of all second-stage recourse linear programs.
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a large number of mixed-integer variables at both stages, Nürnberg and Römisch
(2002) have used stochastic dynamic programming techniques. Sherali and Fraticelli
(2002), Sen and Sherali (2006) and Zhu (2006) have developed a branch-and-cut
decomposition, modifying the L-shaped method by a relaxation in combination with
a special convexification scheme called reformulation-linearization technique. Yuan
and Sen (2009) and Sherali and Smith (2009) have enhanced this approach using
Benders decomposition at the first stage and a stochastic branch-and-cut algorithm at
the second. In addition, Alonso-Ayuso et al. (2003) have introduced a branch-and-fix
coordination methodology. The main difference to the common branch-and-bound
algorithm is that the search tree evaluates many subproblems. The decision to branch,
prune or bound depends on all these subproblems at each step. This approach has been
continuously upgraded to using the twin node family concept in combination with
Benders decomposition and parallel processing for continuous and binary variables
at both stages (Alonso-Ayuso et al. 2005; Escudero et al. 2007, 2010; Pagès-Bernaus
et al. 2015).

Besides these exact algorithms for SMILP, there are also heuristic approaches: For
instance, Till et al. (2007) propose a hybrid algorithm that is similar to our approach. It
solves two-stage SMILP with integer and continuous variables at either stage. Based
on stage decomposition, the second-stage scenario problems are solved by a MILP
solver. An evolutionary algorithm performs the search of the first-stage variables.
However, this procedure as well as exact algorithms is not practically applicable for
extremely large-scale problems due the high computational expenses of each iteration
step. The high number of variables and constraints of the stochastic program requires
computing nodes with computational power that is not available to date. But even if
the required computing resources were available, the program would not be feasible
within reasonable time and accuracy, when integers are involved at the second stage.
In contrast, we present a module-based approach where a well-performing DFO algo-
rithm reliably finds a (locally) optimal solution of the first-stage variables in few steps.
Furthermore, a necessary decomposition of the second stage is applied to achieve the
required accuracy of the solutions within an acceptable period of time. Because of the
extreme problem size, the decomposed second stage is computed in parallel.

3 The developed approach for two-stage stochastic, large-scale problems

In practice, an approach is needed for the economic optimization of decentralized
energy systems under uncertainties, such as a residential quarter with storage units
and its own PV energy provision. To support the investment and operation decisions,
the problem is formulated as a stochastic program. In the context of a decentralized
energy system, optimal decisions are achieved by an optimal balancing of its energy
supply and demand with the objective of, for instance, maximal profits or minimal
costs. Furthermore, the objective can depend on parameters such as prices, efficiencies
and many others. Some of these cannot be used directly for the optimization, but have
to be derived from raw data that are transformed into the required format. As the entire
model chain is subject to the different uncertainties mentioned above, we propose a
comprehensive approach, which is structured into three subsystems (see Fig. 1):
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Fig. 1 Conceptual structure of our comprehensive modeling approach (Bertsch et al. 2014)

(a) Input data subsystem (IDS)
(b) Data transformation subsystem (DTS)
(c) Economic optimization subsystem (EOS)

For the energy system optimization, data of energy demand, supply and prices are
needed which can be either acquired directly as input data at the IDS or transformed
from raw input data at the DTS. The approach accounts for the associated uncertainties
by generating consistent ensembles of raw input parameters (e.g., weather and prices)
and transformed data (e.g., electrical and thermal supply or demand) considering
their probabilistic properties. For instance, it includes the fundamental relationships
between these input parameters and energy demand as well as supply. These profiles
are used in the subsequent EOS.

3.1 Input data subsystem (IDS)

The main task of the IDS consists in generating input parameter profiles (e.g., mete-
orological profiles, such as global solar radiation and temperature) considering their
fluctuating and stochastic nature as well as the interdependencies between them. Our
ultimate target in this paper is the two-stage optimization of decentralized energy sys-
tems. On the one hand, this implies that our approach for simulating input profiles
needs to take into account both the short-term fluctuations and uncertainties of the dif-
ferent load profiles and the long-term variations. For example, ‘good’ and ‘bad’ solar
years may affect the choice of adequate dimensions for the components of a decen-
tralized energy system. On the other hand, the decentralized energy system includes
components on the supply and demand side. Therefore, our approach needs to be able
to consider the interdependencies between the supply and demand profiles and the
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meteorological conditions, i.e., an independent stochastic simulation of the profiles
would not be appropriate. For instance, the electricity generation from solar PV panels
does not only depend on the global solar radiation but also on the temperature, which
affects the panels’ efficiency. Moreover, the heat demand depends on the temperature
as well as the cloudiness.We therefore need to simulate themeteorological conditions,
such as the cloudiness, and its interdependencies with temperature and global solar
radiation.

The stochastic characterization of solar radiation and other meteorological param-
eters has been studied intensely in the literature. The approaches can generally be
divided into two categories: First, regression-based models draw random variables
applying an estimate of the probability distribution functions of the observations (see
Diagne et al. 2013 for an overview for instance). Second, Markov processes draw a
random variable by applying a transition matrix which represents the probabilities of
future states depending on past realizations. For instance, focusing on the long-term
variations, Amato et al. (1986) model daily solar radiation using a Markov process.
Ehnberg and Bollen (2005) simulate solar radiation on the basis of cloud observations
available in 3-h intervals. Focussing on the short-term variations in a high temporal
resolution, Morf (1998) proposes a Markov process aimed at simulating the dynamic
behavior of solar radiation.

Overall, Markov processes have proven suitable to meet the above-mentioned
requirements, e.g., to consider interdependencies between cloudiness, temperature
and global solar radiation. While our approach is similar to the one by Ehnberg and
Bollen (2005), we additionally include seasonal information in our Markov process,
i.e., the corresponding transition probabilities may vary from month to month (see
below). Moreover, we simulate temperature profiles, which are consistently compati-
ble with the simulated radiation profiles.

In order to address the challenge of considering long-term as well as short-term
variations, we suggest a two-step approach. In the first step, we start by modeling
the daily cloudiness index ζ ∈ {0, . . . , 8} as a Markov process in order to take the
long-term variations into account. The cloudiness is considered in Oktas, describing
how many eighths of the sky are covered by clouds, i.e., ζ = 0 indicates a completely
clear sky, while ζ = 8 indicates a completely clouded sky (Jones 1992). The transition
matrix �m

ζ (where the index m indicates the month) is defined for the Markov process
used for the simulation of the cloudiness ζ :

�m
ζ =

⎛
⎜⎝

π
ζ,m
00 . . . π

ζ,m
08

...
. . .

...

π
ζ,m
80 . . . π

ζ,m
88

⎞
⎟⎠ . (1)

The transition probabilitiesπ
ζ,m
i j in Eq. (1) are derived on the basis of publicly available

weather data provided by Germany’s National Meteorological Service, which are
available for a variety of locations across Germany for periods of often more than
50years. A transition probability π

ζ,m
i j denotes the conditional probability that, in

month m, the cloudiness ζδ on day δ equals j , knowing that the cloudiness ζδ−1 on
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day δ − 1 was i :

π
ζ,m
i j = P (ζδ = j |ζδ−1 = i) ;

∑
j

π
ζ,m
i j = 1∀m, ∀i. (2)

TheMarkov process for the cloudiness based on the transition probabilities in (2) then
takes the form

ζδ = f (ζδ−1, �) , (3)

where� is a uniformly distributed random variable in [0, 1]. Let now ξ be a realization
of �. Then ζδ can be obtained by:

ζδ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ξ ∈
[
0, πζ,m

ζδ−10

[
,

1 if ξ ∈
[
π

ζ,m
ζδ−10

,
1∑
j=0

π
ζ,m
ζδ−1 j

[
,

...

8 if ξ ∈
[

7∑
j=0

π
ζ,m
ζδ−1 j

, 1

]
.

(4)

So basically, Eq. (4) is an operationalization of the Markov process. Higher (lower)
transition probabilities π

ζ,m
i j (e.g., the probability of a clear sky on day δ, knowing

that day δ − 1 was clear would be rather high in June but low in December) would
result in larger (smaller) intervals.With ξ being a realization of a uniformly distributed
random variable, this leads directly to a higher (lower) likelihood of the corresponding
cloudiness on day δ.

An additional Markov process is used for modeling the daily global solar radiation
on the basis of the cloudiness. The transition probabilities of the transition matrix
�

m,ζ
ρ corresponding to the daily global solar radiation ρδ on day δ can be expressed

as a function of the month m, the cloudiness ζδ on day δ and the global solar radiation
ρδ−1 on day δ − 1:

π
ρ,m, j
kl = P (ρδ = l|ρδ−1 = k ∩ ζδ = j) ;

∑
l

π
ρ,m, j
kl = 1 ∀m, ∀ j, ∀k. (5)

The starting values of the Markov processes can be chosen arbitrarily since the influ-
ence is negligible in the long run. On the basis of the simulated daily cloudiness,
the values for daily global solar radiation and average daily temperature are derived.
Our analysis shows that deriving the transition probabilities on a monthly basis deliv-
ers more accurate results than using yearly transition probabilities. We validated our
simulation approach by comparing the results to historical weather data published by
Germany’s National Meteorological Service using short-term as well as long-term
performance indicators. For the radiation supply time series, for instance, the valida-
tion included a comparison of the total annual radiation supply as well as a number
of additional indicators on the basis of Schermeyer et al. (2015). Further details are
provided in “Appendix A.”
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In the second step, a stochastic process is used to generate profiles in 15-min
resolution on the basis of the daily simulation results of step 1. This second step
accounts for the short-term fluctuations. While, in general, the seasonal and daily
variations of global solar radiation, for instance, can be described in a deterministic
way, the stochastic short-term variations are related to the state of the atmosphere
(e.g., the cloudiness). These short-term variations are simulated by an empirically
determined, statistically varying term under the constraint that a given daily global
solar radiation (determined in step 1) is achieved. The Markov process generates time
series of the required input parameters (in our case solar radiation, temperature and
cloudiness) for the following subsystems and is applied to obtain the desired number
of scenarios ω ∈ {1, . . . , N } that are the basis of the case study under uncertainty in
Sect. 4.

3.2 Data transformation subsystem (DTS)

TheDTS propagates the uncertainties of raw input data (sets of solar radiation, temper-
ature and cloudiness profiles) and transforms the output of the IDS into data required
for the subsequent optimization: energy supply and demand profiles of the decentral-
ized energy system. A PV supply profile module provides the energy supply profiles
of the PV system, taking into account the physical relationships. The main compo-
nents of a PV system are solar modules which transform light into electrical energy
through the photoelectric effect. Their electrical yield primarily depends on incident
light, module efficiency and its orientation described by longitude, latitude, tilt and
azimuth of the modules. A physical model on the basis of Ritzenhoff (2006) describes
these dependencies. Thereby, the global solar radiation coming from the IDS is split
into direct and diffuse solar radiation on the module and is used in conjunction with
ambient temperature (also from the IDS) to determine accurate module efficiency.5

In terms of the power generation from PV, the output of the DTS is a set of elec-
trical energy supply profiles, which is consistent with the simulation results of the
IDS. These profiles are subsequently used in the EOS. The thermal supply profiles
of the heat pumps are transformed depending on their physical performance proper-
ties and the uncertain ambient temperature. Concerning the energy demand, we use
a reference load profile approach. The generation of electrical demand profiles and
heat demand profiles for space heating (SH) and domestic hot water (DHW) is based
on the VDI guideline 4655 (2008) using parameters such as day, season, insulation,
location, occupancy, temperature and cloudiness. Again, the latter two are taken from
the sets of profiles generated by the IDS. Concerning the electricity demand profiles,
the daily electricity demand is taken from the approach based on the VDI guideline
4655. As such, the daily demand depends on the uncertain temperature and cloudiness
profiles. To achieve appropriate minute electricity demand profiles within each day,
the so-called standard load or H0 profiles are scaled to match the daily electricity

5 The model also includes the albedo effect, averaged losses such as shadowing, module mismatching or
cable and inverter losses for a certain PV system and the dependency of performance on low lighting and
temperature for a certain module technology and manufacturer.
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Fig. 2 Illustrative energy demand and PV supply profiles of a residential quarter for a typical day

demand values. The main reason for using the H0 profiles here is that our analysis
has shown a strong convergence of aggregate household load toward the H0 profile
even for comparatively small numbers of households. (Further details are shown in
“Appendix A.”) Figure 2 illustrates energy demand and supply profiles of a residential
quarter with a PV system and energy requirement for electricity, SH and DHW. The
electricity can also be taken from an external supplier, while heat demand is covered
by heat pumps, heating elements and heat storage units within the quarter.

With respect to Fig. 2, the optimization task is to shift the ideal amount of energy
demand for SH (dashed line) and DHW (dotted line) to times when a PV surplus is
available by using heat pumps in combination with optimal heat storage capacities. In
addition, minimization of storage losses and ramp-up losses of the heat pumps, as well
as avoiding the use of the inefficient heating elements, will lower the energy costs.

3.3 Economic optimization subsystem (EOS)

Within the EOS, the problem is formulated as an SMILP by optimization modules
tailored to the specific needs of the problem that allow for carrying out (locally) optimal
economic decisions. Hereby the profiles of the DTS can be used as possible scenarios
with the probability of occurrence π . The stochastic program is decomposed into
feasible and manageable subproblems by fixing inter- and intra-scenario-connected
variables. In order to keep the computation time and costs acceptable, a scenario
reduction technique is applied and the optimization of the remaining subproblems is
executed in parallel on HPC systems, referred to as inner optimization. Within the
masterproblem, which we refer to as outer optimization, the fixed, scenario-connected
variables are optimized by a DFO algorithm.

3.3.1 Mathematical modeling of the optimization problem

Generally, finding economically optimal investment and operation decisions under
uncertain parameters can be formulated as a two-stage stochastic program. Their ana-
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lytical solution, however, is only possible for few simple cases. In order to solve the
problem numerically, it can be formulated as one large linear program known as its
deterministic equivalent (Dantzig and Infanger 2011; Ruszczyński and Świȩtanowski
1997):

min
x,yω

cTx + π1 p
T
1 y1 + · · · + πω p

T
ωyω + · · · + πN pTN yN (6)

s.t. Ax ≤ b, (7)

T 1x + W 1y1 ≤ h1,
...

. . .
...

T ωx +Wωyω ≤ hω,
...

. . .
...

T Nx +WN yN ≤ hω,

(8)

x, y1 · · · yω, · · · yN ≥ 0. (9)

At the first stage, the cost vector c, the matrix A and the right-hand-side vector b
are assumed to be known, while at the second stage, the price vector p, the matrices
T ω and Wω and the right-hand-side vector hω are uncertain. Hereby, each scenario
ω is an element of the scenario set Ω = {1, 2, . . . , N } occurring with probabilities
π1, . . . , πN , respectively.6 Decision variables of the stochastic program such as x (first
stage) and y (second stage) are highlighted in bold. In case of mixed integers, x and y
are defined as Ahmed (2010):

x ∈ R
I−Z1+ × Z

Z1+ , yω ∈ R
R−Z2+ × Z

Z2+ , (10)

where I ,R,Z1 and Z2 are nonnegative integers with Z1 ≤ I and Z2 ≤ R.
The scenarios have to be generated adequately depending on the probability dis-

tribution of the uncertain parameters. In the case of stochastic programs with integer
recourse (Z2 > 0), Schultz (1995) has also shown that, under mild conditions, discrete
distributions can effectively approximate continuous ones to any given accuracy. Since
the scenario generation in the IDS is based on a uniformly distributed random variable,
each scenario has the same probability of occurrence 1

N and (6) can be summarized
to:

min
x,yω

cTx + 1

N

N∑
ω=1

pTω yω, (11)

the so-called sample average approximation of the stochastic problem (Shapiro et al.
2009). By the law of large numbers, the approximated expectation converges pointwise
to the exact value as N → ∞, assuming that each scenario is independent of other
scenarios.

6 In usual practical applications, W and pT do not depend on ω.
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3.3.2 Decomposition and scenario reduction

The most common decomposition techniques for large-scale stochastic problems are
the L-shaped method and the Lagrangian relaxation. The L-shaped method relaxes
stage-connecting constraints to eliminate the ties between the stages, but it is not read-
ily applicable when integers are involved at the second stage. Lagrangian relaxation
removes the scenario-connecting, non-anticipativity constraints and tries to reestab-
lish these by adding them to the objective function in combination with Lagrangian
multipliers. Even if the application of Lagrangian relaxation could lead to a global
optimum, it would conceivably take a lot of iterations and require accurate, very
expensive solutions of the subproblems. That is why we decompose the problem not
by relaxing these connections, but by fixing inter-scenario-connected variables. This
decomposition approach is similar to Till et al. (2007) who fix the first-stage variables
to optimize the scenarios separately. Therefore, Eq. (11) is written in its implicit form
as a function of the first-stage decisions:

(Master) : min
x

f (x) = cTx + 1

N

N∑
ω=1

Qω (x)

s.t. Ax ≤ b, (12)

and for a given x, the evaluation of the implicit second-stage value function Qω (x)
requires the solution of N independent subproblems:

(Sub) : Qω (x) = min
yω

pTω yω

s.t. T ω x + W ω yω ≤ hω ∀ω = 1, . . . , N . (13)

Inter-scenario-connected variables are linked by non-anticipativity constraints: the
decisions have to be made at the first stage such as storage investments, without
anticipating the actual realization at the second stage, and have thus to hold for all
possible scenarios.7

If necessary, the second stage itself can also be decomposed into M subprob-
lems by fixing intra-scenario-connected variables. In energy systems, these are mostly
the investments (first-stage decisions) and variables that are linked over time steps
such as the storage level or losses (second-stage decisions). Then, the objective
f
(
ϕ = (

x, yωfix

))
is to be minimized, where x presents the fixed first-stage variables

and yωfix the fixed second-stage variables.
However, if this decomposition allows an extensive computation in parallel, the

computational effort decisively depends on the number of scenarios. Hence, it is nat-
ural to reduce these scenarios so that the probability distributions of the uncertain
conditions are still reasonably represented. A compact overview in scenario genera-
tion and reduction with references to further readings is given by Heitsch and Römisch

7 When the stage-variable formulation of Eqs. (6–9) is transformed into the scenario-variable formulation
with the decision vectors x1, · · · , xω , then the non-anticipativity constraint x1 = . . . = xω emerges.
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(2011). According to the employed scenario generation and decomposition, a reduc-
tion based on moment-matching principles or on probability metrics is suitable.

Moment-matching aims at representing the probability distributions of the uncertain
conditions by minimizing the difference between suitable moments of the original
and the reduced scenario fan. Even if this heuristic methodology is accepted among
practitioners, similar moments do not guarantee similarity of two distributions in
general. It also lacks theoretical foundations, and it is unknownhowmatchingmoments
relate to the approximation quality of the objective value (Kovacevic andPichler 2015).

Scenario reduction techniques based on probability metrics minimize a certain dis-
tancemeasure between the original and the reduced scenario fan.Usually, asDupačová
et al. (2003) do, a family of the Kantorovichmetric (also known asWassersteinmetric)
is used as distance measure of two probability distributions. Reducing scenarios with
minimal Kantorovich distance to the original program is generally an NP-hard opti-
mization problem in itself (due to its combinatorial structure) that can be even more
computationally expensive than the actual problem. Hence, there are conceptually
heuristic forward selection and backward reduction algorithms. We have applied the
backward reduction described by Growe-Kuska et al. (2003): The idea is to delete one
scenario such that the Kantorovich distance of the original and the reduced scenario
set Dk

(
Pall; P red

)
is minimal. The probability of occurrence of the deleted scenario is

added to that with the minimal Kantorovich distance to the deleted one. This deletion
process is repeated as long as a given relative accuracy εrel ≤ DK

DK ,1
holds, where Dk,1

is the minimal possible Kantorovich distance of the original scenario set and only one

scenario Dk

(
Pall; P1

)
. This heuristic backward reduction algorithm shows close-

to-optimal reductions within short runtimes for a high number of scenarios (Heitsch
2007), whereby there is no specific knowledge needed about the required data due to
the dimension-independent reduction.

3.3.3 Inner parallel and outer derivative-free optimization

After the decompositionof the large-scale stochastic program intoMxN mixed-integer
subproblems and a scenario reduction, the remaining subproblems spmn are solved by
the standard MILP solver CPLEX (ver. 12.6.3) with a relative gap < 1%. The inner
optimization is executed in parallel using HPC nodes to reduce the computing time.
The process is designed to solve the subproblems not only on one, but on comput-
ing nodes of different HPC systems. After the optimization of the subproblems, their
solution is composed to calculate the minimal value of f (ϕ) for the fixed variables.
An outer optimization performs the search of the fixed variables. Therefore, we pro-
pose a derivative-free optimization (DFO) due to integer requirements related to these
variables. Figure 3 depicts the whole optimization process.

In principle, there are global and local search algorithms that require only the avail-
ability of objective function values but no derivative information (Rios and Sahinidis
2013). A global solution would be preferable. Given the very expensive evaluation
of all subproblems, a more important requirement is that only a few iterations are
required to find an optimal solution. Also important is a reliable and robust solution
process, especially a high tolerance to inaccuracy of the inner optimization solu-
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Fig. 3 Parallel optimization process (POP) for large-scale, two-stage stochastic programs

tions. Possible DFO algorithms are summarized in “Appendix B” in Table 5, which
is based on the review of Rios and Sahinidis (2013) with regard to the mentioned
requirements. Besides, the textbook of Conn et al. (2009) is incorporated, which is
exclusively devoted to this topic and gives a detailed insight into the algorithms. We
have deliberately chosen a hill-climbing algorithm because of its simplicity, flexi-
bility and reliability. We are aware that this algorithm is outperformed by others in
some cases but reasons for its choice include the fact that it robustly proceeds to
the (local) optimum even without an exact solution of all subproblems. Hence, the
computing time can be considerably reduced by setting lower relative gaps for the
subproblems—the closer to the optimum, the more accuracy of the inner optimization
is needed. Furthermore, with few fixed variables and a good starting point, then few
iterations lead to the (locally) optimal solution. See Table 2 in Sect. 4.6 for a compar-
ison of the hill-climbing algorithm with the DDSIP algorithm (dual decomposition in
stochastic integer programming) by Carøe and Schultz (1999). In the following, the
locally optimal solution of the hill-climbing algorithm that could be globally optimal
is referred to just as optimal solution or optimum.

A hill-climbing algorithm is a local search algorithm that attempts to improve a
given initial solution to a problem by incrementally altering its solution-dependent
variables (Taborda and Zdravkovic 2012). In the optimization process, a steepest-
ascent hill-climbing (SAHC) method attempts to minimize the objective function
f (ϕ) by adjusting a single element of ϕ representing continuous and/or discrete value
of the fixed inter- or intra-scenario-connected variable ϕk . All components of ϕ are
sequentiallymodified in the direction that improves the value of f (ϕ) at each iteration.
The one leading to the greatest improvement is accepted (see, e.g., Forrest andMitchell
1993). An initial procedure determines the ascending direction for each fixed variable
ϕk that improves the objective value f (ϕ). Therefore, a certain step size sk is separately
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added to each fixed variable ϕk and the minimal objective value of f is computed by
the parallel optimization process (POP) as shown in Fig. 3. Then, the same step size
sk is subtracted from each fixed variable ϕk and the minimal objective value of f is
computed. The improving ascending direction for each ϕk is memorized. The stepwith
the best improvement is accepted, and the steepest-ascent search is repeated, only for
the improving ascending direction. When there is no improvement, then the step size
is halved and the process restarts with the initial procedure. The process continues
until the relative change of f (ϕ) is smaller than a given stopping criterion a ∈ R+.
The complete procedure can be found in “Appendix B.”

4 Application of the developed approach to a residential quarter

We demonstrate the described approach for a real-world case study: a residential
quarter that is introduced in Sect. 4.1. Its mathematical model is described in the
subsequent Sect. 4.2. The model is optimized on a Windows master machine and
three different HPC slave systems: on a Windows-based cluster having 10 nodes with
up to 128GB RAM and 6 cores at maximal 4.4GHz and two Linux-based clusters
having 512 nodes each with up to 128GB RAM and 40 cores at 2.4–2.6GHz. The
computational results are presented and discussed in Sects. 4.3 and 4.4. At the end of
Sect. 4, the computational expenses and the scalability of the approach are reflected
in Sects. 4.5 and 4.6, respectively.

4.1 Residential quarter

The focus is on a residential quarter including 70 households on 7700m2 in multi-
family or row houses that are clustered in several building groups g ∈ {1, . . . ,G}.8
Figure 4 shows the energy setup of the quarter that is optimized under uncertain
conditions. On the energy supply side, the available roof area of the quarter is used
completely in this case study leading to a PV system of 240kWp. There is also the
possibility to obtain electricity that cannot be covered by own production from an
external energy supplier at an assumed electricity price of pgrid = 0.25e/kWhel.
If the PV supply exceeds the electricity demand of the quarter, the surplus can be
fed into the external grid for a compensation of pfi = 0.10e/kWhel. On the energy
demand side, there are the electrical and thermal consumption of each building group
g. In this case study, the quarter consists of G = 4 building groups in total. The
thermal consumption, i.e., demand for space heating (SH) and for domestic hot water
(DHW), of one building group is covered by two air-water heat pumps in combination
with heat storage units for each building group. Both heat storage units are hot water
tanks, having their own electrical heating elements (with an efficiency η = 95%) to
ensure thermal supply security in times of peak demand as well as adequate water

8 The corresponding project is aimed at developing energy-efficient, environmentally friendly residential
quarters. A PV system in the quarter meets a large part of the energy demand that is reduced by modern
passive house technology. Heat pumps in combination with storage units and intelligent load shifting within
the quarter increase the cost-effective self-consumption of the PV system.
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Fig. 4 Energy setup of building group of the quarter

disinfection. The heating system is separated into two cycles, because it allows the
heat pump for SH to run at lower temperatures. As a result, a higher coefficient of
performance (COP) and lower heat losses of the storage unit and, thus, lower energy
costs are obtained. Because of the lower temperatures, underfloor heating systems
are installed to exchange the required heat with a larger heat exchanger surface. SH
storage units are implemented in a closed cycle, and their temperature can be assumed
as thoroughly mixed and in the range from 35 ◦C up to 45 ◦C. On the contrary, due
to the fresh water requirements, the loop from the heat pump through DHW storage
units is separated from the fresh water cycle by a heat exchanger in the tank. The
temperature of the fresh water amounts to approximately 10 ◦C and needs to be heated
up to 50 ◦C.9 The higher temperature difference results in a larger energy content for
the same volume in comparison with the SH storage units.

The concrete task is to determine optimal storage sizes for SH and DHW for each
building group including their optimal operation that leads to minimal energy costs. In
this case study, air-water heat pumps are used. Their maximal available heating power
and their COP depend on the ambient air temperature. Further uncertain weather-
dependent parameters are PV generation as well as thermal and electrical demand.
Basically, there are two different operation technologies: one technology referred to
as inverter heat pumps that can provide heating power at each level below or equal
to their maximum heating power and the other technology referred to as on/off (non-
inverter) heat pumps that can only run on certain performance levels. For this case

9 By using the density and heat capacity of water, the volume storage level is converted into an energy
storage level required by the optimization model.
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study, heat pumps that can only run stepwise at idle, half or full load are to be installed.
There are no inverter heat pumps available with the required heat power provision up
to now. In the following, we show the results for both inverter and non-inverter heat
pumps assuming the same investment needs. To determine the economically optimal
sizes of the different components and their operation under these uncertain parameters,
the energy setup (illustrated in Fig. 4) is modeled without (SMILP-1) or with integer
requirements (SMILP-2) at the second stage depending on the employed heat pump
technology.

Note that we do not consider any network (constraints) between the building groups
in this case study, neither for heat nor for electricity. Concerning electricity, there actu-
ally is a network connecting the building groups, but this is designed from scratch so
that the capacity of its components is chosen in such a way that internal network
constraints are avoided. Therefore, we can assume a so-called copperplate in our anal-
ysis (i.e., omitting network constraints in the model). Concerning heat, a preliminary
screening analysis has shown that the potential savings from economies of scale of
yet larger heat pumps are outbalanced by the costs for creating and maintaining a
local heat network. As a result, potential balancing effects of heat demand and supply
between the building groups cannot be considered.

4.2 Mathematical model of the quarter

Corresponding to Eq. (6), the objective function of the deterministic equivalent for
one possible scenarioω ∈ � = {1, . . . , N } is to minimize the costsω over the capacity
xg,i of each investment i of building group g, the used electricity from the grid egridω,t

and the fed-in energy of the PV system efiω,t in scenario ω at time t :

costs∗ω = min
xg,i,e

grid
ω,t ,efiω,t

ANF
G∑

g=1

I∑
i=1

(cvari · xg,i + cfixi )

+
T∑
t=1

(pgrid · egridω,t − pfi · efiω,t), (14)

where the annual capital costs of each investment i of building group g are included
by using the equivalent annual cost method: xg,i is multiplied by cvari plus a fix amount

cfixi (variable and fix capacity costs of component i), resulting in investments that are
converted into an annuity per period T (Jones and Smith 1982). The integrated annuity
factor ANF takes into account the lifetime of the investment and the possibility that
the capital could be invested elsewhere at a certain interest rate. The equivalent annual
cost is often used for investment decisions of energy systems (see, e.g., Hawkes and
Leach 2005; Korpaas et al. 2003; Schicktanz et al. 2011; Silveira and Tuna 2003). In
this case study, an interest rate of 7% and a technical lifetime of 20years are assumed.
The period T includes 1year with a temporal resolution of 15min. This resolution
is required to adequately model the fluctuating energy demand and PV supply that
determine the load shift potential of the quarter. More details on the energy demand
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and supply profiles used in our analysis are presented in “Appendix A” (see Fig. 8 for
instance). Further components predefined in the presented case study are:

• The installed PV capacity of the quarter:
∑4

g=1 xg,i=PV = 240,
• The number of heat pumps for SH within a building group: xg,i=HPSH = 1,
• The number of heat pumps for DHW within a building group: xg,i=HPDHW = 1,
• The number of heating elements for the SH storage unit: xg,i=HESH = 4,
• The number of heating elements for the DHW storage unit: xg,i=HEDHW = 4.

The complete nomenclature is explained in Table 6 in “Appendix C.” Technically, the
employed heating elements can provide heating power continuously below or equal
to their maximum heating power d̂he. Similarly, the air-water heat pumps, if designed
as inverter heat pumps, can provide heating power at each level below or equal to their
maximum heating power d̂hpω,t . For this case study, the effectively used option is a heat
pump that can only run at idle, half or full load. In this paper, the storage size for
SH xg,i=SSH and for DHW xg,i=SDHW is optimized for both heat pump types. Because
only discrete storage sizes are available as economically reasonable investments on
the market, integer variables are used and multiplied by the smallest available storage
size: xg,i=SSH = zg,i=SSH · 1.16kWhth and xg,i=SDHW = zg,i=SDHW · 4.65kWhth.10

An essential constraint of the system is that the electrical supply (egridω,t plus supplied

PV energy ePVω,t) and the electrical demand (used electricity of heat pumps dhpω,g,u,t and

heating elements dheω,g,u,t of building group g for use u plus electricity demand for

electrical usage deeω,t and fed-in PV energy efiω,t in scenario ω at time t) need to be
balanced at all times:

egridω,t + ePVω,t = deeω,t +
4∑
g

2∑
u=1

(
dhpω,g,u,t + dheω,g,u,t

)
+ efiω,t ∀ω, ∀t, (15)

The supplied PV energy depends on the size of the PV system: epvω,t =
4∑

g=1
xg,i=PV ·

ePV,kWp
ω,t . Analogously, the thermal supply of the heat pumps and heating elements

plus the heat of the storages sω,g,u,t need to be equal to the thermal demand dthω,g,u,t
in scenario ω of building group g for use u at time t including the heat that is to be
stored at t + 1:

COPω,u,t · dhpω,g,u,t + η · dheω,g,u,t + sω,g,u,t

= d thω,g,u,t + Lω,g,u,t + sω,g,u,t+1 ∀ω, ∀g, ∀u, ∀t. (16)

10 The converting factors of 1.16 and 4.65kWhth correspond to a 100 l water tank. The factor is four times
higher in the case of DHW due to the higher temperature difference in the storage.
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In Eq. (16), storage heat losses Lω,g,u,t are integrated by a constant loss factor lhsu
dependent on the heat storage level:

Lω,g,u,t = lhsu · sω,g,u,t ∀ω, ∀g, ∀u, ∀t. (17)

The heat storage level is limited by a minimal storage level šg,u and the maximal
capacity:

šg,u ≤ sω,g,u,t ≤ xg,i=Su ∀ω,∀g,∀u, ∀t. (18)

The heat supply for each building group is limited by the number of heating elements
xg,i=HEu and their maximal heating power d̂he:

η · dheω,g,u,t ≤ d̂he · xg,i=HEu ∀ω,∀g,∀u,∀t, (19)

and the number of heat pumps xg,i=HPu and their maximum heating power values d̂hpt :

COPω,u,t · dhpω,g,u,t = 1

m
· d̂hpω,t · zω,g,u,t ∀ω,∀g,∀u,∀t, (20)

zω,g,u=DHW,t ≤ m · xg,i=HPDHW ∀ω,∀g,∀t, (21)
2∑

u=1

zω,g,u,t ≤ m ·
2∑

u=1

xg,i=HPu ∀ω,∀g,∀t. (22)

Here, constraints (20–22) ensure that both heat pumps can be used to cover the demand
for SH, but only one for DHW. This specific setup is reasoned by higher peak demands
for space heating than for domestic hot water (up to ten times on winter days). When
heat pumps can only run at idle, half or full load, then m = 2 (possible modes
minus the idle mode) and the heating power level zω,g,u,t is integer with zω,g,u=SH,t ∈
{0, 1, 2, 3, 4} and zω,g,u=DHW,t ∈ {0, 1, 2}. In the case of inverter heat pumps, zω,g,u,t
is a continuous variable and m = 1.

Practically, positive load changes result in higher thermal and mechanical energy
losses and reduce the COP of the heat pumps. Therefore, one further constraint is
needed to differentiate between positive and negative load changes of the heat pumps
achieved by positive auxiliary variables:

zω,g,u,t+1 − zω,g,u,t = posω,g,u,t − negω,g,u,t ∀ω,∀g,∀u,∀t. (23)

To take into account energy losses during positive ramp-up times, an additional term
posω,g,u,t · lhpu is added to the right side of constraint (16), avoiding permanent load

changes of the heat pumps. The loss factor lhpu represents the ramp-up loss of the heat
pumps and is defined as a 5% loss of the positive load change at time t . Additionally,
the left side of constraint (16) can be relaxed by a further auxiliary variable qω,g,u,t ,
if heat supply below the demand is acceptable. Then this variable is multiplied by a
compensation factor cf=10,000e/kWhel and added as an economic penalty term to
the objective function (14).
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Variables that are connected by a constraint over two time steps are restricted to be
equal at the first and last time step t :

sω,g,u,t = 1 = sω,g,u,t = T ∀ω,∀g,∀u,

zω,g,u,t = 1 = zω,g,u,t = T ∀ω,∀g,∀u. (24)

Since the scenarios are generated by a Markov process with the same probability of
occurrence for each scenario, the entire stochastic program can be expressed for a
numerical optimization by adapting (14) analogously to (11):

costs∗ = min
xg,i,e

grid
ω,t ,efiω,t

ANF
G∑

g=1

I∑
i=1

(cvari · xg,i + cfixi )

+ 1

N

N∑
ω=1

T∑
t=1

(pgrid · egridω,t − pfi · efiω,t). (25)

This stochastic program is decomposed into a master and subproblem as in (12) and
(13):

(Master) : min
xg,i

f
(
xg,i

) = ANF
G∑

g=1

I∑
i=1

(cvari · xg,i + cfixi ) + 1

N

N∑
ω=1

Qω

(
xg,i

)

s.t. Eqs. (18 − 19) and (21 − 23) (26)

(Sub) : Qω

(
xg,i

) = min
egridω,t ,efiω,t

T∑
t=1

(pgrid · egridω,t − pfi · efiω,t)

s.t. Eqs. (15 − 17), (20) and (23 − 24) (27)

All presented variables need to be positive. The maximal storage capacity xg,i=Su is
discrete in SMILP-1 and SMILP-2, but the heating power level of the heat pumps
zω,g,u=SH,t is integer only in SMILP-2.

The model dimension for one scenario is listed in Table 1 for one building group
and the entire quarter. The integer variables of the SMILP-1 are the first-stage integer
variables representing thediscrete storage sizes forSHandDHW(in caseof thequarter,
one SH and one DHW storage for each of the four building groups). In addition, the
SMILP-2 considers integer variables at the second stage, i.e., those related to the
stepwise heat pump operation in each 15-min time step (35,040 integer variables per
heat pump). For an appropriate consideration of the uncertainties, a problem with
hundreds to thousands of such scenarios needs to be solved.

4.3 Computational results

As input for the storage optimization of the quarter located in Germany, 100 weather
scenarios were generated by the Markov process representing the uncertain global
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Table 1 Model dimension for one scenario ω

Continuous variables Integer variables Constraints

SMILP-1 SMILP-2 SMILP-1 SMILP-2

For building group g 455,520 385,440 2 70,082 840,967

For the entire quarter 1,716,960 1,436,640 8 280,328 3,258,745

solar radiation, temperature and cloudiness (see Sect. 3.1). These profiles are trans-
formed into PV supply and energy demand profiles for electricity, SH and DHW for
the described SMILP-1 and SMILP-2. Because of the extreme problem size of one
scenario, the 1-year period T in Eq. (27) is also decomposed into periods of 2weeks
leading to 27 subproblems per scenario.11 The resulting 2700 subproblems are solved
in parallel by using POP. The fixed storage sizes of the first stage are optimized by the
outer SAHC method. To save computing time, the 27 fixed storage levels per storage
(of 35,040 storage levels per scenario) of the second stage are not optimized, but set
to plausible levels. In the beginning of the SAHC, each subproblem is solved with
low accuracy within a few minutes. Only for the last iterations, the computing time is
limited to half an hour to achieve the accuracy that is required by the SAHC to find
the optimum.12 About 17 steps of the outer optimization are needed to find the opti-
mal storage sizes. If the optimization was carried out sequentially on one computer,
the computation would take up to 7years. Due to the POP, the problem is solved in
less than 1week. Through the application of the scenario reduction, only 1 243 sub-
problems need to be computed without changing the optimal storage sizes or notably
influencing the optimal objective value. Thus, the problem can be computed in less
than half a week. For a better illustration, only the results for building group 1 with
29 households are presented and discussed in the following and until the end of this
paper.

Figure 5 shows the density function of minimal costs and optimal storage sizes of
all scenarios for two program variants:

• SMILP-1: with inverter heat pumps (no integers at second stage)
• SMILP-2: with heat pumps that can run at idle, half or full load (integers at second
stage)

The optimal SH and DHW storage size of each independent scenario is plotted on
the lateral wide axis versus the minimal costs on the lateral depth axis. The vertical
height axis represents the occurrence frequency for the optimal storage size with class
intervals of 1.16kWhth for SH and 4.65kWhth for DHW and their according minimal
costs with class intervals of 200e. Note that the abscissa is differently scaled for the
SH and DHW storage size (where 1.16 and 4.65kWhth are equivalent to the smallest
possible water tank of 100L for SH and DHW, respectively).

11 The chosen period of 2weeks results in problem sizes for an efficient utilization of the HPC systems
with respect to computation requirements and total computing time.
12 Note that this local optimum is referred to just as optimum or optimal solution.
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Fig. 5 Density function of minimal costs and optimal storage size including the stochastic solution and
the deterministic solution using expected values of the uncertain parameters of the SMILP-1 and SMILP-2
of building group 1

If each scenario is optimized separately and the heat pumps can run completely
flexibly (Fig. 5, SMILP-1), i.e., all variables at the second stage are continuous, the
optimal storage size for SH varies between 2.3 and 18.6kWhth and for DHW between
60.4 and 69.7kWhth. The occurrence frequency peak is between 2.3 and 3.5kWhth for
SHandbetween 65.1 and 69.7kWhth forDHW.Theminimal costs amount to 25, 285−
27, 078e for the SMILP-1. Thereof, about 50% can be attributed to the capital costs
of the energy system’s components. The other 50% are variable energy costs. The
boxes in Fig. 5 include the stochastic solution (in red) and the deterministic solution
of the expected value problem (EV) (in black). The optimal solution of SMILP-1 is
18.6 kWhth for SH and 65.1 kWhth forDHWwith expectedminimal costs of 26, 236e.
The solution of the EV is achieved by deterministically computing one scenario with
expected values of the uncertain input parameters. Then, the optimal storage sizes are
2.3 kWhth and 69.7 kWhth for SH and DHW, respectively.

Figure 5 analogously shows the results for mixed-integer variables at both stages in
case of SMILP-2. The occurrence frequency peak is between 15.1 and 16.3kWhth for
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Fig. 6 Characteristic values and measures of dispersion of scenarios for the optimal solution of SMILP-1
and SMILP-2 for building group 1, also shown as box-and-whisker plots where the whiskers represent the
minimum and maximum values (*PV supply is illustratively calculated for building group 1 based on a
subsystem of the entire system)

SH and between 60.4 and 65.1kWhth for DHW. The optimal solution is 18.6 kWhth
for SH and 69.7kWhth for DHW. The deterministic optimization using EV of the input
data results in 13.9 kWhth for SH and 65.1 kWhth for DHW.

For the optimal investment solution of the SMILP-1 and SMILP-2, Fig. 6 shows
variations of characteristic values of the 100 scenarios: minimum, 0.25 quantile,
median, 0.75 quantile and maximum of the values are listed as measures of disper-
sion. In addition, the values are illustrated as box-and-whisker plots rotated through
90 ◦. These values indicate the variations that can be expected when the investment
decision is made, i.e., when the first-stage variables are optimally set. The minimized
costs for the calculated optimal storage sizes are 25,344e at a min and 27,501e at
a max.13 The annual PV supply varies between 56,914 and 62,500kWhel. The elec-
trical demand of the heating system, the heat pumps and heating elements amounts
to 50,328–54,812kWhel for SMILP-1 and is approximately 1, 300kWhel higher for
SMILP-2.

The higher demand results from different thermal storage and ramp-up losses of the
heat pumps that are twoandfive times lower, respectively,when inverter heat pumps are
used. Not listed in Fig. 6, the overall COP, which is related to the total thermal supply
and total electrical demand of both heat pumps, is around 3.4 and only marginally
better in SMILP-1. Further quantities of interest are the PV self-consumption rate of

13 Note that these values are slightly higher than those of 100 separate (deterministic) optimizations of the
storage sizes, in which the first-stage variables are still alterable.
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53–58% and the actual autarky rate of 35–38%. With a marginally varying electricity
demand of the households of around 40,000kWhel, the annually balanced autarky
rate ranges between 60 and 70%.14 The maximum electrical load of the external grid
ranges between 38 and 54kWel for the SMILP-1 and between 44 and 54kWel for the
SMILP-2.

4.4 Discussion of the results

The DHW storage size is larger than the SH storage size due to the non-simultaneity of
PV generation and space heating demand. In winter, the complete PV supply is almost
entirely used to cover the electrical demand. In summer, there is high PV supply, but
a negligible need for SH. The energy demand for DHW, however, is more or less
constant over the year. Consequently, the load flexibility provided by DHW storage
units is also distributed more constantly over the year than the flexibility of SH storage
units, i.e., DHWstorage units provide a noteworthy load flexibility also in times of high
PV supply. Hence, larger storage sizes for DHW enable a higher self-consumption of
the PV system. Thus, they are more profitable than storage units for SH, because less
energy is required from the external grid. The value of the SH storage unit is less in load
shifting but rather in covering peak demands in winter, when the air-water heat pumps
also supply low heat due to cold ambient temperatures of the air. The storage size of at
least 18.6 kWhth is caused by scenarios with very cold winters. Implicitly, the optimal
storage size depends on the capacities of the system’s components, i.e., the installed
PV system and employed number and sizes of heat pumps. For example, a larger PV
system makes a larger storage size more attractive, because more heat demand can be
shifted to times when PV energy is supplied. A heating system with more heat pumps
could cover peak demands with smaller SH storage sizes. The general result is that
the usage of heat storage units in such a decentralized energy system with PV supply
and energy demand of several households proves beneficial.

As mentioned above, the input assumption of a 240 kWp PV system is based on
using the available roof area completely aimed at maximizing the amount of self-
generated electricity which is in line with the residents’ preferences. However, we
also carried out a sensitivity analysis, where we consider the installed PV capacity
as an endogenous optimization variable. In this case, we find that the PV system
leading to the minimum costs of the quarter’s energy system would be 31% smaller
for SMILP-2 (35% for SMILP-1). As a consequence, the optimal storage size for
DHW decreases by 13% (27% for SMILP-1). The SH storage remains unchanged to
be capable of covering peak demands in cold winters. The smaller PV system in the
sensitivity analysis would lead to a higher PV self-consumption rate of 65–70% (68–
73% for SMILP-1) but, at the same time, to a lower autarky rate of 29–31% (26–30%
for SMILP-1).

14 The balanced autarky rate is the relation of the total PV supply to the total electrical demand of the
quarter over 1year. In contrast, the actual autarky rate is the relation of the total PV self-consumption to the
total electrical demand of the quarter over 1year.
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It might be expected that the storage size for SH is more sensitive to uncertain
meteorological parameters than for DHW. However, when the scenarios are optimized
separately, the variation of the storage sizes (in kWhth) is higher for the DHW storage
unit than for the SH storage unit. The fact that the daily energy demand for DHW
is more or less constant over the year and the demand for SH is mainly in winter
indicates that the uncertainties on the supply side (i.e., PV generation) lead to this
higher sensitivity in comparison with the uncertainties on the demand side (i.e., heat
demand). However, in this case, it is not only the uncertain PV supply that influences
the storage size. It is also the load shifting potential in general, which depends on the
complex combination of time-dependent PV supply and electrical and thermal energy
demand. Furthermore, storage losses and ramp-up losses of the heat pumps influence
the profitability of load shifting. This influence is higher for discontinuous heat pump
supply, resulting in an increased sensitivity to uncertainty and a higher variation of
the DHW storage size in SMILP-2 in comparison with SMILP-1.

The optimal storage sizes differ notably from the results when using EV. If the
investments were based on the results of the EV or even on the occurrence frequency
peak, there would be scenarios that are very expensive or, if the heat constraint is not
relaxed, even infeasible. In contrast, the optimal stochastic solution takes all scenarios
into account and results in a storage size that is not optimal for a specific scenario, but
feasible for all scenarios and cost minimal in expectation.

The variations of the costs are mainly driven by the PV supply and the thermal
demand, both depending on uncertain, stochastic weather conditions: the higher the
global solar radiation and temperatures of a year, the lower the minimal costs because
of a higher PV supply and a lower thermal demand. The residual PV surplus of at least
42%up to 47%has to be fed into the external electricity grid. Similarly, the autarky rate
indicates the part of the total energy demand that can be covered by the decentralized
energy sources and how much energy is needed from an external supplier. In this
residential quarter, an actual autarky rate of one-third is achieved. Thus, two-thirds
need to be covered externally for the given residential quarter. Concerning the grid
layout, it is important to know that the maximal electrical load from the external
electricity grid is 54kWel, almost independent of the uncertainties or the used heat
pump technology. The total electrical net consumption from the external grid amounts
to 60GWhel/a and varies by ±10%. Such model results are, inter alia, very useful to
support contract design with external energy suppliers or distribution grid operators.

The quarter is modeled with integers at the second stage (SMILP-2) because the
considered heat pumps can only run stepwise for technical reasons. If (continuous)
inverter heat pumps with the required specifications were available on the market,
these could be modeled without integers at the second stage (SMILP-1). In this case,
the storage in the quarter would become more unattractive and would therefore be
smaller in general, especially when each scenario is optimized separately (see also
Fig. 5 in Sect. 4.3). The reason is that inverter heat pumps can provide heat exactly
as needed. In SMILP-2, when the flexibility of the heat pumps is technically limited
to stepwise supply, this lack of flexibility is compensated by the storages resulting
in larger units. However, when only comparing the stochastic solutions of SMILP-1
and SMILP-2, the size of the SH storage is the same in both SMILP-1 and SMILP-
2 to cover heating peak demand in cold winters. In contrast, the DHW storage is
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5kWhth larger in SMILP-2. In order to assess the value of modeling the program with
integers at the second stage, we also solve SMILP-2 while fixing the storages to the
optimal size of SMILP-1. A comparison of this result with the optimum of SMILP-2
shows that this value is below 1%. Thus, from a practical point of view, it would be
sufficient to determine the optimal storage sizes by SMILP-1which requires much less
computing resources. However, we wish to emphasize that this conclusion is only true
for the stochastic program. As discussed above, the value of modeling the program
with integers at the second stage is higher for deterministic programs. Moreover, the
gap between SMILP-1 and SMILP-2 depends on the temporal resolution. (It increases
strongly for coarser resolutions, see Fig. 9 in “Appendix A.”)

In recent years, the long-term interest rate has continuously decreased inGermany.15

The assumption of 7% for the case study is based on a survey of Schlesinger et al.
(2010) about energy scenarios for the Energy Concept of the German Government. In
order to assess the sensitivity of the results to the interest rate, the stochastic program
is computed, in addition, with an interest rate of i = 3 and 10%. The costs decrease by
ca. 10% at i = 3% and increase by ca. 20% at i = 10%. The SH storage units remain
almost unchanged, because of the delimiting restriction to cover peak demands and
the low load-shifting potential. Only the unbounded DHW storage units offer more
flexibility of load shifting and increase when the interest is lower (by ca. 20% at
i = 3%) or vice versa (decrease by ca. 30% at i = 10%). The general findings,
however, remain unchanged.

4.5 Computational expenses

Using HPC systems can essentially reduce the computing time, but can lead to high
overheads. Figure 7 illustrates the computational effort of the applied approach: the
arising total computing costs and time as a function of the utilized computing nodes.
For this purpose, the computing time of all subproblems and iterations is logged. These
times are used ex post to virtually allocate the computation of one subproblem after
the other to the next free node. In case of one computing node, all evaluations of the
subproblems have to be solved in series. A price of 0.047e on-demand per full hour
of the required node is assumed.16 Thus, the total computing time without scenario
reduction would amount to 9240 h with costs of 441e for SMILP-1 for one computing
node. In case of SMILP-2, the mixed-integer subproblems take up to ten times more
computing time than without integer requirements, causing higher computing time of
61,959h and costs of 1609e. Up to 100 nodes, the computing time can be constantly
divided by the utilized number of nodes without increasing costs. Then, in case of
SMILP-2, the costs increase because some nodes are in idle mode, while other nodes
are still computing hard-to-solve mixed-integer subproblems. That is time decisive
for the outer optimization. At about 6000 nodes, this effect compensates further time

15 See also long-term interest rates, European Central Bank (status June 2016, http://sdw.ecb.europa.eu/
browseTable.do?node=bbn4864&SERIES_KEY=229.IRS.M.DE.L.L40.CI.0000.EUR.N.Z).
16 Because no costs could be derived from the used HPC clusters, they are based on Amazon EC2 instance
types (https://aws.amazon.com/ec2/): 0.047e on-demand per full hour of the required node (status June
2016).
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reduction achieved by the parallelization. In the case of SMILP-1, the continuous
subproblems require nearly the same short computing time, resulting in continuously
linear reduction per additional node without increasing costs.

With regard to the employed HPC systems, 1034 physical nodes are in use. Because
two subproblems are actually solved on one node in parallel, 2068 computing nodes
are virtually available. Assuming exclusive access, the entire computation of SMILP-
1 and SMILP-2 could be theoretically solved within 4.5 and 47.8 h at costs of 441e
and 2954e, respectively. Due to the job queuing system of the HPC systems, the
computation was done within a week. If the scenario reduction is applied, cost and
time can approximately be divided by two.

4.6 Scalability of the approach

To evaluate the scalability of the optimization approach, it is tested on problems with
different complexity and size. In addition, the approach is benchmarked with the dual
decomposition in stochastic integer programming (DDSIP). This exact decomposi-
tion algorithm was developed by Carøe and Schultz (1999), especially for two-stage
SMILP, and has been continuously improved until today.17 The main idea of the
decomposition is the Lagrangian relaxation of the non-anticipativity constraints and
a branch-and-bound algorithm to reestablish non-anticipativity. The mixed-integer
subproblems in the branch-and-bound tree are solved by CPLEX. For the dual opti-
mization, DDSIP uses ConicBundle provided by C. Helmberg.18 The rationale behind

17 The Linux version can be downloaded from https://www.uni-due.de/~hn215go/ddsip.shtml.
18 For the computation, the default configurations of DDSIP with ConicBundle are used. Compared to
common-used subgradient methods, ConicBundle does not require adjusting the size or number of iteration
steps when minimizing the sum of convex functions that arise from Lagrangian relaxation. It supports
finding optimal dual multipliers by generating primal optimal solutions and by addition and deletion of dual
variables without loss of quality in the used cutting models (for details, see Märkert and Gollmer 2016).
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Table 2 Number of iterations of the outer optimization: DDSIP versus SAHC method (the solution of all
considered instances is identical for both approaches)

1 scenario 2 scenarios 5 scenarios 10 scenarios

DDSIP SAHC DDSIP SAHC DDSIP SAHC DDSIP SAHC

1 building group (first-stage variables: 2) 1 8 14 8 71 7 139 7

2 building groups (first-stage variables: 4) 1 7 16 10 109 16 > 150 9

4 building groups (first-stage variables: 8) 1 8 22 14 > 150 13 > 150 14

comparing SAHC and DDSIP is that both need the solution of the second stage to pro-
ceed with either the steepest ascent of the fixed variables or the descent step of the
dual problem. The inner optimization of the second stage is identical. Therefore, only
the more challenging case is considered, when integers are involved at both stages:
discrete storage sizes at the first stage and three heating power levels of the heat pumps
(idle, half or full load) at the second stage, similar to SMILP-2.

Assuming that always enough nodes are available to compute all subproblems at
the same time, only the outer iterations are time decisive for the computation. The
optimization is done for problems with 1, 2 and 4 building groups to vary the number
of first-stage variables. Since DDSIP computes the subproblems only sequentially at
present, the scenarios are simplified to two-day subproblems and reduced to 1, 2, 5 or
10 scenarios. The results are summarized in Table 2. Note that we only compare the
number of iterations of the outer optimization.

DDSIP outperforms the SAHC method if only 1 scenario is optimized since there
is no first-stage variable that has to be equal to another scenario in this case. It appears
that DDSIP can manage an increase in first-stage variables better than an increase
in scenarios. The number of iterations slightly rises when more first-stage variables
are added. But the number of iterations DDSIP needs to find a valid optimal solution
increases strongly with the number of scenarios.19

In contrast, the SAHCmethod always takes a similar number of iterations for few or
many scenarios. Iterations only increasewithmore building groups becausemore first-
stage variables have to be optimized. However, if the number of first-stage variables
remains small, SAHC needs only few iterations. The search is always initialized at
8 for SH and DHW (equivalent to an 800-l water tank) with an initial step size of 4
which is a better starting set for some instances than for others. Note that the obtained
locally optimal solutions are identical to the optimal solutions of the DDSIP. This
analysis does not consider the fact that SAHC can deal with a lower accuracy of the
inner optimization for most iterations, enabling a high potential in computing time
reduction in the subproblems.

19 An integration of progressive hedging could reduce the DDSIP iterations: a penalty term, usually a
weighted quadratic deviation of the Lagrangian multipliers from their preceding average values, is added to
f to accelerate the convergence (Rockafellar and Wets 1991). However, the convergence speed depends on
the weight factor. The possibility of the process performing worse or unstably cannot be ruled out (Helgason
and Wallace 1991).
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5 Discussion of the methodology

Commonly, when SP is applied to problems with uncertain data, the expected value
of perfect information is presented. It gives an economic value for obtaining perfect
information about the future, so it is a proxy for the value of accurate forecasts.
The expected value of perfect information is calculated as the difference between
minimal expected costs of the stochastic solution and the minimal expected costs
possible in the best case. ‘In the best case’ means that perfect information about
future scenarios would be available and the storage size could still be adapted for
each occurring scenario. Mathematically, these minimal costs result from relaxing
the non-anticipativity constraints. For SMILP-1 and SMILP-2, the difference is less
than 1%. Hence, the savings are marginal when the occurring scenario is known
exactly and the storage size could be optimally adapted. Because each scenario is
separately optimized by an exact branch-and-cut approach (of CPLEX) with relaxed
non-anticipativity constraints, that information of the best case can be used as a better
relative gap for the SMILP.

The advantage of modeling the problem as a stochastic program can be expressed
by the value of stochastic solution: Thereby, the expected result of the EV solution is
subtracted from the optimal solution of the SP (Birge 1982). The expected result of the
EV solution is calculated by optimizing the stochastic program with storage sizes that
are deterministically determined for one scenariowith expected values of the uncertain
input parameters. In both SMILP-1 and SMILP-2, the EV solution is not feasible for
all scenarios with hard heat constraints. Thus, the value of stochastic solution is not
quantifiable, but from a qualitative viewpoint, very valuable. If the decision was made
on the basis of an optimization with expected values, not all scenarios in the future
would be feasible. In this case study, the violation of heat constraints means there are
time steps in the year with room temperatures below the target levels desired by the
inhabitants. Therefore, compensation terms, as proposed in Sect. 4.2, are incorporated,
resulting in a value of stochastic solution for SMILP-1 of 45, 551e (174% more
than the optimal solution) and for SMILP-2 of 3684e (14% more than the optimal
solution). Regarding the derived computational expenses of 441e for SMILP-1 and
2954e for SMILP-2, the application of the approach is advantageous. Due to the fact
that computing costs rapidly decline, these advantages reflect a current status and will
increase over time.

The high value of stochastic solution of SMILP-1 mainly results from high penalty
costs due to a SH storage size that is dimensioned too small on the basis of EV
to cover the thermal demand of several cold winter scenarios. Therefore, using the
expected result of the EV solution might not reflect the performance of a deterministic
modeling approach for this application. Intuitively, onewould calculatewith cold years
to determine optimal storage sizes, in particular for SH. However, this inevitably leads
to the question of the definition of a ‘cold year’: the year with the lowest average
temperatures over the entire year (a), over the astronomical winter (b) or over the
meteorological winter (c)? The deterministic optimization of definitions (a, b and c)
instead of EV also results in too small SH storage sizes, i.e., not all peak heating
demands can be covered, too.
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Critically reviewing our approach, SP is only applicable when the uncertain param-
eters can be adequately represented by probability distributions. For the case study, a
Markov process simulates the uncertain parameters based on historical data over more
than 50years. Occurrences or trends differing from historic data, e.g., the future cli-
mate development, might be taken into account by using model-derived forecasts or, if
available, expert judgments. Besides the probability distributions, the number of sce-
narios and its reduction, which represent the distribution sufficiently well, are difficult
to determine. Moreover, the optimal decision under uncertainties can depend on risk
preferences of the decision maker (Pflug and Römisch 2007). Our results are purely
based on economic considerations without accounting for such subjective criteria.

For reasons of computational feasibility, each scenario is decomposed into 27 sub-
problems by fixing the heat storage sizes and levels between the subproblems. The
storage levels are not optimized in order to not increase the computational effort unnec-
essarily. For SH, they are set to zero reasoned by the fact that there is no SH demand
in about 5 of 12months. For the DHW storage unit, the level is set to 50% of the
storage size, because a good estimation cannot be derived. Thus, the solution is not
exactly optimal. However, the error is negligible in this case study (error is less than
0.1%). A stochastic dynamic programming technique could solve this problem but is
not applied, because it disadvantageously results in a step-dependent optimization pro-
cess, in which the independent optimization of all 2700 subproblems in parallel would
not be possible any more. If this becomes critical, an outer optimization other than the
SAHC method (e.g., a surrogate model approach) should be selected to remedy the
problem.

The computational effort could also be reduced by a smaller temporal resolution of
the problem. However, our analysis shows that a reduction in the temporal resolution
has a crucial impact on the optimal solution. For example, time steps of 1h instead of
15min completely change the load-shifting potential and, in case of SMILP-2, even the
stepwise flexibility of the heat pumps. The optimal storage sizes differ by more than
50%. (Further findings are shown in “Appendix A,” Fig. 9.) On the contrary, a detailed
modeling of the technical characteristics affecting the load-shifting potential could
require resolutions below 15min. In principle, the developed approach and model can
deal with smaller time steps. But besides the problem of an increased computational
effort, there are nearly no consistent data available in a higher temporal resolution.
The time steps of 15min in the case study should be sufficient, because the profiles
of thermal supply and demand are smooth in comparison with the electrical profiles.
Consequently, there is no balancing need below 15min. If electrical storage units were
used, their sizes would tend to be underestimated with 15-min time steps.

In terms of validating our approach and assessing its performance, we carried out
the following comparisons. First, we solve SMILP-1 (integers for discrete storage
sizes at the first stage but no integers at the second stage) for one building group as
a closed program optimized by CPLEX on one computing node. For this problem,
CPLEX finds an exact solution with a relative gap (to the relaxed problem) of 0% after
5h. Exactly the same results of the objective function value and decision variables are
achieved by our parallel optimization approach, but in less than half an hour. Second,
we compare the performance for SMILP-2 (integers for discrete storage sizes at the
first stage and for the heat pump operation at the second stage). For this problem,
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CPLEX does not find an exact solution. However, it finds a solution with a relative
gap of 15.3% after three computing days on one computing node (requiring about
0.5TB RAM). In contrast, our parallel optimization approach finds a solution with a
relative gap of 2% within less than a half day.

The advantage of the outer SAHC approach as DFO is that it is robust against
inaccuracy of the inner optimization and reliably proceeds to an optimal solution.
Therefore, only few computations of the expensive inner optimization are required,
given a good starting point and few fixed variables to optimize. The disadvantage is
that the solution could only be locally optimal, if the solution space of the SMILP
is non-convex. Even a more time-intensive evolutionary algorithm used by Till et al.
(2007) as outer optimization can end in a local optimum. A global optimum can be
guaranteed by either a complete enumeration or an exact algorithm such as the men-
tioned branch-and-bound approach used by DDSIP or the branch-and-fix coordination
methodology. But these approaches appear to be prohibited by the problem size. For
example, Pagès-Bernaus et al. (2015) apply their developed branch-and-fix coordina-
tionmethodology to two real instances with 447,771 variables (thereof 13,338 binary)
and 56,700 variables (thereof 34,479 binary). An application of one of these exact
algorithms to the case study of this paper with more than 100 million variables would
result in a non-performable computational effort that exceeds the current commonly
available computing resources. The comparison with DDSIP corroborates this asser-
tion.

6 Conclusion and outlook

This paper considers the optimization of the investment and operation planning pro-
cess of a decentralized energy system, subject to different sources of uncertainties. The
presented module-based, parallel computing approach accounts for the uncertainties
by generating and transforming consistent ensembles of data required for the stochas-
tic optimization problem. Thereby, mutual dependencies of the uncertain parameters
are taken into account and propagated consistently through the complete model chain.
Although the problem ends up in a large-scale two-stage stochastic mixed-integer
program, the employed parallel optimization process and an outer derivative-free
optimization find a local optimum reliably in a few steps. The solution quality can
be assessed by the relative gap to the stochastic program without integer require-
ments or without non-anticipativity constraints. As a result of the parallelization, the
computational feasibility is no longer constrained by the problem size, but rather by
the available computer resources. The employed decomposition technique allows an
extensive computation on high-performance computing systems in parallel.

The approach is applied to a residential quarter with 70 households using a PV sys-
tem and heat pumps in combination with heat storage units for the energy supply in the
quarter. Because of the complex impact of uncertain parameters on the solution, the
investment decisions derived from the stochastic solution can be very different from
the solution based on expected values of the input data or the occurrence frequency
peak. Using two-stage stochastic programming leads to a solution that is expected to
be optimal. This solution is much more reliable with respect to the parameter uncer-
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tainties than deterministic solutions which are not always feasible for all possible
future scenarios. In general, heat storage units in such a quarter prove beneficial. The
storage for domestic hot water is more profitable than for space heating as a result of
the more constant provision of flexibility. A further finding is that the beneficial effect
of the space heating storage is the fulfillment of all energy system restrictions, i.e.,
the covering of the heat demand, even in very cold winters. Therefore, the resulting
capacity for space heating storage is generally larger than for the deterministic opti-
mization, e.g., with expected values. This added value of stochastic solution amounts
to 3700–45,500e, depending on the usage of inverter heat pumps or heat pumps that
can only run stepwise.

These results are achieved by using high-performance computing which can be
expensive and offset the savings in investments. In total, the problem was solved in
parallel onmore than 1000 computing nodes of different high-performance computing
systems. Considering the computational expenses of less than 3500e, the application
of the approach is advantageous for this case study. A benchmarkwith an exact method
of simplified stochastic programs shows a strong scalability with equivalent results for
a number of test programs with different sizes. This holds especially for the optimiza-
tion of few fixed first-stage and/or second-stage variables. Otherwise, our framework
allows an adaptation (e.g., substitution of the outer SAHC optimization) to better cope
with large numbers of fixed variables.

The general framework enables the easy exchange of the optimization module and,
if necessary, modules that generate ensembles of the uncertain parameters or transfer
these ensembles into energy supply and demand profiles. This allows the optimization
and analysis of other setups (e.g., different tariffs, or additional technologies such as
electrical storage units) and further uncertainties. Furthermore, risk preferences can be
incorporated by adding an additional term to the objective function: instead of mini-
mizing or maximizing an expected value, a combination of expectation and a measure
of risk preference can be optimized. Prospectively, alternative outer optimizationmeth-
ods should be considered, in particular, when large numbers of variables need to be
fixed and optimized or less computing power is available. This is important because,
on a final note, the real-world case study shows that the approach using stochastic
programming can be beneficial, even if the program is too large for determining a
guaranteed global optimum.
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Table 3 Results of a
comparison of simulation model
results and historical weather
data for four indicators

Relative deviation of...
μ (·) quant5% (·) quant95% (·)

Pa 0.00 0.06 −0.03

volaa −0.04 −0.03 −0.06

MARSa 0.07 0.04 0.10

MGRSa 0.08 −0.02 0.05

Appendix A: Further information on the energy supply and demand pro-
files

Concerning the supply side profiles, we provide details on the validation of the global
solar radiation output of the developed Markov model (see Section 3.1) for illus-
trative purposes. Moreover, we present information about how the radiation profiles
differ between the different scenarios. The other Markov model output parameters
(temperature and cloudiness) have been validated accordingly. Note that historical
measurement data over a longer horizon are only available in hourly resolution. For
the validation, we therefore aggregate the model output from 15min to hourly res-
olution. Let ρa = (

ρ1
a , . . . , ρ8760

a

)
be an hourly series of global solar radiation in

year a, where a ∈ {1971, . . . , 2011} for the historical data and a ∈ {1, . . . , 100}
for the results of the Markov model. We now validate the Markov model on the
basis of four indicators: (1) the total annual radiation supply in year a defined by
Pa = ∑8760

h=1 ρh
a as a long-term indicator and (2) the hourly volatility in year a defined

by volaa = σ (ρa) /μ (ρa) as a short-term indicator, where σ (ρa) and μ (ρa) are
the standard deviation and arithmetic mean of the global solar radiation in year a,
respectively. In addition, we consider (3) the maximum amplitude of radiation supply
(MARSa) in year a and (4) the maximum gradient of radiation supply (MGRSa) in
year a as defined by Schermeyer et al. (2015). In order to validate the performance of
theMarkovmodel in the long run, we compare the arithmetic meansμ (·) of these four
indicators over all available years (simulation results vs. historical data) as well as the 5
and 95% quantiles quant5% (·) and quant95% (·) over all available years to analyze the
range of variation. Table 3 shows the relative deviation of these means and quantiles of
the four indicators between theMarkovmodel results and historical data. For instance,
the values in the columnμ (·) are calculated as (

μMod (·) − μHist (·)) /μHist (·), where
the superscript Mod denotes the model results and the superscript Hist denotes his-
torical data. The values in the other columns are calculated accordingly. Overall, this
comparison shows satisfying results. At the same time, however, the table shows that
there is room for further improvement of the Markov model in the future.

Figure 8 shows the importance of using 15-min profiles rather than hourly profiles
on the supply side. The left diagram shows the variability of PV power output between
the 100 considered scenarios in general for a day in June. It also shows that the spikes
on the top only occur during short periods of time (15-min intervals rather than hours).
This implies that the maximum amplitude of radiation supply is underestimated with
hourly profiles. Moreover, when it comes to choosing the optimal sizes of the energy
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system’s components, the gradients of power output between time steps are very
important. This is particularly relevant for storages which are at the core of our case
study. The right diagram in Fig. 8 shows that the maximum positive and negative
gradients are strongly underestimated when using an hourly resolution as opposed to
a 15-min resolution.

Figure 9 shows the optimal storage size for SH and DHW under SMILP-1 and
SMILP-2 for different temporal resolutions.When time steps of 60min are used instead
of 15min, the optimal storage sizes differ by up to 50%. The lower temporal resolution
reduces the load-shifting potential and leads to smaller storage units for SMILP-1
(without integers at the second stage). In case of SMILP-2, the stepwise flexibility
of the heat pumps is reduced when moving from a 15-min resolution to 60 or even
120min. This makes the storage units more attractive. This effect outbalances the
reduced load shift potential and results in larger storages for SMILP-2 for coarser
temporal resolutions.

Concerning the demand-side profiles, as described in Sect. 3.2, we use a standard
load profile approach (based on so-called H0 profiles), to generate electricity demand
time series for the 70 households of the quarter. Thereby, the total yearly electricity
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Table 4 H0 profiles compared to real-measured electricity demand of 40 households of the quarter

Number of households...

1 5 10 20 40

Correlation with H0 profiles 0.25 0.39 0.51 0.64 0.78

MAPE 0.89 0.53 0.43 0.32 0.23

RMSPE 1.63 0.74 0.57 0.42 0.30

�(volaa) −0.78 −0.43 −0.35 −0.18 −0.07

consumption (without the electricity demand of the heat pumps) is calculated accord-
ing to VDI 4655, which takes the number of residents and the usable floor surface
into account. Aiming for an ex post validation of the assumption that 70 households
can be approximated by H0 profiles, we compare the H0 profiles to measured elec-
tricity demand profiles of households that have already moved into their dwellings
in the quarter (see Table 4). The comparison is based on 40 households since we
only include households where measurement data are available for an entire year and
the remaining households have moved in at a later date. Table 4 shows the (linear)
correlation coefficient between the H0 profiles and the measured profiles, the mean
absolute percentage error (MAPE), the root-mean-square percentage error (RMSPE)
and the relative difference of the demand volatility �(volaa), where �(volaa) =
(volaa (H0) − volaa (measured profiles)) /volaa (measured profiles). The correlation
coefficient between the 40 households and the H0 profiles already amounts to 78%.
For larger numbers of households, Hayn et al. (2018) show that the correlation coef-
ficient between 100 households and the H0 profile increases to 90%. We therefore
expect the correlation coefficient of the entire quarter to be between 78 and 90%. In
terms of the load volatility, we find that there is only a−7% difference between our 40
households and the H0 profiles, which we expect to further decrease for 70 households
(similar to the effect described for the correlation).

Appendix B: Overview of derivative-free optimization approaches

As described in Sect. 3.3, a derivative-free optimization (DFO) is used for the outer
optimization of the fixed mixed-integer variables. Table 5 summarizes DFO methods
with regard to the mentioned requirements. DFO refers to problems when information
on thederivatives of f is unavailable, unreliable or impractical to obtain. This definition
includes any algorithm applied to these problems, even if the algorithm involves the
computation of derivatives for functions other than f (Rios and Sahinidis 2013). Not
included are commonly known algorithms such as branch-and-bound, cutting plane or
Lagrangian relaxation, albeit specific variants could be considered asDFOaccording to
this definition. However, the economic optimization subsystem introduced in Sect. 3.3,
particularly the approach to parallelization, would need to be substantially changed to
apply such algorithms.
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Themain task is to determine optimal storage sizes of the residential quarter. There-
fore, the problem is decomposed by fixing storage sizes and storage levels. Since the
non-optimization of the storage levels leads to a negligible error, only few fixed inte-
ger variables need to be optimized, i.e., 8 storage sizes of the quarter. To this purpose,
SAHC is sufficient for the outer optimization. The advantages of the implementation
are its simplicity, flexibility and reliability. Furthermore, it robustly proceeds to the
(local) optimum even with inaccurate solutions of the subproblems. The complete
SAHC procedure is presented in the following:

Procedure of the steepest-ascent hill-climbing (SAHC) method:

Step 0: (Initialization) compute f (ϕ) for an initial ϕ (e.g., ϕ = 0) by using POP and set step size sk
for each fixed variable ϕk of vector ϕ. If ϕk ∈ Z, then sk ∈ Z. Let ek ∈ R

I+R−v+ be the k-th
unit vector, where I is the number of fixed first-stage variables and R−v is the number of fixed
second-stage variables.

Step 1: Add sk to ϕk and compute f (ϕ + skek ) and subtract sk from ϕk and compute f (ϕ − skek )
by using POP sequentially for each fixation 1 ≤ k ≤ I + R − v. Note if f (ϕ + skek ) >

f (ϕ − skek ), then step
∗
k = +skek , else step

∗
k = −skek .

Step 2: Select ϕ∗ ∈ {ϕ ± skek |∀1 ≤ k ≤ I + R − v} with f (ϕ) = min
k

{ f (ϕ ± skek )}.
Step 3: Define � f (ϕ)rel = (

f (ϕ) − f
(
ϕ∗))

/ f (ϕ).
Step 4: If � f (ϕ)rel ≤ 0, then sk = sk

2 ; if ϕk ∈ Z and sk
2 < 1, then go to step 6; if ϕk ∈ Z and

sk
2 /∈ Z, then round sk

2 to the larger integer; go to step 1. Otherwise continue.
Step 5: If � f (ϕ)rel > stopping criterion a ∈ R+, then accept f (ϕ) = f

(
ϕ∗)

and ϕ = ϕ∗, compute
f
(
ϕ + step∗

k

)
by using POP sequentially for each fixation 1 ≤ k ≤ I + R − v and go to step

2. Otherwise continue.
Step 6: (End) Stop. The local optimal solution value is f

(
ϕ∗)

with the vector ϕ∗.

Appendix C: Further information about the mathematical model of the
quarter

Table 6 lists the complete nomenclature of the residential quarter modeled as a two-
stage stochastic mixed-integer program.

Table 6 Nomenclature

Indices

g Building group 1, . . . ,G of the quarter with G = 4

i Component i ∈ {PV,HPSH,HPDHW,HESH,HEDHW,SSH, SDHW} of the energy
system with |i | = I = 7

u Use u ∈ {SH,DHW} for space heating or domestic hot water with |u| = 2

t Time index 1, . . . , T indicating the time step of the year

ω scenario index 1, . . . , N

Parameters

ANF Annuity factor

cfix|var
i Fix or variable capacity costs of component i
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Table 6 continued

Parameters

COPω,u,t COP of the heat pump in scenario ω of building group g for use u at time t

d̂
hp
ω,t Maximal heating power of the heat pump at time t

d̂he Maximal heating power of the heating element

deeω,t Electricity demand for electrical usage in scenario ω of building group g at time t

d thω,g,u,t Thermal demand in scenario ω of building group g for use u at time t

e
PV,kWp
ω,t Supplied electrical energy per kilowatt-peak of the PV system in scenario ω at time t

c f Compensation factor for not-covered heat demand

lhsu Loss factor of heat storage for use u

l
hp
u Ramp-up loss factor of heat pump for use u

m Possible heating power modes of the heat pump

pgrid Price of electricity from grid

pfi Price of feed-in compensation

šg,u Minimal heat storage level of building group g for use u

η Efficiency of the heating element

Variables (highlighted in bold)

xg,i Capacity of building group g of component i

xg,i=PV Installed PV capacity of building group g; ∈ R+
xg,i=HPSH Number of heat pumps of building group g for SH; ∈ Z+
xg,i=HPDHW Number of heat pumps of building group g for DHW; ∈ Z+
xg,i=HESH Number of heating elements of building group g for SH storage; ∈ Z+
xg,i=HEDHW Number of heating elements of building group g for DHW storage; ∈ Z+
xg,i=SSH Maximal capacity of heat storage of building group g for SH; ∈ Z+
xg,i=SDHW Maximal capacity of heat storage of building group g for DHW; ∈ Z+

dhpω,g,u,t Used electricity of heat pump in scenario ω of building group g for use u at time t ;
∈ R+

dheω,g,u,t Used electricity of heating element in scenario ω of building group g for use u at time
t ;
∈ R+

egridω,t Used electricity from the grid in scenario ω at time t ; ∈ R+
efiω,t Fed-in energy of the PV system in scenario ω at time t ; ∈ R+
ePVω,t Supplied electrical energy from the PV system in scenario ω at time t

Lω,g,u,t Losses of the heat storage in scenario ω of building group g for use u at time t ; ∈ R+
posω,g,u,t Pos. variable for positive shift of heat pump in scenario ω of building group g for use

u at
time t ; ∈ R+

negω,g,u,t Pos. variable for negative shift of heat pump in scenario ω of building group g for use
u at
time t ; ∈ R+

qω,g,u,t Not-covered heat demand in scenario ω of building group g for use u at time t ; ∈ R+
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Table 6 continued

Variables (highlighted in bold)

sω,g,u,t Stored heat in scenario ω of building group g for use u at time t ; ∈ R+
zg,i Integer/continuous capacity of building group g of component i ; ∈ R+ or Z+
zω,g,u,t Integer/continuous heating power level in scenario ω of building group g for use u at

time t ; ∈ R+ or Z+
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