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Abstract In this paper we explore tramp ship routing and scheduling. Tramp ships
operate much like taxies following the available demand. Tramp operators can deter-
mine some of their demand in advance by entering into long-term contracts and then
try to maximise profits from optional voyages found in the spot market. Routing and
scheduling a tramp fleet to best utilise fleet capacity according to current demand is
therefore an ongoing and complicated problem. Here we add further complexity to the
routing and scheduling problem by incorporating voyage separation requirements that
enforce a minimum time spread between some voyages. The incorporation of these
separation requirements helps balance the conflicting objectives of maximising profit
for the tramp operator and minimising inventory costs for the charterer, since these
costs increase if similar voyages are not performed with some separation in time. We
have developed a new and exact branch-and-price procedure for this problem. We use
a dynamic programming algorithm to generate columns and describe a time window
branching scheme used to enforce the voyage separation requirements which we relax
in the master problem. Computational results show that our algorithm in general finds
optimal solutions very quickly and performs much faster compared to an earlier a
priori path generation method. Finally, we compare our method to an earlier adap-
tive large neighbourhood search heuristic and find that on similar-sized instances our
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approach generally uses less time to find the optimal solution than the adaptive large
neighbourhood search method uses to find a heuristic solution.

Keywords Scheduling · Maritime transport · Spread requirement · Optimization ·
Exact algorithms

1 Introduction

With over 9 billion tons of cargo transported by the international shipping industry
every year (UNCTAD 2013) there is no doubt that the maritime sector plays a vital
role inworld trade.Maritime transportation therefore constitutes an important research
area and in this paper we explore tramp shipping where ships sail much like taxies
following the available demand. Tramp operators do however know some of their
demand in advance since they can enter into long-term contracts and then seek to
maximise profit from optional cargoes found in the spot market.

For tramp operators a very important and ongoing problem is how to most effi-
ciently route and schedule their fleets according to current demand. This is precisely
the problem we consider. However, we add further complexity to the problem by
incorporating voyage separation requirements (VSRs) which enforce a minimum time
spread between some voyages. This is done in order to ensure that similar voyages
are performed fairly evenly spread in time. Such an even time spread is a require-
ment in some shipping contracts in order to reduce inventory costs for the charterer.
In addition to lowering inventory costs for the charterer, a more even distribution of
similar voyages also increases the likelihood that the ship operator will be able to find
sufficient cargoes in the market to fill the ship on each voyage while not finding more
cargoes than ship capacity allows.

Norstad et al. (2015) describe a similar problemwhich originates from aNorwegian
shipping company called Saga Forest Carriers that is difficult to categorise as either a
liner, tramp or industrial ship operator. Saga Forest Carriers transport forest products
as well as break bulk cargoes world-wide on fixed routes on a regular basis; however,
they also take on additional voyages in the spot market. We view the problem from a
tramp shipping perspective as a routing and scheduling problem.

Results from Norstad et al. (2015) show that their methods struggle on larger and
more complex problem instances. Since then Saga Forest Carriers have expanded
its fleet and business from the 25 vessels considered by Norstad et al. (2015) to 32
vessels. Bakkehaug et al. (2016) report that the best method fromNorstad et al. (2015)
runs out of memory on the larger instances and have therefore presented an adaptive
large neighbourhood search (ALNS) heuristic for the same problem. They report good
quality solutions within relatively short computation times. The aim here is therefore
to develop an exact method that is more efficient than the a priori path generation
method from Norstad et al. (2015).

We present a mixed integer programming formulation for this problem and devise
a new, exact solution method for it. This solution method is a branch-and-price (BAP)
procedure with a dynamic programming algorithm to generate the columns. A time
window branching scheme is described and used to enforce the voyage separation
requirements, which are relaxed in the master problem.
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The remainder of the paper is organised as follows. In Sect. 2 we review relevant
literature while in Sect. 3 we provide a problem description as well as a nonlinear
mathematical model for the problem. In Sect. 4 we describe the decomposition of the
problem and the dynamic column generation procedure, i.e. the pricing part of the
proposed algorithm, and in Sect. 5 we describe the branching part of the algorithm.
In Sect. 6, we describe the data instances used to evaluate the performance of our
algorithm as well as the results obtained with our algorithm on these instances. We
also compare these results to results obtained from Norstad et al. (2015) and those
presented in Bakkehaug et al. (2016). Finally, concluding remarks and suggestions for
future work are discussed in Sect. 7.

2 Literature review

Mathematical formulations and discussions on solution methods for a wide range of
maritime problems on all planning levels can be found in Christiansen et al. (2007).
Furthermore, a thorough review of literature focused on ship routing and scheduling
before 2013 can be found in the reviews Ronen (1983), Ronen (1993), Christiansen
et al. (2004) and Christiansen et al. (2013), while Vilhelmsen et al. (2015) reviewmore
recent literature on tramp ship routing and scheduling. The problem considered here is
closely related to the vehicle routing problem with time windows, for which we refer
the reader to Desaulniers et al. (2002).

In this paper we extend the tramp ship routing and scheduling problem by including
voyage separation requirements. Such requirements are, as already mentioned, also
considered in Norstad et al. (2015) in a context similar to ours. They present an arc
flow formulation that is solved directly using commercial software. They also present a
path flow formulation, which is solved by a priori column generation and a commercial
solver for the final problem. In their path flow formulation each column corresponds
to a geographical route for which the timing of the included port calls is determined
in the path flow formulation through the inclusion of time variables and related time
constraints. The computational results from Norstad et al. (2015) show that both their
formulations can be used to solve smaller instances, while the path flow formulation
can also be used to solve problems of more realistic sizes. However, neither of these
methods are applicable for larger and more complex problem instances.

Since the two exactmethods presented inNorstad et al. (2015) struggle on larger and
more complex problem instancesBakkehaug et al. (2016), as alreadymentioned, take a
heuristic approach to the sameproblem.Theypropose an adaptive large neighbourhood
search heuristic with paired destroy and repair operators and normalised scores for
these pairs. They compare their proposed heuristic to the path flow formulation from
Norstad et al. (2015) and find that their heuristic yields good quality solutions within
relatively short computation times.

Stålhane et al. (2014) also relate tramp ship routing and scheduling to the broader
context of the supply chain. They do this by combining traditional tramp shipping with
a vendor managed inventory (VMI) service in an attempt to challenge the traditional
Contracts of Affreightment which is the standard agreement between a tramp ship
company and a charterer. The authors present an arc flow formulation for this problem
as well as a path flow formulation. The path flow formulation is solved by a hybrid
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method that combines a priori path generation of all feasible routes with BAP to
generate schedules for these routes. Larger instances are solved using a heuristic
version of path generation. Computational results show that the profit and efficiency
of the supply chain can be significantly increased by using vendor managed inventory
services compared to the traditional contracts of affreightment. Computational results
also show that the heuristic can significantly speed up computation time compared
to the exact method, and at only a small reduction in solution quality. However, even
with the heuristic approach they are only able to solve small-sized instances where
only few VMI services are introduced, and running times increase drastically from
seconds to days with increases in problem size or in the number of VMIs.

Hemmati et al. (2015) continue the work from Stålhane et al. (2014) in order to
develop a more efficient method for the same problem, i.e. for a tramp ship routing and
scheduling problem with inventory constraints. The authors present a new heuristic
method that works in two phases by first converting the inventory constraints into
cargoes, and then solving the resulting problem with an adaptive large neighbour-
hood search heuristic. This procedure continues iteratively by changing the cargoes
derived from the inventory constraints and resolving the resulting tramp ship rout-
ing and scheduling problem. Computational results show that the heuristic can solve
realistically sized instances of the tramp ship routing and scheduling problem with
inventory constraints in reasonable time, and that when the number of inventory pairs
is large, the heuristic is much faster than the methods from Stålhane et al. (2014) and
generally finds better solutions.

When incorporating the inventory aspect into the tramp ship routing and scheduling
problem, it is necessary to include some form of temporal dependency between ship
schedules that perform similar voyages. However, we can find numerous examples of
other applications that require the use of various kinds of temporal dependencies in
routing and scheduling problems. One such application within tramp shipping can be
found in Andersson et al. (2011) that consider a special tramp segment called project
shipping where cargoes are more unique and usually transported on a one-time basis,
e.g. cable reels, used school buses, other vessels and such ’odd’ commodities. If some
cargoes are part of a larger project, they might be required to be delivered almost
simultaneously whereby synchronisation constraints arise. The authors present an arc
flow formulation and suggest three different solution methods that all rely on a priori
generation of all feasible routes. Computational results show that they are able to solve
real-life-sized planning problems. Stålhane et al. (2015) present a new mathematical
formulation for the problem and develop a BAP method with a new variant of the
elementary shortest path problem with resource constraints solved through dynamic
programming. Their computational results show that this new method is indeed more
efficient than the ones from Andersson et al. (2011).

Within liner shipping, another example of time separation constraints can be found
in Sigurd et al. (2005). They consider a variant of the general pickup and delivery
problem with multiple time windows and the addition of requirements for recurring
visits, separation between visits and limits on transport lead time. A heuristic BAP
algorithm is used to obtain a fixed visit schedule with a recurring route for each ship.

Within other transportation modes, we can find numerous examples of time sep-
aration requirements. Synchronisation constraints are often encountered in vehicle
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routing, see e.g. Reinhardt et al. (2013) who consider synchronised dial-a-ride trans-
portation for airport passengers with reduced mobility or Drexl (2013) who extend
the vehicle routing problem to include trailers and transshipments and describe how
to model several important problems within this context. More general temporal
dependencies are handled in Dohn et al. (2011) for the vehicle routing problem
with time windows. They present two compact formulations and the Dantzig-Wolfe
decompositions of these formulations. Four different master problem formulations
are proposed along with a time window branching scheme used to enforce feasibil-
ity on the relaxed master problems. Computational results show that, depending on
the problem at hand, the best performance is achieved either by relaxing the tempo-
ral dependency constraints in the master problem, or by using a time-indexed model,
where generalised precedence constraints are added as cutswhen they become severely
violated.

3 Problem description

In this section we give a problem description and present a mathematical formula-
tion for the Tramp Ship Routing And Scheduling Problem with Voyage Separation
Requirements (TSRSPVSR).

A tramp operator typically has long-term contracts that obligate him to perform
some voyages, where a voyage is a sailing through a set of ordered ports to first pick
up cargo and afterwards discharge it. The operator can however choose to perform
additional voyages, so-called spot voyages, if fleet capacity allows it and it is profitable.
The objective is to create a profit maximising set of fleet schedules, one for each ship
in the fleet, where a schedule is a sequence and timing of port calls representing the
voyages. The optimal solution therefore combines interdependent decisions on which
optional voyages to perform, the assignment of voyages to ships and the optimal
sequence and timing of port calls for each ship. If capacity is insufficient to perform
all mandatory contract voyages, it is possible to charter in spot vessels to perform
some of these.

A voyage is mainly characterised by the quantity to be transported, the revenue
obtained from transporting it and the pickup and discharge ports. There is also a ship
specific service time in ports and a time window giving the earliest and latest start for
each voyage. A ship can only perform one voyage at a time.

Several voyages can be identical except for their time windows for start of ser-
vice. In fact, contract voyages stem from contracts of affreightment and these often
state that the operator must perform a specific voyage a given number of times dur-
ing a predefined time interval, e.g. three times during a month. Since such voyages
correspond to the same geographical route, we group them according to these trade
routes. Hence, the tramp operator has contract trade routes on which a specific num-
ber of identical voyages must be performed and can choose to perform additional spot
voyages.

Contracts of affreightment often contain a contract clause stating that voyages
must be performed fairly evenly spread in time without specifically defining what this
means. In practice it means that, following the previous example with a contract trade
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requiring three voyages during a month, the tramp operator should not perform all
three voyages within the first week and then do nothing for the remaining 3weeks.
As discussed in Norstad et al. (2015), these contract clauses can be handled either by
imposing additional time windows on voyage start times or by imposing restrictions
on the minimum time spread between the start of consecutive voyages on the same
trade. Obviously, there is a trade off between the quality of service provided to the
charterer and the flexibility of the tramp operator. Using restrictions on the minimum
time spread seems to provide the best balance between these two conflicting objectives,
and so we adhere to this option here, just as in Norstad et al. (2015).

A tramp fleet is usually heterogeneous, comprised of ships of different sizes, load
capacities, fuel consumptions, speeds, and other characteristics. Ships can be occupied
with prior tasks when planning starts so each ship is further characterised by the time
it is available for service and the location it is at when it becomes available. There
are also maintenance requirements for some ships and these must be respected in
the scheduling process. The characteristics of a ship determine which voyages it is
compatible with.

As we consider a fixed fleet we can disregard the fixed setup costs and focus on
the variable operating costs. The main sailing cost is fuel cost and this is different
for each ship and depends on both its speed and its load. Since each ship can only
perform one voyage at a time we assume that each ship is approximately fully loaded
during each voyage. Thereby, we can factor in load dependency by simply using two
fuel consumption functions: One for ballast legs and one for laden legs. Each ship
is assumed to sail at two predefined speed settings: one for ballast legs and one for
laden legs and so, the two fuel consumption functions are in effect two constants used
for the two types of sailing legs. In addition, contracts of affreightments define the
sailing speed in order to make sure that departure and arrival on a voyage are well
defined between tramp operator and contract owner. Speed optimisation is therefore
not part of this problem. When loading and discharging, ship-dependent port costs are
incurred. Finally, there is a cost associated with chartering in spot vessels to perform
uncovered contract voyages.

3.1 Mathematical model

LetV be the set of ships. Furthermore, letR denote the set of trade routes and associate
with each trade route r ∈ R the set of voyages Ir = {1, 2, . . . , nr } on trade route r
during the planning horizon. A specific voyage i ∈ Ir for r ∈ R can be denoted by the
pair (r, i). Thereby, the two pairs (r, i) and (r, i + 1) denote two consecutive voyages
on trade r . Spot voyages and maintenance requirements are also modelled using this
trade route notation though nr is equal to 1 for maintenance trades.

Due to port and cargo compatibility, capacity requirements and other restrictions,
not all ships can sail all trade routes. Therefore, we further define Rk and Vr as,
respectively, the set of trade routes compatible with ship k ∈ V and the set of ships
compatible with trade route r . We letNC ,NO andN k

M denote, respectively, the set of
contract voyages, the set of optional voyages and the set of maintenance requirements
for ship k.
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In order to define the problem on a graph, we define an origin and a destination
node for each ship k ∈ V and denote these o(k) and d(k), respectively. The origin
node corresponds to the location of the ship when planning starts while the destination
node is artificial and simply corresponds to the geographical location of ship k at the
end of the planning horizon.

The problem can then be defined on the graph G = (N ,A) where N =
NC ∪ NO ∪k∈V N k

M ∪k∈V {o(k), d(k)}. If a voyage or maintenance, (r, i), can be
performed directly before another voyage or maintenance, (q, j), thenA contains the
arc ((r, i), (q, j)). A also contains the arcs (o(k), (r, i)) and ((r, i), d(k)) for each
ship k that can perform voyage i on trade route r or must perform maintenance stop
(r, i). Finally, for each ship k ∈ V without maintenance requirements, the set also
contains the arc (o(k), d(k)) corresponding to an idle ship. For each ship k ∈ V we
further define the setAk as the set of arcs inA that are traversable by ship k, e.g. with
respect to time.

For each node (r, i) ∈ N wehave a timewindow [ari, bri] describing the earliest and
latest time to start service for the corresponding voyage or maintenance. For o(k) this
window is collapsed into the time that ship k is available for service, ao(k). We let Br

denote the minimum acceptable time between the start of service on two consecutive
voyages on trade route r ∈ R.

We use T k
riqj to denote the fixed time for performing voyage or maintenance (r, i) ∈

N and sailing ballast to the first pickup port of voyage or maintenance (q, j) ∈
N with ship k. T k

riqj includes service time in ports for voyage/maintenance (r, i),
laden travel time for voyage legs and ballast travel time from the final discharge port
of voyage/maintenance (r, i) to the first pickup port of voyage/maintenance (q, j).
Similarly, we let T k

o(k)ri denote the time for travelling ballast with ship k from its
origin to the first port of voyage or maintenance (r, i).

For the ballast legs, Ck
riqj and Ck

o(k)ri denote, respectively, the cost of travelling
ballast with ship k from the last discharge port of voyage or maintenance (r, i) ∈ N to
the first pickup port of voyage or maintenance (q, j) ∈ N , and from the origin node
to the first pickup port of voyage or maintenance (r, i). We also have ship specific
profits for the laden voyage legs. These profits, Pk

ri , take into account the revenue
incurred from performing voyage (r, i), the cost of sailing laden with ship k from the
first pickup port of the voyage to the final discharge port of the voyage, and finally,
the port costs incurred during the voyage or maintenance period when performed by
ship k. If a voyage (r, i) is instead performed by a spot vessel, the cost incurred is C S

ri.
For the mathematical formulation we need several variables. First, we define binary

flow variables xk
riqj for k ∈ V, ((r, i)(q, j)) ∈ Ak that are equal to 1, if ship k

performs voyage (r, i) just before voyage (q, j), and 0 otherwise. Likewise, we define
binary flow variables xk

o(k)ri, xk
rid(k) and xk

o(k)d(k) for the arcs connecting the origin and
destination nodes with other nodes and with each other. The start time for service at
each node is also variable and so we define time variables tk

o(k) and tk
ri for each k ∈ V ,

r ∈ Rk and i ∈ Ir . If a spot vessel is hired to service a contract voyage (r, i) ∈ NC ,
we denote the start time by t S

ri and let the binary variable yri be equal to 1.
We can now give an arc flow formulation of the TSRSPVSR similar to the one

presented in Norstad et al. (2015):
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k
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o(k)q j − tk
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riqj(t

k
ri + T k

riqj − tk
q j ) ≤ 0, ∀k ∈ V, ((r, i), (q, j)) ∈ Ak, (9)
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( ∑

q∈Rk

∑

j∈Iq

xk
riqj + xk

rid(k)
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ri
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⎛

⎝
∑

q∈Rk

∑

j∈Iq

xk
riqj + xk

rid(k)

⎞

⎠ , ∀k ∈ V, r ∈ Rk, i ∈ Ir , (10)

∑

k∈Vr

t k
ri + t S

ri yri + Br

≤
∑

k∈Vr

t k
r,i+1 + t S

r,i+1yr,i+1, ∀(r, i) ∈ NC , i ∈ Ir\{nr }, (11)

ari ≤ t S
ri ≤ bri, ∀(r, i) ∈ NC , (12)

tk
o(k) ≥ ao(k), ∀k ∈ V, (13)

xk
o(k)ri ∈ {0, 1}, ∀k ∈ V, r ∈ Rk, i ∈ Ir , (14)
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xk
o(k)d(k) ∈ {0, 1}, ∀k ∈ V : N k

M = ∅, (15)

xk
riqj ∈ {0, 1}, ∀k ∈ V, ((r, i), (q, j)) ∈ Ak, (16)

xk
rid(k) ∈ {0, 1}, ∀k ∈ V, r ∈ Rk, i ∈ Ir , (17)

yri ∈ {0, 1}, ∀(r, i) ∈ NC . (18)

The objective function (1) maximises profit by subtracting all spot vessel costs and
ballast leg costs from profits obtained on laden voyage legs performed by ships in
the fleet. Constraints (2) and (3) ensure that all contract voyages are performed by
exactly one ship, possibly a spot vessel, and that all spot voyages are performed by
at most one ship. For ships with maintenance requirements, constraints (4) ensure
that these requirements are adhered to. Constraints (5) and (7) together with the flow
conservation constraints in (6) ensure that each ship is assigned a schedule starting
at the origin node and ending at the destination node. Constraints (8) ensure that
service time as well as sailing time is respected from the origin to the first node
on the itinerary. Since waiting time is allowed, the constraints have an inequality
sign. Constraints (9) impose similar restrictions when the starting node is a voy-
age or maintenance node (r, i). In such cases, port time at node (r, i) plus travel
time for performing voyage (r, i) must also be accounted for before service at
node (q, j) can start. In the time window constraints (10), the service time for
ship k at node (r, i), tk

ri, is forced to zero if ship k does not visit node (r, i). For
all consecutive voyage pairs, (r, i) and (r, i + 1), constraints (11) ensure that the
time spread between start of service for the two voyages is at least as large as the
required time spread, Br , on trade route r . Note that in order to also enforce the
time spread when voyages are performed by spot vessels, we must ensure that spot
vessel visits also adhere to the time windows and this is taken care of in constraints
(12).

Constraints (13) ensure that no ship can start its schedule before it is available for
service. The flow variables are restricted to be binary in (14)–(17) while constraints
(18) impose similar restrictions on the spot vessel decision variables. Note that due
to constraints (2) and the binary restrictions on the flow variables, we do not actually
need the binary restrictions on the spot vessel variables. However, we include them
for completeness sake and also to exploit their binary nature in the BAP scheme
later.

4 Decomposition

The nonlinear mixed integer programming model (1)–(18) could in theory be solved
by commercial optimisation software for linear problems after linearising constraints
(8), (9), and (11). However, as pointed out in Norstad et al. (2015) most real-life
problem instances will be too large to achieve solutions in a reasonable amount
of time. This section therefore describes a solution method tailored for the TSR-
SPVSR.

In the mathematical programming model (1)–(18), constraints (4)–(10) and (13)–
(17) are ship specific with no interaction between ships. They constitute a routing
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and scheduling problem for each ship where maintenance and time windows are
considered. The objective function also splits into separate terms for each ship,
aside from the last part corresponding to the cost of using spot vessels. The
only constraints linking the ships together are the common constraints (2), (3)
and (11) which ensure that each contract cargo is carried by exactly one ship,
that each spot cargo is carried by at most one ship, and that the voyage sepa-
ration requirements (VSR) are fulfilled. This suggests use of decomposition and
column generation since it allows the complex and ship specific constraints, con-
cerning the routing and scheduling, to be handled separately in subproblems, one
for each ship. Only the common constraints and the spot vessel constraints (12) and
(18) remain in the master problem in which feasible ship schedules constitute the
columns.

For each ship, if the same voyage andmaintenance stops can be ordered into numer-
ous different feasible geographical routes, only the route with the highest profit would
have to be included in the master problem if the VSR constraints were not considered.
However, due to the VSR constraints, the actual timing of port calls in a schedule for
one ship can affect the timing of port calls for schedules of other ships. Therefore, any
feasible schedule for a ship must be considered a valuable contribution to the master
problem. Hence, with the VSR constraints included in the problem themaster problem
column set can contain several columns all corresponding to the same set of voyage
and maintenance stops. In this case a priori generating all columns can be very time
consuming and also result in large master problems.

If a schedule contains waiting time, we can redistribute the waiting time and obtain
a different schedule corresponding to the same ship and geographical route. So each
geographical route can correspond to numerous different feasible schedules allwith the
same profit. Without the VSR constraints, it would only be necessary to include one of
these schedules in themaster problemwhile the rest could be discarded. However, with
theVSRconstraints included in the problem themaster problemcolumn set can contain
several columns all corresponding to the same set of voyage and maintenance stops
and even to the same geographical route. A priori generating all columns will therefore
result in a tremendous amount of columns depending on the time discretisation used
to redistribute the waiting time.

Norstad et al. (2015) approach this difficulty by including time variables in the
master problem so that each column correspond to a specific geographical route, or a
path in the underlying network. This way only one column needs to be included for
each geographical route though at the obvious expence of creating a more complex
master problem due to the additional time variables and related constraints. At the
same time they might still need to include several columns corresponding to the same
set of voyage and maintenance stops.

Therefore, we turn to dynamic column generation (see e.g. Desaulniers et al. (2005)
for a general description) where new master problem columns that have the potential
to improve the current solution are iteratively generated by the subproblems. With
a relaxation of the master problem the entire solution process is therefore a BAP
procedure where new columns are iteratively priced out at each node of the search tree
guided by dual variables from the current solution to the master problem.
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4.1 Master problem

The common constraints (2), (3) and (11) in combination with the spot vessel con-
straints (12) and (18) and the objective function (1) constitute the master problem.
They must, however, be expressed by new path flow variables corresponding to feasi-
ble ship schedules and constraints must be added to ensure that each ship is assigned
exactly one schedule. We let Sk denote the set of all feasible schedules for ship k.

We denote the set of geographical routes for ship k by Gk . Furthermore, we expand
notation on the schedule sets so that now Sk

g denotes the set of all feasible schedules
for ship k ∈ V on geographical route g ∈ Gk .

We denote the profit of a schedule by pk
s for k ∈ V, g ∈ Gk, s ∈ Sk

g , and define
a binary schedule variable λk

s that is equal to 1 if ship k is chosen to sail schedule s,
and 0 otherwise. The profit pk

s is calculated based on information from the underlying
schedule, which holds all necessary information. We reuse the definition of yri from
the arc flow formulation and let Ak

ris be equal to 1 if ship k performs voyage (r, i)
in schedule s, and 0 otherwise. Finally, we denote the start time for voyage (r, i) in
schedule s with ship k by T k

ris. Note that these are determined in the subproblems and
are therefore constants in the master problem.

The master problem can now be stated as the following path flow reformulation of
the original arc flow model:

max
∑

k∈V

∑

g∈Gk

∑

s∈Sk
g

pk
s λ

k
s −

∑

(r,i)∈NC

C S
ri yri (19)

s.t.
∑

k∈V

∑

g∈Gk

∑

s∈Sk
g

Ak
risλ

k
s + yri = 1, ∀(r, i) ∈ NC , (20)

∑

k∈V

∑

g∈Gk

∑

s∈Sk
g

Ak
risλ

k
s ≤ 1, ∀(r, i) ∈ NO , (21)

∑

g∈Gk

∑

s∈Sk
g

λk
s = 1, ∀k ∈ V, (22)

∑

k∈V

∑

g∈Gk

∑

s∈Sk
g

T k
risλ

k
s + t S

ri yri + Br

≤
∑

k∈V

∑

g∈Gk

∑

s∈Sk
g

T k
r,i+1,sλ

k
s + t S

r,i+1yr,i+1, ∀(r, i) ∈ NC , i ∈ Ir\{nr },

(23)

ari ≤ t S
ri ≤ bri, ∀(r, i) ∈ NC , (24)

∑

s∈Sk
g

λk
s ∈ {0, 1}, ∀k ∈ V, g ∈ Gk, (25)

yri ∈ {0, 1}, ∀(r, i) ∈ NC . (26)
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We relax the binary constraints on the decision variables. The VSR constraints (23)
will complicate the subproblems as the dual variables of these constraints will create
linear node costs in the subproblems. Furthermore, as T k

ris is a non-binary parameter,
the presence of the VSR constraints in the master problem will most likely lead to
more fractional solutions as it compromises the strong integer properties of the con-
straint matrix (we return to this matter in Sect. 5.2). Therefore, we also relax the VSR
constraints (23) and will instead handle these when branching. Due to this relaxation
of the VSR constraints, we no longer need the time window restrictions on the spot
vessel time variables in (24) and so we also relax these.

The entire BAP process therefore begins with the solution of the linear relaxation
of the problem (19)–(22) but with only a subset of the columns included. The dual
variables from this solution are then used in the subproblems to generate newpromising
columns that are added to the RMP. This iterative process continues until no further
columns can improve the current master problem solution. If the current solution to
the RMP is infeasible with respect to either or both the relaxed integrality and VSR
constraints, we branch and continue this entire process by pricing out new columns at
each node of the search tree until a feasible, optimal solution is obtained, or a specified
time limit elapses.

Initiallywe only include a small number of feasible schedules in theRMP. To ensure
that each contract cargo can actually be carried, we include a spot vessel schedule for
each of the contract cargoes. For each ship in the fleet we include a schedule containing
only requiredmaintenance stops corresponding to the ship not performing any voyages
for the entire planning horizon.

4.2 Subproblems—pricing out new schedules

Constraints (4)–(10) and (13)–(17) split into one independent subproblem for each
ship. Since these are all essentially the same problem, we simply consider the generic
subproblem for ship k and refer to ’the subproblem’. The ship routing constraints in the
subproblem ensure that any solution is a feasible schedule for ship k and the objective
must ensure that only schedules with the potential to improve the current solution of
the RMP are generated.

Let πri be the dual variables for constraints (20) and (21) where the variables
corresponding to (20) are free of sign while the variables corresponding to (21) must
be nonnegative. Next, define πri = 0 for all (r, i) ∈ N k

M and let ωk be the dual for
constraint (22) which is also free of sign. Since we consider the generic subproblem
we drop the superscript k on the variables and the subproblem is then given by:

max
∑

r∈Rk

∑

i∈Ir

∑

q∈Rk

∑

j∈Iq

(
Pk

ri − Ck
riqj − πri

)
xriqj +

∑

r∈Rk

∑

i∈Ir

(
Pk

ri − πri
)
xrid(k)

−
∑

r∈Rk

∑

i∈Ir

Ck
o(k)rixo(k)ri − ωk (27)

s.t.

(4) − (10) and (13) − (17). (28)
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The subproblem finds the maximum reduced cost feasible schedule with respect to
the current dual values. If this schedule has a positive reduced cost, it has the potential
to improve the current solution to the RMP. The subproblem can be modelled as
an elementary shortest path problem with resource constraints (ESPPRC) which is
NP-hard in the strong sense (see Dror 1994).

The ESPPRC is also known to be a hard problem to solve from a practical point-
of-view. The related shortest path problem with resource constraints (SPPRC) allows
for multiple visits of nodes and is a relaxation of the ESPPRC. The SPPRC is known
to have a pseudo- polynomial time complexity (see e.g. Desrochers and Soumis 1988,
Irnich and Desaulniers 2005). This should be seen in relation to the subproblem we
need to solve. The collaborating tramp operator is involved in deep sea shipping, where
voyage travel times are long. Although voyage time windows can span several days,
the long voyage travel times mean that we can expect few if any time feasible cycles
involving voyages in the data instances. Similarly for maintenance requirements, we
find that, although the time windows for these nodes are very wide, the required time
for maintenance is long enough that time feasible cycles are unlikely. Therefore, we
relax the subproblem to instead consider the SPPRC. In Sect. 4.2.1 we discuss the
possible existence of cycles and how to handle these. We solve the subproblems with
a dynamic label setting algorithm on the underlying networks and refer the reader
to Irnich 2008 and Irnich and Desaulniers 2005 for a thorough introduction to the
SPPRC.

4.2.1 Subproblem networks

The network node set for ship k includes the origin node, o(k), and the destination,
d(k). For each contract or spot trade r that ship k is compatible with, the node set
also includes a voyage node (r, i) for each voyage i that ship k is able to perform with
respect to the voyage time window. Finally, ifN k

M �= ∅, then the node set also includes
the maintenance node (r, i) ∈ N k

M .
For the origin node the time window is simply the open time for ship k, since there

is no point in delaying departure. For each voyage andmaintenance node, we calculate
the earliest arrival at this node with ship k and in conjunction with the preprocessed
time window for this voyage or maintenance, we can determine a ship specific time
window for this voyage or maintenance node.

If N k
M �= ∅, then ship k must undergo maintenance sometime during its schedule.

Since there is no profit from visiting a maintenance node, we must force ship k to visit
this node. Therefore, we introduce a binary maintenance resource that is equal to 1
once maintenance has been performed and 0 otherwise.

For two nodes, n1 and n2, connected by an arc in the network, this arc has a constant
cost and time consumption and a well-defined maintenance function and we denote
these by Tn1n2 , Cn1n2 and Mn1n2 , respectively. If n1 is the origin node, then n2 is a
voyage or maintenance node and the arc cost and time consumption correspond to
sailing ballast. If n1 is a voyage node and n2 is the destination node, then the cost
corresponds to the negative of the profit from performing the voyage corresponding to
n1. The time consumption corresponds to the ship specific port time on this voyage plus
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the time to travel the voyage distance. If instead n2 is another voyage or maintenance
node, the cost must also include the additional cost of sailing ballast from the last
port of the voyage corresponding to n1 to the first port of the voyage or maintenance
corresponding to n2 and correspondingly for the time consumption. Finally, if n1 is
a maintenance node and n2 is the destination node, then the cost is 0 while the time
consumption is equal to the port time used during maintenance. If instead n2 is a
voyage node, then the cost and time consumption must, similar to before, also include
the cost and time of travelling ballast from the maintenance port corresponding to n1
to the first port of the voyage corresponding to n2.

As already mentioned, we expect few if any time feasible cycles in our data
instances. To detect the presence of potential cycles in a given subproblem network, a
topological sort is performed on the node set. If a cycle is detected, the involved nodes
are split into several duplicate ones, each with a smaller time window, until the cycle
no longer exists; this process creates an acyclic network.

4.2.2 Dynamic programming algorithm

Given a dual solution to an optimised restricted master problem, the role of the sub-
problems is to identify whether or not a positive reduced cost schedule exists for any of
the ships. This entails solving the SPPRCover the networks described above. Updating
the cost Ĉn1,n2 on arc (n1, n2) corresponds to:

Ĉo(k),(r,i) = Ck
o(k)ri + ωk ∀ (o(k), (r, i)) ∈ Ak, (29)

Ĉ(r,i),(q, j) = Ck
riqj − Pk

ri + πri ∀ ((r, i), (q, j)) ∈ Ak, (30)

Ĉ(r,i),d(k) = −Pk
ri + πri ∀ ((r, i), d(k)) ∈ Ak . (31)

Asmentioned above,we solve the SPPRCusing a dynamic programming algorithm.
Such algorithms for this particular problem build new schedules for ship k ∈ V
by starting with the trivial, partial schedule s = {o(k)}. Schedules are then built
incrementally by extending partial schedules in all feasible ways. Partial schedules are
represented by so-called labels. That is, for each partial schedule sn ending in node n
we associate a labelL(sn) = (C̄(sn), T (sn), M(sn)). Here C̄(sn) is the negative of the
reduced cost for the schedule, i.e. the sum of the arc costs Ĉn1,n2 for all (n1, n2) ∈ sn .
T (sn) and M(sn) denote, respectively, the arrival time at node n and the maintenance
indicator on arrival at node n on schedule sn .

The dynamic programming algorithm we implement is hence a standard label set-
ting algorithm, which begins at o(k) with an initial label. Nodes are considered in
topological order and processed in turn. In processing a node, all non-dominated labels
for the current node are extended, using the resource extension functions defined above
and consider the node’s set of outgoing arcs. When the algorithm terminates, several
resource feasible and Pareto optimal schedules might exist differing in both reduced
cost and time. In Sect. 4.3 we discuss what to dowith these schedules. See Algorithm 1
for a general overview of our label setting algorithm.
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Algorithm 1: Label Setting Algorithm
Input: Directed, Acyclic Graph G = (N ,A), two nodes o, d ∈ N
Output: Set of Pareto Optimal Schedules S

1 Sorted Node List N̂ ← topologicalSort(G);
2 CreateInitialLabel(o);

3 for u ∈ N̂ and u �= d do
4 Lu ← getLabels(u);
5 for l ∈ Lu do
6 if l is not dominated then
7 for a ∈ outgoingArcs(u) do
8 if extension(l, a) is feasible then
9 v ← headNode(a);

10 createLabel(l, a, v);
11 Lv ← getLabels(v);
12 dominanceCheck(Lv);
13 end
14 end
15 end
16 end
17 end
18 Ld ← getLabels(d);
19 S ← constructSchedules(Ld );
20 return S;

4.3 Pricing strategy

As already discussed, because of the VSR constraints we must consider any feasible
schedule for a ship a valuable contribution to the master problem. This suggests that
the shortest path solvers in the subproblems should return all resource feasible and
Pareto optimal schedules with positive reduced costs, i.e. C̄(s) < 0, to the RMP rather
than just the best one or best ones. Through tuning and testing the algorithm we have
verified this assumption and so, in each iteration we allow the subproblems to convert
all resource feasible and Pareto optimal scheduleswith positive reduced costs tomaster
problem columns.

Each Pareto optimal schedule returned to the master problem can potentially be
converted into numerous new schedules with the same route but with slightly differ-
ent schedules if we simply redistribute any waiting time along the route. We have
implemented such a waiting time redistribution routine and tested whether it would be
beneficial to include such additional schedules in the master problem. This redistribu-
tion routine did not improve the results from the algorithm; rather it seemed to flood
the master problem with irrelevant columns causing excessive time usage for solving
the RMP. Therefore, the redistribution routine is not used in the final version of the
algorithm.

Through tuning and testing we found that for this problem it is most efficient to
solve one subproblem in each iteration and then solve the correspondingly updated
RMP to obtain new dual values before we solve the subproblem for the next ship.
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5 Branching

If the optimal solution to the restricted master problem is both integer (λ does not have
to be integer as long as all positiveλ’s for each ship correspond to the samegeographical
route) and fulfils all the VSR constraints (23) and time window restrictions for spot
vessels (24), the solution is also optimal for the full master problem (19)–(26) and
thereby also for the original problem (1)–(18). However, if this is not the case, we
must apply a branching scheme to restore feasibility. The VSR constraints and spot
vessel time window constraints fit naturally into a time window branching scheme as
presented by Gélinas et al. (1995). Furthermore, Gélinas et al. (1995) show that this
branching procedure can also help enforce integrality, though only to a certain point.
Therefore, we will apply time window branching and complement this with constraint
branching (see Ryan and Foster 1981) which is an effective branching strategy for
restoring integrality on problems with similar structure to that of model (19)–(26).

5.1 Time window branching

The overall idea in time window branching is to split a given time window into two
smaller time windows that each correspond to a new problem, i.e. to a new branch
in the branch-and-bound tree. The trick is to select the time window and the split
time in such a way that the current solution becomes infeasible in each of the two
new problems, i.e. in a way that makes at least one chosen schedule infeasible in each
branch. Gélinas et al. (1995) note that their method works best on problems with small
time windows and few cycles in the linear relaxation solution. As already mentioned,
we expect few if any cycles in our data instances. However, timewindows are relatively
wide and so, it remains to be investigated if time window branching can work well for
our problem. The method described by Gélinas et al. (1995) was developed to restore
integrality and does not factor in VSR constraints. Therefore, we extend their method
to incorporate such constraints just as e.g. Dohn et al. (2011) and Rasmussen et al.
(2012). Furthermore, we extend their methods to also account for the spot vessel time
window constraints (24) and use a modified approach that will improve efficiency of
the branching scheme. Note that without the VSR constraints (23), the spot vessel
time window constraints can never give rise to infeasibility. Therefore, the spot vessel
time windows are only relevant when we consider violations of VSR constraints.
Time window branching is not a complete branching strategy; i.e. fractionality can
remain despite the fact that there are no time windows to branch on. That is why we
complement this strategy with constraint branching. We will in the rest of this section
focus on the implementation of time window branching and VSR violations. For the
transfer of the “basic” time window branching scheme to the TSRSVSR problem we
have largely omitted the technical details and refer to Vilhelmsen (2014).

5.1.1 Time window reduction

In order for the time window branching scheme to effectively restore feasibility with
respect to the VSR constraints, we need to simultaneously apply a time window reduc-
tion rule based on these constraints. Table 1 therefore states the possible time window

123



Tramp ship routing and scheduling with voyage… 929

Table 1 Time window reduction rule

Node (r, i) Node (r, i + 1)

Old time window [ari, bri] [ar,i+1, br,i+1]
New time window [ari,min{bri, br,i+1 − Br }] [max{ar,i+1, ari + Br }, br,i+1]

Fig. 1 Time window reduction process for two consecutive nodes on a trade. a Before reduction, and b
after reduction

reductions for two consecutive nodes (r, i) and (r, i + 1) on trade r . The reduction
process is illustrated in Fig. 1.

We use the reduction rule not only for preprocessing but also in each branch-
and-bound node where time window branching is applied. In fact, the time window
branching scheme used for VSR violations can only work properly if we combine it
with the reduction rule. In each new branch after time window branching on a node
(r, i), we therefore apply the reduction rule not only to nodes (r, i − 1) and (r, i + 1)
but iteratively to all nodes affected directly or indirectly by the time window changes
for node (r, i) until no further reductions are possible.

5.1.2 Candidate time windows

Any node with a time window that can be split in a way that renders at least one
currently chosen schedule infeasible in each of the two new branches is a candidate for
branching. If the current master problem solution is fractional, then to fulfil constraints
(20) or (21) there must be a node i (omitting the trade index r for now) that is visited
by more than one schedule, one of them possibly a spot vessel schedule, or several
times in a cycle by the same schedule. Hence, we must split the time window at this
node so that there is only a single visit to the node. For each fractional schedule that
visits node i , it might be possible to change the start time at node i slightly without
rendering the schedule infeasible. For each visit to node i , we determine a feasibility
interval defined by the earliest and latest possible start time at this node that will allow
the corresponding schedule to remain feasible. For spot vessel schedules the feasibility
interval simply corresponds to the (possibly reduced) time window at the node.

The label setting algorithm used to generate schedules for fleet vessels, schedules
each node visit as early as possible. This means that the feasibility interval at each
node for regular schedules will simply correspond to allowing the ship to wait at long
as possible. Assume now that node i is visited twice by two different schedules or
twice by the same schedule. It does not matter if the two visits correspond to the same
ship or to different ships, and so we can omit the k index here. We abuse notation
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slightly by letting T 1
i and T 2

i denote the visit time for these two visits, respectively.
Let [T 1

i , u1] and [T 2
i , u2] be the corresponding feasibility intervals and let ε > 0 be a

very small tolerance.
If these two intervals are disjoint as shown in Fig. 2, we can choose a split time for

node i in (u1, T 2
i ], say ts , and create one branch where the time window for node i is

[ari, ts −ε] and the second visit is infeasible, and one branch where the time window is
[ts, bri]where the first visit is infeasible. A formal description and a proof for viability
can be found in Gélinas et al. (1995).

Note that split timeswithin one of the feasibility intervalswould also render one visit
infeasible in each branch. However, during the next iteration of schedule generation,
the visit, for which we selected a split time within its feasibility interval, could be
regenerated though only a little later in time. This means that in one branch we will
actually regenerate a fractional solution similar to the one from the parent node. Hence,
it will be ineffective to use time window branching when the feasibility intervals are
not disjoint.

As already mentioned, the feasibility interval for a spot vessel visit will always
correspond to the entire time window. Hence, such visits can never lead to disjoint
feasibility intervals and so, time window branching will be ineffective. Therefore,
when fractionality occurs partly due to a spot vessel visit, we will instead resort to
constraint branching to restore feasibility.

When branching, we check if node i is on a trade r where VSRs exist. If it is, we
can use the new time windows at node i to reduce the time windows of other nodes on
trade r . All schedules violating these new time windows are removed from the master
problem in each new branch, and the corresponding subproblems and spot vessel time
windows are updated to reflect the new time windows.

Extending this concept to include VSR constraints and spot vessel time windows,
further candidate time windows arise. Assume that the VSR constraint for two consec-
utive voyages, i and i + 1, on trade r is violated and that no spot vessels are involved.
If the current solution is integral, there is only one visit to each of these two nodes
and these two visits per assumption violate the VSR constraint. If the current solution
is fractional, there can be multiple visits to each of nodes (r, i) and (r, i + 1). For the
VSR constraint to be violated, there must however be at least one pair of visits that
on their own violate the VSR constraint. Whether the solution is integral or fractional,
this means that there must exist positive λ

k1
s1 and λ

k2
s2 in the current RMP solution such

Fig. 2 Time window branching due to fractionality
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Fig. 3 Time window branching due to VSR violation

that T k1
ris1

+ Br > T k2
r,i+1,s2

. Again we let Ti and Ti+1 denote the visit times at these
two nodes. To restore feasibility of the VSR constraint, we can force the start time of
node (r, i) to be scheduled earlier, namely no later than Ti+1 − Br , we can postpone
the start time of node (r, i +1) so that it occurs at the earliest at Ti + Br or we can use a
combination of these two time window alterations. In essence, the above corresponds
to splitting the time window for node (r, i) and then reducing the time window of node
(r, i + 1) accordingly so that the minimum time spread, Br , is adhered to. Figure 3
demonstrates this process. Note that the process can be reversed to similarly enable
a split of the time window at node (r, i) if instead the VSR violation stems from the
node pair (r, i − 1) and (r, i).

We run through the VSR constraints and from each violated constraint for a node
pair ((r, i), (r, i + 1)), we will consider both node (r, i) and (r, i + 1) a candidate for
branching.

Now we extend further to include spot vessel schedules in the current (possibly
fractional) solution. Therefore, we now assume that yri > 0 while yr,i+1 = 0 as
previously and again consider the VSR constraint for (r, i) and (r, i + 1). To know
whether or not this constraint is violated, we need to check whether or not a solution
exists to the following small linear program (LP). To ease notation we have omitted
the geographical route concept and simply sum over all schedules for each ship:

∑

k∈V

∑

s∈Sk

T k
risλ

k
s + t S

ri yri + Br ≤
∑

k∈V

∑

s∈Sk

T k
r,i+1,sλ

k
s , (32)

ari ≤ t S
ri ≤ bri. (33)

We might find that t S
ri = ari is a feasible solution and therefore conclude that the VSR

constraint is not violated. However, assume now that yr,i−1 = 0 and consider the
similar LP for voyage pair ((r, i − 1), (r, i)):
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∑

k∈V

∑

s∈Sk

T k
r,i−1,sλ

k
s + Br ≤

∑

k∈V

∑

s∈Sk

T k
risλ

k
s + t S

ri yri, (34)

ari ≤ t S
ri ≤ bri. (35)

If we insert t S
ri = ari in (34), we might find that the constraint is violated and conclude

that the VSR constraint for voyage pair ((r, i − 1), (r, i)) is violated even though the
constraint need not be if we just select a different value for t S

ri . Therefore, these two
VSR constraints must be considered simultaneously. If yr,i−1 is also positive, we must
also include the VSR constraint for voyage pair ((r, i − 2), (r, i − 1)) along with the
spot vessel timewindow for t S

r,i−1 and so it continues until we reach a voyage (r, i −m)

for which yr,i−m = 0, or until we reach the first voyage on this particular trade. All of
these VSR constraints and their corresponding spot vessel time windows put together
and forms an LP for this particular VSR group.

If a feasible solution exists to the LP of the VSR group is not violated. If on the
other hand no solution exists, at least one of the following statements must be true:

∃g ∈ {0, 1, . . . , m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1

+ Br > T k2
r,i−g+1,s2

,

(36)

∃g ∈ {1, 2, . . . , m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1

+ 2Br > T k2
r,i−g+2,s2

,

(37)

∃g ∈ {2, 3, . . . , m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1

+ 3Br > T k2
r,i−g+3,s2

,

(38)
...

...
...

∃g ∈ {m − 1, m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1

+ m Br > T k2
r,i−g+m,s2

,

(39)

∃s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−m,s1

+ (m + 1)Br > T k2
r,i+1,s2

.

(40)

To exemplify, assume that the current solution has yr,i−1 and yri positive while
yr,i−2 = yr,i+1 = 0. We then have a VSR group consisting of the constraints for
voyage pairs ((r, i − 2), (r, i − 1)), ((r, i − 1), (r, i)) and ((r, i), (r, i + 1)). If the
LP for this VSR group does not have a solution, there must exist s1, s2, k1, k2 with
λ

k1
s1 > 0 and λk2

s2 > 0 such that at least one of the following is true:

T k1
r,i−2,s1

+ Br > T k2
r,i−1,s2

(41)

T k1
r,i−1,s1

+ Br > T k2
ris2

(42)

T k1
ris1

+ Br > T k2
r,i+1,s2

(43)

T k1
r,i−2,s1

+ 2Br > T k2
ris2

(44)

T k1
r,i−1,s1

+ 2Br > T k2
r,i+1,s2

(45)

T k1
r,i−2,s1

+ 3Br > T k2
r,i+1,s2

(46)
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Constraint (43) corresponds to the illustration in Fig. 3 and this figure must now be
extended to include the time windows and visit times corresponding to constraints
(42) and (44). The remaining violations will be handled when branching on nodes
(r, i − 2), (r, i − 1) and (r, i + 1).

We run through each VSR group and only for the violated ones, we search for
visit times that fulfil constraints (36)–(40), starting from (36). If we find one or several
pairs of visit times that fulfil constraints (36), we have one or several pairs of candidate
nodes for branching. In that case we do not check constraints (37)–(40) since these can
be implicitly handled by branching to fulfil constraints (36) and using the timewindow
reduction rule. However, if we do not find a pair of visit times that fulfil constraints
(36), we move on to check constraints (37) and so the process continues until we find
branching candidates.

5.1.3 Selecting the best split time within a time window

Assume for now that the current solution is fractional but fulfils all VSR constraints
and spot vessel time restrictions. In this case, the window branching scheme simply
aims at restoring integrality. A formal description of the split time selection procedure
for this situation can be found inGélinas et al. (1995); accordingly, we here give amore
informal description. A detailed description on how to transfer this to the TSPSPVSR
without considering the VSR violations we refer to Vilhelmsen (2014).

We will here and now concentrate on how we include the VSR violations in the
time window branching scheme.

We assume that nodes (r, i − 1), (r, i) and (r, i + 1) together form a VSR group.
Figure 4 includes VSR violations for node pair (r, i − 1) and (r, i) as well as for node
pair (r, i) and (r, i + 1). Here T 1

i−1 and T 1
i+1 denote, respectively, the visit time of

a visit to node i − 1 and i + 1 for two schedules included in the current solution.
Note that for VSR violations we do not care about feasibility intervals since it is the
exact visit time at the node that impacts the VSR constraint. Therefore, the feasibility
intervals are not included in Fig. 4. There are four VSR violations and each of these
leads to an interval of feasible split times. These are marked ‘Feasible split intervals’
in the bottom of the figure. The start and end points of these four intervals are marked
as t∗6 to t∗11 and together they define five intervals, i.e. (t∗6 , t∗7 ] to (t∗10, t∗11], which each
have a distinct elimination of flow. Using the same reasoning as above, within each of
these five intervals we prefer to select the latest time. Therefore, in Fig. 4, t∗7 to t∗11 are
all candidates for split times. We note that t∗7 , t∗10 and t∗11 all correspond to visit times
at the node while t∗8 and t∗9 correspond to, respectively, T 1

i+1 − Br and T 1
i−1 + Br . We

can generalise this to say that, limiting the search to schedules included in the current
solution with a positive value, the start time of every visit to the node, except the first,
is a candidate split time. Furthermore, for any visit at node i − 1, for which the visit
time Ti−1 causes a violation of the VSR for nodes i − 1 and i , T 1

i−1 + Br is also a
candidate split time. Similarly, any visit at node i + 1, for which the visit time Ti+1
causes a violation of the VSR for nodes i and i + 1, Ti+1 − Br is a candidate split
time. Furthermore, for various integer values of m, depending on the size of the VSR
group that node i belongs to, Ti±m ± m Br can also be candidate split times. Note that
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Fig. 4 Choosing a split time to restore VSR

Table 2 Flow elimination from candidate split times

Candidate Infeasible visits Eliminated flow Minimum

Left branch Right branch Left branch Right branch

t∗7 T 2
i , T 3

i , T 4
i , T 1

i−1 T 1
i 1.9 0.1 0.1

t∗8 T 3
i , T 4

i , T 1
i−1 T 1

i , T 2
i 1.8 0.2 0.2

t∗9 T 3
i , T 4

i , T 1
i−1 T 1

i , T 2
i , T 1

i+1 1.8 1.2 1.2

t∗10 T 3
i , T 4

i T 1
i , T 2

i , T 1
i+1 0.8 1.2 0.8

t∗11 T 4
i T 1

i , T 2
i , T 3

i , T 1
i+1 0.4 1.6 0.4

this extends the candidate split times derived from fractionality since all start times at
the node except the first one is now a candidate split time.

Assume now that the schedules corresponding to T 1
i , T 2

i , T 3
i and T 4

i are in the
current solution with values 0.1, 0.1, 0.4 and 0.4, respectively. Furthermore, assume
that the two visits at nodes i − 1 and i + 1 are the only visits to these nodes, i.e. that
the schedules corresponding to these visits are both in the solution with a value of
1. Table 2 then shows the infeasible visits and the corresponding eliminated flow in,
respectively, the left and right branch when choosing one of the candidate split times
derived from Fig. 4.

Note that since the branching applied to restore feasibility with respect to VSRs
only factors in the exact visit times and ignores the feasibility intervals, this type of
branching allows us to regenerate similar schedules with visit times just slightly post-
poned. This is sufficient for the VSR constraints, however it might not be sufficient to
rule out regeneration of fractionality. As an example, consider the split time candidate
t∗7 = T 2

i where the right branch will exclude visit time T 1
i . According to Fig. 4, T 2

i is
within the feasibility interval of the schedule, say s1, corresponding to visit time T 1

i .
Therefore, we can easily generate a new schedule similar to s1 with the visit at node
i postponed slightly. Therefore, when branching on a node where there are no VSR
violations, we reinclude the feasibility interval aspect to more effectively eliminate
fractionality.
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Tomotivate floweliminationwhilemaintaining a balanced search tree,we prefer the
candidate that eliminates the most flow in the worst of the branches, i.e. the candidate
with the highest value of flow elimination in the branch where it eliminates the least
flow. This number is given in Table 2 in column ‘Minimum’ for each candidate, and
we see that the best worst-case flow elimination is achieved for t∗9 .

Note that Table 2 only lists flow immediately eliminated and not flow implicitly
eliminated from further time window reductions. Since each trade can consist of many
voyages, calculating the full flow elimination for each candidate split time for each
candidate node can be time consuming. Therefore, we refrain from such extensive
calculations and simply consider the direct flow elimination. This is another reason
to use the best worst-case flow elimination as a selection criteria, since we know that
regardless of the implicit flow elimination, we can never do worse than this.

Now that we know how to find candidate time windows for branching and also how
to actually split the chosen time window, we are ready to choose which time window
to branch on. Again, aiming at eliminating as much flow as possible while maintaining
a well balanced search tree, we select the time window that has the best worse case
flow elimination.

5.2 Constraint branching

For now, ignore the possible existence of cyclicmaster problem schedules, i.e. columns
with Aris > 1 in (19)–(26). If slack variables, yri, are inserted into constraints (21),
the RMP is modelled as a set partitioning problem with generalised upper bound con-
straints (22). Constraint branching is an effective technique for enforcing integrality
of problems with such structure and was first proposed in Ryan and Foster (1981). The
authors observed that in an optimal integer solution to a set partitioning problem any
two rows are either covered by the same variable or covered by two different variables.
In a fractional solution this is not the case and twobranches can be enforced to eliminate
this fractionality. The first restricts the solution space by enforcing the requirement
that the two rows be covered by the same variable, while the second ensures that they
are not covered by the same variable. Such a branching strategy clearly partitions the
solution space into two disjoint subspaces. Due to the generalised upper bound con-
straints (22), the submatrix for each ship in the RMP is perfect, see e.g Padberg (1973)
and Conforti et al. (2001). As a result, fractional solutions can only appear across sub-
matrices for different ships and never within one of the individual ship submatrices.
This means that the LP solution can only be fractional if two or more ships are compet-
ing for the same voyage. In a fractional solution there must also exist two voyages that
are performed consecutively in one schedule and not consecutively in another. This is
known as a follow on branching possibility (see e.g. Steinzen et al. 2009), since we
enforce/restrict what voyage is allowed to immediately follow another voyage.

If the current solution is fractional, there must exist two voyages (r1, i1), (r2, i2) ∈
NC ∪ NO with i1 �= i2 that are performed consecutively by some ships and noncon-
secutively by other ships. For each such pair we introduce the sum

S(r1,i1),(r2,i2) =
∑

k∈V

∑

s∈Sk′
Ak

r1i1s Ak
r2i2sλ

k
s .
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If the current solution is fractional, theremust exist consecutive voyages (r1, i1) and
(r2, i2) for which 0 < S(r1,i1),(r2,i2) < 1. The branching strategy is then to construct a
left branch where voyage (r1, i1) is immediately followed by voyage (r2, i2) (termed
the 1-branch) and a right branch where voyage (r2, i2) is not allowed to immediately
follow voyage (r1, i1) (termed the 0-branch).

The approach for selecting the branching pair varies in the literature as basically
two different opinions on this selection exist: Selecting the (voyage, voyage) pair with
largest S(r1,i1),(r2,i2) and selecting the (voyage, voyage) pair with the most fractional
S(r1,i1),(r2,i2). We have implemented both of these versions as well as a hybrid version
that combines them. We found the most fractional approach most effective for the
problem considered here.

((r1, i1), (r2, i2))
∗ = arg min

((r1,i1),(r2,i2))∈C

{∣∣S(r1,i1),(r2,i2) − 1

2

∣∣
}
.

Returning to the possible existence of cyclic master problem schedules, we note that
their presence in themaster problem constraintmatrixwill compromise the perfectness
of the submatrices containing such schedules. The above constraint branching scheme
cannot eliminate fractionality derived from cyclic schedules and we must instead rely
on time window branching for this.

5.3 Branching strategy

We have implemented a breadth-first search and found the branching most effective
when we prioritised the VSR-related time window branching scheme. Therefore, we
start by handling all violations of VSR constraints while ignoring fractionality, i.e.
disregarding feasibility intervals and in general nodes that are not involved in VSR
violations. Afterwards, all fractionality is eliminated through constraint branching.
Note though that the VSR-related time window branching will simultaneously help to
eliminate fractionality and that time window branching must be used if fractionality
occurs due to cyclic schedules.

6 Computational study

In this section, we describe data and results from our computational study to evaluate
the performance of the developed algorithm. As a reference point for this evaluation,
we provide a comparison of the proposed BAP algorithm with that of the a priori path
generation method from Norstad et al. (2015) on a subset of the considered instances.

6.1 Data instances

The BAP algorithm is tested on 19 problem instances of varying size and complexity.
These are divided into two sets. The first, containing 14 instances, is a set of instances
for which we can compare the results to those obtained using the method of Norstad
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Table 3 Data instance
characteristics

No. Ships Trades Voyages Spot Horizon

1 10 4 21 5 90

2 10 7 32 9 90

3 10 4 19 0 90

4 10 4 25 0 120

5 10 5 34 9 120

6 10 5 36 5 120

7 10 5 42 11 150

8 10 6 52 13 150

9 10 6 47 8 150

10 25 8 44 11 90

11 25 8 53 11 90

12 25 8 57 10 105

13 25 8 55 5 105

14 25 9 64 4 120

15 25 8 49 10 90

16 25 9 58 4 105

17 25 8 64 12 120

18 25 8 62 9 120

19 32 13 56 12 90

et al. (2015). The second is a smaller set, containing 5 instances, on which we further
test our methodology. No comparison is possible for these instances. All instances
have been generated by the test instance generator described in Norstad et al. (2015).
This is based on data from the Norwegian shipping company Saga Forest Carriers.
Table 3 presents the main characteristics of the 19 instances. The column labels are
almost self-explanatory but for completeness sake we note that from left to right they
give the instance number, the number of ships, the number of trades, the number of
voyages, the number of spot voyages, and the length of the planning horizon in days.
Note that this horizon is defined as the length of the period that contains the earliest
allowed starting time for each voyage. Thereby, planning will continue well beyond
this horizon since voyages can be performed later than the earliest allowed time and
must also be completed. Also note that instance 19 is the only instance that includes
maintenance requirements. For this instance there is one maintenance requirement
corresponding to one of the 13 trades stated in Table 3.

6.2 Computational results

In order to evaluate the performance of the devised algorithm, we run it on the 19
data instances, and compare the results obtained from these tests on a subset of the
considered instances with results from using the a priori path generation method from
Norstad et al. (2015).
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6.2.1 Results from devised BAP method

The proposed BAP method is programmed in C++ and all experiments have been
performed on a dedicated Intel(R)Xeon(R)CPUX5550@2.67GHzwith 24 gigabytes
of main memory running Ubuntu Linux version 14.04. We use default settings for the
commercial solver Cplex 12.4 to solve the master problem. We tried different values
for the time window branching parameter ε and found only slight changes in running
time of the algorithm. High ε values can potentially sacrifice optimality; however, the
quality of the solutions did not change. We therefore chose a small ε value, namely
0.05 which corresponds to 72min on our data instances compared to the very long
voyage time windows of up to 30days.

Tables 4 and 5 contain the results for two different versions of the BAP method on
the 19 available instances. In particular, we investigate the impact of the fractional time
window branching routine. Table 4 contains the results where fractional time window
branching is not used, while Table 5 presents the results when all three branching
strategies are used. Looking at both tables, the column ‘Inst’ gives the instance number
and column ‘Gap’ gives the integrality gap (as a percentage) for the best found solution
found. In column ‘Time’ we list the time used to solve the problem (in seconds). We
permit the algorithm to run for at most 600s. The number of nodes evaluated in the
BAP tree is given in the column ‘Nodes’, while the column ‘Vars’ lists the number of
variables in the final master problem. Finally, in the last three columns we report the
number of times each of the branching strategies were applied. Here, ‘fTW’ refers to
fractional time window branching, ‘iTW’ refers to integral time window branching,
and ‘FB’ refers to follow on branching.

From Table 4, we see that the version of the BAP algorithm in which fractional time
window branching is not used solves all instances to optimality very quickly. Only two
instances (17 and 18) require more than 20s of computation time. Furthermore, the
number of columns generated is never more than 2200 and we investigate, in the worst
case, approximately 37,000 nodes. The performance of the algorithm is satisfactory
without fractional time window branching. Table 5 provides an overview of what
happens when this is also included. The results are mixed. On the one hand we see a
substantial reduction in the running times for several instances (e.g. 11, 16, and 18);
however, we also see a dramatic increase for others. In two cases, instances 13 and
17, the algorithm is now unable to prove optimality within the 10min time frame. In
both cases the integrality gap is, however, small and the best found solutions are in
fact optimal. In both cases the best solution were found within 14s. Due to the fact
that two instances time out, we see larger BAP trees and more columns generated.
A possible explanation for the large BAP trees, and ultimately the time out, could be
that time window branching can create schedules that differ in the timing of port visits
by very small amounts of time, and this is more pronounced when fractional time
window branching is also included. The results do, however, suggest that fractional
time window branching has potential. On instance 18 in particular, the running time is
reduced by a factor of 10 when fractional time window branching is included. When
we compare our BAP algorithmwith the a priori path generation method fromNorstad
et al. (2015) in Sect. 6.2.2 we use the version of the BAP algorithm in which only
integral time window branching and follow on branching is used. Finally, we note that,
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Table 4 Results from BAP
method (no fTW)

Inst Gap Nodes Vars Time iTW FB

1 – 45 156 0.04 4 18

2 – 15 219 0.06 0 10

3 – 13 157 0.04 0 6

4 – 49 303 0.06 6 18

5 – 3 262 0.02 0 1

6 – 32 410 0.08 12 13

7 – 4 355 0.04 3 0

8 – 1 262 0.02 0 0

9 – 97 396 0.21 1 47

10 – 56 431 0.16 25 8

11 – 4229 1052 7.92 1168 1410

12 – 30 599 0.18 13 15

13 – 1609 1089 3.83 267 537

14 – 3038 1581 19.42 561 2435

15 – 542 584 1.13 143 344

16 – 2163 1219 8.30 402 1372

17 – 37,053 2133 198.89 2866 15, 660

18 – 10,061 1564 51.28 703 4327

19 – 185 681 0.63 7 85

in both Tables 4 and 5, there does not really seem to be any trend in the distribution
of the applied branching schemes.

As already mentioned, Norstad et al. (2015) find that voyage separation require-
ments can significantly improve the spread of the voyages and at only marginal profit
reductions. Although we do not wish to repeat their analysis here, we note that we
arrive at similar findings after running all instances again without voyage separation
requirements (using the BAP approach without fractional time window branching).
In fact, the profit reduction is 0% on most instances while instance 14 experiences
the highest profit reduction, and this is only 0.19%. The complexity added from the
voyage separation requirements is however not insignificant. In fact, the running time
of the algorithm is reduced by 0–99.9% where the latter is for instance 17.

6.2.2 Comparing the two methods

To properly evaluate the efficiency of our devised BAP algorithm (without fractional
timewindow branching) we use this section to compare our results with those obtained
using the A Priori Path Generation (APPG) method described in Norstad et al. (2015).
The APPGmethod first generates all feasible paths and then uses a commercial solver
to solve the path flow formulation containing the set of generated paths. Note that the
enumeration concerns paths and not schedules; i.e. routes are enumerated while the
timing of these routes is left as decision variables in the path formulation.
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Table 5 Results from BAP method (with fTW)

Inst Gap Nodes Vars Time fTW iTW FB

1 – 91 182 0.06 5 1 39

2 – 15 219 0.06 0 0 10

3 – 13 157 0.04 0 0 6

4 – 71 374 0.06 5 3 27

5 – 7 285 0.03 2 1 2

6 – 32 410 0.08 0 12 13

7 – 4 355 0.04 0 3 0

8 – 1 262 0.02 0 0 0

9 – 503 141 0.41 14 3 53

10 – 56 447 0.15 31 6 9

11 – 606 908 2.00 515 87 3

12 – 5 618 0.16 4 0 0

13 0.19 69, 379 3337 600.00 28, 523 188 25, 088

14 – 3305 2045 14.53 1590 95 120

15 – 230 714 0.64 195 29 4

16 – 606 908 2.37 318 56 23

17 0.02 60, 056 3131 600.00 8695 56 30, 676

18 – 871 1448 5.40 156 20 259

19 – 215 686 0.70 4 8 95

The authors from (Norstad et al. 2015) have provided us with results from running
their APPG method on the first 14 data instances described in this paper. Their results
are obtained using a Dell Latitude Laptop with Intel Core i5 CPU (4 × 2.40GHz),
4GB DDR2 RM running on Windows 7. The authors’ path generator is implemented
in C#, while the path flowmodel is solved with Xpress MP 7.0. Their results are given
in Table 6, along with the key values from Table 4. The column headers are the same
as in Table 4 and for instance 14 the ‘*’ indicates that the APPG method exceeded the
time limit of 3600s before closing the integrality gap.

From Table 6 we first note that the time required by the APPG method is generally
a lot longer than that required by the proposed algorithm. We acknowledge that the
processor used in the experiments of Norstad et al. (2015) is slightly slower than the
one we use; however, the differences in running times are substantial and therefore
cannot be attributed to this.

There is a significant reduction in model size from relaxing the VSRs and using
dynamic column generation compared to including the VSRs in the model and using
a priori column generation as in the APPG method. We note that the BAP approach
consistently includesmuch fewer variables than theAPPGmethod; in fact, the variable
count in the BAP approach is 84–98% lower than that of the APPG method. This is
the advantage when using dynamic column generation; the method only generates
columns that have the potential to improve the objective function value. We do remind
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Table 6 Comparing solution
methods

Inst APPG BAP

Gap Time Gap Time

1 – 0 – 0

2 – 1 – 0

3 – 0 – 0

4 – 15 – 0

5 – 1 – 0

6 – 2 – 0

7 – 2 – 0

8 – 3 – 0

9 – 36 – 4

10 – 2 – 0

11 – 19 – 3

12 – 14 – 0

13 – 152 – 4

14 0.13 3600* – 19

the reader, however, that the APPG method does not enumerate all feasible schedules,
but instead all feasible paths/routes. Similarly, the number of constraints explicitly
included in the APPG model is far greater than that for the proposed model; in fact,
the number of constraints with the BAP approach is 99.4–99.9% lower than with the
APPG method. Again, this is to be expected since we relax the voyage separation
constraints and also do not include any constraints on timing since these are implicitly
included in the column generation subproblems. Overall, we find that the devised
BAP algorithm is superior to that of the APPG method, providing optimal solutions
much faster. Instances 13 and 14 in Table 6 show that the difference in run time
can be quite dramatic. For instance 13, the BAP method proves optimality within
4 s, while the APPG takes approximately 2.5min. For instance 14, the BAP method
proves optimality within 20s, while the APPG cannot prove optimality within an hour
of computation time.

As mentioned in Sect. 2 Bakkehaug et al. (2016) present results from using an
adaptive large neighbourhood search (ALNS) heuristic for the same problem.We note
that, except for instances 17 and 18 (in this paper), on similar-sized instances our BAP
approach uses less time to find the optimal solution than the ALNS method uses to
find a heuristic solution and that on average their heuristic solutions exhibit a 0.69%
optimality gap which is approximately $ 200,000. On larger instances the comparison
in Bakkehaug et al. (2016) with Norstad et al. (2015) reveals gaps above 1%.

7 Concluding remarks

In this paper we have considered the tramp ship routing and scheduling problem with
voyage separation requirements. These separation requirements enforce a minimum
time spread between voyages on the same trade. This is done in an attempt to ensure
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that the voyages are ‘fairly evenly spread’ in time. A more evenly distribution of
similar voyages also increases the likelihood that the ship operator will be able to find
sufficient cargoes in the market to fill the ship on each voyage while not finding more
cargoes than ship capacity allows.

We have developed a new, exact method for this problem. It is a BAP procedure
with a dynamic programming algorithm to dynamically generate columns andwith the
voyage separation requirements relaxed in the master problem and instead enforced
through a modified time window branching scheme.

Running our algorithm on all 19 instances without the voyage separation require-
ments showed that the profit reduction from including the separation requirements is
below 0.2% on all instances.

We compared our BAPmethod to the APPGmethod fromNorstad et al. (2015) and
found that the time usage from the APPGmethod is generally a lot longer than that for
our algorithm. Furthermore, we compared our BAPmethod to anALNS heuristic from
Bakkehaug et al. (2016) and found that on similar-sized instances our BAP approach
generally uses less time to find the optimal solution than the ALNS method uses to
find a heuristic solution and that on average their heuristic solutions exhibit a 0.69%
optimality gap.

Overall we have developed a new, exact and efficient method for the tramp ship
routing and scheduling problem with voyage separation requirements. This method is
very fast at finding optimal solutions, although one instance requires a bit longer time.
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