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Abstract We investigate the problem of jointly determining the optimal pricing and
inventory replenishment strategy for a deterministic perishable inventory system in
which demand is time and price dependent. The inventory is also assumed to decay
at a certain rate. The seller has the opportunity to adjust prices for a discrete number
of times at a certain cost during the sales season to influence demand and to improve
revenues. We develop a mathematical model to find the optimal times to change the
prices, the optimal prices and the optimal order quantity. We present analytical results
to find the optimal prices when the times of price changes are given and design heuris-
tic algorithms to determine the optimal times to change the prices. We analyze the
efficiency of multiple pricing strategy by comparing the profits obtained by single
pricing case and also analyze the effect of different parameters on the optimal solution
through numerical experiments.
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1 Introduction

We consider inventory management and pricing of perishable products such as
fresh fruits, vegetables, milk, yogurt, eggs, and bread, considering a price and time-
dependent demand function. Effective management of these perishable products is an
important issue since it is observed that billions of dollars’ worth of food is expired and
wasted every month (Minner and Transchel 2010). Different than durable products,
as the perishable products age, the demand for these products starts to decline and in
a short time these products can become completely obsolete making the management
of these products especially difficult. Thus, not only the amount of these products on
shelf but also their status or age is also a major concern for the managers in their
decisions. As the products on shelf start to deteriorate, the managers need to decide
whether to continue with the products on hand which might cause a decrease in sales
and loss in revenues or order a new batchwhichwill lead to the wastage of the products
on hand, since they will no longer be sold when the new batch arrives. In addition,
the managers also have the option to change the prices of the products as they age in
order to control the demand and to increase the revenues. As a result, the perishability
and the time dependency of demand make the management of inventory and pricing
for these products much harder.

In the literature, most of the inventory models assume that inventories can be held
in stock indefinitely to satisfy future demands and the demand is independent of the
age of the products on hand. However, in reality, there exists many perishable products
that either deteriorate or become outdated by time. Thus, the inventory on hand not
only decreases by demand, but it also decreases due to the expiration of products.
In addition, because of the change in demand over time, it might also be better to
charge different prices at different times and employing a dynamic pricing strategy
might improve the profits substantially. Therefore, if the rate of deterioration is not
sufficiently low, its impact on modeling of the inventory becomes a major concern.

The stream of literature considering dynamic pricing under stochastic demand
includes a wide range of applications from airline companies to hotel reservation
systems. There are many models, in which a fixed amount of inventory needs to be
sold until a certain time, without any replenishment opportunities (e.g., Gallego and
van Ryzin 1994; Zhao and Zheng 2000; Monahan et al. 2004; Gayon et al. 2009, etc.).
In these studies, demand is mostly assumed to be independent of time and they mainly
focus on the structural characteristics of the optimal solution. Bitran and Caldentey
(2003) present an extensive review of dynamic pricing policies in the literature. Min-
ner and Transchel (2010) consider the ordering policies for perishable products in the
food retail industry under service level constraints and present a method to determine
the order quantities, but they do not consider pricing in their study. Nahmias (1982)
reviews related literature about determining the ordering policies for perishable inven-
tory systems for products with both fixed life and having exponential decay over time.
Interested readers can also refer to the surveys done by Rafaat (1991), Goyal and
Giri (2001) and Bakker et al. (2012) about the inventory management of deteriorating
items. There are also several studies in the literature considering the inventory and
pricing problems for perishable products with time-dependent demand. Chen et al.
(2014) focus on the joint pricing and inventory control problem for perishable inven-
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tory systems with stochastic demand and lead times and also focus on the structural
properties of the optimal solution. Chen and Sapra (2013) consider the joint inven-
tory and pricing decisions for perishable products in a periodic review model with
a fixed lifetime of two periods. Chew Peng and Chulung (2009) develop a discrete
time dynamic programming model to determine the optimal inventory allocations and
the optimal prices for a perishable product with a two period lifetime and they obtain
several optimality properties.

Benkherouf (1995) and Mishra and Singh (2010) consider deterministic demand
in their inventory models for deteriorating items with a time-dependent demand func-
tion, but they only focus on the replenishment schedule and do not consider pricing.
Broekmeulen and van Donselaar (2009) also focus on a perishable product system
considering the age of products and they propose a heuristic policy for the replen-
ishment of perishable inventories without the consideration of pricing. They compare
their heuristic results with the optimal policy that does not take into account the age of
inventories using simulation. Transchel andMinner (2009) consider discrete pricing of
non-perishable productswith deterministic demand, assuming afixed cost for changing
prices. Abad (1996) and Rajan and Steinberg (1992) consider the relationship between
pricing and ordering decisions for perishable products by allowing a continuous price
function p(t) over the cycle. Abad (1997, 2001, 2003) works on optimal pricing and
lot sizing problem for perishable products with deterministic demand allowing a single
price in the system. Burwell et al. (1991) extend the results of Abad (1997) by offer-
ing shortages in addition to all unit quantity discounts. Wee (1999) has developed a
joint pricing and replenishment policy for deteriorating items, with a lifetime that has
a Weibull distribution, with partial backordering and quantity discounts, but he only
considers a single price and does not allow price changes. Similarly, Mukhopadhyay
et al. (2004) and Sana (2010) also consider perishable products assuming a single
price to be charged over the whole cycle without allowing price changes in a cycle.
In addition, they assume that the demand function is independent of time. You (2005)
deals with perishable inventory models with price and time-dependent demand and
aims to determine the optimal number of prices, price values and order quantities in
her proposed model assuming fixed time intervals between price changes.

In Table 1, we present the comparison of our study with the most related papers
with deterministic models in the literature. As seen in Table 1, none of the studies
in the literature, except Transchel and Minner (2009), considers discrete pricing over
time allowing the times of price changes to be decision variables. For example, Rajan
and Steinberg (1992) and Abad (1996) consider continuous pricing and do not ana-
lyze discrete prices. You (2005) considers discrete prices, but she assumes fixed time
intervals and does not consider different timings of price changes. She also does not
consider any deterioration process for the products. Transchel and Minner (2009) do
not consider perishable products and, thus, they do not consider deteriorating inven-
tory over time. In addition, the demand function used in their model only depends on
the price and the age or freshness of the products does not affect the demand function.
Our study combines all the different elements in these studies and is the only study
in the literature that considers discrete pricing for perishable products that decides on
the optimal times to change the prices in addition to the optimal price values.
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Table 1 Comparison of this study with the most related deterministic models in the literature

Coordinated Age and price Deteriorating Multiple Decisions on
pricing and dependent inventory pricing timings of
inventory demand over time price changes

This Paper + + + + +

Benkherouf (1995) − − + − −
Mishra and Singh
(2010)

− − + − −

Broekmeulen and van
Donselaar (2009)

− − + − −

Transchel and Minner
(2009)

+ − − + +

Rajan and Steinberg
(1992)

+ + + + −

Abad (1996) + + + + −
Abad (1997) + − − − −
Abad (2001) + − + − −
Abad (2003) + − + − −
Burwell et al. (1991) + − − − −
Wee (1999) + − + − −
Mukhopadhyay et al.
(2004)

+ − + − −

Sana (2010) + − + − −
You (2005) + + − + −

As stated above, most of the researchers in the literature consider the pricing and
inventory decisions for perishable products separate from each other or allow a single
price over the planning horizon. Only a few studies consider multiple pricing, but they
either allow a continuous price function without considering price changing costs or
price changes are made at predefined times. However, in reality, it is not possible to
continuously change prices at no cost and timing of price changes is an important factor
that can significantly affect the revenues. In this study, we construct a model by giving
the seller the ability to change the pricesmultiple times at any time hewants at a certain
cost over the planning horizon so as tomaximize the total profit.We aim to find the best
times to change the prices as well as the optimal values of these prices. We investigate
the effects of dynamic pricing on ordering decisions with an optimized number of
price changes and timings in every cycle. We also compare the multi-pricing case with
the constant pricing strategy. In addition, most of the studies in the literature related
to coordinated pricing and inventory decisions assume that demand is independent
of time. However, we consider perishable products with time- and price-dependent
demand that decay at a certain rate, and we provide explicit analytical and numerical
results for this system. In addition to modeling and analyzing the optimal solution
of this system, different from the literature, we also propose solution algorithms and
present their performances compared to the optimal solution.

123



Coordinated pricing and inventory decisions. . . 593

Fig. 1 Illustration of inventory process

2 Model

We use an economic order quantity (EOQ)-based approach without allowing backo-
rders, since the customers for perishable products will not be willing to wait to get
these products. We denote the time between two successive orders for new products
to replenish inventory as an inventory cycle. During an inventory cycle, the price of
the product is changed several times to obtain the maximum possible profit. We let
h denote the inventory cost per unit per unit time, N denote the number of different
prices used in an inventory cycle and C(N ) denote the cost of changing prices when
N different prices are used in an inventory cycle. In our model, ti , i = 1, 2 . . . N − 1,
denotes the time of the i th price change with t0 = 0 and tN denotes the end of an
inventory cycle at which time new and fresh products are ordered. We let pi , for
i = 1, 2 . . . N , denote the price during the time interval [ti−1, ti ). Figure 1 presents
an illustration of an inventory cycle.

Due to perishability of the product, the inventory is depleted partly to meet the
demand and partly for deterioration. We assume that each product on hand decays at a
constant rate θ independent of the other products since it is a common assumption in
literature (e.g., Abad 1996, 2001, 2003; Mukhopadhyay et al. 2004 etc.). In this case,
the decay rate of all inventory at any time t is given by w(t) = θ I (t) as a function
of the instantaneous inventory level at that time, denoted as I(t). Note that Q = I (0)
denotes the maximum inventory level, i.e., batch size ordered at the beginning of
each cycle. Every time an inventory replenishment order is given, a fixed order cost
A and per unit cost c are incurred such that the total cost at the time of order will
be A + cQ. In Fig. 1, x axis is the time line and y axis is the inventory level at
each time. In this figure, t1, t2 . . . , tN are the times where we apply price adjustments
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and I (t1), I (t2) . . . , I (tN ) are the corresponding inventory levels at those times. We
describe the inventory function I (t) by the differential equation (1) which consists of
the decay rate and the price- and time-dependent demand rate, D(p, t), such that

∂ I (t)

∂t
= −D(p(t), t) − θ I (t) (2.1)

Since the inventory function changes every time the price is changed, we let Ii (t)
denote the inventory function for any time t ∈ [ti−1, ti ). We also let I (ti ) denote the
inventory level at the end of the time period [ti−1, ti ). Note that the inventory level
Ii (t) will be equal to the inventory consumed from time t to ti due to sales and decay
plus I (ti ) as stated below.

Ii (t) =
∫ ti

t
(D(p, s) + I (s)θ)ds + I (ti )

Equation 2.1 is a first-order differential equation with variable coefficients. This equa-
tion can be solved using an integrating factor eθ t . Multiplying Eq. 2.1 by eθ t , we
obtain

eθ t ∂ Ii (t)

∂t
+ θeθ t Ii (t) = −eθ t D(pi , t)

d(eθ t Ii (t))

dt
= −eθ t D(pi , t) (2.2)

By integrating both sides of Eq. 2.2, we find that

eθ t Ii (t) =
∫ ti

t
eθs D(pi , s)ds + c (2.3)

where c is an arbitrary constant. By solving Eq. 2.3 for Ii (t), we obtain the general
solution

Ii (t) = e−θ t
∫ ti

t
eθs D(pi , s)ds + ce−θ t (2.4)

Then, for any time t ∈ [ti−1, ti ), using the differential Eq. 2.4 with the boundary
condition Ii (ti ) = I (ti ), we get the following instantaneous inventory equation for
Ii (t).

Ii (t) =
∫ ti

t
D(p, s)eθ(s−t)ds + I (ti )e

θ(ti−t)

From now on, in order to obtain explicit analytical results, we use a linear demand
function, that is commonly used in literature (e.g., Rajan andSteinberg 1992; Transchel
andMinner 2009, etc.), which depends on both price and time as D(pi , t) = a−βpi −
kt where pi denotes the price at i th time interval, β is the price sensitivity of demand
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and k is the time sensitivity of demand.Using the linear demand function, the inventory
equation can be written as:

Ii (t) =
∫ ti

t
(a − βpi − ks)eθ(s−t)ds + I (ti )e

θ(ti−t)

Ii (t) = a − βpi − kti
θ

eθ(ti−t) + k

θ2
eθ(ti−t) − a − βpi − kt

θ
− k

θ2
+ I (ti )e

θ(ti−t)

(2.5)

We note that since at the end of the cycle all the inventorywill be consumed (otherwise,
it will not be an optimal solution and ordering one less at time zero will yield a better
result), i.e., I (tN ) = 0, using the above equation and going backwards, one can find
all I (ti ) values and Ii (t) equations explicitly. Similarly, we can find the order level
Q = I (t0) where t0 = 0 from the above equation. Explicitly, we can write Q and
I (ti ) as below:

I (0) = Q = a − βp1 − kt1
θ

eθ t1 + k

θ2
eθ t1 − a − βp1

θ
− k

θ2
+ I (t1)e

θ t1

Q =
N∑
i=1

(
a − βpi − kti

θ
eθ ti + k

θ2
eθ ti − a − βpi − kti−1

θ
eθ ti−1 − k

θ2
eθ ti−1

)

I (ti ) =
N∑

j=i+1

(
a − βp j − kt j

θ
eθ(t j−ti ) + k

θ2
eθ(t j−ti ) − a − βp j − kt j−1

θ
eθ(t j−1−ti )

× − k

θ2
eθ(t j−1−ti )

)

We let Si denote the sales amount of the product at i th interval:

Si =
∫ ti

ti−1

(a − βpi − kt)dt

= (a − βpi )(ti − ti−1) − k

2

(
t2i − t2i−1

)

Then, we find the revenue in an interval by multiplying the demand with the price in
that cycle and total revenue in an inventory cycle will be the sum of all the revenues
earned at each interval. The total revenue, �R , is found as follows:

�R =
n∑

i=1

pi (a − βpi )(ti − ti−1) − kpi
2

(
t2i − t2i−1

)

We also calculate the inventory cost, �H , in the system by taking the area under the
inventory curve in Fig. 1 and then multiply with the unit holding cost to find the total
inventory cost. Using Eq. (2.5),
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�H = h
n∑

i=1

∫ ti

ti−1
Ii (t)dt

= h

(
n∑

i=1

∫ ti

ti−1

(a − βpi − kti
θ

eθ(ti−t)

+ k

θ2
eθ(ti−t) − a − βpi − kt

θ
− k

θ2
+ I (ti )e

θ(ti−t))dt
)

= h
n∑

i=1

(
−a − βpi − kti

θ2
(1 − eθ(ti−ti−1))

− k

θ3
(1 − eθ(ti−ti−1)) − a − βpi

θ
(ti − ti−1)

+ k

2θ

(
t2i − t2i−1

)
− k

θ2
(ti − ti−1) − I (ti )

θ
(1 − eθ(ti−ti−1))

)

Finally, the profit per unit time function is obtained by taking the difference between
total revenue and total cost during an inventory cycle and dividing that value by the
length of an inventory cycle. As a result, we can write our problem as below:

max
N ,pi ,ti

π(N ) =
{
1

tN

[ N∑
i=1

{
pi (a − βpi )(ti − ti−1) − kpi

2
(t2i − t2i−1)

−h

[
−a − βpi − kti

θ2
(1 − eθ(ti−ti−1)) − k

θ3
(1 − eθ(ti−ti−1))

−a − βpi
θ

(ti − ti−1) + k

2θ
(t2i − t2i−1)

− k

θ2
(ti − ti−1) − I (ti )

θ
(1 − eθ(ti−ti−1))

]}
− (A + cQ + C(N ))

]}

s.t

a − βpi − kti ≥ 0 ∀i ∈ {1, . . . , N }
ti − ti−1 ≥ 0 ∀i ∈ {1, . . . , N }
pi ≥ 0 ∀i ∈ {1, . . . , N }

t0 = 0

N ∈ {1, 2, . . .} (2.6)

For given N and ti values for all i = 1, 2, . . . , N , we can find the optimal prices
pi using the first-order derivatives of the above equation as stated in the following
Theorem.

Theorem 1 For a given set of N and ti values, let p1i and p2i be defined as below.
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p1i = a

2β
− k

4β
(ti + ti−1) + c(eθ ti − eθ ti−1)

2θ(ti − ti−1)

+ h

2θ

(eθ(ti−ti−1) − 1 − ∑i−1
j=1((e

θ(ti−t j ) − eθ(ti−1−t j ))(1 − eθ(t j−t j−1)))

θ(ti − ti−1)
− 1

)

p2i = a − kti
β

Then, the optimal prices p∗
i are as given by the following equation:

p∗
i =

{
p1i , ifa − βp1i − kti ≥ 0;
p2i , otherwise.

Proof We find the optimal prices using the result of first- and second-order derivatives
of the profit function given in Eq. (2.6). πN is a function which is twice differentiable

at each pi and satisfies ∂2πN

∂p2i
= −2β(ti−ti−1)

tN
< 0 for all i = 1, . . . , N and ∂2πN

∂pi ∂p j
= 0

for all i = 1, . . . , N and j �= i . Hence, πN is jointly concave in pi for ∀i and the
optimal prices pi are the values which make the first-order derivatives, which are
stated as below, equal to 0.

∂π

∂pi
= 1

tN

[
a(ti − ti−1) − 2βpi (ti − ti−1) − k

2
(t2i − t2i−1) + cβ(eθ ti − eθ ti−1)

θ

−h

[
β

θ2
(1 − eθ(ti−ti−1)) + β

θ
(ti − ti−1)

+ β

θ2

i−1∑
j=1

((eθ(ti−t j ) − eθ(ti−1−t j ))(1 − eθ(t j−t j−1)))

⎤
⎦

⎤
⎦

p1i = a

2β
− k

4β
(ti + ti−1) + c(eθ ti − eθ ti−1)

2θ(ti − ti−1)

+ h

2θ

(eθ(ti−ti−1) − 1 − ∑i−1
j=1((e

θ(ti−t j ) − eθ(ti−1−t j ))(1 − eθ(t j−t j−1)))

θ(ti − ti−1)
− 1

)

However, for p1i to be optimal, it should also satisfy the constraints in the problem.
Since a > kti should hold for all i (otherwise, the demand function a − βpi − kti
will be non-positive even for pi = 0 and such ti can never be optimal), p1i ≥ 0 will
always hold. However, p1i might not satisfy the constraint a − βp1i − kti ≥ 0 for all
i . In those cases, since the objective function is jointly concave w.r.t. pi , the optimal
price will be p2i = a−kti

β
. ��

Even though we can find analytical results for the optimal prices for given ti and
N values, due to the constraints in the problem and N being an integer variable, we
could not determine the optimal values of N and ti explicitly, for all i = 1, 2, . . . , N .
Thus, we try to solve the above problem with the commercial nonlinear programming
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solver BARONwithGAMS.We use pi values fromTheorem 1 to decrease the number
of variables in the model and aim to solve for the unknowns N and ti only. We do
a one-dimensional search over N and run the solver for our problem for varying N
values given as input and try to find the optimal ti values for all i = 1, 2, . . . , N .
As a result, even though we could obtain the optimal solution when N is small (e.g.,
less than 10), the commercial solver failed to give any results as N increases under a
time limit of 4 hours. In addition, the commercial solver is seen to fail to guarantee the
global optimality in many cases.We note that running the model with pi values also as
decision variables results in worse solutions. Hence, we develop heuristic algorithms
to determine the optimal values of N and ti as presented in the next section.

2.1 Special case: single price model (N = 1)

In this section, we analyze the static pricing model in which a single price is used
over the inventory cycle with no price changes (N = 1 case). In this case, the profit
function and the problem can be written as below:

max
p1,t1

π1 =
[
p1(a−βp1) − kp1

2
t1 − h

[
−a−βp1 − kt1

θ2t1
(1−eθ t1) − k

θ3t1
(1 − eθ t1)

−a−βp1
θ

+ k

2θ
t1 − k

θ2

]
− c

(a − βp1 − kt1)θeθ t1 + keθ t1 − (a−βp1)θ − k

θ2t1

− A

t1

]

s.t

a − βp1 − kt1 ≥ 0

t1 ≥ 0

p1 ≥ 0 (2.7)

For this case, the first-order derivatives of the objective function will be as below:

∂π1

∂p1
= a − 2βp1 − kt1

2
+ cβ(eθ t1 − 1)

θ t1
− h

[
β

θ2t1
(1 − eθ t1) + β

θ

]
(2.8)

∂π1

∂t1
= −kp1

2
− h

×
[

[k(1 − eθ t1) + (a − βp1 − kt1)(θeθ t1)]t1 + (a − βp1 − kt1)(1 − eθ t1)

θ2t21

+ kθeθ t1 t1 + k(1 − eθ t1)

θ3t21
+ k

2θ

]
+ A

t21
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− c
(−keθ t1 + (a − βp1 − kt1)θeθ t1)θ t1 − θ(a − βp1 − kt1)eθ t1

θ2t21

+ keθ t1θ t1 − keθ t1

θ2t21
(2.9)

Even though the optimal price can be obtained from Eq. 2.8 as a function of t1 as stated
in Theorem 1 for i = 1, due to the complexity of Eq. 2.9, it is not possible to obtain a
closed form solution for t1 even when N = 1. However, since the objective function
is jointly concave w.r.t. p1 and t1, the optimal price and cycle length can be obtained
from the above equations numerically, if they satisfy the constraints. Otherwise, one of
the constraints will be binding and in the optimal solution, either t1 = 0 or p1 = a−kt1

β
should be satisfied. If t1 = 0, it means that the business should be closed and zero
profit will be made. On the other hand, if p1 = a−kt1

β
, then the optimal t1 can be

found from the solution of the first-order derivative of the objective function, as stated
below:

A

t21
− k2t1

θ
+ hk(eθ t1 − 1)

t21 θ3
+ ck(eθ t1 − 1)

t21 θ2
+ ak

2β
+ hk

2θ
− hkeθ t1

θ2t1
− ckeθ t1

θ t1
= 0

(2.10)

3 Approximate solutions

3.1 Price changes at equal intervals

In this approximation algorithm, we assume that the times between any two price
changes are equal to each other, such that ti − ti−1 = t for all i = 1, 2 . . . N for
some t . Under this assumption, in addition to the variables N and pi , instead of the
variables ti for all i = 1, 2 . . . N , we only have a single variable t that determines
the time length between any two price changes. For a given t , time of the i th price
change, ti , will be i ∗ t . Since we can determine the optimal pi values as a function of
ti as given in Theorem 1, the only problem remains to determine the optimal N and
t , which can easily be determined through a two-dimensional search in a reasonable
time. We present the efficiency of this approximation algorithm in our computational
studies.

3.2 Genetic algorithm

Genetic algorithm is an optimization method based on naturally inspired genetic oper-
ations. It uses selection, mutation and crossover operations to achieve its optimization
goal. A chromosome in our model is an array with N values, where the element at
the ihposition denotes the value of ti . We note that, since N is a decision variable, the
algorithm is run for different N values and optimal N is obtained through enumeration.
Figure 2 shows an illustration of such chromosomes.
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Fig. 2 Illustration of chromosomes

As a result of our initial experiments, where we tried different initial population
sizes of 20, 30, 50 and 100, we choose to start with 30 different chromosomes, each
with a different random value of tN . For the initial solution, we generate all other ti
values in a chromosome by equally spacing them up to tN . Then, for a given array of
ti values, we calculate the optimal prices and the profit function for each chromosome
using the equations in the previous section, and determine the fitness value of each
chromosome as the value of the profit function for that time array.

After evaluating the profit values for each chromosome, we allocate reproductive
opportunities in such a way that the chromosomes which represent a better solution
for the problem are given higher chances to reproduce than other chromosomes with
lower objective function value. We apply roulette wheel selection as the reproduction
mechanism. In the roulette wheel selection method, the first step is to calculate the
cumulative fitness of the whole population through the sum of the fitness of all individ-
uals. After that, the probability of selection is calculated for each individual as being
wheel= fitness/total fitness. Then, an array is built containing cumulative probabilities
of the individuals and individuals are selected according to their probabilities.

We apply crossover operations to generate new populations using one point variable
length crossover.We form amating pool with the offspring and the original population,
then by generating random numbers, chromosomes with higher fitness values are
selected into the next generation.We take twoparents and cut themat a randomposition
and swap them. For each chromosome pair, probability of crossover is randomly
generated at each time. The pairs are selected randomly from a 30-member population.
Therefore, at each iteration, fifteen pairs are created and crossover is applied if default
crossover probability is less than the random number generated by code as crossover
probability.

In order to have diversification, we also apply mutation to the chromosomes. After
crossover is performed, we apply themutation operator to change only one point of the
genome to diversify the solution. Every genome is mutated by a predefined probability
of 0.07, which is found to be the best value according to our initial experiments.

Until a termination criterion is met, this procedure is repeated and the best time
array is selected. The pseudo-code for our algorithm is as follows:

Pseudo-Code for Genetic Algorithm

Step 1.Generate an initial population of chromosomes which are constructed from
feasible solutions of time arrays
Step 2. Evaluate objective function values of chromosomes using profit functions
with the corresponding price functions.
Step 3. Select two chromosomes from the population according to their objective
values (higher probability of selection for higher objective values)
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Step 4. According to crossover probabilities, by crossover operator, form new
offspring from parents.
Step 5. According to the mutation probabilities, mutate new offspring at each
randomly selected locus
Step 6. Place new offspring in the population
Step 7. Select the next population according to their objective function values.
Step 8. Use new generated population for the further run of the algorithm
Step 9. If end condition is satisfied, stop and return the best solution in the popu-
lation.

4 Computational studies

In this section,wepresent our numerical results to analyze themulti-pricing strategy for
the management of perishable inventories. As a base case for our numerical examples,
we use the parameters a (market size)= 100, β(price sensitivity of demand)= 1, k(age
sensitivity of demand)= 5, c(unit cost of products)= 5, h(holding cost per product
per unit time)= 0.1, θ (decay rate of products)= 0.05, A(fixed order cost)= 5000. In
addition, when N prices are used in an inventory cycle, it means that N − 1 price
changes are made and we use a linear cost function C(N ) = (N − 1) f for changing

Table 2 Comparison of multi-pricing strategy with single pricing

Parameter Single pricing Multi-pricing

Profit Decay
ratio

Order
size

Price Cycle Profit Decay
ratio

Order
size

N Ave. price Cycle

Base case 742.8 14.24 312 44.4 7.04 759.9 15.67 325.9 3 44.09 7.30

a = 120 1615.5 13.24 349.8 55.39 6.17 1627.5 14.09 359.9 3 55.23 6.31

a = 80 101.7 14.94 262.1 32.59 8.63 131.24 18.26 285.7 4 31.66 9.45

A = 6000 608.3 15.39 342.1 43.49 7.84 630.8 17.29 361.1 4 43.08 8.2

A = 4000 893.9 12.92 278.7 45.35 6.2 906.2 14.01 289 3 45.14 6.39

β = 1.5 212.9 16.79 366.8 29.16 9.13 231.3 19.39 391.8 4 28.78 9.67

β = 0.5 2578.4 10.46 226.7 91.03 4.77 2594.2 11.11 232.9 3 90.76 4.88

c = 10 530.6 14.32 293.4 47.18 7.24 546.3 15.8 305.9 3 46.91 7.5

c = 2.5 855.9 14.23 321.8 42.98 6.97 873.9 15.63 336.4 3 42.67 7.23

k = 10 204.9 9.63 200.5 39.47 5.42 257.4 11.94 216.9 4 38.15 5.97

k = 2.5 1129.5 19.55 467.5 47.68 9.22 1134.1 20.29 476.5 2 47.63 9.33

f = 20 742.8 14.24 312 44.39 7.04 757.2 15.7 326.7 3 44.07 7.32

f = 5 742.8 14.24 312 44.39 7.04 761.8 15.74 326.5 4 44.09 7.31

h = 0.2 730.2 14.17 308.8 44.64 7 746.1 15.53 321.65 3 44.37 7.24

h = 0.05 749.1 14.3 314 44.26 7.07 767 15.74 328.1 3 43.96 7.33

θ = 0.1 702.7 26.61 351.6 45.24 6.86 715.2 28.63 368.4 3 45.05 7.04

θ = 0.025 760.3 7.36 293.4 44.03 7.12 779.5 8.17 304.6 3 43.69 7.40
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prices where f = 10. In Table 2, we present the results for the dynamic pricing model
as well as the results for the static pricing case, as a benchmark, in which the price is
not allowed to change during a cycle. In the first row of Table 2, we present the results
for this base case and in the following rows of this table, we do a sensitivity analysis
by changing one of these parameters as stated in the first column of Table 2. In Table
2, we compare the multi-pricing strategy with the static pricing strategy, in which only
one price is allowed to be used. We obtain the optimal results for the static pricing
case by fixing N = 1 and doing a one-dimensional search for the optimal length
of the cycle tN to maximize the total profit function 2.6 with the help of Theorem
1. For the multi-pricing case, we use the commercial solver BARON with GAMS
since the number of price changes in the optimal solution is small in these examples.
Experiments are done on a workstation with an Intel(R) Core(TM)2 Duo processor,
2.53 GHz speed, and 2GB of RAM.

InTable 2,weobserve that dynamicpricingmight result in significant gains in profits
as opposed to single pricing. In our base case, the difference of the profits between
multiple pricing and single pricing is about 2.5%, but this difference changes depending
on the system parameters. For example, when a decreases to 80 or k increases to 10,
the gain in profits with multiple pricing increases up to 30%. On the other hand, when
a is high or k is small, the percentage difference of profits between multi-pricing and
single pricing becomes less than 1%. We observe that multiple pricing becomes more
beneficial as a, f , h or θ decreases; or A, β, c or k increases.Whenwe look at the other
values, we observe that multiple pricing leads to longer cycle lengths and higher order
quantities in all cases; however, this also leads to higher decay ratios of products which
seem counterintuitive at first, since we expect that multiple pricing might decrease the
wastage amounts. However, due to longer cycles and higher order sizes, even though
higher profits are obtained, multiple pricing also leads to higher decay amounts. When
we look at the prices, we observe that the average price values with multiple pricing
are lower than the static price value. It is seen that, when multiple prices are used, at
first a high price is charged at the beginning (which is generally larger than the single
price value), and then the prices are decreased over time. For example, in our base
case the single price value is 44.4, but in the multiple pricing model, the price 49.7
is charged at the beginning and then it is decreased to 44.11 at time 2.42 and then to
38.56 at time 4.85 and this price is charged until the end of the cycle.

When we look at the effects of the parameters on the system, we observe that
as a increases, the order size increases, the cycle length decreases and the profits
increase substantially. In addition, the benefit of dynamic pricing decreases with a.
As β increases, less profit is obtained since lower prices need to be charged but the
order size and the cycle length increase. In addition, as β increases, since the system
will be more sensitive to pricing, the benefit of dynamic pricing compared to the static
pricing model increases. When k increases, multiple pricing becomes more beneficial
while the order size and the cycle length decrease. Next, we observe that as c increases,
order size, cycle length and profits decrease. In addition, the benefit of dynamic pricing
also increases with c. We observe that as the inventory holding cost increases, profits
decrease and less units are ordered in each cycle leading to shorter cycle lengths.When
the wastage rate increases, we see that the cycle length decreases but the order size
increases. The reason for this is that since more products will be wasted, the company
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Table 3 Effect of the number of price changes on profit

N 1 2 3 4 5 6 7 8 9 10

Profit 742.79 759.51 762.71 763.84 764.36 764.65 764.82 764.93 765.01 765.06

needs to order more products to satisfy the demand during a cycle. As f decreases,
dynamic pricing will be more useful and the prices are changed more often, leading to
increased profits. Lastly, we observe that as A increases, more units are ordered and
the cycle length increases. In addition, multiple pricing becomes more beneficial as A
increases.

Number of price changes, N , is one of themain parameters in order to see the effects
of multi-pricing on the system. Hence, we try different numbers of price changes by
letting f = 0 and we observe in Table 3 that the profit is concavely increasing with
the number of price changes. That is, the effect of increasing the number of price
changes on profit is high at first but the increase in profit converges to 0 as N gets
larger. For example, the profits increase by 2.25% when a single price change is made
(N = 2), instead of using a constant price over the cycle (N = 1). However, when N
is increased from 2 to 3, the profits increase by 0.42% and when N is increased from
3 to 4, the profits only increase by 0.15%. In addition, when N is changed from 2 to
10, the increase in profits is only 0.73%. Thus, it is observed that most of the benefits
are obtainable through a single price change, and it enables the retailer to be close
enough to the optimal solution.

In general, since the price changes are costly, we can conclude that it will be optimal
to use just a few price changes in a cycle rather thanmaking toomany changes in price.
However, the cost of changing prices might vary a lot in different industries. When
C(N) is small, as in sales made online, more frequent price changes can be done since
changing the prices online is much less costly, but, as C(N) gets higher, less number
of price changes need to be done. Thus, depending on the cost of price changes, a
manager can decide on the optimal number of price changes N in his business by
considering the effect of C(N) in his profits.

We analyze the efficiency of the proposed heuristics in Table 4. Heuristic methods
are coded in C programming language and the run times are seen to be less than a
few seconds in all cases. We observe that both heuristics perform very well and the
differences between the profits obtained by the heuristics and the optimal value of
profits are less than 0.5% in all cases. For the base case, when equal time intervals are
used, it is observed that the prices are changed at times 2.43 and 4.86 where the cycle
length is 7.3 and the prices at these intervals are 49.68, 44.08 and 38.54, which are very
close to the optimal solution stated above for this case, even though not optimal. The
results suggest that employing a simple strategy with equal time intervals to change
the prices is very efficient. It is stated by Transchel and Minner (2009) that changing
the prices at equal time intervals is essentially optimal for non-perishable products
and we observe that this strategy gives very good results for the perishable products,
too. Such a strategy is also easy to use for the managers; thus instead of trying to
determine the optimal times to change the prices, using equal time intervals seems to
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Table 4 Efficiency of heuristics
Parameter Percentage of optimality gaps Genetic algorithm

Equal time intervals

Base case 0.3 0.06

a = 120 0.2 0

a = 80 0.4 0.1

A = 6000 0.4 0.08

A = 4000 0.1 0.05

β = 1.5 0.3 0.09

β = 0.5 0.08 0

c = 10 0.3 0.08

c = 2.5 0.2 0

k = 10 0.3 0.04

k = 2.5 0.4 0.06

f = 20 0.2 0

f = 5 0.3 0.1

h = 0.2 0.3 0.07

h = 0.05 0.3 0.06

θ = 0.1 0.4 0.08

θ = 0.025 0.07 0

be an effective strategy to follow. When we look at the genetic algorithm, we observe
that it gives even better results than the equal time interval approximation.We note that
the genetic algorithm gives different results at each run due to the stochastic nature of
the algorithm and the results given in Table 4 are the best results obtained in 10 runs
of the algorithm.

5 Conclusions

We analyze the coordinated pricing and inventory decisions for perishable products
in a deterministic setting in which the demand not only depends on the price but also
on the freshness of the products. In addition, the products in inventory are assumed to
decay at a certain rate which adds another dimension to the problem.We derive explicit
analytical results for the optimal prices, given the times to change the prices. We can
determine the optimal times to change the prices by solving a nonlinear programusing a
commercial solver andwepropose twoheuristic algorithms to approximate the optimal
solution. Through numerical experiments, we compare the multi-pricing strategy with
single pricing case in which the price is not allowed to change throughout the selling
period. We observe that multiple pricing can lead to significant savings depending on
the system parameters. When we look at the efficiencies of the heuristics, we observe
that changing the prices at equal time intervals is very efficient and gives very close
results to the optimal solution. Since it is also much easier to use for the managers, it
might be logical to use equal time intervals to change the prices.
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We plan to extend our model in the future in several ways. Firstly, different types of
demand functions or decay processes can be analyzed in detail. For example, instead
of using a constant decay rate, time-dependent decay functions can be used in the
future.Also, exponential or nonlinear demand functions canbe employed.Even though
different types of demand functions will generate different analytical results for the
optimal solutions, the analysis of the problem will be the same. We expect that similar
results and managerial implications will be obtained for different types of demand
functions as seen in the literature for similar problems (e.g., Transchel and Minner
2009; Rajan and Steinberg 1992; Benkherouf 1995, etc.) even though the sensitivity
of the optimal solution will be different depending on the demand parameters. In
addition, this problem can be analyzed in a stochastic setting in which the demand
and also the decaying process are random. Even though our results can form a basis
for developing coordinated pricing and inventory policies that can be also applied in
stochastic environments, the performances of such policies need to be investigated
and effective policies need to be developed for stochastic systems.

References

Abad PL (1996) Optimal pricing and lot sizing under conditions of perishability and partial backordering.
Manag Sci 42:1093–1104

Abad PL (1997) Optimal policy for a reseller when the supplier offers a temporary reduction in price. Decis
Sci 28:637

Abad PL (2001) Optimal price and order size for a reseller under partial backordering. Comput Oper Res
28:53–65

Abad PL (2003) Optimal pricing and lot sizing under conditions of perishability and partial backordering
and lost sale. Eur J Oper Res 144:677–685

Bakker M, Riezebos J, Teunter HR (2012) Review of inventory systems with deterioration since 2001. Eur
J Oper Res 221:275–284

Benkherouf L (1995) On an inventory model with deteriorating items and decreasing time-varying demand
and shortages. Eur J Oper Res 86:293–299

Bitran GC, Caldentey R (2003) An overview of pricing models for revenue management. Manuf Service
Oper Manag 5(3):203–229

Broekmeulen RACM, van Donselaar KH (2009) A heuristic to manage perishable inventory with batch
ordering, positive lead-times, and time-varying demand. Comput Oper Res 36:3013–3018

Burwell TH, Dinesh DS, Fitzpatrick KE, Melvin R (1991) An inventory model with planned shortages and
price dependent demand. Decis Sci 22:1187

Chen LM, Sapra A (2013) Joint inventory and pricing decisions for perishable products with two-period
lifetime. Naval Res Log 60(5):343–366

Chen X, Pang Z, Pan L (2014) Coordinating inventory control and pricing strategies for perishable products.
Oper Res 62(2):284–300

Chew Peng E, Chulung L (2009) Joint inventory allocation and pricing decisions for perishable products.
Int J Prod Econ 120:139–150

Gallego G, van Ryzin G (1994) Optimal dynamic pricing of inventories with stochastic demand over finite
horizons. Manag Sci 45:24–41
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