
OR Spectrum (2017) 39:193–229
DOI 10.1007/s00291-016-0450-2

REGULAR ARTICLE

Integrated versus hierarchical approach to aggregate
production planning and master production scheduling

Tom Vogel1,2 · Bernardo Almada-Lobo2 ·
Christian Almeder1

Received: 10 March 2015 / Accepted: 26 May 2016 / Published online: 10 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The hierarchical planning concept is commonly used for production plan-
ning. Dividing the planning process into subprocesses which are solved separately in
the order of the hierarchy decreases the complexity and fits the common organizational
structure. However, interaction between planning levels is crucial to avoid infeasibility
and inconsistency of plans. Furthermore, optimizing subproblems often leads to sub-
optimal results for the overall problem. The alternative, amonolithicmodel integrating
all planning levels, has been rejected in the literature because of several reasons. In
this study, we show that some of them do not hold for an integrated production plan-
ning model combining the planning tasks usually attributed to aggregate production
planning and master production scheduling. Therefore, we develop a hierarchical and
an integrated model considering both levels, aggregate production planning and mas-
ter production scheduling. Computational tests show that it is possible to solve the
integrated model and that it outperforms the hierarchical approach for all instances.
Moreover, an indication is given why and when integration is beneficial.
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1 Introduction

Production planning is one of the key processes of an industrial company. According
to the supply chain planning (SCP) matrix (e.g., Rohde et al. 2000), it is not a single
process but divided vertically into different levels, each of them focusing on a different
time horizon (long term, mid term, short term). Within the research community, the
following levels are usually established, aggregate production planning (APP), master
production scheduling (MPS), material requirements planning (MRP), and scheduling
(Drexl et al. 1994) which are included in a typical Manufacturing resource planning
(MRP II) system (see e.g., Zäpfel 1996). However, there is no unique definition of these
levels because the problems differ among the industries and companies. Consequently,
if they are incorporated into a specific production planning system, the number and
type of levels taken into account may vary significantly.

The division of the production planning process into subprocesses which are per-
formed sequentially is called hierarchical production planning (HPP). The basic idea
is that the (optimal) decisions of an upper level provide constraints for the subsequent
lower level. The levels differ in terms of the decisions which have to be made and the
planning horizon. Since computational power increases more and more, researchers
try to integrate adjacent planning tasks, e.g., simultaneous planning of production and
distribution (e.g., Amorim et al. 2013) or integrating lot-sizing and scheduling (e.g.,
Jodlbauer 2006). The monolithic model (MM) approach attempts at solving more than
one level simultaneously as well. However, MM as an alternative approach to HPP
has been rejected in the literature for a long time. Indeed, HPP offers not only several
intuitive advantages, but often an MM seemed not to be achievable. HPP maps the
typical hierarchical structure of the company with its responsibilities of decision mak-
ers and reduces the mathematical complexity. Besides that, the computational effort
of an MM seemed too big. Contributions comparing the hierarchical approach with
the monolithic one in similar contexts support this hypothesis (e.g., Sawik 2009). For
these reasons, Hax and Meal (1975) decided against a single model and came up with
their hierarchical approach. Silver and Peterson (1985) added that an MM requires
detailed input data for a long horizon which is clearly not possible in practice. These
arguments are repeated in the HPP literature and even more recent papers mention
these points to provide evidence for the infeasibility of an MM. Fleischmann and
Meyr (2003) argue that due to the reasons given below, an MM is not useful. Note that
they refer to all tasks of the SCP matrix and not only production planning:

1. increasing uncertainty with longer planning horizon;
2. shorter planning horizons need higher planning frequencies;
3. different degrees of aggregation (e.g., time, products, resources) at every level;
4. planning levels map the hierarchy structure of the company and the importance of

the decisions of every level varies, depending on the power of the decision maker.

HPP, being a special case of hierarchical planning (HP), is characterized by the fol-
lowing points (Fleischmann and Meyr 2003):

• increasing level of detail (from top to bottom);
• decreasing planning horizon;
• increasing planning frequency.
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The conclusion is that a planning system taking into account these characteristics
fulfills requirements 1–4. However, the literature review in Sect. 2 shows that even
most of the HPP papers only partially incorporate these points. Furthermore, there
is no reason why a single model should not be capable of considering these chal-
lenges. Of course, in the common definition, a monolithic approach has to create
detailed plans for end items for the complete seasonal cycle (Omar and Bennell
2009). However, detailed long-term plans are neither needed nor possible. It is not
necessary that an integrated planning approach has to fulfill these requirements which
are even not fulfilled by the HPP approach. Therefore, the planning model to be cre-
ated simply integrates APP and MPS into a single model, aiming to fulfill the same
conditions as the HPP approach. To differentiate our planning approach from the
usual MM found in the literature, we denote our model as the integrated production
planning (IPP) approach. Only point 4 is not tackled by the IPP when we consider
a company where the hierarchy is based on an asymmetric information status, called
organizational hierarchy (c.f. Schneeweiss 2003). However, this is out of scope of that
paper.

The objective of this contribution is to reinforce that it is possible to realize an
integrated model besides the traditional HPP and the inadequate MM—at least for the
two considered planning levels. Moreover, computational tests check if it is solvable
and whether the results show an improvement compared to the HPP approach. Of
course, the expectation is that some of the limiting borders of HPP are removed.
For instance, the obvious drawback of an approach optimizing subproblems is the
suboptimality for the overall problem. Just solving the subproblemswith sophisticated
methods is not sufficient, the coordination of the levels is also important to obtain good
results (Gelders and Van Wassenhove 1982). Therefore, Chung and Krajewski (1987)
investigated the mechanisms for APP and MPS on a rolling horizon basis. An IPP
incorporates the coordination already within the model. However, that advantage does
not automatically lead to better results than the HPP. We have to consider that as soon
as we apply a solution method on a rolling horizon basis, even an exact approach
becomes a heuristic (Stadtler 2000).

Only a few recent publications call the traditional HPP into question (e.g., Xue
et al. 2011) or show some drawbacks of the common implementation (e.g., White
2012). This paper intends to show that it is possible to integrate the two upper levels of
HPP, APP andMPS into a single model and to fulfill at the same time the requirements
mentioned above. Computational tests reveal that an IPP is always superior toHPP—at
least within the borders of our parameter settings.

The remaining part of the paper is structured as follows. Section 2 provides a lit-
erature review of contributions about HPP and IPP dealing with similar questions.
Section 3 describes the HPP we want to solve by formulating the optimization models
for APP and MPS. Section 4 presents the IPP model. Section 5 introduces the rolling
horizon approach and its implementation for HPP and IPP. Section 6 describes how
test instances are generated. Computational results in Sect. 7 give insights into the
performance of both approaches and illustrate at one instance the reason for the supe-
riority of the IPP. The conclusion in Sect. 8 summarizes the paper and proposes some
future research directions.
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2 Literature review

The literature is reviewed in terms of the following properties, including the criteria
delivered by Fleischmann and Meyr (2003). Only point 4 (see Sect. 1) is missing
because the decisionwhether the proposedHPPmodelmaps the hierarchy is not always
clear. Unique guidelineswould be required, e.g., when does a decision level represent a
hierarchy level, and is disaggregating theupper level plan already sufficient?Therefore,
we neglect that property in our review and focus on the following ones.

• Property 1: The paper considers uncertainty or at least allows forecast errors. If
plans at different levels are made based on the same data and if deviations from the
upper level decisions are forbidden, the paper assumes demand certainty implicitly.

• Property 2: The planning horizon length decreases.
• Property 3a: The level of detail increases regarding products, i.e. different (product)
aggregation levels.

• Property 3b: The level of detail increases regarding time, i.e. different periods.
Note that in case Property 2 is valid, it does not imply that Property 3b holds. The
planning horizon might be shorter by keeping the same period length, see e.g.,
months in Bitran et al. (1981).

• Property 4: The plans are made on a rolling horizon basis.
• Property 5: Setup times are considered.

If the paper considers a model with a certain property, we indicate it by “+”, other-
wise “−” is assigned. If no clear statement can be found, “◦” is assigned.

The overview in Table 1 reveals that not all HPP implementations in the literature
incorporate properties 1–3b, i.e. points 1–3 of Fleischmann and Meyr (2003). Adding
properties 4 and 5 to the request, only two papers come close to our requirements. The
first one is Chung andKrajewski (1987). However, we discard their model formulation
because setups are planned in the top level and not in the base level. In our point of
view, this contradicts the assumption of an increasing level of detail. The second paper
is Gebhard and Kuhn (2007). Since their problem description is slightly different and
focuses more on the robustness issue, we discard that approach as well and create our
own models. Note that Table 1 does not represent an exhaustive literature overview.
There exists a wide range of papers considering an HPP to some extent. We focus on
those contributions which seem to be most suitable for our research.

Dealing with dissolving borders between the levels are studies by Chung and
Krajewski (1987) who investigate a feedback procedure on a rolling horizon basis.
Schneeweiss (1995) contributes a framework for hierarchical planning in general, for-
malizing the interaction and interdependencies between planning levels. Other works
trying to improve the interaction are, among others, Rohde (2004) and Selçuk et al.
(2006). A literature review and some history about HPP can be found in McKay et al.
(1995).

The literature about IPP andMM is assessed regarding the same criteria as the HPP
works. Note that White (2012) is also listed in Table 2 since this contribution relies
on both approaches, HPP and MM.

Apparently, the literature about the MM (or IPP, respectively) is sparse, mainly
because it would be too complex and not fulfill the requirements of Fleischmann and
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Table 1 Literature review with assessment if Properties 1–5 are considered in the papers

Paper Prop. 1 Prop. 2 Prop. 3a Prop. 3b Prop. 4 Prop. 5

Hax and Meal (1975) + + + −a +b −c

Bitran et al. (1981) + + + − + −
Axsäter and Jönsson (1984) ◦ ◦ + + ◦ −
Chung and Krajewski (1987) +d + + + + +e

Meybodi and Foote (1995) + + + + + −
Meybodi (1995) − + + + + −
Carravilla and de Sousa (1995) +f + + + ◦ −
Venkataraman and Smith (1996) + − + − + −
Zäpfel (1996) + + + − + −
Özdamar et al. (1998) −g + + + + −h

Qiu et al. (2001) − + − + ◦ −
Rohde (2004) − + − + + +
Selçuk et al. (2006) + + −i + + −
Gebhard and Kuhn (2007) + + + + + +
Omar and Teo (2007) +f + + + ◦ +
Christou et al. (2007) ◦ + − + ◦ −
Omar and Bennell (2009) − − + − + +
Aghezzaf et al. (2011) + + + − ◦ −
Timm and Blecken (2011) + + − − ◦ +
Ortiz-Araya and Albornoz (2012) − + + + ◦ −
White (2012) − + + + + −
This paper + + + + + +
a There are three lowest levels on a monthly basis
b Rolling horizon planning is not mentioned explicitly, but the way of implementation could be considered
as such
c Major and minor setups are considered in terms of cost, but setup times are not incorporated explicitly
d Experiments are without uncertainty; however, experiments allow for different demand data because
deviations are allowed
e In the upper level, and not in the lower level
f Distinguish between sales forecast (top level) and orders (lower levels)
g Demand data only at the top level. Other levels just disaggregate and sequence
h Some capacity is reserved in advance for setups
i Distinguish between items and final products

Meyr (2003). There are contributions published before HPP arose, e.g., Manne (1958),
Dziellinski and Gomory (1965), Lasdon and Terjung (1971), which are considered as
MM. However, more interesting for our paper are the works by Graves (1982) and
subsequent ones. Obviously, these contributions do not fulfill the requirements of
Fleischmann and Meyr (2003) and mostly neglect setup times.

3 Hierarchical production planning

Our HPP consists of two levels, APP and MPS. We assume that these are not the only
decision levels of the company, but the focus will be on these two. APP and MPS
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Table 2 Literature review assessing whether properties 1–5 are considered in the papers

Paper Prop. 1 Prop. 2 Prop. 3a Prop. 3b Prop. 4 Prop. 5

Graves (1982) − − + − + −
Herrmann et al. (1994) − + + + + −
Xue et al. (2011) − − + − + +
White (2012) ◦ + + + −a −
This paper + + + + + +
a Since the MM implementation covers the complete planning horizon, it is not solved on a rolling horizon
basis

are of high importance, because often they are the front end of production planning
systems (Vollmann et al. 1973). Especially, MPS provides the basis for MRP and
affects the final production efficiency at the shop floor as well (Omar and Bennell
2009). Following the classification of Hax and Meal (1975), we distinguish between
product types at the APP level and product families at theMPS level. A product family
is a group of items which share the same setup, while a product type comprises all
product families with similar holding costs, productivities and seasonalities. Items
represent end products which are delivered to customers, but are not considered at
these levels and therefore do not appear in our models.

Simply solving both levels sequentially is not sufficient, since the interaction is
crucial, as Gelders and Van Wassenhove (1982) showed in two practical examples.
Therefore, we follow the terminology of Schneeweiss (1995), distinguishing between
anticipation, instruction and reaction.Anticipationmeans that the upper level considers
the characteristics of the lower level in its decision. This influence of the base level is
also called feedforward. An instruction made by the upper level influences the lower
level and its decisions. Reaction is the feedback of the lower level as a result of the
upper level instruction.

The production environment consists of non-identical production lines which are
clustered into types according to the product types they can produce. Their capacity
and speed are identical. Note that the disaggregation from lines into specific machines
is not considered here. We assume that it is done on the subsequent planning level,
which creates plans on a more detailed level regarding time, products and capacity.
The setup times and cost depend only on the product family. The holding of inventory
is unlimited. We consider demand uncertainty only at the top level, because long-term
forecasts are error prone. However, in those periods of APP which are also considered
in MPS, demand is known because of firm customer orders.

Most of the papers on HPP focus on the disaggregation procedure because it may
incur infeasibilities. The resulting plans are identical in every level, only the degree
of aggregation differs (e.g., the monthly production amount for product types is equal
to the aggregate weekly production amount for product families, summed up over
all product families and weeks of the corresponding type and month, respectively).
Typically, the production amount and inventory levels are treated like this. That is
justified if we do not have to allow for any uncertainty. However, in practice we
have to deal with uncertain demand and information of different quality at different
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levels. The first point mentioned by Fleischmann and Meyr (2003) also refers to that.
Consequently, if we assume demand uncertainty, then a strict disaggregation method
as proposed in the former literature holds no longer (see Zäpfel 1996), because upper-
and lower-level plans rely on different data. Keeping in mind the main goals of the
different levels, one should shift the focus to the interaction between the levels. For
instance, the main purpose of APP is to determine the required capacity and target
inventory levels to deal with seasonality. However, the monthly production amount
is not of interest for the MPS. When we create the HPP system, we have to identify
the decision variables of the different levels, whether they have to be implemented or
at least provide information to the next stage. Only those are part of the interaction
between the levels. Therefore, we categorize the decision variables according to the
intuitive terminology of White (2012), distinguishing between plans, decisions and
targets. A plan comprises all decision variables of a certain level. Decisions are those
variables forwhich the decisionmaker of this level has responsibility. Hence, decisions
are passed as hard constraints to the next level and calledfinal according toSchneeweiss
(1995). Targets are also transmitted to the lower level; however, that level is not forced
to satisfy the target. In Schneeweiss (1995), such decisions are called factual.Normally,
deviations are penalized in the objective function.

Obviously, decisions and targets are both instructions. After introducing the APP,
we will describe which instructions are given to MPS as decisions or targets. How
anticipation and reaction are realized will be shown in the section about the rolling
horizon implementation.

3.1 Aggregate production planning model

The APP consists of the following indices, decision variables and parameters.
Indices:

k Product type, k = 1, . . . , K
n Production line of type n, n = 1, . . . , N
tm Periods, measured in months, tm = 1, . . . , TAPP

φ(n) Set of product types which can be produced on line type n

Decision variables:

IAPPktm
Inventory level of product type k at the end of period tm (in units)

LAPP
ntm Number of production lines of type n in period tm
L+
ntm Number of production lines of type n opened at the beginning of period tm

L−
ntm Number of production lines of type n closed at the beginning of period tm

XAPP
kntm

Production amount of product type k produced on line type n in period tm (in
units)

Parameters:

ak Production time for one unit of product type k (in time units)
C I
k Inventory holding cost for one unit of product type k (per period)

CL
n Cost for running one production line of type n (per period)
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CL+
n Cost for opening one production line of type n

CL−
n Cost for closing one production line of type n

Captm Production capacity of one production line in period tm (in time units)
DAPP
ktm

Demand of product type k in period tm (in units)

IAPPk0 Initial inventory level of product type k at the beginning of the planning horizon
(in units)

LUB
n Maximum number of production lines of type n which can be opened in the

factory (per period)
LLB
n Minimum number of production lines of type n which have to be opened in

the factory (per period)
Ln0 Initial number of production lines of type n at the beginning of the planning

horizon

Aggregate production planning model

min
N∑

n=1

TAPP∑

tm=1

(
LAPP
ntm CL

n + L+
ntmC

L+
n + L−

ntmC
L−
n

)
+

K∑

k=1

TAPP∑

tm=1

IAPPktm C I
k , (1)

subject to

IAPPktm = I APP
k,tm−1 +

N∑

n=1

XAPP
kntm − DAPP

ktm , ∀k = 1, . . . , K ; tm = 1, . . . , TAPP, (2)

LAPP
ntm = LAPP

ntm−1 + L+
ntm − L−

ntm , ∀n = 1, . . . , N ; tm = 1, . . . , TAPP, (3)
∑

k∈φ(n)

ak X
APP
kntm ≤ LAPP

ntm · Captm , ∀n = 1, . . . , N ; tm = 1, . . . , TAPP, (4)

LLB
n ≤ LAPP

ntm ≤ LUB
n , ∀n = 1, . . . , N ; tm = 1, . . . , TAPP, (5)

XAPP
kntm = 0, ∀k /∈ φ(n), n = 1, . . . , N ; tm = 1, . . . , TAPP, (6)

XAPP
kntm , IAPPktm ≥ 0, ∀k = 1, . . . , K ; n = 1, . . . , N ; tm = 1, . . . , TAPP, (7)

LAPP
ntm , L+

ntm , L−
ntm ∈ N ∪ {0}, ∀n = 1, . . . , N ; tm = 1, . . . , TAPP. (8)

The objective function (1) minimizes the total costs comprising cost for running,
opening and closing production lines, and inventory holding costs. The first two
constraints balance, the inventory (2) and the number of production lines (3). The
production amount is limited by the capacity of the production lines in that period
(4). Constraints (5) limit the number of production lines between two bounds. Fur-
thermore, it enables us to implement the rolling horizon planning easily. Constraints
(6) force the production amount to zero if production line type n is not capable of
producing product type k. The last two constraints (7) and (8) define the domain of
the variables.
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Table 3 Plan, decisions and targets of the APP level

Plan LAPPntm , L+
ntm , L

−
ntm , I

APP
ktm

, XAPP
kntm

k = 1, . . . , K , n = 1, . . . , N , tm = 1, . . . , TAPP

Decisions LAPPntm n = 1, . . . , N ; tm = 1, . . . , T M

Targets IAPPktm
k = 1, . . . , K ; tm = 1, . . . , T M

tm

LAPP
ntm

n = 1
n = 2
n = 3

1

2

3

4

5

6

tm

IAPP
ktm

k = 1

k = 2

100

200

300

400

500

Fig. 1 Illustrative example for LAPPntm and IAPPktm

Remark 3.1 Variables L+
ntm and L−

ntm can be relaxed since constraints (3) imply the
integrality. Positive penalty cost CL+

n and CL−
n ensure L+

ntm · L−
ntm = 0,∀n =

1, . . . , N ; tm = 1, . . . , TAPP.

Let TM denote the target month, i.e. that the APP period in which the planning
horizon of the MPS ends and the targets have to be aimed. The solution of the APP
model is categorized as follows (Table 3).

The plan comprises all decision variables. As decision, only the number of pro-
duction lines is imposed on the MPS in the overlapping periods between both levels.
The inventory level at the end of the MPS planning horizon is passed to MPS as
a target. This is done to avoid short-sightedness, especially in the case of seasonal
demand. Without a target inventory level, the MPS would end with zero inventory not
allowing to build stock for seasons with extraordinary high demand. Additionally, the
inventory levels of periods 1, . . . ,TM − 1 are passed as targets as well. Experiments
without these intermediate targets caused problems, because of inconsistent inventory
levels at the APP and MPS level. Specifically, differences in the initial inventory were
crucial.

Figure 1 depicts decision LAPP
ntm , n = 1, 2, 3, tm = 1, . . . , 12, and target IAPPktm

,
k = 1, 2, tm = 1, . . . , 12, of an exemplary solution of the APP. Note that periods tm
are still discrete; for illustrative purpose, we chose the continuous representation of
the values.

3.2 Master production schedule

The MPS receives the decisions regarding capacity and the targets in terms of inven-
tory levels. To be able to cope with differences between the forecast and the actual
orders, overtime is allowed. Since overtime is limited, we consider backorders as
well ensuring feasibility. Because MPS does not plan product types but product fam-
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ilies, the target inventory level has to be disaggregated in advance, i.e. before solving
the MPS, into a lower bound IAPPj tw

for each family j . It is a target and not a deci-
sion; therefore, we allow a deviation from it. A parameter f states up to which
percentage the target level has to be fulfilled. The disaggregation factor, i.e., the coef-
ficient for each product family to be multiplied with the target level of the according
product type, will be based on the demand forecast. More details will be discussed
in the section about the rolling horizon approach. The number of production lines
defined on a monthly basis from APP is simply assigned to the related weeks in these
months.

New indices:

j Product family, j = 1, . . . , J
tw Periods, measured in weeks, tw = 1, . . . , TMPS

TW Set of target weeks, i.e. periods tw which have to fulfill the target level

Decision variables:

Bjtw Backorders of product family j in period tw (in units)
IMPS
j tw

Inventory level of product family j at the end of period tw (in units)
Ontw Overtime on line type n in period tw (in time units)
XMPS

jntw
Production amount of product family j on line type n in period tw

Y jntw =1, if product family j is produced on line type n in period tw, otherwise 0

Parameters:

aMPS
j Time for producing one unit of product family j (in time units)
Bj,0 Initial backorder level for product family j at the beginning of the planning

horizon (in units)
CB Backorder cost (per period and unit)
C I

j Inventory holding cost for one unit of product family j (per period)

CO Overtime cost (per h)
CP
n Production cost of line type n (per unit)

CS
j Cost for setting up production lines for product family j (per setup)

Captw Production capacity of one production line in period tw (in time units)
DMPS

j tw
Demand for product family j in period tw (in units)

f Percentage of the target inventory level which has to be fulfilled
IAPPj tw

Target inventory level of product family j in period tw (in units)—instruction
from APP

IMPS
j,0 Initial inventory level for product family j at the beginning of the planning

horizon (in units)
LMPS
ntw Number of production lines of type n in period tw—instruction from APP

Mjntw Sufficient big number for product family j on line type n in period tw
Omax Maximum overtime per production line (in time units)

s j Setup time for product j (in h)
�(k) Set of product families j belonging to product type k
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Master production scheduling model

min
J∑

j=1

N∑

n=1

TMPS∑

tw=1

(
XMPS

jntw CP
n + Y jntwC

S
j

)

+
J∑

j=1

TMPS∑

tw=1

(
IMPS
j tw C I

j + BjtwC
B
)

+
N∑

n=1

TMPS∑

tw=1

OntwC
O , (9)

subject to

IMPS
j tw = IMPS

j,tw−1 +
N∑

n=1

XMPS
jntw − DMPS

j tw + Bjtw − Bj,tw−1,

∀ j = 1, . . . , J ; tw = 1, . . . , TMPS, (10)

IMPS
j tw ≥ f · IAPPj tw , ∀ j = 1, . . . , J ; tw ∈ TW, (11)
∑

j∈�(k)

IMPS
j tw ≥

∑

j∈�(k)

IAPPj tw , ∀k = 1, . . . , K ; tw ∈ TW, (12)

J∑

j=1

(aMPS
j XMPS

jntw + s jY jntw) ≤ LMPS
ntw Captw + Ontw ,

∀n = 1, . . . , N ; tw = 1, . . . , TMPS, (13)

Ontw ≤ LMPS
ntw Omax, ∀n = 1, . . . , N ; tw = 1, . . . , TMPS, (14)

XMPS
jntw ≤ Y jntw · Mjntw , ∀ j = 1, . . . , J ; n = 1, . . . , N ; tw = 1, . . . , TMPS, (15)

XMPS
jntw = 0, ∀ j /∈ φ(n); n = 1, . . . , N ; tw = 1, . . . , TMPS, (16)

XMPS
jntw , IMPS

j tw , Ontw , Bjtw ∈ R+ ∀ j = 1, . . . , J ; n = 1, . . . , N ; tw = 1, . . . , TMPS

(17)

Y jntw ∈ {0, 1}, ∀ j = 1, . . . , J ; n = 1, . . . , N ; tw = 1, . . . , TMPS. (18)

The objective function (9) minimizes the cost for production, setup, holding inven-
tory, backorders and overtime. The first constraints (10) balance the inventory for each
product family on a weekly basis. Backorders are allowed, but transferred to the sub-
sequent period. Constraints (11) lead to a minimum inventory level for each product
family j in the target weeks TW . It prevents producing only the cheapest product to
fulfill the aggregate target inventory levels. Constraints (11) allow deviations from the
target on a product family level. However, due to cost reasons the permitted deviation
of (1− f )would always be exploited in the last period. Hence, constraints (12) have to
be added, ensuring that the aggregate target level is met. The next constraints (13) and
(14) ensure that the available capacity of the production lines, including the possibility
of overtime, is not exceeded. From expression (13) clearly, the total overtime depends
directly on the number of production lines of each type. So, (14) limit not the total
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overtime, but the overtime per production line type. Implicitly also the total overtime
is restricted. A side effect of (14) is that overtime can only be used at line type n
if there is at least one production line of that type. Constraints (15) force the setup
variable Y jntw to one if production of family j takes place on line type n in period tw.
Constraints (16) force the production amount to zero if production line type n is not
capable of producing product family j .

Estimating the big number Mjntw , we have to take into account that the common
estimation based on the future demand until TMPS is not sufficient. We might need
to fulfill demand from the past (i.e., backorders) as well as demand beyond the MPS
planning horizon (i.e., inventory target levels). On top of that, in (19), we allow a
deviation f from the target level and thus the possibility of a higher production amount
has to be ensured by M ′

jntw
. Another estimation M ′′

jntw
is based on the production

capacity, see (20). Finally, we can take the minimum of both values, as stated in (21).

M ′
jntw =

TMPS∑

t=1

DMPS
j t + Bj,0 − IMPS

j,0 + max
t

IAPPj t + (1 − f ) ·
J∑

j ′=1
j ′ 	= j

max
t

IAPPj ′t ,

∀ j = 1, . . . , J ; n = 1, . . . , N ; tw = 1, . . . , TMPS,

(19)

M ′′
jntw = LMPS

ntw · (Captw + Omax) − s j

aMPS
j

,

∀ j = 1, . . . , J ; n = 1, . . . , N ; tw = 1, . . . , TMPS, (20)

Mjntw = min{M ′
jntw , M ′′

jntw }. (21)

3.3 Illustrative example

With the following example, we illustrate the sequential solution process by utilizing
the hierarchical approach without reaction of the base level. The parameters are given
as follows: TAPP = 12 (months), TMPS = 12 (weeks), N = 2, K = 2, J = 4,
�(1) = {1, 2}, �(2) = {3, 4}. In this paper, and in this example as well, we assume
that every month tm consists of exactly 4 weeks tw.

The APP result is analyzed regarding decision and targets. All other variables
belonging to the plan are not relevant for now.

Table 4 provides the results of LAPP
ntm and IAPPktm

. The bold printed results are passed

to the MPS level, LAPP
ntm as decision and IAPPktm

as target.
Table 5 shows the assignment ofmonthly decisions toweeks.Given adisaggregation

factor v j , j = 1, . . . , 4, which states the proportion family j has within type k. That
means,

∑
j∈�(k) v j = 1 has to hold for all k = 1, ..., K . Moreover, factor f is given.

The inventory levels have to fulfill the following inequalities for tw = 12 according
to constraint (11).
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Table 4 Exemplary results of the APP level

tm (months) 1 2 3 4 5 6 7 8 9 10 11 12

LAPP1,tm
1 2 1 1 2 2 2 2 2 2 2 1

LAPP2,tm
5 6 7 7 7 7 7 7 7 7 6 6

IAPP1,tm
500 0 2000 2900 2100 2400 1200 0 200 100 0 0

IAPP2,tm
0 0 100 0 1400 1400 1200 0 0 0 200 0

Table 5 Decisions passed to the MPS level

tm (months) 1 2 3

tw (weeks) 1 2 3 4 5 6 7 8 9 10 11 12

LMPS
1,tw

1 1 1 1 2 2 2 2 1 1 1 1

LMPS
2,tw

5 5 5 5 6 6 6 6 7 7 7 7

IMPS
j,4 ≥ f · 500v j , j = 1, 2,

IMPS
j,12 ≥ f · 2000v j , j = 1, 2,

IMPS
j,12 ≥ f · 100v j , j = 3, 4.

4 Integrated production planning

We use the same notation for parameters, indices and variables as introduced for the
HPP.

IntegratingAPPandMPS into one singlemodel carries the following challenges due
to (dis-)aggregation regarding time (months, weeks) and products (types, families).

1. Some decision variables occur in both levels. They have to be either removed or
coordinated.

2. Similar constraints to be found in both levels have to be adapted.

Graves (1982) already incorporates these aspects on a much simpler level by taking
into account product types and families simultaneously in one production planning
model. We add to it two different time grids and planning horizons which leads to the
following adjustments in those periodswhereAPPandMPSare solved simultaneously,
called overlapping periods.

• Remove monthly inventory holding cost IAPPktm
from the objective function.

• Remove inventory balance constraint (2).
• Link IAPPktm

and IMPS
j tw

with an aggregation constraint (time, product).

• Link XAPP
kntm

and XMPS
jntw

with an aggregation constraint (time, product).
• Remove capacity constraint (4).
• Link LAPP

ntm and LMPS
ntw with a constraint.
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Hence, IPP benefits at the APP level from the detailed planning at the MPS stage. In
the objective function, we trade off not only different cost types, but also long-term
and short-term costs.

Remark 4.1 Using the terminology of Schneeweiss (1995), the model could still be
considered as a hierarchical approach with a partially explicit exact anticipation func-
tion at the upper level. Kröger (2014) uses this term for an anticipation function
developed for a hierarchical model including long-term location planning and mid-
termproduction planning. The basic idea is to anticipate the influence of the upper-level
decision on the lower level in an exactmanner for certain periods, while for the remain-
ing periods just an approximation is utilized.

We repeat the time structure and add set �:

tm = 1, . . . , TAPP APP periods (months)
tw = 1, . . . , TMPS MPS periods (weeks)
TM Month passing the target inventory level to lower level
TW Set of target weeks, i.e. periods tw which have to fulfill the target level
�(tm ) Set of all micro-periods, tw being part of macro-period tm
M jntw Sufficient big number for product family j , line type n, period tw

�(tm) is expressed as follows: �(tm) = {tw : tw ∈ [4(tm − 1) + 1, 4tm]}.
Integrated model combining APP and MPS

min
N∑

n=1

TAPP∑

tm=1

(
LAPP
ntm CL

n + L+
ntmC

L+
n + L−

ntmC
L−
n

)
+

K∑

k=1

TAPP∑

tm=T M+1

IAPPktm C I
k

+
J∑

j=1

N∑

n=1

TMPS∑

tw=1

(
XMPS

jntwC
P
n + Y jntwC

S
j

)
+

J∑

j=1

TMPS∑

tw=1

IMPS
j tw C I

j

+
J∑

j=1

TMPS∑

tw=1

BjtwC
B +

N∑

n=1

TMPS∑

tw=1

OntwC
O
n , (22)

subject to

APP constraints :
(3), (5), (6), (8)

IAPPktm = IAPPk,tm−1 +
N∑

n=1

XAPP
kntm − DAPP

ktm , ∀k = 1, . . . , K ; tm = TM + 1, . . . , TAPP,

(23)

∑

k∈φ(n)

ak X
APP
kntm ≤ LAPP

ntm · Captm , ∀n = 1, . . . , N ; tm = TM + 1, . . . , TAPP, (24)
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XAPP
kntm ≥ 0, ∀k = 1, . . . , K ; n = 1, . . . , N ; tm = TM + 1, . . . , TAPP, (25)

IAPPktm ≥ −DAPP
ktm , ∀k = 1, . . . , K ; tm = 1, . . . ,TM, (26)

IAPPktm ≥ 0, ∀k = 1, . . . , K ; tm = T M + 1, . . . , TAPP. (27)

Connect APP and MPS:

LAPP
ntm = LMPS

ntw ∀n = 1, . . . , N ; tw ∈ �(tm),∀tm : �(tm) 	= ∅, (28)

XAPP
kntm =

∑

j∈�(k),tw∈�(tm)

XMPS
jntw , ∀k = 1, . . . , K , n = 1, . . . , N , tm = 1, . . . ,TM,

(29)

IAPPktm =
∑

j∈�(k)

(IMPS
j t − Bjt ), ∀k = 1, . . . , K , tm = 1, . . . ,TM, t = max�(tm).

(30)

MPS constraints:

(10), (13)–(18)

LMPS
ntw ∈ N ∪ {0}, ∀n = 1, . . . , N ; tw = 1, . . . , TMPS. (31)

The objective function (22)minimizes the total costs ofAPP andMPSby addressing
together (1) and (9). Note that this function does not represent the true total cost to be
compared against the HPP approach. Hence, we calculate the realized cost differently
(see Sect. 5).

The first set of constraints (23) is similar to (2) of APP, but considers here only the
periods not covered byMPS. By doing so, we do not have to assign the initial inventory
level separately in the rolling horizon implementation. This is done automatically with
constraints (30). Constraints (24) differ from (4) in terms of the considered periods.
All others, i.e. (3), (5), (6) and (8), are identical to the APP constraints. Constraints
(7) are replaced by (25) and (26), since we allow (virtual) negative inventory due to
backorders in the overlapping periods; see constraints (30). The negative demand in
this period serves as lower bound. Note that IAPPktm

is not part of the objective function
for tm = 1, . . . ,TM. Consequently, negative inventory is not critical in terms of the
optimization process. Note also that in periods tm = 1, . . . ,TM XAPP

kntm
is non-negative

implicitly because of (17).
The linking process, which is done in the HPP before solving the MPS, has to be

done here within the model. The number of production lines has to be assigned (28).
The other two APP-MPS connecting constraints (29) and (30) are necessary because
(23) only has to hold for the non-overlapping periods. However, in the overlapping
periods we have to ensure the equality of production amount and inventory level
amongAPP andMPS. There, the production amount XAPP

kntm
only serves as bookkeeping

variable in periods tm = 1, . . . ,TM. Anyway, (29) force the production amount of
product type k in period tm to equal the aggregate amount of product family j in weeks
tw of that month tm . Constraints (30) aggregate the inventory level of family j in the

123



208 T. Vogel et al.

last week of period tm . The APP inventory level has to equal that amount. In contrast
to the HPP approach, the inventory is passed via aggregation as initial inventory level
from MPS to APP rather than as a target from APP to MPS, see (30). Therefore, no
other constraints such as (11)–(12) are needed regarding the inventory linkage.

The MPS constraints are already known, only one former MPS parameter has to
be defined here as decision variable (31).

The big M has to be calculated in a different way than in theMPS. The reason is the
target inventory levelwhich is a decision variable in the IPP andwould lead to quadratic
constraints (15). Therefore,M is calculated based on themaximumproduction amount
on that production line type.

Mjntw = LUB
n · (Captw + Omax) − s j

aMPS
j

,

j = 1, . . . , J ; n = 1, . . . , N ; tw = 1, . . . , TMPS. (32)

5 Rolling horizon planning

Themodels created for HPP and IPP have to be incorporated in a planning system. Part
of that are the rolling horizon implementation and the coordination of the planning
levels. Both issues belong together since interaction does not only take place between
the levels but also between the iterations.

The basic idea of the rolling horizon approach is to create a plan for a specific
planning horizon, but only the first periods are implemented. All other periods can be
updated when the horizon is rolled forward. Several parameters influence the success
of the rolling horizon approach. Key parameters are the planning horizon length, the
number of frozen periods and how the decision variables are frozen. Updating the
complete plan every iteration gives a lot of flexibility and leads to cost savings. The
drawback is the so-called planning nervousness which should be avoided or at least
limited. To get more stable plans with less complexity the first periods are frozen. This
can be done either by fixing the binary variables, or by fixing the quantities (i.e. the
value of the variable), or by limiting the changes by a certain percentage, also called
restriction. To find the best setting we have to trade-off cost, flexibility and stability.
The literature (c.f. Chung and Krajewski 1987) suggests to utilize a planning horizon
covering at least one seasonal cycle.

We consider a full yearwith 12months as planning horizon for theAPP. Eachmonth
consists of 4 weeks, the MPS horizon covers 3 months or 12 weeks. The number of
frozen periods is set to two, i.e. 2 months at APP and 2 weeks at MPS level. Freezing
periods means in our implementation to fix LAPP

ntm and to set XMPS
jntw

= 0 in case the
production amount was set to zero in the previous iteration. Additionally, Ontw is fixed
in the same way as LAPP

ntm . The remaining decision variables stay free.

Remark 5.1 Basically, in this contribution the rolling horizon approach is imple-
mented in such a way that it is possible to update also the APP plan every week.
In practice, the company might decide not to do so, but for test purposes it is imple-
mented. The replanning frequency in the IPP can be controlled by fixing the specific
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Current period: tw = 0

APP

1 2 3 4 ... 12 1

frozen periods open periods

MPS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Current period: tw = 1

APP

1 2 3 4 ... 12 1

MPS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Current period: tw = 2

APP

1 2 3 4 ... 12 1

MPS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2 Rolling forward the planning horizon

decision variables. For instance, if only the MPS should be updated, all APP related
decision variables have to be fixed to the value of the last iteration.

To freeze periods, we add two sets of constraints to the MPS. At the APP level we
only fix the capacity via constraints (5). The newparameters are OLB

ntw , O
UB
ntw , X

MPS−LB
jntw

,

and XMPS−UB
jntw

and lead to the following constraints:

OLB
ntw ≤ Ontw ≤ OUB

ntw , ∀n = 1, . . . , N ; tw = 1, . . . , TMPS (33)

XMPS−LB
jntw

≤ XMPS
jntw ≤ XMPS−UB

jntw
,

∀ j = 1, . . . , J ; n = 1, . . . , N ; tw = 1, . . . , TMPS. (34)

The rolling horizon is implemented as illustrated in Fig. 2. In the first iteration
(current period is tw = 0), we plan months tm = 1, . . . , 12 and weeks tw = 1, . . . , 12
and the start of the planning horizon is identical. The target inventory levels are passed
for the months tm = 1, 2, 3.

As we roll forward, the first planning month gets realized and thus is no longer
considered on APP level. Otherwise, the interaction of both levels in combination with
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Object system

Implementation

MPS

Instruction

Anticipated MPS

APP

Anticipation
(Feedforward

influence)

Reaction
(Feedback
influence)

Ex-post
feedback

Fig. 3 Interaction between APP and MPS according to Schneeweiss (1995)

frozen periods on both levels would lead to infeasibilities easily. Note that the MPS
planning horizon starts and ends not together with the monthly structure. Therefore,
we introduced the target month (TM) and the target weeks (TW) in our models. We
also took care of the assignment of weeks to months because for every iteration the
set changes. Note that on APP level, only period tm = 2 is frozen and the remaining
months are resolved. Note further that the MPS inventory level of week tw = 4 now
determines the initial inventory at the APP level instead of receiving a target level. In
the IPP approach that happens directly, while in the HPP we get the initial inventory
from the MPS result of the previous iteration. Target inventory levels for months
tm = 2, 3 are passed as before.

Afterward, the horizon is rolled forward again, now freezing month tm = 3 addi-
tionally. After rolling two more times, we reach the initial state where the planning
horizons of APP and MPS start at the same point.

Remark 5.2 Due to the rolling horizon approach, the objective function value does
not represent the true cost. By rolling forward, non-frozen variables can be changed.
Therefore, we calculate the real total costs after all iterations based on the implemented
decisions.

Interaction between the levels is an important issue (c.f. Gelders and Van Wassen-
hove 1982). Figure 3 shows the different types of interaction between APP and MPS
according to the framework of Schneeweiss (1995). Instruction has already been
introduced in terms of decisions and targets, but anticipation and reaction have to
be clarified.
Anticipation

Schneeweiss (1995) distinguishes between several kinds of anticipation. If the top
level anticipates the base level exactly, it is called exact explicit anticipation.According
to that definition, our IPP uses it in the overlapping periods (cf. Remark 4.1). In the
remaining periods implicit anticipation takes place, i.e., the top level anticipates only
a part of the base level.
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In practice, mostly non-reactive anticipation is used (Rohde 2004). That means, the
anticipation function is independent from the instruction. For instance, usually 10 %
of APP capacity are reserved for setup operations at MPS level (e.g., Özdamar et al.
1998). In our case, setup times are estimates depending on the production amount.

Remark 5.3 Setup times occuring at the MPS level are attempted to be anticipated at
the APP level by means of production times ak,which already reserve time for setups.
Based on the MPS solution of the previous iteration these values are updated with the
following formula, which computes the average consumption time (production plus
setup) to produce one unit.

aNEWk =
∑

j∈�(k),n,tw(aMPS
j XMPS

jntw
+ s jY jntw)

∑
j∈�(k),n,tw XMPS

jntw

. (35)

Note that both approaches, HPP and IPP, utilize this kind of anticipation. Computa-
tional tests have shown that it is necessary to introduce a condition when production
times ak are allowed to be updated. Otherwise, very low production amounts will
lead to unrealistic high anticipated production times. This can happen, for instance,
if there is high initial inventory which is supposed to satisfy the complete demand
of the planning horizon. However, due to forecast errors, small amounts have to be
produced additionally. Consequently, setup time is considered even for a small pro-
duction amount. Hence, the calculation according to (35) would lead to an unrealistic
anticipation.

Reaction
Updating the production times at the APP level is a reaction of the MPS level by

giving (ex post-) feedback to the APP. Another explicit reaction is the initial inventory
level on APP. In some of the iterations, see Fig. 2, the APP planning horizon starts
within the MPS horizon. Therefore, APP receives the inventory level of the according
MPS period. For instance, in period tw = 2 of Fig. 2 APP receives the inventory level
of week tw = 4 of the previous iteration and uses it as initial inventory. Besides that,
all decision variables of the MPS level, i.e. the plan, could be seen as reaction.

Remark 5.4 In the IPP ak is based on the last iteration as well. The results of the
current iteration can not be applied because the capacity constraint (2) would become
quadratic (both production time and amount would be variables).

In the HPP approach, updating the production times at APP level can lead to prob-
lems in the frozen periods in the following case. The capacity is fixed and completely
used. In case the production time ak is increased, then in the subsequent period the
capacity constraint cannot hold any longer. Selçuk et al. (2006) notice a similar effect
when they update the lead times in their hierarchical system. We solve that issue by
allowing unmet demand Uktm of product type k in period tm to ensure the feasibility
of the HPP. Therefore, we change constraints (2) into (36) and add an additional set
to permit lost sales only in the frozen periods 1, . . . , FP . Note that the demand is not
met only in theory, as at the MPS level the demand still has to be fulfilled.
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IAPPktm = IAPPk,tm−1 +
N∑

n=1

XAPP
kntm +Uktm − DAPP

ktm , ∀k = 1, . . . , K ; tm = 1, . . . , TAPP

(36)

Uktm = 0, ∀k = 1, . . . , K ; tm = FP + 1, . . . , TAPP. (37)

Another way of remodeling would be the separation of (2) into two constraints valid
in different periods.

The disaggregation process can be considered as reaction. The inventory level is
given as an instruction by the APP; the MPS reacts by disaggregating it into product
families.

Remark 5.5 The disaggregation factor v j for the target inventory level is determined
based on the demand forecasts as follows.

v j =
∑

tw DMPS
j tw∑

j∈�(k),tw DMPS
j tw

, ∀ j = 1, . . . , J. (38)

Figure 2 reveals an issue to be tackled in the IPP. The question is how to deal
with those periods which overlap partially, like in the second or third iterations. For
instance, in iteration three (tw = 2) also periods 13 and 14 are solved on MPS level,
but the results are not considered at the APP level in the current model formulation.
For the IPP we introduce constraints (39)–(40) for iterations i ≥ 1 with i mod 4 	= 1.

First of all, the APP capacity constraints in period TM + 1 have to be adapted. In
the overlapping periods, they coexist with the MPS capacity constraints (13). Due to
overtime, it is possible that the MPS capacity exceeds the APP capacity which could
lead to a production amount not feasible at the APP level. Therefore, in this case
adapted APP constraints have to hold.

K∑

k=1

ak X
APP
kn,T M+1 ≤ LAPP

n,TM+1CapTM+1 +
∑

tw∈�(TM+1)

Ontw , ∀n = 1, . . . , N . (39)

Constraints (29) can be easily adapted for the period tm = T M + 1. The aggregated
MPS production amount serves as the lower bound.

XAPP
kn,TM+1 ≥

∑

j∈�(k),tw∈�(TM+1)

XMPS
jntw , ∀k = 1, . . . , K , n = 1, . . . , N . (40)

6 Creating test instances

This section consists of two parts. In the first subsection we set the initial parameter
values. The second part describes how the demand is generated taking into account
seasonality and forecast errors. The models presented for HPP and IPP allow us to
vary many parameters. However, to prevent bias in our tests, we keep most of them
constant, i.e. product or period independent.
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Table 6 Main parameters which are fixed in the test instances

APP K = 6 TAPP = 12 Captm = 384

MPS J = 18 TMPS = 12 Captw = 96

Table 7 Varied key parameters among the test instances

Number of production line types N Homogeneous (1), heterogeneous (3)

Time between orders (TBO) 1, 2, 4, 8

Seasonality No, mixed, all

Setup times Low (0.1), high (0.3)

Forecast error Deterministic (0), low (0.1), high (0.3)

6.1 Initializing parameters

At the beginning we introduce the initial values which are not going to be varied
or which are not connected to other parameters. The problem size is defined by the
assumptions presented in Table 6.

The capacity results from the assumption of four weeks per month, six work-
ing days per week, and two 8-h shifts per working day. For the production time,
aMPS
j = 1,∀ j = 1, . . . , J . The production costs are set to one as well. The maxi-

mum number of production lines for each type is four. Since one working day consists
of two shifts, at most eight lines are available per day. Every product type com-
prises three families with similar demand share (34, 33, 33 %). The production line
assignment φ(n) for the three production line types n = 1, 2, 3 is set as follows:
φ(n) = {1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4, 5, 6}, ∀n = 1, 2, 3. The assignment matrix for
product families results from thatmatrix according to the product type–family relation.

We created general relationships between the parameters and calculated them based
on the initial values introduced above. The concrete formulas can be found inAppendix
1.

Our test instances were created on the basis of the parameter variations reported
in Table 7. The scenario with just one line type that can produce all products is
called homogeneous; otherwise, it is heterogeneous. The influence of TBO on the
data is reported in Appendix 1. Seasonality “all” means that all product types follow
the demand pattern of Table 8. In instances with no seasonality, the demand pattern
equals one in every period. Mixed seasonality means that half of the product types
follow the pattern given in the table, while the other half has a stable demand. Further
details about the role of setup times can be found in Appendix 1. The values related
to the forecast error represent the coefficient of variation.

The demand pattern in Table 8 is from a real-world company facing seasonality.
The demand value states how much of the average demand occurs in every month.
Thus, the average of these values is one.

123



214 T. Vogel et al.

Table 8 Demand seasonality

t 1 2 3 4 5 6 7 8 9 10 11 12

Demand st 0.50 0.75 0.95 0.90 0.95 1.15 1.30 1.40 1.30 1.00 0.95 0.85

6.2 Creating demand on a rolling horizon basis

The way we include forecast errors is taken from Clark (2005) and described in
Appendix 2. Because more than one planning level is considered, this approach has
to be adapted according to our requirements.

• At the MPS level, customer orders have arrived; thus the demand is deterministic.
• (Aggregate) MPS demand has to equal the APP demand.

To utilize the approach of Clark (2005), we need to determine the true demand
before. If we have a stable demand, we can just use the average demand. But if we
want to include seasonality, we have to calculate these values. Therefore, we use the
method of Guimaraes (2013). Demand of product i in period t is generated as follows:

dit = μi · st + σi · δt , ∀i, t (41)

with average demandμi for product i , seasonal effect st in period t , standard deviation
σi for product i , and a standard normal distributed random variable1 δt . We get these
parameters as follows:

• μi is provided by the formulas for the test instances.
• st : The demand pattern has to be defined before. For every month, there has to be
a value st stating whether the demand is higher or lower than the average demand.
At the end, the average of all st has to be one.

• σi = μi · √
ϑ2 − Var(s): to determine σi , we need to calculate the variance of s

and to set the coefficient of variation ϑ . We have to ensure ϑ2 ≥ Var(s).
• δt is generated by implementing the Box–Muller method in C++.

7 Computational tests

We want to answer the following questions with our experiments.

• Does the IPP deliver better results than HPP?
• Is the computational effort acceptable?

The instances are solved on a computer cluster with Intel Xeon E5-2687W Proces-
sors at 3.1 GHz with 256 GB of RAM. The solver is IBM ILOGCPLEXVersion 12.6.
If not mentioned differently, the computation time per iteration step is set to 2 min. For
the HPP, the computation time is split equally which results in 1 min for each level.
In case APP does not consume its given time limit, the remaining time could be used

1 In our instance generator, we exclude the theoretical possibility of getting a negative demand.
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Table 9 Summarized results for one iteration showing average improvement of IPP over HPP regarding
APP, MPS and total cost as well as average gaps with the according ranges

Total cost APP cost MPS cost HPP gap IPP gap HPP gap range IPP gap range

+0.8 % +1.8 % −3.2 % +0.1 % +0.3 % [0, 0.6 %] [0, 1.1 %]

by the MPS level. We have to consider such cases due to the higher complexity of
MPS. The number of iterations on the rolling approach is 48 (weeks). We use the 144
parameter combinations given in Table 7 and generate five different demand series
using different seeds. Thus, we have 720 instances in total. The seed influences also
the true demand, not only the forecast values. i.e. each instance is based on the demand
pattern in Table 8, but the seed leads to deviations due to random numbers.

Remark 7.1 One goal of our computational tests was to prevent backorders if possible.
Therefore, in addition to the true cost CB, we multiplied it in the objective function
by a sufficiently high number. However, the final costs in the analysis were calculated
based on the cost stated in Appendix 1.

Results for the static problem
Our first experiments assess the solution quality if we perform just one iteration, i.e.,

without rolling horizon. Consequently, forecast errors have no impact on the results.
However, instanceswith different forecast errors have different demandvalues and thus
are different from each other. Nevertheless, for the tests we chose only those instances
with low forecast error.Contrary to the other experiments,we set themaximumruntime
to 1 h.

Table 18 provides the improvement by utilizing IPP instead of HPP in terms of
average total cost (i.e., APP plus MPS cost) for all instances. Additionally, APP
cost and MPS cost are listed as well. The percentage values indicate the average
improvement due to using the IPP instead of the HPP. The deviation is calculated with
deviation = 1 − IPP/HPP. Consequently, positive values indicate IPP outperforms
HPP, whereas negative values state the opposite.

Remark 7.2 Note that the IPP trades off APP and MPS cost by considering them in
a single objective function. Thus, it might occur that for some instances HPP creates
plans with lower cost regarding APP or MPS. Note further, the IPP determines the
number of production lines, the main driver of APP cost, in the overlapping periods on
the basis of MPS. Consequently, the available capacity is higher due to overtime and
backorders and the number of lines can be decreased. As a consequence, APP cost of
HPP can be higher than of the IPP approach.

Table 9 gives an aggregated overview of the different results of HPP and IPP for one
iteration. The detailed Table 18 (see Appendix 3) shows that the IPP outperforms the
HPP in terms of total cost for all instances. These results provide a first confirmation
that our integrated model delivers plausible results.

Remark 7.3 There are two replications where HPP is slightly better than IPP (−0.05
and−0.16%). This could happen because IPPwas not solved to optimality but stopped
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Table 10 Average runtimes (in
s) and number of instances
where HPP was faster, equal or
slower than IPP in case of one
iteration

HPP IPP HPP < IPP HPP > IPP HPP = IPP

3173 3433 32 11 197

after reaching the time limit of 1 h. In both cases the remaining MIP gap was greater
than the difference to the HPP results (0.80 and 0.94 %). Tests where the IPP was
partially fixed to HPP solution (number of production lines and setup decisions) con-
firmed this by leading to a better objective function value than previously, even better
than the HPP.

Besides the solution quality, the runtime is of interest when two approaches are
compared. Table 10 summarizes the results by calculating the average runtimes for all
seeds and indicates the number of instances where HPP was faster, slower or equal to
IPP.

Table 10 confirms the expectation of HPP being faster than IPP. However, both
approaches use the maximum allowed runtime for the majority of the instances.
Results on a Rolling Horizon Basis

The previous experiment is now extended by solving the problem on a rolling
horizon basis which is closer to reality and will show the long-term effects of APP
decisions.

Remark 7.4 At the MPS level, it might happen that a given target inventory level
cannot be met due to underestimation of the previous APP iteration. That means, MPS
generates inventory for this period but not sufficiently. To avoid infeasible plans, our
model formulation allows having inventory and backorders at the same time. However,
in practice, this would not happen physically. Therefore, we used the net inventory
(inventory minus backorders) to calculate whether inventory or backorder costs have
to be paid.

Table 11 shows the improvements of IPP over HPP in terms of the different cost
types and total cost, making distinctions between the influence of different instance
parameters. Note that due to penalization, backorder costs became negligible and thus
are not considered in the tables.

In combination with Table 12 which indicates the proportions of the different cost
types, the following evidence can be derived from the results in Table 11.

• Heterogeneous line types lower the potential savings in terms of the number of
lines and setups.

• High setup times affect the IPP much more than the HPP, i.e., IPP creates plans
with much less setup operations.

• Seasonality is covered by the IPP in a much better way.While the HPP opens more
lines the IPP does the opposite and covers it with overtime and more setups.

• A higher forecast error is beneficial for the IPP. However, a small error has only
little influence.

• A higher TBO means a higher setup cost parameter [see (57)]. Besides that, it is
used as approximation for the expected number of setups. However, this works
only for small TBO [see comment on (42)]. In other words, while the cost per
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Table 11 Improvement of IPP results compared with HPP depending on the parameter

Total cost Line cost Inventory Overtime Setup

Line types

Homogeneous +9.1 % +19.3 % +0.8 % −3.1 % +24.4 %

Heterogeneous +8.7 % +18.0 % +1.2 % −2.7 % +20.9 %

Setup times

Low +8.1 % +18.4 % +1.4 % −3.3 % +17.3 %

High +9.7 % +18.9 % +0.6 % −2.4 % +27.9 %

Seasonality

No +8.2 % +14.9 % +0.5 % −1.5 % +25.6 %

Mixed +9.3 % +19.8 % +1.1 % −3.2 % +23.6 %

All +9.2 % +21.2 % +1.5 % −3.9 % +18.8 %

Forecast error

Deterministic +8.7 % +18.5 % +0.9 % −2.8 % +22.2 %

Low +8.9 % +18.5 % +0.9 % −2.8 % +23.6 %

High +9.1 % +19.0 % +1.3 % −3.0 % +22.1 %

TBO

1 +8.2 % +27.3 % −1.0 % −5.4 % +29.3 %

2 +7.4 % +23.5 % −0.3 % −4.6 % +23.0 %

4 +8.6 % +18.0 % +2.0 % −2.3 % +15.9 %

8 +11.3 % +5.8 % +3.4 % +0.9 % +22.4 %

All +8.9 % +18.7 % +1.0 % −2.9 % +22.6 %

setup is increased according to the TBO, the time per setup stays the same for
TBO = 4 and TBO = 8. Higher TBO encourages the HPP to reduce the number of
setup; thus the difference to IPP gets smaller.

The immense savings in terms of line cost and setup cost give us the reason for the
superiority of IPP over HPP. Being able to create plans with less setups does not
only lead to lower setup cost, but moreover enables producing the same amount with
less capacity which reduces the number of required production lines. This will be
illustrated in more depth at the end of the section.

Table 13 shows the average runtime results categorized for HPP and IPP in the same
way as Table 10. Note that equal runtimes occurred when both approaches reached
the maximum runtime of 5760 s. The gaps ranged in the interval [0 %, 1.3 %] for
the HPP and [0 %, 3.0 %] for the IPP, respectively. The average gaps were very low
(around 0.2 % for MPS and IPP), but the iterations were solved to optimality only for
APP and for the less complex instances.

From our experiments we can conclude that IPP outperformsHPP for all considered
parameter settings. The reason for that will be explained in the next section.
Exemplary illustration of IPP superiority

For illustration purpose, we chose an arbitrary instance from our tests with one
iteration. It has the following properties: homogeneous line types (1); TBO = 2; no
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Table 12 Proportion of the different cost types within the total cost

Line cost Production Inventory Overtime Setup

Line types

Homogeneous

HPP 41.6 % 40.9 % 6.1 % 1.6 % 9.8 %

IPP 36.0 % 44.8 % 5.9 % 4.9 % 8.5 %

Heterogeneous

HPP 40.3 % 40.9 % 6.1 % 2.5 % 10.2 %

IPP 35.4 % 44.5 % 5.5 % 5.4 % 9.1 %

Setup times

Low

HPP 39.2 % 42.7 % 6.1 % 1.7 % 10.3 %

IPP 34.2 % 46.1 % 5.3 % 5.2 % 9.2 %

High

HPP 42.6 % 39.2 % 6.1 % 2.4 % 9.7 %

IPP 37.3 % 43.2 % 6.1 % 5.0 % 8.3 %

Seasonality

No

HPP 41.5 % 41.3 % 5.5 % 1.6 % 10.1 %

IPP 37.9 % 44.7 % 5.6 % 3.3 % 8.5 %

Mixed

HPP 40.5 % 41.0 % 6.3 % 2.2 % 10.0 %

IPP 34.9 % 44.9 % 5.9 % 5.7 % 8.6 %

All

HPP 40.8 % 40.6 % 6.4 % 2.3 % 9.9 %

IPP 34.4 % 44.3 % 5.6 % 6.5 % 9.2 %

Forecast error

Deterministic

HPP 41.0 % 41.0 % 6.0 % 2.0 % 10.0 %

IPP 35.8 % 44.6 % 5.7 % 5.1 % 8.8 %

Low

HPP 40.9 % 40.9 % 5.9 % 2.1 % 10.1 %

IPP 35.8 % 44.7 % 5.7 % 5.1 % 8.7 %

High

HPP 40.8 % 40.9 % 6.3 % 2.1 % 9.9 %

IPP 35.6 % 44.6 % 5.7 % 5.3 % 8.8 %

TBO

1

HPP 50.0 % 46.8 % 1.1 % 0.1 % 2.0 %

IPP 39.5 % 51.2 % 2.2 % 5.5 % 1.5 %
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Table 12 continued

Line cost Production Inventory Overtime Setup

2

HPP 46.1 % 44.5 % 3.8 % 0.9 % 4.6 %

IPP 38.0 % 48.1 % 4.4 % 5.6 % 3.8 %

4

HPP 38.8 % 40.0 % 8.0 % 3.1 % 10.1 %

IPP 34.8 % 43.4 % 6.8 % 5.7 % 9.3 %

8

HPP 28.7 % 32.4 % 11.4 % 4.1 % 23.4 %

IPP 30.5 % 35.9 % 9.4 % 3.8 % 20.4 %

All

HPP 40.9 % 40.9 % 6.1 % 2.0 % 10.0 %

IPP 35.7 % 44.6 % 5.7 % 5.1 % 8.8 %

Table 13 Average runtimes (in s), number of instances where HPP was faster, equal or slower than IPP on
a rolling horizon basis, and average gaps

HPP IPP HPP < IPP HPP > IPP HPP = IPP HPP gap IPP gap

4823 5054 316 208 196 0.2 % 0.3 %

Table 14 Number of
production lines in months
tm = 1, . . . , 12

tm 1 2 3 4 5 6 7 8 9 10 11 12

HPP 5 5 5 5 5 5 5 5 5 5 5 5

IPP 4 4 4 5 5 5 5 5 5 5 5 5

Table 15 Overtime in weeks tw = 1, . . . , 12

tw 1 2 3 4 5 6 7 8 9 10 11 12

HPP 0 0 0 0 0 0 0 0 0 0 0 0

IPP 16.6 190.6 2.0 28.4 0 7.4 25.4 4.4 0 0 0 0

seasonality; high setup times; low forecast error. Since the results for one iteration are
quite homogeneous the concrete choice is not of importance for our intention.

First of all, we notice in Table 14 that the IPP uses one production line less in each
month of the MPS months (tm = 1, 2, 3), i.e., in the periods where APP and MPS
are solved simultaneously. That means it could reduce capacity by still producing the
same amount as HPP (backorders did not occur). Overtime helped only partially as
Table 15 indicates.
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Table 16 Capacity availability and usage for months tm = 1, 2, 3 of HPP and IPP

tm 1 2 3 Total

Production amount HPP 1115.0 1296.0 1212.7 3623.7

IPP 1327.0 1219.0 1077.7 3623.7

Number of setups HPP 37 36 34 107

IPP 29 23 29 81

Capacity used HPP 1399.9 1573.2 1474.5 4447.6

IPP 1550.3 1396.1 1301.0 4247.4

Capacity available HPP 1920.0 1920.0 1920.0 5760.0

IPP 1773.6 1573.2 1536.0 4882.8

Capacity utilization HPP 73 % 82 % 77 % 77 %

IPP 87 % 89 % 85 % 87 %

Table 17 Costs of HPP and IPP in the example

APP MPS Total cost

Line
cost

Inventory
cost

Production
cost

Setup
cost

Inventory
cost

Overtime
cost

HPP 18,420.0 145.1 3623.7 391.0 190.1 0.0 22,769.9

IPP 17,960.0 145.1 3623.7 293.0 345.5 137.4 22,504.7

Difference −460.0 0.0 0.0 −98.0 +155.4 +137.4 −265.2

Table 16 aggregates the production results of weeks tw = 1, . . . , 12 into months
and all product families j = 1, . . . , 18 into total production amounts. To compare it
with the available capacity, we add the information of Tables 14 and 15.

The following conclusions can be drawn from Table 16.

• The total production amount is identical for both approaches. (That means, by
chance even the target inventory level is the same for this particular instance.

• IPP is able to produce the same amount with less setups. Therefore, less capacity
is required.

• The capability of IPP to adapt the capacity to the real consumption2 leads to a
higher utilization.

The effect on the different cost types is as follows. Note that inventory cost on APP
level consider only months tm = 4, . . . , 12 because inventory in months tm = 1, 2, 3
is already taken into account at the MPS level.

Table 17 reveals that it is beneficial to trade off also line cost together with the
different MPS costs. The reason for that is the setup decision variable. The HPP
approach apprehends it mainly as a cost factor, but neglects its impact on the other
capacity variables. Capacity is almost fixed by APP decisions, so there are no incen-

2 In further iterations the first periods would have been fixed. However, the statement always holds at least
for planning period tm = 3 in our rolling horizon setting.
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tives, besides feasibility, to use less capacity by setups. On the contrary, the IPP also
takes into account the indirect cost savings due to less setups by allowing the reduction
of production lines.

Remark 7.5 Note that in the example the APP variable ak , k = 1, . . . , 6, which
anticipates the production time plus setups has been set to a realistic value based on
previous tests. That means, the HPP and IPP (in tm = 4, . . . , 12) used ak = 1.43 as
the parameter. The MPS results of HPP confirmed that the forecast was quite close to
the real values (1.4635, 1.4722, 1.4537, 1.5036, 1.3939, 1.4537). For the IPP, lower
values could have been used (1.2813, 1.3935, 1.3737, 1.3711, 1.3393, and 1.3203);
however, onlyAPP decisions in tm = 4, . . . , 12would have been affected. On a rolling
horizon basis, this becomes more important.

8 Conclusions and future research

In this paper, we introduced a hierarchical production planning (HPP) model taking
into account aggregate production planning (APP) and master production scheduling
(MPS). The interaction of both levels was implemented on a rolling horizon approach.
We considered the points of Fleischmann and Meyr (2003) by assuming an increasing
level of detail in terms of time and product aggregation, as well as a shorter planning
horizon at the lower level. Furthermore, the planning frequency was totally flexible
which fits also in the requirements of an HPP. Based on that HPP, we developed an
integrated production planning (IPP)model which combined APP andMPS in a single
model, taking into account the mentioned points as well. By doing so, we showed that
an IPP, which could be seen as a monolithic model (MM) reduced to a reasonable level
of detail, can be formulated and applied successfully to a production planning problem.
Moreover, the implementation proved to be less error prone in terms of coordination
between the levels (compared to HPP). For instance, there is no disaggregation process
needed in the IPP. In our test instances, we considered seasonality, and forecast errors
and an increasing forecast accuracy at the APP level.

Computational tests showed the following.

• Independent of the parameter setting, IPP always delivered better results thanHPP.
• The runtime is not an argument against the IPP; the gaps are reasonable.
• If decision variables, like setups, have an influence onmore than one planning level,
it might be beneficial to consider it also there. That means, a trade-off between sev-
eral decision variables should bemapped in a single objective function. Otherwise,
suboptimality might result.

Our research focused on themodeling and implementation of both approaches, HPP
and IPP. This study could be extended in two different ways: first, by focusing on the
proposedmodels in the contribution; second, by adding new properties to the instances
and computational tests to get more insight into the behavior of both approaches. The
work started in this paper could be continued by improving the interaction of the
model. More sophisticated methods could be used to anticipate the setup times at
the APP level. Further computational experiments could test different techniques to
update production times at the APP level. For instance, Selçuk et al. (2006) use the

123



222 T. Vogel et al.

exponential smoothing technique to update lead times. Anticipation in general could
comprise also other MPS decisions like overtime at the upper level.

Regarding the test instances, several changes are possible to make them more real-
istic. Besides seasonality, the demand stays stable in our test instances, i.e. monthly
demand is divided uniformly to theweeks. That idealistic assumption could be changed
intomore intermittent demand patterns. Uncertainty in other parameters, e.g., capacity
due tomaintenance or break downs, might be challenging for the tight plans of the IPP.
Finally, the idea of integrating two adjacent planning levels of HPP could be applied
to the other stages like material resource planning (MRP) or scheduling.
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Appendix 1: Relationships among parameters

For our test instances, we assumed the following relationships among the parameters.
Time related parameters:

• The (expected) number of setups for product family j in TMPS periods. Note that
this approximation only holds for small TBO. For instance, it is very unlikely
that for TMPS = 12 and TBO = 8, one or two setups are sufficient. This will be
considered in (46).

TMPS/TBO j (42)

• The total capacity in TMPS periods: capacity per week, summed over all weeks,
multiplied by the maximum number of production lines and parameter M1 stating
the percentage usage of these lines. Note that a target utilization of 80 % was
aspired. Therefore, the capacity Captw was multiplied by 0.8.

TotalCapMPS =
TMPS∑

tw=1

0.8 · Captw ·
∑

n

Lmax
n · M1. (43)

• Total setup time S for all products:M2 indicates the proportion of the total capacity
which is used for setup activities.

S = M2 · TotalCapMPS. (44)

• Disaggregate the total setup time into setup times for every product family j
according to M3

j stating the proportion of j . Divide by the maximum number of
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setups in TMPS periods. Moreover, the setup times should be limited such that∑
j s j ≤ TotalCapMPS/TMPS holds. Hence, we take the minimum value.

s′
j = S · M3

j ·
(
TMPS

TBO j

)−1

= S · M3
j · TBO j

TMPS (45)

s j = min

{
s′
j ,
TotalCapMPS · M3

j

TMPS

}
. (46)

• Production time product type k: The equality is just an estimation. We multiply
the average production time of that product type with a buffer for setup operations.
For a more accurate production time ak, the MPS could be solved in advance.

ak =
∑

j∈�(k) a
MPS
j

|�(k)| · (1 − M2)−1. (47)

• Maximum production amount for all production lines (without overtime) in TMPS

periods: the total capacity is reduced by setup operations. The remaining time
can be used for production. Dividing by the average production time provides the
maximum production amount.

MaxProd = (1 − M2) · TotalCapMPS

∑
j a

MPS
j /J

. (48)

• The maximum production amounts for product family j are calculated by disag-
gregating MaxProd. MaxProd j is used to determine the demand (see Sect. 6.2).

MaxProd j = MaxProd · M3
j . (49)

• Maximum overtime:

Omax = M4 · Captw . (50)

Cost-related parameters:
We can distinguish between variable and fixed cost in terms of the production

amount. Fixed costs areCL
n andCO , whereasCP

n ,C
U ,CB , andC I

k andC
I
j are variable

and depend on the production amount. Setup costs CS
j do not depend directly on the

production amount, but the calculation is typically based on the inventory holding cost
C I

j , TBO j , and demand. We have to consider these two kinds of cost when we create
the relationships between several costs. For one cost parameter, the values have to be
set in advance. We chose the production cost CP

n .

• Cost (per month) for running one production line of type n. We multiply the
maximum production amount with production cost for one unit. How similar/close
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these cost are defines M5. A value close to 1 might be reasonable.

CL
n = M5 · Captw∑

j a
MPS
j /J

· CP
n . (51)

• Overtime cost (per time unit): calculate the average cost for running a production
line 1 h by dividing by the monthly capacity (in time units). The results are cost
per time unit. M6 represent extra cost which have to be paid additionally to the
regular cost. Variable cost, e.g., energy cost, are already considered in CP

n , so M6

has only to define a percentage for the overtime premium of workers.

CO = M6 ·
∑

n C
L
n /N

Captm
. (52)

• Cost for unmet demand: we want to avoid losing sales, so we have to assign a
sufficiently high value. We chose the average cost for running a production line
for one month.

CU =
∑

n

CL
n /N (53)

• Cost for backorders depend on the production cost for one unit. The relationship
is given by factor M7.

CB = M7 ·
∑

n

C P
n /N . (54)

• Inventory holding cost for one unit of family j ∈ φ(n) is related to the average
production cost for one unit on machine n.

C I
j = M8 ·

∑

n

C P
n /N . (55)

• Inventory holding cost for product type k is similar (or equal) to the average cost
for product families j multiplied with number of weeks per month (4):

C I
k =

∑
j∈�(k) C

I
j

|�(k)| · 4. (56)

• Setup cost for family j is determined as usual:

CS
j = C I

j · 1/TMPS ∑
tw DjtwTBO

2
j

2
. (57)
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• Cost for opening/closing a production line of type n depends on the cost for running
the line for one period tm :

CL+
n · M9 = CL

n = CL−
n · M10. (58)

We propose the following values for Mr , r = 1, . . . , 10:

• M1 = 0.75, i.e. 75 % of all machines are open on average.
• M2 ∈ {0.1, 0.3}, choice depends on instances.
• M3

j = 1/J , ∀ j , i.e. Products have identical setup times.

• M4 = 0.5. Assume 6 working days with two shifts. Allow one additional shift
every day.

• M5 = 1, i.e. running a production line equals cost for producing the maximum
amount of one month on that line.

• M6 = 0.5, i.e. we have to pay 50 % more, compared to regular production time,
when we use overtime.

• M7 = 1.25, i.e. backorder cost are 25 % higher than the production cost.
• M8 = 0.1, i.e. production cost are ten times higher than inventory holding cost.
• M9 = 1.5, i.e. opening aproduction line leads to costs 1.5 times the cost for running
the line. Cost drivers: new workers have to be hired, lines have to installed.

• M10 = 0.5, i.e. shutting down a production line costs 50 % of the costs for running
that line for one month. Cost drivers: layoff cost, cleansing cost.

Remark 8.1 To avoid producing all products in period tw = 1, we set the demand
Dj1 = 0, ∀ j = 1, . . . , J . That means, initial production can take place in period
tw = 1 or tw = 2.

Appendix 2: Including forecast errors

We follow the assumptions of Clark (2005) in his experimental design:

• Forecast accuracy increases by decreasing distance (called lead-time) to the fore-
cast period.

• How the forecast is made is not relevant.

The forecast demand values are calculated as follows (for simplification, the explana-
tion is product independent).

• First, we have to determine/set the true demand V0.
• Then, we calculate the so called base value depending on the planning horizon
length T : VT = max{0, V0(1 + Tαr)}, with α ≥ 0 as a degree of error and r as
standardized normally distributed random variable.

• To ensure the convergence to the true demand V0, we determine values Vt , t =
T, T − 1, . . . , 1, 0, by interpolation: Vt = V0 + (t/T )(VT − V0).

• Based on that values we calculate the forecast demands Ft for every period t by
using a formula similar to the first one: Ft = max{0, Vt (1 + tαr)}, t = T, T −
1, . . . , 1, 0.
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In that way, we can test different degrees of forecast accuracy as Clark (2005) did.
However, note thatα does not represent the realized forecast error. Somecomputational
tests have shown that we get a good estimation of the average forecast error by dividing
the target error by ten. For instance, for a forecast which differs on average 30 % from
the true demand, α equals 0.03. Naturally because of the random number r , we might
get forecasts over and under the average.

Appendix 3: Result tables

See Table 18.

Table 18 Results for one iteration in case of low forecast error

Line types TBO Seasonality Setup times Total cost APP cost MPS cost

Homog. 1 No Low +0.7 % +2.5 % −6.1 %

Homog. 1 No High +1.9 % +3.8 % −7.2 %

Homog. 1 Mixed Low +0.6 % +2.4 % −7.2 %

Homog. 1 Mixed High +1.4 % +2.4 % −4.5 %

Homog. 1 All Low +0.9 % +1.9 % −4.6 %

Homog. 1 All High +1.5 % +1.8 % −0.3 %

Homog. 2 No How +0.8 % +3.1 % −7.4 %

Homog. 2 No High +1.5 % +4.0 % −10.0 %

Homog. 2 Mixed Low +0.4 % +1.9 % −6.0 %

Homog. 2 Mixed High +0.6 % +2.4 % −8.6 %

Homog. 2 All Low +1.0 % +1.9 % −3.3 %

Homog. 2 All High +1.2 % +1.8 % −2.2 %

Homog. 4 No Low +1.6 % +4.1 % −7.2 %

Homog. 4 No High +1.1 % +4.7 % −12.0 %

Homog. 4 Mixed Low +1.3 % +2.4 % −3.4 %

Homog. 4 Mixed High +0.5 % +0.6 % +0.3 %

Homog. 4 All Low +1.5 % +3.3 % −7.1 %

Homog. 4 All High +0.7 % +2.1 % −5.6 %

Homog. 8 No Low +0.8 % +2.9 % −4.9 %

Homog. 8 No High +0.2 % +0.4 % −0.3 %

Homog. 8 Mixed Low +0.8 % +1.4 % −1.1 %

Homog. 8 Mixed High +0.8 % +2.2 % −3.6 %

Homog. 8 All Low +0.1 % 0.0 % +0.4 %

Homog. 8 All High +0.2 % +0.6 % −0.9 %

Heterog. 1 No Low +0.5 % +1.5 % −3.4 %

Heterog. 1 No High +1.4 % +2.6 % −3.8 %

Heterog. 1 Mixed Low +0.6 % +2.0 % −5.6 %

Heterog. 1 Mixed High +1.3 % +2.1 % −3.5 %

Heterog. 1 All Low +0.7 % +1.4 % −2.7 %
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Table 18 continued

Line types TBO Seasonality Setup times Total cost APP cost MPS cost

Heterog. 1 All High +1.0 % +1.7 % −3.3 %

Heterog. 2 No Low +0.5 % +1.0 % −1.2 %

Heterog. 2 No High +0.9 % +2.2 % −4.9 %

Heterog. 2 Mixed Low +0.6 % +0.6 % +0.4 %

Heterog. 2 Mixed High +0.7 % +1.5 % −3.2 %

Heterog. 2 All Low +0.6 % +0.8 % +0.0 %

Heterog. 2 All High +0.5 % +0.8 % −1.0 %

Heterog. 4 No Low +1.4 % +3.7 % −6.6 %

Heterog. 4 No High +0.4 % +1.3 % −2.7 %

Heterog. 4 Mixed Low +1.2 % +3.1 % −6.6 %

Heterog. 4 Mixed High +0.6 % +1.2 % −1.6 %

Heterog. 4 All Low +1.1 % +2.7 % −6.6 %

Heterog. 4 All High +0.5 % +0.5 % +0.5 %

Heterog. 8 No Low +0.3 % +0.4 % +0.0 %

Heterog. 8 No High +0.6 % +0.0 % +2.1 %

Heterog. 8 Mixed Low +0.6 % +0.5 % +1.0 %

Heterog. 8 Mixed High +0.7 % −0.4 % +4.0 %

Heterog. 8 All Low +0.6 % +0.3 % +1.7 %

Heterog. 8 All High +0.7 % −0.5 % +4.9 %
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