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Abstract We study the problem of levelling resources in a project with generalized
precedence relationships, given a deadline for the completion of all the activities and
variable execution intensities and flexible durations of the activities. Variable execution
intensities have been taken into account firstly by Kis (Math Program 103(3):515–539,
2005) applied to a real world scenario in which, due to the physical characteristics
of some manufacturing processes, the effort associated with a certain activity for
its execution may vary over time. Generalized precedence relationships and variable
intensity execution and duration have not been dealt with together to the best of our
knowledge. For this novel problem we propose a mixed-integer linear programming
formulation, a lower bound based on Lagrangian relaxation, and a branch and bound
algorithm. Computational results on known benchmarks are provided.
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1 Introduction

Resource levelling problems play a key role in project management when one aims
to keep under control the peak of resource usage over time, i.e., avoiding undesired
resource overloads. From the complexity viewpoint, resource levelling problems are
NP-hard in the strong sense (Neumann et al. 2003). Albeit a plethora of resource
levelling functions may be defined to attain the specified goal, three objective functions
are well established in the literature to cope with resource levelling. These functions,
in turn, produce three resource leveling problems (Rieck and Zimmerman 2015): the
classical resource levelling problem, where the total squared resource utilization cost
has to be minimized Burgess and Killebrew (1962); the total overload cost problem,
where costs are generated when a threshold for the resource utilization (or a given
resource supply) is exceeded (Easa 1989); the total adjustment cost problem, where
one is concerned with the minimization of the cumulative costs arising from increasing
or decreasing the utilizations of resources (Kreter et al. 2014). In this paper, we study
the total overload cost problem. In particular, we propose a generalization of the
problem in which (i) variable intensities in the execution of the activities and (ii)
flexible activity durations are allowed.

Variable execution intensity has been taken into account firstly by Kis (2005) applied
to a real world scenario in which, due to the physical characteristics of some manu-
facturing processes, the effort associated with a certain activity for its execution may
vary over time, e.g., human resources that can be shared among a set of simulta-
neous activities in proportion variable over time. In this case, the amount of work
per time unit devoted to each activity and, consequently, also its duration are not
univocally defined. More recently, Fündeling and Trautmann (2010) and Bianco and
Caramia (2011) considered variable execution intensities in project scheduling. The
former authors introduced the latter feature in a project scheduling problem where the
aim is to determine a feasible resource-usage profile for each activity such that the
project duration is minimized subject to precedence and resource-capacity constraints.
They propose a priority-rule scheduling method that iteratively determines a feasible
resource-usage profile for each activity. The latter authors considered variable exe-
cution intensities in a project scheduling problem with resource constraints, feeding
precedence relations, and minimum makespan objective.

In this study, we consider projects modeled by activity-on-nodes networks N =
(V, A; δ), where V = Vr ∪ {0, n + 1} is the set of nodes formed by the set Vr of
n real activities and two dummy activities, i.e., 0 and n + 1 with duration equal to
zero, representing project beginning and completion, respectively, and corresponding
to the source and sink nodes of the project network; A is the set of arcs representing
generalized precedence relations (GPRs) between pairs of activities with weights
δi j ∈ Z,∀(i, j) ∈ A. GPRs are temporal constraints in which the starting/finishing
times of a pair (i, j) of activities have to be separated by at least or at most an amount
(dmin

i j and dmax
i j , respectively) of time denoted as “time lag” (minimum time lag and

maximum time lag, respectively). Therefore, GPRs can be classified into start-to-start,
start-to-finish, finish-to-start, and finish-to-finish. Following the results by Bartusch
et al. (1988) we consider the project network in a standardized form in which only
start-to-start relations are represented and if activity j cannot be started earlier than
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dmin
i j time units after the start time of activity i then we have an arc (i, j) ∈ A with

weight δi j = dmin
i j in N . If activity j has to be started no later than dmax

i j time units after
the start time of activity i then we have an arc ( j, i) ∈ A with weight δ j i = −dmax

i j .
Arc set A includes arcs (0, i) between dummy node 0 and each node i ∈ Vr , with
weight δ0i = 0, and arcs (i, n+1) between each node i ∈ Vr and dummy node n+1,
with weight δi,n+1 equal to the duration of activity i . Besides GPRs, a deadline d̄
within which all the activities have to be completed is given: we assume that network
N contains arc (n + 1, 0) with weight δn+1,0 = −d̄ to force this requirement.

Therefore, the problem tackled in our work is as follows: given a set of K renewable
resources, with Yk and ck being, respectively, the available amount of resource type
k and its additional resource unitary cost per time period, a set of n activities, with
activity i requiring a total amount r̄ik of resource k and having a duration ranging
between a minimum and a maximum value pmin

i and pmax
i , respectively, and a set

of GPRs constraints, we want find a schedule, where activities are processed with
variable execution intensity, minimizing the total additional resource cost within the
deadline d̄. To the best of our knowledge this is a novel problem.

Reviewing the literature of the total overload cost problem (without the generaliza-
tion proposed in this paper), we can observe that the first exact approach for resource
levelling with precedence constraints is due to Petrovic (1969). The method is based on
the enumeration of the feasible integral start times of project activities and is tailored
for the classical resource levelling problem. Engelhardt and Zimmermann (1998),
exploiting an idea of Ahuja (1976), proposed a method that enumerates all combina-
tions of activity start times to minimize the sum over time of the squared changes in
the resource utilization and several other objective functions. Nübel (2001) presented
a tree-based enumeration approach for the resource renting problem, and Neumann
et al. (2003) outlined how this approach can be used to solve resource levelling prob-
lems. Gather and Zimmermann (2009) have sketched some weaknesses of the latter
approach and developed a new and more efficient procedure, relying on the paper of
Gabow and Myers (1978). The algorithms proposed by Rieck et al. (2012) are the
best known for the classical resource levelling and total overload cost problems, while
those proposed by Kreter et al. (2014) are the best known for the total adjustment cost
problem. Additional literature on resource levelling problems with GPRs can be found
in Schwindt and Zimmerman (2015).

The paper is organized as follows. In Sect. 2, we propose a mathematical formulation
for the problem under consideration. In Sect. 3, we calculate a Lagrangian-based lower
bound based on the latter formulation. In Sect. 4, we describe the branch and bound
scheme proposed to solve the mathematical formulation, and, finally, in Sect. 5, we
show computational results on known benchmarks.

2 The mathematical model

In the following, we assume that the planning horizon is discretized into d̄ unit-width
time periods [0, 1), [1, 2), . . . , [d̄ − 1, d̄), indexed by t = 1, . . . , d̄ , respectively. Let
us define the following parameters:

• K the number of renewable (continuously divisible) resources;
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• Yk the number of available units of resource of type k, with k = 1, . . . , K ;
• ck the unitary cost of additional resources of type k per time period;
• r̄ik the overall amount of units of resource k necessary to carry out activity i ;
• pmax

i the maximum duration of activity i ;
• pmin

i the minimum duration of activity i , with 0 < pmin
i ≤ pmax

i ;
• A the set of ordered pairs of activities with temporal relations;
• δi j the lag between (i, j) ∈ A;
• d̄ the deadline of the project.

Furthermore, let us consider the following decision variables:

• ukt the type k resource usage during time period t ;
• xit the fraction of activity i executed within the end of time period t ;
• sit a binary variable that assumes value 1 if activity i starts at the beginning of

time period t or before, and assumes value 0 otherwise;
• fi t a binary variable that assumes value 1 if activity i has finished within the end

of time period t , and assumes value 0 otherwise.

The proposed mathematical model F is as follows:

min
d̄∑

t=1

K∑

k=1

ck max(0, ukt − Yk) (1)

s.t. xit − xi,t−1 ≥ 1

pmax
i

(sit − fi,t−1), i = 1, . . . , n; t = 1, . . . , d̄ (2)

xit − xi,t−1 ≤ sit − fi,t−1, i = 1, . . . , n; t = 1, . . . , d̄ (3)

d̄∑

t=1

sit ≥
d̄∑

t=1

s jt + δi j , ∀(i, j) ∈ A (4)

sit ≤ si,t+1, i = 0, . . . , n + 1; t = 1, . . . , d̄ (5)

fi,t−1 ≤ fi t , i = 0, . . . , n + 1; t = 1, . . . , d̄ (6)

xid̄ = fi d̄ = sid̄ = 1, i = 1, . . . , n (7)

xi0 = fi0 = 0, i = 1, . . . , n (8)

fi t ≤ xit , i = 1, . . . , n; t = 1, . . . , d̄ (9)

xit ≤ sit , i = 1, . . . , n; t = 1, . . . , d̄ (10)

f00 = s01 = 1 (11)

fn+1,d̄ = sn+1,d̄+1 = 1 (12)
n∑

i=1

r̄ik(xit − xi,t−1) = ukt , k = 1, . . . , K ; t = 1, . . . d̄ (13)

pmin
i ≤ 1 +

d̄∑

t=1

(sit − fi t ) ≤ pmax
i , i = 1, . . . , n (14)

ukt ≥ 0, k = 1, . . . , K ; t = 1, . . . , d̄ (15)

123



Resource levelling in project scheduling with generalized… 409

xit ≥ 0, i = 1, . . . , n; t = 1, . . . , d̄ (16)

sit ∈ {0, 1}, i = 0, . . . , n + 1; t = 1, . . . , d̄ + 1 (17)

fi t ∈ {0, 1}, i = 0, . . . , n + 1; t = 0, . . . , d̄. (18)

The objective function (1) minimizes the total cost of the additional resource usage.
Constraints (2) and (3) regulate the minimum and maximum fraction of activity i to
be executed in time period t . Note that when an activity i is not in execution at time
period t , i.e, sit = 0 and fi,t−1 = 0 (activity i is not started within the beginning of
time period t) or sit = 1 and fi,t−1 = 1 (activity i is finished within the end of time
period t − 1), these constraints imply that xit − xi,t−1 = 0. When, instead, i is in
execution at time period t , i.e, sit = 1 and fi,t−1 = 0, these constraints imply that
xit ≥ xi,t−1. Constraints (4) model start-to-start precedence constraints with time-lags
δi j , (i, j) ∈ A, where δi j ’s may depend in general also on the durations of activities i

and j , respectively, being the duration pi of activity i equal to 1 + ∑d̄
t=1(sit − fi t ).

Note that, as mentioned in the introduction, we consider standardized networks, i.e.,
networks in which each arc models a start-to-start temporal relation; this is possible
thanks to the Bartusch et al.’s transformations by which one can modify a general
temporal relation in one of latter type. For instance, in case of a finish-to-start relation
between activities (i, j) with time lag dmin

i j , we have S j ≥ Fi + dmin
i j , being S j and

Fi the starting time of j and the finishing time of i , respectively. By observing that
Fi = Si + pi we may rewrite the latter equality as S j ≥ Si + pi + dmin

i j which is a

start-to-start relation with time lag δi j = pi + dmin
i j . Noting that Si = d̄ − ∑d̄

t=1 sit ,
constraints (4) follow. Constraints (5) and (6) are congruency constraints on the values
assumed by variables sit and fi t over time. Constraints (7) say that every activity i must
start and finish within the planning horizon. Constraints (8) represent the initialization
conditions for variables xit and fi t when t = 0. Constraints (9) and (10) force fi t
to be zero if xit < 1 and xit to be zero if sit = 0. Constraints (11) and (12) are
initialization conditions for dummy activities 0 and n + 1, respectively. Resource
usage is represented by relations (13). Constraints (14) force the duration of each
activity i to be not less than pmin

i and not greater than pmax
i . Constraints (15)–(18)

limit the range of variability of the variables.
In order to linearize the objective function, we introduce additional variables

ūkt ≥ 0, k = 1, . . . , K , t = 1, . . . , d̄ , replace (1) by min
∑d̄

t=1
∑K

k=1 ck ūkt , replace
constraints (13), with

ūkt ≥
n∑

i=1

r̄ik(xit − xi,t−1) − Yk, k = 1, . . . , K ; t = 1, . . . , d̄, (19)

and replace in constraints (15) ukt by ūkt .
Recall that the deadline d̄ may be represented as a start-to-finish constraint between

activities 0 and n+1 with maximum time lag d̄ , and, therefore, induces an arc (n+1, 0)

with weight δn+1,0 = −d̄ . Denoting with

• ESi , a lower bound on the earliest start time of activity i , computed as the longest
path length from node 0 to node i in the project network, using pmin

i and/or pmax
i as
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activity durations in order to underestimate the values of weights δi j (note that δi j
may increase, decrease, or remain unchanged with increasing value of pi and/or
p j , according to the specific type of GPR between activities i and j),

• LSi , an upper bound on the latest start time of activity i , computed as d̄ minus
the longest path length from node i to node n + 1 in the project network (which
equals the negative of the longest path length from node i to node 0), considering
likewise underestimations of δi j values,

• EFi , a lower bound on the earliest finish time of activity i , i.e., ESi + pmin
i ,

• LFi , an upper bound on the latest finish time of activity i , i.e., LSi + pmax
i ,

the ranges of variability t = 1, . . . , d̄ in the constraints of our model may be tightened
according to latter values. Time windows will not be directly used in the definition of
F ; rather, as explained in Sect. 4, they will be considered by the branch and bound
algorithm to strengthen the branching phase.

Finally, we note that our model is able to take into account available amounts of
resources varying with time, i.e., Ykt instead of Yk , as well as different unitary costs
ckt per period for the usage of additional units of resources, and that amounts Yk and
costs ck are considered both for ease of presentation and for compliance with data
presented in benchmarks.

3 A Lagrangian-based lower bound

In this section, we will show how is it possible to estimate Lagrangian multipliers
λkt ≥ 0, with k = 1, . . . , K ; t = 1, . . . , d̄ , in the attempt of solving the Lagrangian
dual problem related to the Lagrangian relaxation (LRF ) of constraints (19) of the
latter formulation F . The approach used here follows the same lines of what done in
Bianco and Caramia (2011, 2012).

Let us start by writing LRF :

ω(λ) = min

⎧
⎨

⎩

d̄∑

t=1

K∑

k=1

ck ūkt −
d̄∑

t=1

K∑

k=1

λkt

[
−

n∑

i=1

r̄ik(xit − xi,t−1) + Yk + ūkt

]⎫
⎬

⎭

s.t. xit − xi,t−1 ≥ 1

pmax
i

(sit − fi,t−1), i = 1, . . . , n; t = 1, . . . , d̄

. . .

. . .

pmin
i ≤ 1 +

d̄∑

t=1

(sit − fi t ) ≤ pmax
i , i = 1, . . . , n

ūkt ≥ 0, k = 1, . . . , K ; t = 1, . . . , d̄

xit ≥ 0, i = 1, . . . , n; t = 1, . . . , d̄

si t ∈ {0, 1}, i = 0, . . . , n + 1; t = 1, . . . , d̄ + 1

fi t ∈ {0, 1}, i = 0, . . . , n + 1; t = 0, . . . , d̄.
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Each λkt ≥ 0 in the above formulation offers a lower bound to our problem. The
goal is therefore to solve the Lagrangian dual problem which maximizes the lower
bound ω(λ) as follows:

max
λkt≥0

⎧
⎨

⎩min

⎡

⎣
d̄∑

t=1

K∑

k=1

ck ūkt −
d̄∑

t=1

K∑

k=1

λkt

(
−

n∑

i=1

r̄ik(xit − xi,t−1) + Yk + ūkt

)⎤

⎦

⎫
⎬

⎭ ,

that is,

max
λkt≥0

⎧
⎨

⎩−
d̄∑

t=1

K∑

k=1

Ykλkt+ min
d̄∑

t=1

K∑

k=1

[
ck ūkt+λkt

(
n∑

i=1

r̄ik(xit − xi,t−1)−ūkt

)]⎫
⎬

⎭ ,

that can be rewritten as

max
λkt≥0

⎧
⎨

⎩−
d̄∑

t=1

K∑

k=1

Ykλkt + min

⎡

⎣
d̄∑

t=1

K∑

k=1

ūkt (ck − λkt ) +
d̄∑

t=1

K∑

k=1

λkt

n∑

i=1

r̄ik(xit − xi,t−1)

⎤

⎦

⎫
⎬

⎭ .

In order to avoid a trivial lower bound value, i.e., −∞, since ūkt ≥ 0, we search
for λkt values such that

ck − λkt ≥ 0, k = 1, . . . , K ; t = 1, . . . , d̄.

This leads to the following lower-bound formulation

max
λkt

⎧
⎨

⎩−
d̄∑

t=1

K∑

k=1

Ykλkt + min

⎡

⎣
d̄∑

t=1

K∑

k=1

n∑

i=1

λkt r̄ik(xit − xi,t−1)

⎤

⎦

⎫
⎬

⎭ (20)

s.t. xit − xi,t−1 ≥ 1

pmax
i

(sit − fi,t−1), i = 1, . . . , n; t = 1, . . . , d̄

. . .

. . .

pmin
i ≤ 1 +

d̄∑

t=1

(sit − fi t ) ≤ pmax
i , i = 1, . . . , n

xit ≥ 0, i = 1, . . . , n; t = 1, . . . , d̄

λkt ≤ ck, k = 1, . . . , K ; t = 1, . . . , d̄

λkt ≥ 0, k = 1, . . . , K ; t = 1, . . . , d̄

si t ∈ {0, 1}, i = 0, . . . , n + 1; t = 1, . . . , d̄ + 1

fi t ∈ {0, 1}, i = 0, . . . , n + 1; t = 0, . . . , d̄.
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Since by constraint (2) we have that

xit − xi,t−1 ≥ 1

pmax
i

(sit − fi,t−1), i = 1, . . . , n; t = 1, . . . , d̄

and, by constraint (6), that

fi,t−1 ≤ fi t , i = 0, . . . , n + 1; t = 1, . . . , d̄,

we can write the following:

xit−xi,t−1 ≥ 1

pmax
i

(sit − fi,t−1) ≥ 1

pmax
i

(sit − fi t ) , i = 1, . . . , n; t = 1, . . . , d̄.

Summing up over t the left-hand and the right-hand sides, we obtain

d̄∑

t=1

(xit − xi,t−1) ≥
d̄∑

t=1

1

pmax
i

(sit − fi t ) = 1

pmax
i

d̄∑

t=1

(sit − fi t ) , i = 1, . . . , n.

By constraint (14) it must be

d̄∑

t=1

(sit − fi t ) ≥ pmin
i − 1, i = 1, . . . , n,

therefore, we have

d̄∑

t=1

(xit − xi,t−1) ≥ 1

pmax
i

(pmin
i − 1), i = 1, . . . , n,

that is equivalent to

d̄∑

t=1

(xit − xi,t−1) ≥
d̄∑

t=1

1

d̄

(pmin
i − 1)

pmax
i

, i = 1, . . . , n.

By multiplying by λkt , which is non-negative, each term of the summation at the
left-hand and the right-hand side, we have

d̄∑

t=1

λkt (xit − xi,t−1) ≥
d̄∑

t=1

λkt
1

d̄

(pmin
i − 1)

pmax
i

, i = 1, . . . , n; k = 1, . . . , K .
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Similarly, since r̄ik ≥ 0, we multiply both sides of the previous inequality by the
latter parameter obtaining

r̄ik

d̄∑

t=1

λkt (xit − xi,t−1) ≥ r̄ik

d̄∑

t=1

λkt
1

d̄

(pmin
i − 1)

pmax
i

, i = 1, . . . , n; k = 1, . . . , K .

Finally, we sum both sides over i and k which leads to

n∑

i=1

K∑

k=1

d̄∑

t=1

r̄ikλkt (xit − xi,t−1) ≥
n∑

i=1

K∑

k=1

d̄∑

t=1

r̄ikλkt (pmin
i − 1)

d̄ · pmax
i

. (21)

By minoring the objective function (20) by means of (21), we have

max
λkt

⎧
⎨

⎩−
d̄∑

t=1

K∑

k=1

Ykλkt + min

⎡

⎣
d̄∑

t=1

K∑

k=1

n∑

i=1

λkt r̄ik(xit − xi,t−1)

⎤

⎦

⎫
⎬

⎭

≥ max
λkt

⎧
⎨

⎩−
d̄∑

t=1

K∑

k=1

Ykλkt +
d̄∑

t=1

K∑

k=1

n∑

i=1

r̄ikλkt (pmin
i − 1)

d̄ · pmax
i

⎫
⎬

⎭ ,

that, in turn, leads to the following formulation

max

⎧
⎨

⎩

K∑

k=1

d̄∑

t=1

λkt

(
n∑

i=1

r̄ik(pmin
i − 1)

d̄ · pmax
i

− Yk

)⎫
⎬

⎭

s.t. λkt ≤ ck, k = 1, . . . , K ; t = 1, . . . , d̄

λkt ≥ 0, k = 1, . . . , K ; t = 1, . . . , d̄

by which it is possible to estimate Lagrangian multipliers λ̃.

4 The branch and bound algorithm

We solve the proposed model by means of a branch and bound algorithm. The root
node of the search tree is denoted with P0 and is associated with the mathematical
formulation F . The lower bound used for this node is the one obtained by solving
the Lagrangian relaxation LRF with multipliers λ̃. The linear relaxation of F is
calculated at the root as well, and the maximum between the two lower bounds is
taken. Both the two relaxations are computed by means of a commercial solver. The
upper bound at the root is calculated by scheduling greedily activities with the largest-
duration first criterion. Given a lower and an upper bound on the optimal solution
value, the algorithm starts visiting the search tree. Each node of the tree, denoted with
Pit , is associated with an activity i to be finished in time period t ≤ d̄. The path
from node P0 to node Pit in the search tree defines a partial (finish) schedule Fit
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Fig. 1 A parent node and its
children

over the subset Vr
it ⊆ V r of scheduled activities. The ESi and LSi , with i /∈ V r

it , can
be tightened as ES′

i = max{ESi , max{h∈Vr
it :(h,i)∈A}(CFh − pmax

h + δ′
hi )} and LS′

i =
min{LSi , min{h∈Vr

it :(i,h)∈A}(CFh − pmin
h − δ′

ih)}, being CFh the current finish time of
the scheduled activity h ∈ Vr

it , where δ′
hi and δ′

ih are underestimations of δhi and
δih , respectively. Consequently, EFi and LFi are updated as EF′

i = ES′
i + pmin

i and
LF′

i = LS′
i + pmax

i .

Node selection The algorithm selects the node with the largest lower bound. Ties are
broken selecting the left-most node in the tree.

Branching rule Starting from the selected node Pit , the branching rule we adopt
selects an unscheduled activity i ′ /∈ Vr

it so as to generate the largest increase of
ukτ , with k = 1, . . . , K , and τ = ES′

i ′ + 1, . . . , EF′
i ′ , when it is scheduled within

[ES′
i ′ + 1, EF′

i ′ ] with the minimum duration. Then, children Pi ′t ′ of Pit are generated
for each time period t ′ ∈ {EF′

i ′ , . . . , LF′
i ′ } by using fi ′t ′ as branching variable (see

Fig. 1).

Bounding phase at a generic node of the search tree Let UBbest be the best objective
function value found so far. Once an activity i and a time period t are selected by
applying the branching rule, we have a new node Pit . Let Fi t be the mathematical
formulation of the subproblem related to node Pit : this formulation is obtained from
F by fixing the values of the binary variables f associated with the finish time periods
in the partial schedule Fit . We apply the following bounding rules:

• we solve the linear relaxation of Fi t . Let LRV be the optimal solution value. If all
the variables s and f are integer and LRV < UBbest then update UBbest = LRV .
Moreover, the subproblem can be closed. Otherwise,

• we solve the Lagrangian relaxation of Fi t with multipliers λ̃. Let LARV be the
optimal solution value. If (i) variables s and f are integer, (ii) constraints (19)
are satisfied, (iii) λ̃kt = 0 if the associated constraint (19) is not active, and (iv)
LARV < UBbest then update UBbest = LARV .

As for the root node, the solutions of both the two relaxed versions of Fi t in the
generic node Pit are computed by means of a commercial solver.

Fathoming rules at a generic node of the search tree Consider the partial schedule Fit
at the current node Pit of the search tree and let τ be the last time slot used in such a
partial schedule.
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Fig. 2 Example for Ukτ and
Ūkτ

1. Fathoming rule FR1. The first rule is straightforward: if either LRV ≥ UBbest or
LARV ≥ UBbest, then we can prune the search tree.

2. Fathoming rule FR2. Let

Ukτ =
∑

t=1...,τ

max(0,Yk − ukt ),

that is, the unused area in the resource k profile, measured from 1 to τ under the line
Yk , and let

Ūkτ =
∑

t=1...,τ

max(0, ukt − Yk),

that is, the used area above Yk from 1 to τ (see Fig. 2).
Moreover, let

Nk =
∑

i /∈Vr
it

r̄ik,

that is, the overall resource type k requirement for the activities not yet scheduled. Use
the dark area in Fig. 2 to possibly satisfy such a resource requirement and let

Rkτ = max{0,Nk − Ukτ }

be the residual amount of Nk .

If Rkτ > 0, fill the area with height equal to Yk and width equal to (d̄ − τ) with such
a residual amount, as depicted in Fig. 3 (see the striped area).

Finally (see the dotted area depicted in Fig. 4), use the quantity

R̄kτ = max{0,Rkτ − Yk · (d̄ − τ)}
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Fig. 3 Example of filling area
Yk · (d̄ − τ)

Fig. 4 Example of lower bound
lbk

to calculate

lbk = Yk + R̄kτ + Ūkτ

d̄
,

that is a lower bound on the minimum ukt , with t = 1, . . . , d̄ .
Now, we can state that

LB(Pit ) =
K∑

k=1

(lbk − Yk) · ck · d̄

is a lower bound on the objective function value of subproblem Pit , given the associated
partial schedule Fit ; therefore, if LB(Pit ) is greater than or equal to UBbest then the
search tree can be pruned.

Once the algorithm has selected all the activities assigning a finishing time to each
of them and an integer solution has not been found, it continues branching (i) using
variable s as branching variable, (ii) selecting activities in the same order as the one
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used when branching variable f was used, and (iii) assigning a start time to each
activity.

5 Computational results

5.1 Presentation of the experiments and platform used

The algorithm has been implemented in both the C and AMPL languages. Software
CPLEX 12.0 has been used to solve the relaxations of the mathematical formulations at
the nodes of the branch and bound tree, i.e., those related to the calculations associated
with the bounding phase at each node. The hardware used to carry out experiments is
a Pentimum IV with 3 GHz clock and 2 GB RAM.

To test our algorithm we relied on two sets of known benchmarks. The first test set,
denoted in the following asTEST SET 1, was introduced in Kolisch et al. (1999) and
is available at.1 Within this first set, we considered the collections denoted rlp_j10 and
rlp_j20. The set rlp_j10 contains 270 instances each with ten activities. The number
of renewable resources is 1, 3, and 5, but only one resource type is requested by each
activity. The set rlp_j20 is formed of 270 instances with 20 activities and number of
resources ranging from 1 to 5 as for the previous set. Out of these 270 instances we
tested those ranging from 136 to 180 as done in Gather and Zimmermann (2009). All
the data have been taken verbatim as reported in the library; the only exception is
related to the duration. Indeed, since our problem is a generalization of the resource
levelling problem to which the dataset used refers to, we had to make the following
assumption: the duration reported in the instances has been assumed to be pmax

i , while
pmin
i has been chosen as 
0.75 · pmax

i �. Deadline d̄ has been set equal to the length
of the longest path between node 0 and node n + 1 in the project network, assuming
pmax
i as activity durations.

The second test set, denoted in the following as TEST SET 2, is available at.2

These instances have been generated by the ProGen/max instance generator (Schwindt
1998) and are characterized by a restrictiveness of Thesen (measures the degree to
which precedence constraints restrict the total number of feasible activity sequence)
equal to 0.3 and 0.6. We considered instances with 10, 20, and 30 activities. Activities
may require 1, 3, or 5 renewable resources. Differently from the previous dataset we
notice that each activity may use simultaneously more than one resource type for its
execution. Durations range from 1 to 10. As for TEST SET 1, the duration reported
in the instances has been assumed to be pmax

i , while pmin
i = 
0.75 · pmax

i �. As for the
previous test set, we pose d̄ equal to the length of the longest path between node 0 and
node n + 1 in the project network, assuming pmax

i as activity durations.

1 http://www.wiwi.tu-clausthal.de/en/chairs/produktion/research/research-areas/project-generator/
rlpmax/.
2 http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/
exact-results-for-single-mode-resource-levelling-problems/.
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Table 1 Computational results on TEST SET 1

Test_Type#_inst. AOV CPU_BB #_opt_BB #_opt_300 CPU_CPLEX (s) #_opt_CPLEX

rlp_j10 270 380 89 ms 270 270 87 270

rlp_j20
(inst.
136–180)

45 805 2390 s 42 18 5120 35

5.2 Results on TEST SET 1

In Table 1, we reported averages of the results obtained on TEST SET 1; we com-
pared the results obtained by our algorithm with the results obtained by applying
CPLEX on the mathematical formulation F . We note that the machine used for
the experiments has a single-core processor and that a multi-core environment may
improve the performance of CPLEX. In the columns we listed:

• Test_Type the test type,
• #_inst. the number of instances of each test type,
• AOV the average objective value obtained by the proposed branch and bound,
• CPU_BB the average CPU time (in s) of our branch and bound to solve at the

optimum the instances (when optimality is achieved),
• #_opt_BB the number of instances solved at the optimum within a time limit of

3 h by the proposed branch and bound,
• #_opt_300 the number of instances solved at the optimum within 300 s by our

algorithm,
• #_opt_CPLEX the number of instances solved at the optimum within a time limit

of 3 h by CPLEX,
• CPU_CPLEX the average CPU time (in s) of CPLEX to solve at the optimum the

instances (when optimality is achieved).

Results reported in Table 1 show that our algorithm is able to solve instances with
ten activities with a negligible computing time. As far as n increases to 20 activities the
CPU times increase significantly due to the theoretical complexity of the problem. In
particular, we notice that 42 out of the 45 tested instances where solved at the optimum
within 3 h of time limit with an average running time of 2390 s.

Looking at the results obtained by solving the mathematical formulation F on the
same instances by means of the commercial solver CPLEX (see the last two columns
of Table 1), we notice that, referring to instances with ten activities, even though all
the 270 instances have been optimally solved as for our algorithm, computing times
grow significantly from an average of less than 1 s to an average of 87 s. Moreover,
when instances with 20 activities are concerned, not only computing times tend to
increase (from an average of 2390 s to an average of 5120 s), but also the number of
instances solved at the optimum reduces from 42 to 35. In the following, we analyze
by means of charts the characteristics of the solutions obtained by our algorithm.
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Fig. 5 TEST SET 1: average pmin, pmax, and p values for instances with ten activities (first 60 instances)

5.2.1 Average pmin, pmax, and p values

In Fig. 5, we plot the average activity duration p obtained solving the instances with
ten activities (for ease of presentation we report only the first 60 instances). We notice
that these values are always strictly in between pmin and pmax, being the latter the
average pmin

i and pmax
i values over the number of activities. This behavior, i.e., p

never attains either pmin or pmax, allows us to state that the model is in charge of using
effectively the constraints on the minimum and maximum duration of each activity.
An analogous behavior can be observed for the other 210 instances with ten activities,
and also for the instances with 20 activities (see Fig. 6).

5.2.2 Average minimum and maximum variations of x values

In Fig. 7, we reported the minimum and maximum values, say �xmin and �xmax,
respectively, averaged over the number of activities, assumed by �x = xit − xi,t−1
between the start and the end of activity i , for each instance ID. It is remarkable to
note that �xmin is never equal to �xmax, i.e, on average, activities are not scheduled
uniformly over time. This means that the model is able to exploit the fractional x
variables to schedule activities choosing for each time period the best amount of
resources to be allocated to each activity, and, in turn, the correct percentage of activity
to be carried out. Figure 8 shows the same behavior on instances with 20 activities.

5.2.3 A further test with different values of pmin
i

We performed a further test on instances with 20 activities, reporting the objective
function values obtained when pmin

i is taken equal to pmax
i (setting pmin

i = pmax
i ,

for all i ∈ V , leads to obtain the total overload cost problem). Figure 9 shows the
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Fig. 6 TEST SET 1: average pmin, pmax, and p values for instances with 20 activities
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Fig. 7 TEST SET 1: average minimum and maximum �x values for instances with ten activities

comparison of the objective values of the latter scenario with respect to the scenario
with pmin

i = 
0.75 · pmax
i �. We note that there exist instances for which the objective

values of the scenario with pmin
i = 
0.75 · pmax

i � are better than the objective values
of the scenario with pmin

i = pmax
i , which means that the model is able to exploit the

variability of the durations, leveling the resource profiles over time more effectively.
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Fig. 8 TEST SET 1: average minimum and maximum �x values for instances with 20 activities
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Fig. 9 TEST SET 1: comparison of objective function values obtained with two different values of pmin
i

on instances with 20 activities

5.3 Results on TEST SET 2

In Tables 2 and 3, we report average results obtained on TEST SET 2; as for TEST
SET 1, we compared the results obtained by our algorithm with the results obtained
by applying CPLEX on the mathematical formulation F . In the columns we listed:
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• Test_Type the test type, denoted with n_K where n is the number of real
activities and K is the number of renewable resources,

• #_inst. the number of instances of each test type,
• AOV the average objective value obtained by the proposed branch and bound,
• CPU_BB the average CPU time (in s) of our branch and bound algorithm to solve

at the optimum the instances (when optimality is achieved),
• #_opt_BB the number of instances solved at the optimum within 3 h by our

algorithm,
• #_opt_300 the number of instances solved at the optimum within 300 s by our

algorithm,
• #_opt_CPLEX the number of instances solved at the optimum within a time limit

of 3 h by CPLEX,
• CPU_CPLEX the average CPU time (in s) of CPLEX to solve at the optimum the

instances (when optimality is achieved),
• �xmin the average minimum activity intensity in the optimal solutions,
• �xmax the average maximum activity intensity in the optimal solutions,
• pmin the average minimum duration allowed,
• p the average duration used in the optimal solutions,
• pmax the average maximum duration allowed.

By the results reported in Table 2, we notice that our algorithm is able to solve
very efficiently instances with ten activities for different values of K as it happens
for instances comprised in TEST SET 1. The running times, as expected, tend to
increase rapidly as n grows: experimental records say that 90 % of the 120 instances
with 20 activities have been solved optimally with an average CPU time of 2230 s;
while 45 % of the 120 instances with 30 activities were optimally solved within an
average time of 6138 s. These numbers appear to be comparable with the tree-based
approach proposed in Gather et al. (2011) for the total overload cost problem without
variable intensities and flexible durations, where all the instances with ten activities
have been solved at the optimum within negligible computing times, and 87 % of the
instances with 20 activities have been solved at the optimum with an average CPU
time of 2184 s on an Intel Quad Core PC. Tests on 30 activity instances have not been
reported.

Looking at the results obtained by solving the mathematical formulation F on the
same instances by means of the commercial solver CPLEX (see the last two columns
of Table 2), all the 120 instances with ten activities have been optimally solved, as
for our algorithm, with computing times significantly larger since they raise from an
average of less than 1 s used by our approach to an average of 91 s. Moreover, when
instances with 20 activities are considered, computing times grow from an average of
2230 s to an average of 5411 s, and the number of optimally solved instances reduces
from 108 (90 %) to 87 (72.5 %). Finally, tests on instances with 30 activities show that
CPLEX is able to optimally solve 37 instances, as opposed to the 54 solved by our
algorithm, with an average computing time of 7916 s compared to the 6138 s used by
our algorithm.

Table 3 reports values on average minimum and maximum �x values and durations.
The results, as those discussed by means of charts for TEST SET 1, suggest that the
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Table 3 TEST SET 2:
average �xmin, �xmax, pmin,
p, and pmax values

Test_Type �xmin �xmax pmin p pmax

10_1 0.23 0.59 3.51 4.24 5.34

10_3 0.25 0.60 3.62 4.25 5.35

10_5 0.27 0.62 3.72 4.28 5.42

20_1 0.29 0.62 3.59 4.26 5.32

20_3 0.30 0.64 3.60 4.29 5.38

20_5 0.31 0.66 3.73 4.30 5.44

30_1 0.33 0.67 3.66 4.23 5.34

30_3 0.30 0.69 3.75 4.28 5.48

30_5 0.28 0.70 3.81 4.32 5.50

Table 4 TEST SET 2:
average AOV for instances with
pmin
i = 
0.75 · pmax

i � (AOVdiff )

and pmin
i = pmax

i (AOVeq)

Test_Type AOVdiff AOVeq

10_1 71.28 78.48

10_3 215.85 240.88

10_5 375.50 423.85

20_1 125.45 157.05

20_3 402.8 457.90

20_5 636.5 768.00

30_1 180.25 220.00

30_3 656.85 769.90

30_5 782.25 1190.48

proposed model is capable of exploiting its features. Indeed, to have a better idea of
the gain produced by using the proposed model we made a further test, similarly to
what done for TEST SET 1, with pmin

i = pmax
i and fixed execution intensities equal

to 1
pmin
i

= 1
pmax
i

. The results, reported in Table 4, show that for instances with ten

activities the average objective values are, on average, 12 % larger, for instances with
20 activities this gap increases to 18 %, and, for instances with 30 activities it reaches
37 %.

6 Conclusions

In this paper, we studied the problem of levelling resources in a project (focusing on the
total overload cost version) with generalized precedence relationships, given a deadline
for the completion of all the activities and variable execution intensity and duration
of the activities. To the best of our knowledge, generalized precedence relationships
and variable intensity execution and duration have not been dealt with together. For
this novel problem we proposed a mixed-integer linear programming formulation,
a lower bound based on Lagrangian relaxation, and a branch and bound algorithm.
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Computational results on known benchmarks were provided and highlighted how the
proposed model is able to manage all the considered ingredients in such a way that
produces promising solutions.
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