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Abstract The linear programming technique for multidimensional analysis of prefer-
ences (LINMAP) is the most representative method for handling the multiple criteria
decision making (MCDM) problems with respect to the preference information over
alternatives. This paper utilizes the main structure of LINMAP to develop a novel hes-
itant fuzzy mathematical programming technique to handle MCDM problems within
the decision environment of hesitant fuzzy elements (HFEs). Considering the hesi-
tancy of the decision maker, both the pair-wise comparison preference information
over alternatives and the evaluation information of alternatives with criteria are rep-
resented by the HFEs. Based on the incomplete pair-wise preference judgments over
alternatives, we propose the concepts of the hesitant fuzzy consistency and inconsis-
tency indices. Furthermore, we construct a hesitant fuzzy mathematical programming
model to derive the weights of criteria and the positive-ideal solution. In this hesitant
fuzzy programming model both the objective function and partial constraints’ coeffi-
cients take the form of HFEs, and an effective approach based on the ranking method
of HFEs is further developed to solve the new derived model. To address the incom-
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plete and inconsistent preference structures of criteria weights, we introduce several
deviation variables and establish the bi-objective nonlinear programming model. At
length, we employ a green supplier selection problem to illustrate the feasibility and
applicability of the proposed technique and conduct a comparison analysis to validate
its effectiveness.

Keywords Hesitant fuzzy information · Multiple criteria decision making ·
Inconsistency · Hesitant fuzzy programming model

1 Introduction

The linear programming technique for multidimensional analysis of preferences
(LINMAP) was initially proposed by Srinivasan and Shocker (1973) for analyzing
individual differences in preference judgments with regard to a set of alternatives.
In this technique, the weights of decision criteria and the positive-ideal solution are
unknown in advance. Thus, in the decision process the experts or decision makers
(DMs) are required to provide not only the assessments of alternatives for criteria,
but also the pair-wise comparison preference information over alternative. Based on
the pair-wise preference information over alternatives, the linear programming opti-
mal model is constructed to determine the weights of criteria and the positive-ideal
solution. Furthermore, the best compromise alternative is generated by calculating the
weighted Euclidean distance between each alternative and the positive-ideal solution.

The LINMAP is one of the most representative methods for handling the multiple
criteria decision making (MCDM) problems with respect to the preference informa-
tion over given alternatives (Hwang and Yoon 1981). Compared with most of the
well-known MCDM methods (such as TOPSIS, ELECTRE) which only require the
DM to provide the preference of alternatives with respect to criteria, the key feature
of the LINMAP method is also to require the preference information on pair-wise
comparisons of the alternatives. Different from the consistent methods based on pair-
wise comparison matrix (Zhang et al. 2013; Zhu and Xu 2014) in which the pair-wise
comparison information is complete, the LINMAP allows the pair-wise comparison
preference information to be incomplete or even non-transitive.

In the classical LINMAP method, all decision data are crisp numbers. However, in
the practical decision process it is more and more difficult for the DMs to utilize the
crisp numbers to express their assessments because of a lack of knowledge or expe-
rience, intangible or non-monetary criteria, or a complex and uncertain environment.
Instead, the DMs usually employ the fuzzy set (Zadeh 1965) or its extensions [such
as interval numbers, triangular fuzzy number or trapezoid fuzzy number, intuitionistic
fuzzy numbers (IFNs), and interval-valued IFNs, etc.] to express their assessments.
To this end, some researchers have recently extended the classical LINMAP method
into various fuzzy decision environments, such as the decision environment of trian-
gular fuzzy number or trapezoid fuzzy number (Li and Yang 2004; Sadi-Nezhad and
Akhtari 2008; Bereketli et al. 2011), the decision context of IFNs (Li et al. 2010), the
decision environment of interval-valued IFNs (Chen 2013; Wang and Li 2012), the
decision environment of interval type-2 trapezoid fuzzy number (Chen 2015) and the
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heterogeneous decision context involved multiple formats of information such as real
numbers, interval numbers, fuzzy numbers and IFNs (Li and Wan 2013, 2014; Wan
and Li 2013).

Although the usefulness and applicability of the LINMAP in the MCDM field have
been intensively investigated, notably few attempts have been made to develop an
appropriate LINMAP method to deal with the real-world MCDM problem in case of
considering the hesitancy of DMs. As an important extension of fuzzy set, hesitant
fuzzy set (HFS) which permits the membership degree of an element to a set to be
represented as several possible values between 0 and 1, was recently proposed by
Torra (2010) to describe the situations in which the DM or the decision organization
hesitates among several values to assess an indicator, alternative, variable, etc. Pei and
Yi (2015) investigated the properties of operations and algebraic structures of HFSs.
HFSs show many advantages over traditional fuzzy sets and its other extensions,
especially in multi-expert decision making with anonymity (Xia and Xu 2011). Basic
elements in HFSs are HFEs (Xu and Xia 2011a). The HFEs are usually utilized to
express assessments of alternatives when evaluating a practical MCDM problem in
case of considering the DM’s hesitancy. Applications of HFEs have been reported in
many MCDM studies (Bedregal et al. 2014; Zhang and Xu 2014, 2015; Farhadinia
2013; Zhang 2013; Xu and Zhang 2013; Zhang and Wei 2013; Wang et al. 2014;
etc.). A recent review of articles based on HFSs is presented in Rodríguez et al.
(2014).

This paper leverages the classical LINMAP method to develop a novel hesi-
tant fuzzy programming approach to solve the MCDM problem with incomplete
weights in which the ratings of alternatives with each criterion are taken as HFEs
and the incomplete judgments on pair-wise comparisons of alternatives with hesitant
degrees are also represented by HFEs. Obviously, the proposed method combin-
ing the LINMAP with HFEs can not only extend the LINMAP, but also address
the MCDM problem in case of considering the hesitancy of DMs. In the proposed
method, hesitant fuzzy consistency and inconsistency indices are first defined on the
basis of the incomplete preference judgments between alternatives. Then, a hesitant
fuzzy programming model is constructed based on the idea that the hesitant fuzzy
inconsistency index should be minimized and must be not larger than the hesitant
fuzzy consistency index by some fixed HFEs. Furthermore, an effective approach
is developed to solve the hesitant fuzzy programming model. In addition, we also
establish the bi-objective nonlinear programming model to address the incomplete
and inconsistent preference structures of criteria weights. At length, we employ
a green supplier selection problem to illustrate the feasibility and applicability of
the proposed technique and conduct a comparison analysis to validate its effective-
ness.

The rest of this paper is organized as follows: Sect. 2 briefly reviews the concepts
of HFEs, and meanwhile describes the hesitant fuzzy MCDM problem with incom-
plete weights. Section 3 proposes the hesitant fuzzy programming method. Section 4
illustrates the feasibility and applicability of the proposed method. Section 5 presents
our conclusions.
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2 Hesitant fuzzy MCDM problems with incomplete weights

The concept of HFEs is used extensively throughout this paper, and we first recall
briefly the basic definitions of HFEs in this section. Then, we use HFEs to formulate
a decision environment based on HFEs. Furthermore, we review briefly the structure
of incomplete weight information.

2.1 Basic concept of HFEs

Definition 2.1 (Torra 2010)Let X be a reference set, anHFS A on X is defined in terms
of a function hA(x) when applied to X returns a subset of [0, 1]. The mathematical
form of the HFS A proposed by Xia and Xu (2011) was defined as follows:

A = {〈x, hA(x)〉 |x ∈ X}, (2.1)

where hA(x) is a set of some different values in [0, 1], representing the possible
membership degrees of the element x ∈ X to A. They also called hA(x) an HFE
denoted by h (h = {γ λ|λ = 1, 2, . . . , #h}, where #h is the number of elements in h).

Remark 2.1 Bedregal et al. (2014) regarded the finite and nonempty HFSs as the
typical HFSs, and the elements in typical HFSs as the typical HFEs. From now on,
this paper will only focus on the typical HFEs. For convenience, we still employ the
HFEs to denote the typical HFEs.

Definition 2.2 Given three HFEs represented by h, h1 and h2, respectively, and let
α > 0, then the operation laws of HFEs are defined as follows (Xia and Xu 2011):

αh = ∪γ∈h{1 − (1 − γ )α}, h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2},
hα = ∪γ∈h{γ α}, h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2}.

Following the definition of HFEs, we know that the number of values for different
HFEs may be different and the values are usually out of order. In the real-world
decision process, we should arrange them in any order for convenience. Without loss
of generality, we assume that the values of an HFE h are arranged in an increasing
order, and let γ λ be the λth smallest value in h. Thus, for two HFEs h1 and h2, and let
� = max {#h1, #h2}, where #h1 and #h2 are, respectively, the numbers of values in
the HFEs h1 and h2. In order to accurately calculate the distance between h1 and h2
with #h1 �= #h2, we should extend the shorter one until both of them have the same
length. Usually, the value which we need to add into the shorter HFE mainly depends
on the DM’s risk preference (Xu and Xia 2011a; Wang et al. 2014). To this end, Xu
and Zhang (2013) developed a method of extension with a parameter η which can
identify the adding value according to the DM’s risk preference.

Definition 2.3 (Xu and Zhang 2013) For an HFE h = {γ λ |λ = 1, 2, . . . , #h }, let
γ − = min {γ | γ ∈ h} and γ + = max {γ | γ ∈ h} be the minimum value and the
maximum value in the HFE h, respectively; then γ̄ = ηγ + + (1 − η)γ − is called an
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adding value, where η(0 ≤ η ≤ 1) is the parameter determined by the DM according
to his/her risk preference.

Apparently, the DMs can add different values to the shorter HFE according to their
risk preference. If η = 1, then the adding value γ̄ = γ +, which indicates that the
DM is risk-seeking; if η = 0, then γ̄ = γ −, which means that the DM is risk-averse;
while if η = 1

2 , then γ̄ = (γ + + γ −)/2, which reflects that the DM is risk-neutral. In
this study, we assume that the DMs are all risk-averse (other situations can be studied
similarly).

The hesitant fuzzy Hamming and Euclidean distances between HFEs developed by
Xu and Xia (2011b) were introduced as below:

Definition 2.4 For two HFEs h1 and h2, and assume #h = #h1 = #h2, then the
hesitant fuzzyHamming andEuclidean distances between themcan be defined, respec-
tively, as follows:

d1(h1, h2) = 1

#h

#h∑

λ=1

∣∣γ λ
h1 − γ λ

h2

∣∣ (2.2)

and

d2(h1, h2) =
√√√√ 1

#h

#h∑

λ=1

(γ λ
h1

− γ λ
h2

)2. (2.3)

To compare the magnitude of HFEs, Xia and Xu (2011) proposed a ranking approach
as follows:

Definition 2.5 For an HFE h = {γ λ
h |λ = 1, 2, . . . , #h }, f (h) = 1

#h

∑#h
λ=1 γ λ

h is
called the score function of h. Given two HFEs h1 and h2, we have: (1) if f (h1) >

f (h2), then h1 
 h2; (2) if f (h1) = f (h2), then h1 = h2; (3) if f (h1) < f (h2), then
h1 ≺ h2.

In case of considering theDM’s hesitancy, theHFE is an effective tool to express the
evaluation values of alternatives when evaluating a real-life MCDM problem. In the
following, a decision context based on HFEs is established for hesitant fuzzy MCDM
problem with incomplete weights.

2.2 Decision environment based on HFEs

The MCDM is to identify the desirable compromise solution from the set of
all feasible alternatives which are assessed based on a set of conflicting criteria.
Let A = {A1, A2, . . . , Am} (m ≥ 2) be a discrete set of m feasible alternatives,
C = {C1,C2, . . . ,Cn} be a finite set of criteria. For convenience of description,
let M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}. Consider an MCDM problem in which
the evaluation information of alternative is expressed by HFEs. Thus, the ratings of
the alternative Ai ∈ A(i ∈ M) with respect to the criteria C j ∈ C( j ∈ N ) can be

represented by hi j = {γ 1
hi j

, γ 2
hi j

, . . . , γ
#hi j
hi j

}, and the MCDM problem with HFEs is
expressed in the matrix format H = (hi j )m×n .
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In the practical decision process the criteria set C can be divided into two sets,
CI and CII, where CI represents a collection of benefit criteria (the larger the better)
and CII denotes a set of cost criteria (the smaller the better). Thus, CI ∩ CII = ∅
and CI ∪ CII = C. Let hIi j = {γ 1

hIi j
, γ 2

hIi j
, . . . , γ

#hIi j
hIi j

} and hIIi j = {γ 1
hIIi j

, γ 2
hIIi j

, . . . , γ
#hIIi j
hIIi j

}
represent the ratings of the alternative Ai ∈ A for the criteria C j ∈ CI and C j ∈ CII,
respectively. Apparently, the dimensions andmeasurements of criteria values are often
different because the types of criteria are different. To eliminate the effect of different
physical dimensions and measurements on the final decision results, in this study we
transform the criteria values of the cost type into the criteria values of the benefit type
by using the following equation:

hi j =

⎧
⎪⎨

⎪⎩

hIi j (= {γ 1
hIi j

, γ 2
hIi j

, . . . , γ
#hIi j
hIi j

}), for C j ∈ CI

(hIIi j )
c(= {(1 − γ 1

hIIi j
), (1 − γ 2

hIIi j
), . . . , (1 − γ

#hIIi j
hIIi j

)}), for C j ∈ CII

(2.4)

As already mentioned in the introduction, the DM in many real-life decision
situations may not only provide the ratings of alternatives with respect to each
criterion, but also give the incomplete preference information on pair-wise com-
parisons of alternatives. In case of considering the DM’s hesitancy, this study
assumes that the preference information between alternatives is given by a set of
ordered pairs �̃ = {(ξ, ζ )|Aξ�R̃(ξ,ζ )

Aζ } with the hesitant fuzzy truth degrees

R̃(ξ, ζ )(ξ, ζ ∈ M), where R̃(ξ, ζ ) is the preference information indicating the degree
to which the DM prefers the alternative Aξ to Aζ . The R̃(ξ, ζ ) is an HFE rep-

resented by R̃(ξ, ζ ) = {γ 1
R̃(ξ,ζ )

, γ 2
R̃(ξ,ζ )

, . . . , γ
# R̃(ξ,ζ )

R̃(ξ,ζ )
} for short, satisfying 0 ≤

γ λ

R̃(ξ,ζ )
≤ 1(λ = 1, 2, . . . , # R̃(ξ, ζ )).

Remark 2.2 It is easy to see that the pair-wise preference information providedbyDMs
is expressed by HFE, which is simply called hesitant fuzzy preference information
originally developed by Zhu and Xu (2014). The cardinality |�̃| of �̃, i.e., the number
of alternative pairs in �̃, is (m2 ) = 1

2m(m − 1) when the pair-wise preference informa-
tion over alternatives is complete. In this study, the pair-wise preference information
between alternatives given by the DM is allowed to be incomplete (i.e.,|�̃| < (m2 ))

and/or intransitive, which cannot be solved by the consistent method developed by
Zhu and Xu (2014).

2.3 Incomplete weight information structure

In real-life decision process, the weights of criteria should be taken into account. Here
we denote the criteria weighting vector byw = (w1, w2, . . . , wn), wherew j is the rel-
ative weight of the criterionC j , satisfying the normalization condition:

∑n
j=1 w j = 1

andw j ≥ 0( j ∈ N ). In the classical LINMAPmethod, Srinivasan and Shocker (1973)
pointed out that a solution is said to be trivial if w j = 0( j ∈ N ), and at the same time
showed that the trivial solution does not convey any useful information so that the
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solution procedure should preclude it from being optimal. To avoid the trivial solution
and without any loss of generality, we here stipulate w j ≥ εw( j ∈ N ), where εw is a
sufficiently small positive constant and can be chosen by the DM in advance.

Let �0 denote the set of the criteria weight information, and

�0 =
{
(w1, w2, . . . , wn)

∣∣∣w j ≥ εw( j ∈ N ),
∑n

j=1
w j = 1

}
. (2.5)

Owing to the complexity and uncertainty of decision problems and the inherent sub-
jective nature of human thinking, the information about criteria weights provided by
the DM inmany real decision situations is usually incomplete and has several different
structure forms. Many studies (Chen 2014; Park and Kim 1997; Li and Wan 2013)
have discussed the structure forms of criteria weights which are roughly divided into
the following five forms:

(1) A weak ranking:

�1 = {
(w1, w2, . . . , wn) ∈ �0

∣∣w j1 ≥ w j2 for all j1 ∈ �(1)1 and j2 ∈ �(2)1
}
,

(2.6)
where �(1)1 and �(2)1 are two disjoint subsets of the subscript index set N of all
criteria.

(2) A strict ranking:

�2 =
{
(w1, w2, . . . , wn) ∈ �0

∣∣∣τ L
j1 j2 ≤ w j1 − w j2 ≤ τUj1 j2

for all j1 ∈ �(1)2 and j2 ∈ �(2)2

}
, (2.7)

where τLj1 j2 and τUj1 j2 are the constants that satisfy the condition: 0 < τLj1 j2 < τUj1 j2 ,
�(1)2 and �(2)2 are two disjoint subsets of N .

(3) A ranking of differences:

�3 = {
(w1, w2, . . . , wn) ∈ �0

∣∣w j1 − w j2 ≥ w j3 − w j4 for all

j1 ∈ �(1)3, j2 ∈ �(2)3, j3 ∈ �(3)3 and j4 ∈ �(4)3
}

(2.8)

where �(1)3, �(2)3, �(3)3 and �(4)3 are four disjoint subsets of N .
(4) A ranking with multiples:

�4 = {
(w1, w2, . . . , wn) ∈ �0

∣∣w j1 ≥ τ j1 j2 · w j2

for all j1 ∈ �(1)4 and j2 ∈ �(2)4
}
, (2.9)

where τ j1 j2 is a constant that satisfies the condition: τ j1 j2 > 0, �(1)4 and �(2)4 are
two disjoint subsets of N .

(5) An interval form:

�5 =
{
(w1, w2, . . . , wn) ∈ �0

∣∣∣τLj1 ≤ w j1 ≤ τUj1 for all j1 ∈ �(1)5

}
(2.10)
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where τLj1 and τUj1 are two constants that satisfy the condition: 0 < τLj1 < τUj1 ,�(1)5

is a subset of N .

In general, the preference information structure of criteria importance may consist
of several sets of the above basic sets or may contain all the five basic sets, which
depends on the characteristic and need of the real-life decision problems. Let� denote
a set of the known information on the criteria weights, then we have

� = �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5. (2.11)

3 Proposed hesitant fuzzy programming approach

In this section, we utilize the main structure of the LINMAP to develop a new hes-
itant fuzzy programming approach for handling aforementioned MCDM problems
under hesitant fuzzy context. Meanwhile, to address the incomplete and inconsistent
preference structures of criteria weights, we introduce several deviation variables and
establish a bi-objective nonlinear programming model.

3.1 Hesitant fuzzy consistency and inconsistency indices

In hesitant fuzzy mathematical programming technique the DM for two given alter-
natives is presumed to prefer that alternative which is “closer” to the positive-ideal
alternative. We here denote the hesitant fuzzy positive-ideal solution (HF-PIS) A∗ by
A∗ = (h∗

1, h
∗
2, . . . , h

∗
n) which is unknown in advance and needs to be determined,

where h∗
j ( j ∈ N ) is an HFE expressed as h∗

j = {γ 1
h∗
j
, γ 2

h∗
j
, . . . , γ

#h∗
j

h∗
j

} on the criterion

C j . All HFEs in the decision matrix have the same length (if not, then add some values
into the shorter one until they have the same length according to Definition 2.3), thus
we stipulate #h = #hi j = #h∗

j (i ∈ M, j ∈ N ) and L = {1, 2, . . . , #h}.
Then, the square of the hesitant fuzzy Euclidean distance between each alternative

Ai (i ∈ M) and the HF-PIS A∗ is calculated by using Eq. (2.3) as:

Si =
n∑

j=1

w j d2(hi j , h
∗
j )
2 =

n∑

j=1

w j

(
1

#h

#h∑

λ=1

(γ λ
hi j − γ λ

h∗
j
)2

)
, i ∈ M (3.1)

In a manner similar to the classical LINMAP method, the proposed hesitant fuzzy
mathematical programming technique requires the DM to provide not only the ratings
of alternatives with respect to each criterion, but also the pair-wise comparison pref-
erence information over alternatives when evaluating the MCDM problems. Assume
here that the DMprovides the pair-wise comparison preference information over alter-
natives by a set of ordered pairs �̃ = {(ξ, ζ )| Aξ�R̃(ξ,ζ )

Aζ } with the hesitant fuzzy

truth degrees R̃(ξ, ζ )(ξ, ζ ∈ M). By Eq. (2.3), the square of the distances between
each pair alternatives (ξ, ζ ) ∈ �̃ and the HF-PIS A∗ can be obtained, respectively, as
follows:
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Sξ =
n∑

j=1

w j d2(hξ j , h
∗
j )
2 =

n∑

j=1

w j

(
1

#h

#h∑

λ=1

(γ λ
hξ j

− γ λ
h∗
j
)2

)
, (3.2)

and

Sζ =
n∑

j=1

w j d2(hζ j , h
∗
j )
2 =

n∑

j=1

w j

(
1

#h

#h∑

λ=1

(γ λ
hζ j

− γ λ
h∗
j
)2

)
. (3.3)

For each pair of alternatives (ξ, ζ ) ∈ �̃,

1. if Sξ > Sζ , i.e., the alternative Aξ is farther from the HF-PIS A∗ than the alternative
Aζ , then the ranking order of the alternatives Aξ and Aζ determined by Sξ and Sζ

based on (w, A∗) is inconsistent with the ranking order obtained by the DM’s
preference relationship in �̃.

2. if Sξ ≤ Sζ , namely, the alternative Aξ is closer to theHF-PIS A∗ than the alternative
Aζ , then the ranking order of the alternatives Aξ and Aζ determined by Sξ and
Sζ based on (w, A∗) is consistent with the ranking order obtained by the DM’s
preference relationship in �̃.

Based on the above analysis, a hesitant fuzzy inconsistency index (Sζ − Sξ )
− is

developed to measure the degree of inconsistency between the ranking order of the
alternatives Aξ and Aζ in which one ranking order is determined by Sξ and Sζ based
on (w, A∗), and the other ranking order obtained by the DM’s preference relationship
in �̃ as:

(Sζ − Sξ )
− =

{
0, (Sζ ≥ Sξ )

R̃(ξ, ζ ) × (Sξ − Sζ ), (Sζ < Sξ )
(3.4)

The hesitant fuzzy inconsistency index is also expressed in the following form:

(Sζ − Sξ )
− = R̃(ξ, ζ )max{0, (Sξ − Sζ )}. (3.5)

The comprehensive hesitant fuzzy inconsistency index is defined as:

B̃ =
∑

(ξ,ζ )∈�̃

(Sζ − Sξ )
− =

∑

(ξ,ζ )∈�̃

R̃(ξ, ζ )max{0, (Sξ − Sζ )}. (3.6)

On the other hand, a hesitant fuzzy consistency index (Sζ − Sξ )
+ is proposed as

follows:

(Sζ − Sξ )
+ =

{
R̃(ξ, ζ ) × (Sζ − Sξ ), (Sζ ≥ Sξ )

0, (Sζ < Sξ )
(3.7)

which is utilized tomeasure the degree of consistency between the ranking order of the
alternatives Aξ and Aζ in which one ranking order is determined by Sξ and Sζ based
on (w, A∗), and the other ranking order obtained by the DM’s preference relationship
in �̃.

Obviously, the hesitant fuzzy consistency index in Eq. (3.7) can be also rewritten
as:

(Sζ − Sξ )
+ = R̃(ξ, ζ )max{0, (Sζ − Sξ )}. (3.8)
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And the comprehensive hesitant fuzzy consistency index is obtained as below:

G̃ =
∑

(ξ,ζ )∈�̃

(Sζ − Sξ )
+ =

∑

(ξ,ζ )∈�̃

R̃(ξ, ζ )max{0, (Sζ − Sξ )}. (3.9)

3.2 Optimization model

According to the definitions of hesitant fuzzy consistency and inconsistency indices,
it is easy to know that in the practical decision process the smaller the hesitant fuzzy
inconsistency index is, the better the final decision result is. Meanwhile, the hesitant
fuzzy inconsistency index B̃ should be no bigger than the hesitant fuzzy consistency
index G̃. We assume the hesitant fuzzy consistency index G̃ is not smaller than the
hesitant fuzzy inconsistency index B̃ by εh . Here, εh is an arbitrary HFE given by the
DM in advance.

Correspondingly, we follow the above rule to construct an optimal model in order
to determine the weighting vector and the HF-PIS as follows:

min {B̃}
s.t.

{
G̃ − B̃ ≥ εh
w ∈ �

(3.10)

where � is the preference structure of criteria importance introduced in Sect. 2.3.
Using Eqs. (3.6) and (3.9), it can be easily derived that

G̃ − B̃ =
∑

(ξ,ζ )∈�̃

{(Sζ − Sξ )
+ − (Sζ − Sξ )

−}

=
∑

(ξ,ζ )∈�̃

(R̃(ξ, ζ ) × (Sζ − Sξ )). (3.11)

Combining with Eqs. (3.2) and (3.3), the above Eq. (3.11) can be rewritten as follows:

G̃ − B̃ =
∑

(ξ,ζ )∈�̃

⎧
⎨

⎩R̃(ξ, ζ ) ×
⎧
⎨

⎩

n∑

j=1

w j

(
1

#h

#h∑

λ=1

((γ λ
hζ j

)2 − (γ λ
hξ j

)2)

)

−2
n∑

j=1

w j

(
1

#h

#h∑

λ=1

γ λ
h∗
j
(γ λ

hξ j
− γ λ

hζ j
)

)⎫
⎬

⎭

⎫
⎬

⎭ . (3.12)

Using Eqs. (3.6) and (3.11), the mathematical programming model (3.10) can be
rewritten as:
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min

{
∑

(ξ,ζ )∈�̃

{R̃(ξ, ζ ) × max{0, (Sξ − Sζ )}}
}

s.t.

⎧
⎪⎨

⎪⎩

∑

(ξ,ζ )∈�̃

{R̃(ξ, ζ ) × (Sζ − Sξ )} ≥ εh

w ∈ �

(3.13)

For each pair of alternatives (ξ, ζ ) ∈ �̃, let zξζ = max{0, (Sξ − Sζ )}, then zξζ ≥
Sξ − Sζ , i.e., zξζ + Sζ − Sξ ≥ 0 and zξζ ≥ 0. Thus, the mathematical programming
model (3.13) can be converted into the following model:

min

{
∑

(ξ,ζ )∈�̃

zξζ R̃(ξ, ζ )

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

(ξ,ζ )∈�̃

(R̃(ξ, ζ ) × (Sζ − Sξ )) ≥ εh

zξζ − Sξ + Sζ ≥ 0 ((ξ, ζ ) ∈ �̃)

zξζ ≥ 0 ((ξ, ζ ) ∈ �̃)

w ∈ �

(3.14)

It is easy to notice that in the model (3.14) the objective function is an HFE and
the right and left coefficients of the first constraint condition are also HFEs. We call
the model (3.14) a hesitant fuzzy mathematical programming model. To our best
knowledge, there is no method for solving such a kind of hesitant fuzzy programming
models. Therefore, we next develop an effective method for solving the model (3.14).

Let gζ ξ = Sζ − Sξ and ϑλ
j = w jγ

λ
h∗
j
, since 0 ≤ γ 1

h∗
j
≤ · · · ≤ γ #h

h∗
j

≤ 1( j ∈ N ) and

0 ≤ w j ≤ 1( j ∈ N ), thus we obtain 0 ≤ ϑ1
j ≤ · · · ≤ ϑ#h

j ≤ w j ( j ∈ N ). By Eqs.
(3.2) and (3.3), we have

gζ ξ =
n∑

j=1

w j

(
1

#h

#h∑

λ=1

((γ λ
hζ j

)2 − (γ λ
hξ j

)2)

)
− 2

n∑

j=1

w j

(
1

#h

#h∑

λ=1

γ λ
h∗
j
(γ λ

hζ j
− γ λ

hξ j
)

)

=
n∑

j=1

w j

(
1

#h

#h∑

λ=1

((γ λ
hζ j

)2 − (γ λ
hξ j

)2)

)
− 2

n∑

j=1

(
1

#h

#h∑

λ=1

ϑλ
j (γ

λ
hζ j

− γ λ
hξ j

)

)

(3.15)

Consequently, themodel (3.14) is further transformed into the following hesitant fuzzy
mathematical programming model:
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min

{
∑

(ξ,ζ )∈�̃

R̃(ξ, ζ ) × zξζ

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

(ξ,ζ )∈�̃

(gζ ξ × R̃(ξ, ζ )) ≥ εh

zξζ + gζ ξ ≥ 0 ((ξ, ζ ) ∈ �̃)

zξζ ≥ 0 ((ξ, ζ ) ∈ �̃)

0 ≤ ϑ1
j ≤ · · · ≤ ϑ#h

j ≤ w j ( j ∈ N )

w ∈ �

(3.16)

It is easy to see that in the model (3.16) there exist (|�̃| + n + nl) variables that
need to be determined, including |�̃| variables zξζ ((ξ, ζ ) ∈ �̃), n weights of criteria
w j ( j ∈ N ), and n • #h variables of ϑλ

j ( j ∈ N , λ ∈ L); and at the same time we have

(|�̃| + 2nl − n + 1) inequalities (excluding the non-negative constraints for the vari-
ables and the incomplete weighed information �). In order to determine objectively
these variables, the number (|�̃| + 2nl − n + 1) of inequalities should not be very
small. In general, the larger the number (|�̃|) is the more precise and reliable the
obtained results (w, A∗) are.

Then, according to the ranking idea of HFEs introduced in Sect. 2, the model (3.16)
can be transformed into the following programming model (3.17) as:

min

{
∑

(ξ,ζ )∈�̃

zξζ f (R̃(ξ, ζ ))

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

(ξ,ζ )∈�̃

gζ ξ f (R̃(ξ, ζ )) ≥ f (εh)

zξζ + gζ ξ ≥ 0 ((ξ, ζ ) ∈ �̃)

zξζ ≥ 0 ((ξ, ζ ) ∈ �̃)

0 ≤ ϑ1
j ≤ · · · ≤ ϑ#h

j ≤ w j ( j ∈ N )

w ∈ �

(3.17)

where f (R̃(ξ, ζ )) and f (εh) are the score functions of R̃(ξ, ζ ) and εh , respectively.
It is easily observed that themodel (3.17) is a crisp linear programmingmodelwhich

can be solved by using the Simplexmethod and needs very low time cost relative to the
nonlinear programming model. Then, the solutions of the model (3.17), i.e., the cri-
teria weighting vector w = (w1, w2, . . . , wn)

T and ϑλ
j ( j ∈ N , λ ∈ L) can be easily

obtained. Based on the derived HF-PIS and weights of criteria, the distances between
the alternatives and the HF-PIS are calculated and the best compromise alternative
that has the shortest distance to the HF-PIS is obtained.

3.3 Issues that involve inconsistent preference structure of criteria weights

In some practical decision problems, the weight information of criteria provided by
the DM may be inconsistent when using the five basic ranking forms (i.e., Eqs. 2.6–
2.10) to express them, especially in some complex and uncertain environments. These
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inconsistent opinions on the importance of criteria may result in no feasible solutions
that satisfy all conditions in �. To this end, inspired the idea of Chen (2014) some
non-negative deviation variables are presented to relax the conditions in �, and a
bi-objective nonlinear programming model is formulated to address the problem with
inconsistent weight information.

For convenience, we denote � as follows:

� = {(w1, w2, . . . , wn) ∈ �0|w j1 ≥ w j2 for all j1 ∈ �(1)1 and j2 ∈ �(2)1

w j1 − w j2 ≥ τ L
j1 j2

, w j1 − w j2 ≤ τUj1 j2 for all j1 ∈ �(1)2 and j2 ∈ �(2)2

w j1 − w j2 − w j3 + w j4 ≥ 0 for all j1 ∈ �(1)3, j2 ∈ �(2)3, j3 ∈ �(3)3
and j4 ∈ �(4)3

w j1/w j2 ≥ τ j1 j2 for all j1 ∈ �(1)4 and j2 ∈ �(2)4

w j1 ≥ τ L
j1
, w j1 ≤ τUj1 for all j1 ∈ �(1)5},

where j1 �= j2 �= j3 �= j4.
Now, we introduce several non-negative deviation variables to relax the conditions

in � if the � includes the inconsistent weights information of criteria. This relaxed
result denoted by �† which is presented as follows:

�† = {(w1, w2, . . . , wn) ∈ �0|w j1 + �−
1 j1 j2

≥ w j2 for all j1 ∈ �(1)1 and j2 ∈ �(2)1

w j1 − w j2 + �−
2 j1 j2

≥ τLj1 j2 , w j1 − w j2 − �+
2 j1 j2

≤ τUj1 j2 for all j1 ∈ �(1)2

and j2 ∈ �(2)2

w j1 − w j2 − w j3 + w j4 + �−
3 j1 j2

≥ 0 for all j1 ∈ �(1)3, j2 ∈ �(2)3, j3 ∈ �(3)3

and j4 ∈ �(4)3

w j1/w j2 + �−
4 j1 j2

≥ τ j1 j2 for all j1 ∈ �(1)4 and j2 ∈ �(2)4

w j1 + �−
5 j1

≥ τ L
j1
, w j1 − �+

5 j1
≤ τUj1 for all j1 ∈ �(1)5}.

(3.18)
It is noted that all the deviation values �−

1 j1 j2
,�−

2 j1 j2
,�+

2 j1 j2
,�−

3 j1 j2 j3 j4
,�−

4 j1 j2
,

�−
5 j1

,�+
5 j1

( j1, j2, j3, j4 ∈ N ) are non-negative real numbers and are also unknown
in advance. To handle the inconsistent weight information, a bi-objective nonlinear
programming model is constructed as below:
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min

{
∑

(ξ,ζ )∈�̃

zξζ f (R̃(ξ, ζ ))

}

min

{
∑

j1, j2, j3, j4∈N
(�−

1 j1 j2
+ �−

2 j1 j2
+ �+

2 j1 j2
+ �−

3 j1 j2 j3 j4
+ �−

4 j1 j2
+ �−

5 j1 j2
+ �+

5 j1 j2
)

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

(ξ,ζ )∈�̃

(gζ ξ × f (R̃(ξ, ζ ))) ≥ f (εh)

zξζ + gζ ξ ≥ 0 ((ξ, ζ ) ∈ �̃)

zξζ ≥ 0 ((ξ, ζ ) ∈ �̃)

0 ≤ ϑ1
j ≤ · · · ≤ ϑ#h

j ≤ w j ( j ∈ N )

(w1, w2, . . . , wn) ∈ �†

�−
1 j1 j2

≥ 0, j1 ∈ �(1)1 and j2 ∈ �(2)1

�−
2 j1 j2

≥ 0,�+
2 j1 j2

≥ 0, j1 ∈ �(1)2 and j2 ∈ �(2)2

�−
3 j1 j2 j3 j4

≥ 0, j1 ∈ �(1)3, j2 ∈ �(2)3, j3 ∈ �(3)3 and j4 ∈ �(4)3

�−
4 j1 j2

≥ 0, j1 ∈ �(1)4 and j2 ∈ �(2)4

�−
5 j1

≥ 0,�+
5 j1

≥ 0, j1 ∈ �(1)5

(3.19)
By using the min–max operator (Chen 2014), the above bi-objective nonlinear pro-
grammingmodel is converted into the single-objective programmingmodel as follows:

min {χ}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

(ξ,ζ )∈�̃

zξζ f (R̃(ξ, ζ )) ≤ χ

∑
j1, j2, j3, j4∈N

(�−
1 j1 j2

+ �−
2 j1 j2

+ �+
2 j1 j2

+ �−
3 j1 j2 j3 j4

+ �−
4 j1 j2

+ �−
5 j1 j2

+ �+
5 j1 j2

) ≤ χ

∑

(ξ,ζ )∈�̃

(gζ ξ × f (R̃(ξ, ζ ))) ≥ f (εh)

zξζ + gζ ξ ≥ 0 ((ξ, ζ ) ∈ �̃)

zξζ ≥ 0 ((ξ, ζ ) ∈ �̃)

0 ≤ ϑ1
j ≤ · · · ≤ ϑ#h

j ≤ w j ( j ∈ N )

(w1, w2, . . . , wn) ∈ �†

�−
1 j1 j2

≥ 0, j1 ∈ �(1)1 and j2 ∈ �(2)1

�−
2 j1 j2

≥ 0,�+
2 j1 j2

≥ 0, j1 ∈ �(1)2 and j2 ∈ �(2)2

�−
3 j1 j2 j3 j4

≥ 0, j1 ∈ �(1)3, j2 ∈ �(2)3, j3 ∈ �(3)3 and j4 ∈ �(4)3

�−
4 j1 j2

≥ 0, j1 ∈ �(1)4 and j2 ∈ �(2)4

�−
5 j1

≥ 0,�+
5 j1

≥ 0, j1 ∈ �(1)5

(3.20)
Apparently, the programming model (3.20) is a crisp linear programming which

can be easily solved by using LINGO 11.0. By solving the above model, the
optimal weighting vector w = (w1, w2, . . . , wn)

T, the optimal deviation values
�−

1 j1 j2
,�−

2 j1 j2
,�+

2 j1 j2
,�−

3 j1 j2 j3 j4
,�−

4 j1 j2
,�−

5 j1
,�+

5 j1
( j1, j2, j3, j4 ∈ N ) and the HF-

PIS A∗ = (h∗
1, h

∗
2, . . . , h

∗
n) are obtained, respectively. Furthermore, based on the

derived HF-PIS and optimal weights, the distances of the alternatives to the HF-PIS
are calculated and thus the best compromise alternative that has the shortest distance
to the HF-PIS is obtained.
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Table 1 The algorithm of the proposed decision method

Step 1 Identify the evaluation criteria and the incomplete weight information structure

Step 2 Express the pair-wise comparison preference information over alternatives with hesitant fuzzy

truth degrees represented by �̃ =
{
(ξ, ζ )

∣∣∣Aξ 
R̃(ξ,ζ )
Aζ

}

Step 3 Construct the hesitant fuzzy decision matrix H and obtain the normalized decision matrix
HN by Eq. (2.4)

Step 4 Calculate the hesitant fuzzy consistency and inconsistency indices by Eqs. (3.6) and (3.9),
respectively

Step 5 If the weight information of criteria is incomplete and consistent, we construct the hesitant
fuzzy programming model according to the model (3.16), and solve it by transforming the
derived model into a linear programming model in the sense of model (3.17); if the weight
information is incomplete and inconsistent, we establish a bi-objective programming model
according to model (3.19), and solve it by transforming this model into a linear
programming model in the sense of model (3.20)

Step 6 Get the optimal weight vector w and the HF-PIS A∗ through solving model (3.17) or (3.20)
by using LINGO 11.0

Step 7 Calculate the relative distances Si (i ∈ M) of the alternatives Ai (i ∈ M) from the HF-PIS A∗
using Eq. (2.3)

Step 8 The ranking order of alternatives is generated according to the increasing order of the
distances Si (i ∈ M) and the best alternative from the alternative set A is determined

3.4 The algorithm of the proposed decision method

Now, we present a practical algorithm of the proposed approach for solving the afore-
mentioned MCDM problem, which can be summarized as in Table 1:

4 Case illustration and discussions

In this section, an MCDM problem involved with the supplier selection problem is
presented to demonstrate the applicability and the implementation process of the pro-
posed method.

4.1 Description of the supplier selection problem

With the increase of public awareness of the need to protect the environment, it is
urgent for businesses to introduce and promote business practices that help ease the
negative impacts of their actions on the environment (Wang and Chan 2013). In the
automobile manufacturing industries, the manufacturers want to improve their envi-
ronmental management practices, not only internally, but also with their suppliers. To
this end, the automobile manufacturing company plans to find some environmentally
and economically powerful suppliers as strategic partners, with whom the company
intends to build long-term collaborative relationships. There are five qualified sup-
pliers which are named, for our purposes, as A1, A2, A3, A4 and A5. A decision
organization including three experts (from the purchasing department, management
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department, environment department, respectively) is invited to evaluate these five
suppliers and help the company choose an optimal supplier as its strategic partner.
The supplier selection criteria have been determined by the decision organization as
follows: (1)C1 is the delivery capability; (2)C2 is the environmental performance; (3)
C3 is the cost of product; (4) C4 is the quality of product. It is noted that the criterion
C3 is the cost criterion and others are the benefit criteria. The preference structure of
criteria importance is also given as follows:

� =
{
(w1, w2, w3, w4) ∈ �0

∣∣∣∣
w4 ≥ w1, w2 ≥ 2w1, 0.15 ≤ w4 ≤ 0.5,
0.05 ≤ w2 − w3 ≤ 0.3, w4 − w3 ≥ w2 − w1

}
.

To get more reasonable evaluation results, in the real-world decision process the
experts are required to give their evaluations anonymously. For the green supplier
selection problem, the original assessments of suppliers on each criterion provided
anonymously by the three experts are listed in Table 2. Although all of the experts
provide their evaluation values of alternatives under each criterion, some of these
values may be repeated. Considering the decision information provided anonymously
by experts, we only collect all of the possible values for an alternative under a criterion,
and each value provided only means that it is a possible value, while the times that the
values repeated are negligible. Obviously, theHFE is just a tool to deal with such cases,
and all possible evaluations for an alternative under each criterion can be considered
as an HFE (Xu and Xia 2011a). The collective opinions of the original assessments
of suppliers with respect to criteria provided by the decision organization are taken
as HFEs, listed in Table 2. For the element {0.4, 0.5, 0.7} in Table 2, it means that
the decision organization has hesitancy among 0.4, 0.5 and 0.7 when providing the
assessment of the alternative A1 with respect to C1, and the others have the similar
meanings.

Moreover, the decision organization also provides the HFEs of ordered pairs for
the preferences over the alternatives as follows:

�̃ =
{ 〈(1, 2), R̃(1, 2)〉, 〈(2, 3), R̃(2, 3)〉, 〈(2, 4), R̃(2, 4)〉, 〈(2, 5), R̃(2, 5)〉,

〈(3, 1), R̃(3, 1)〉, 〈(3, 4), R̃(3, 4)〉, 〈(4, 5), R̃(4, 5)〉
}

where the corresponding hesitant fuzzy truth degrees are listed as follows:

R̃(1, 2) = {0.5, 0.6, 0.7} , R̃(2, 3) = {0.6, 0.65, 0.7} ,

R̃(2, 4) = {0.8, 0.85, 0.9} , R̃(2, 5) = {0.5, 0.7} ,

R̃(3, 1) = {0.4, 0.5, 0.6} , R̃(3, 4) = {0.6, 0.7, 0.95} , R̃(4, 5) = {0.7, 0.9} .

and R̃(1, 2) = {0.5, 0.6, 0.7} means that the decision organization has hesitancy
among the values 0.5, 0.6 and 0.7 when providing the degrees to which the alternative
A1 is superior to A2, and the others have the similar meanings.
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Table 3 The normalized decision matrix provided by the decision organization

C1 C2 C3 C4

A1 {0.4, 0.5, 0.7} {0.7, 0.7, 0.7} {0.45, 0.5, 0.6} {0.8, 0.85, 0.9}

A2 {0.4, 0.5, 0.6} {0.7, 0.8, 0.9} {0.45, 0.55, 0.6} {0.6, 0.6, 0.7}

A3 {0.4, 0.4, 0.4} {0.6, 0.6, 0.9} {0.45, 0.55, 0.7} {0.6, 0.7, 0.8}

A4 {0.3, 0.4, 0.6} {0.4, 0.5, 0.6} {0.9, 0.9, 0.9} {0.15, 0.25, 0.3}

A5 {0.6, 0.7, 0.8 } {0.3, 0.4, 0.5} {0.4, 0.4, 0.5} {0.4, 0.45, 0.75}

4.2 Illustration of the proposed approach

In the following, we employ the proposed method to solve the above green supplier
evaluation problem. Firstly, we normalize the hesitant fuzzy decision data in Table 2,
and the normalized results are listed in Table 3.

Taking the εh = {0.01} and εw = 0.01, we utilize the model (3.16) to construct the
hesitant fuzzy programming model (5.1) which is displayed in Appendix. Then, the
derived model (5.1) is converted into the crisp linear programming model based on the
ranking approach of HFEs (i.e., using the model (3.17)). By solving the corresponding
linear programmingmodel using LINGO 11.0, the components of the optimal solution
can be obtained as below:

w = (w1, w2, w3, w4)
T = (0.1217, 0.2434, 0.1934, 0.4415)T,

ϑ1
1 = 0, ϑ2

1 = 0.0017, ϑ3
1 = 0.1217, ϑ1

2 = 0.1921, ϑ2
2 = 0.2434, ϑ3

2 = 0.2434,

ϑ1
3 = 0.1594, ϑ2

3 = 0.1594, ϑ3
3 = 0.1594, ϑ1

4 = 0, ϑ2
4 = 0.3824, ϑ3

4 = 0.3824.

Using the equation γ λ
h∗
j
= ϑλ

j /w j , we can further obtain the HF-PIS A∗ as:

A∗ = (h∗
1, h

∗
2, h

∗
3, h

∗
4) = ({0, 0.014, 1}, {0.7892, 1, 1}, {0.8242, 0.8242, 0.8242},

{0, 0.8661, 0.8661}).

The distances d∗
i between the alternatives Ai (i = 1, 2, 3, 4, 5) and the HF-PIS A∗ are

calculated by utilizing Eq. (2.3) as below:

d∗
1 = 0.1484, d∗

2 = 0.1162, d∗
3 = 0.1164, d∗

4 = 0.1692, d∗
5 = 0.1852.

By comparing the derived distances, we obtain the ranking order of all alternatives
as: A5 ≺ A4 ≺ A1 ≺ A3 ≺ A2, thus the best optimal alternative is the green supplier
A2.

4.3 Sensitivity analysis

In this section, we conduct a sensitivity analysis by modifying the parameter εh . In
general, wemay increase or decrease the values of the parameter εh , and recalculate the
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optimal weighting vector w, the HF-PIS A∗ and the ranking orders of alternatives. By
comparing the decision results with different values of εh , we can make a conclusion
whether the decision results are sensitive to the values of the parameter εh .

As far as this green supplier selection example is concerned, we change the value of
the parameter εh from {0.0001} to {0.1}, and obtain the change results of the optimal
weighting vector w, the HF-PIS A∗ and the ranking order of alternatives, listed in
Table 4.

From the sensitivity analysis results presented in Table 4, it is noticed that both the
optimal weighting vector w and the HF-PIS A∗ are not sensitive to the HFE εh , and in
spite of the alteration in the value of εh , the obtained ranking orders of alternatives are
usually consistent. In general, the HFE εh is given by the DM a priori and εh should
not be too big which usually takes the value less than {0.1}.

4.4 Discussion of inconsistent weights of criteria

As mentioned previously, the DM might express the inconsistent opinions on the
criteria importance when he/she employs the five basic ranking forms introduced in
Sect. 2.3. In the abovegreen supplier selectionproblem, let� = �1∪�2∪�3∪�4∪�5
and the five basic ranking forms be expressed as follows, respectively:

�1 = {(w1, w2, w3, w4) ∈ �0 |w4 ≥ w1 } ,

�2 = {(w1, w2, w3, w4) ∈ �0 |0.05 ≤ w2 − w3 ≤ 0.3 } ,

�3 = {(w1, w2, w3, w4) ∈ �0 |w4 − w3 ≥ w2 − w1 } ,

�4 = {(w1, w2, w3, w4) ∈ �0 |w2 ≥ 2w1 } ,

�5 = {(w1, w2, w3, w4) ∈ �0 |0.15 ≤ w4 ≤ 0.5 } .

Now, we assume that a new condition w3 ≥ w2 is added to the set �1, then the set
�1 is updated as follows:

�1
(new) = {(w1, w2, w3, w4) ∈ �0 |w4 ≥ w1, w3 ≥ w2 }

and � is updated as follows:

�(new)

=
{
(w1, w2, w3, w4) ∈ �0

∣∣∣∣
w4≥w1, w3≥w2, 0.05 ≤ w2 − w3 ≤ 0.3,
w4 − w3 ≥ w2 − w1, w2 ≥ 2w1, 0.15 ≤ w4 ≤ 0.5

}
.

It is easy to see that the condition ofw3 ≥ w2 in�
(new)
1 is conflict with the condition

of 0.05 ≤ w2 − w3 ≤ 0.3 in �2. In other words, the weights in �(new) exist partially
inconsistent which result in no feasible solutions that satisfy all conditions in �(new).
Thus, we introduce several deviation variables to relax the conditions in �(new) into
�†(new), as follows:

123



808 X. Zhang et al.

Ta
bl
e
4

T
he

se
ns
iti
vi
ty

an
al
ys
is
re
su
lts

w
ith

di
ff
er
en
tv

al
ue
s
of

ε
h

ε
h

w
=

(w
1
,
w
2
,
w
3
,
w
4
)

A
∗ =

(h
∗ 1
,
h
∗ 2
,
h
∗ 3
,
h
∗ 4
)

T
he

ra
nk

in
g
re
su
lts

of
al
te
rn
at
iv
es

{0
.0
00

1}
(0

.1
15

5,
0.
23

1,
0.
18

1,
0.
47

25
)

({0
,
0.
01

4,
1},

{0.
78

92
,
1,
1},

{0.
82

42
,
0.
82

42
,
0.
82

42
},{

0,
0.
86

61
,
0.
86

61
})

A
5

≺
A
4

≺
A
1

≺
A
3

≺
A
2

{0
.0
01

}
(0

.1
15

5,
0.
23

1,
0.
18

1,
0.
47

25
)

({0
,
0.
01

4,
1},

{0.
78

92
,
1,
1},

{0.
82

42
,
0.
82

42
,
0.
82

42
},{

0,
0.
86

61
,
0.
86

61
})

A
5

≺
A
4

≺
A
1

≺
A
3

≺
A
2

{0
.0
1}

(0
.1
21

7,
0.
24

34
,
0.
19

34
,
0.
44

15
)

({0
,
0.
01

4,
1},

{0.
78

92
,
1,
1},

{0.
82

42
,
0.
82

42
,
0.
82

42
},{

0,
0.
86

61
,
0.
86

61
})

A
5

≺
A
4

≺
A
1

≺
A
3

≺
A
2

{0
.0
2}

(0
.1
24

1,
0.
24

81
,
0.
19

81
,
0.
42

97
)

({0
,
0.
21

19
,
1},

{0.
87

59
,
0.
87

59
,
1},

{0.
84

45
,
0.
84

45
,
0.
84

45
},{

0,
0.
87

97
,
0.
87

97
})

A
5

≺
A
4

≺
A
1

≺
A
3

≺
A
2

{0
.0
5}

(0
.1
21

6,
0.
24

32
,
0.
19

32
,
0.
44

2)
({0

,
0.
66

86
,
1},

{0.
75

7,
0.
75

7,
0.
99

96
},{

1,
1,
1},

{0.
22

69
,
0.
86

49
,
0.
86

49
})

A
5

≺
A
4

≺
A
1

≺
A
3

≺
A
2

{0
.0
8}

(0
.1
14

2,
0.
22

84
,
0.
17

84
,
0.
47

9)
({0

,
0.
38

35
,
0.
93

78
},{

1,
1,
1},

{1,
1,
1},

{0.
06

35
,
0.
93

44
,
0.
93

44
})

A
5

≺
A
4

≺
A
1

≺
A
3

≺
A
2

{0
.1
}

(0
.1
15

6,
0.
23

12
,
0.
18

12
,
0.
47

2)
({0

,
0.
47

21
,
0.
78

52
},{

1,
1,
1},

{1,
1,
1},

{0.
12

97
,
0.
92

52
,
0.
92

52
})

A
5

≺
A
4

≺
A
1

≺
A
3

≺
A
2

123



Hesitant fuzzy programming technique for multidimensional… 809

�†(new)

=

⎧
⎪⎪⎨

⎪⎪⎩
(w1, w2, . . . , wn) ∈ �0

∣∣∣∣∣∣∣∣

w4 + �−
141 ≥ w1, w3 + �−

132 ≥ w2, w2 − w3 + �−
223 ≥ 0.05,

w4 + �−
54 ≥ 0.15, w2 − w3 − �+

223 ≤ 0.3,
w4 − w3 − w2 + w1 + �−

34321 ≥ 0 ,
w2/w1 + �−

421 ≥ 2, w4 − �+
54 ≤ 0.5

⎫
⎪⎪⎬

⎪⎪⎭

where all deviation variables�−
141,�

−
132,�

−
223,�

+
223,�

−
34321,�

−
421,�

+
54and �−

54 are
non-negative real numbers.

To handle the inconsistent weight information, according to the model (3.19) pro-
posed in Sect. 3.3, we construct a bi-objective nonlinear programming model (5.2)
which is displayed in Appendix. Based on the model (3.20) proposed in Sect. 3.3, the
model (5.2) can be converted into the following optimal model (5.3) which is also
displayed in Appendix.

By solving the model (5.3) using the Simplex method, the components of the
optimal solution can be obtained. By combining with the equation γ λ

h∗
j
= ϑλ

j /w j , we

can obtain the optimal weight vector w and the HF-PIS A∗ as follows:

w = (w1, w2, w3, w4)
T = (0.133, 0.267, 0.233, 0.367)T, χ = 0.05,

A∗ =(h∗
1, h

∗
2, h

∗
3, h

∗
4)=({0, 1, 1}, {0, 1, 1}, {0.7712, 0.7712, 0.7712}, {0.0825, 1, 1}),

�−
141=�+

223=�−
34321 = �−

421 = �+
54 = �−

54 = 0, �−
132 = 0.0335, �−

223 = 0.0165.

Then, the distances d∗
i (i = 1, 2, 3, 4, 5) of the alternatives Ai (i = 1, 2, 3, 4, 5) to

the HF-PIS A∗ are calculated by using Eq. (2.3) as below:

d∗
1 = 0.1658, d∗

2 = 0.1468, d∗
3 = 0.1471, d∗

4 = 0.2109, d∗
5 = 0.1681.

By comparing these relative distances, we can obtain the ranking orders of the
alternatives as: A4 ≺ A5 ≺ A1 ≺ A3 ≺ A2. It is easy to see that the ranking order
of alternatives determined based on inconsistent weights is remarkably different from
that based on the consistent weights. The main reason is that the weight distribution
among these four criteria under the inconsistent weight information is different from
those using the consistent information.

4.5 Comparison analysis of the obtained results

Recently, Wan and Li (2013) extended the classical LINMAP method for solving
the heterogeneous MCDM problems which involve IFNs, trapezoidal fuzzy numbers,
intervals and real numbers, and at the same time the DM’s preference is given through
the pair-wise comparisons of alternativeswhich are represented as IFNs. In this section,
we conduct a comparison with theWan and Li’s method.We use the HFEs’ envelopes,
i.e., intuitionistic fuzzy data, instead of the hesitant fuzzy data in the above green
supplier selection problem, and the hesitant fuzzy data of the above example (i.e.,
Table 3) is converted into intuitionistic fuzzy data as depicted in Table 5.

Because the above decision problem considers the pair-wise comparisons between
alternativeswith the hesitant fuzzy truth degree R̃(ξ, ζ ), tomake this comparisonmore
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Table 5 Intuitionistic fuzzy
normalized decision matrix

C1 C2 C3 C4

A1 (0.4, 0.3) (0.7, 0.3) (0.45, 0.4) (0.8, 0.1)

A2 (0.4, 0.4) (0.7, 0.1) (0.45, 0.4) (0.6, 0.3)

A3 (0.4, 0.6) (0.6, 0.1) (0.45, 0.3) (0.6, 0.2)

A4 (0.3, 0.4) (0.4, 0.4) (0.9, 0.1) (0.15, 0.7)

A5 (0.6, 0.2) (0.3, 0.5) (0.4, 0.5) (0.4, 0.25)

fair we also assume that the R̃(ξ, ζ ) reduces to the HFEs’ envelopes, i.e., intuitionistic
fuzzy preferences. Thereby, the hesitant fuzzy truth degrees are also transformed into
the corresponding intuitionistic fuzzy truth degrees as follows:

R̃(1, 2) = (0.5, 0.3), R̃(2, 3) = (0.6, 0.3),

R̃(2, 4) = (0.8, 0.1), R̃(2, 5) = (0.5, 0.3),

R̃(3, 1) = (0.4, 0.4), R̃(3, 4) = (0.6, 0.05), R̃(4, 5) = (0.7, 0.1),

where R̃(1, 2) = (0.5, 0.3) means that the intensity of which the alternative A1 is
superior to A2 is 0.5, and the intensity of which the alternative A1 is inferior to A2 is
0.3; and the others have the similar meanings.

Then, we utilize the Wan and Li’s method to construct the corresponding fuzzy
mathematical programming model (5.4) which is displayed in Appendix. Solving the
model (5.4) by the method introduced in subsection 4.3 in Li and Wan (2013), the
optimal solutions (taking ε = (0.01, 0.99) and ω = 0.5) are obtained as follows:

w1 = 0.1375, w2 = 0.275, w3 = 0.225, w4 = 0.3625, u1 = 0, u2 = 0.275,

u3 = 0.1811, u4 = 0.1343, v1 = 0.1357, v2 = 0.0, v3 = 0.0, v4 = 0.1222.

A+ = (〈0, 1〉 , 〈1, 0〉 , 〈0.6751, 0〉 , 〈0.4651, 0.5349〉).

Therefore, the squares of the distances of the alternatives Ai (i = 1, 2, 3, 4, 5) from
the intuitionistic fuzzy PIS A+ can be calculated as below:

d∗
5 = 0.2588 > d∗

1 = 0.1601 > d∗
4 = 0.1598 > d∗

2 = 0.1124 > d∗
3 = 0.1051.

Comparing these distances, the ranking orders of the alternatives Ai (i = 1, 2, 3, 4, 5)
for the decision organization are generated as:

A5 ≺ A1 ≺ A4 ≺ A2 ≺ A3.

Thus, the best alternative is the green supplier A3.
To provide a better view of the comparison results, we put the results of the ranking

of alternatives obtained by the proposed method andWan and Li’s method into Fig. 1.
From Fig. 1, we know that the ranking order of the alternatives obtained byWan and

Li’s method is different from that obtained by the method proposed in this paper. The
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Fig. 1 The pictorial representation of the rankings of alternatives

main reason is that in our proposed method the decision information is expressed by
HFEs, while in Wan and Li’s method the decision data is represented by IFNs. Using
theWan and Li’s method to handle the HFEs decision data, it needs to transformHFEs
into IFNs, which gives rise to a difference in the accuracy of data in the two types
and further has an effect on the final decision results. Additionally, in the proposed
method we have constructed a new hesitant fuzzy mathematical programming model
(i.e., the model (3.16)) where both the objective function and the constraints of the
model contain the HFEs, to estimate the HF-PIS and the weight vector of criteria.
Based on the ranking method of HFEs, we have technically developed an effective
method without adding any new parameter for solving this kind of model with HFEs;
whereas, in the Wan and Li’s method the constructed model (i.e., the model (18) in
Li and Wan 2013) is the fuzzy mathematical programming model with IFNs, and
the derived model is solved by the weighted average method with a new weighted
parameter ω ∈ (0, 1). Apparently, compared withWan and Li’s method, our proposed
method is capable of better modeling the real-world MCDM problems, especially
dealing with the MCDM problems in case of considering the hesitancy of the DM.

On the other hand, it is easily observed that the proposedmethod is based on the idea
that the most preferred alternative is the solution with shortest distance to the hesitant
fuzzy positive-ideal solution, which is similar to the TOPSIS method. Nevertheless,
the TOPSIS method and the proposed method require different types of preference
information and decision conditions. In the TOPSIS approach, the weights of criteria
and the positive-ideal solution are required to be known in advance. While in the
proposed method, the weights of criteria and the positive-ideal solution are unknown,
but the incomplete and/or intransitive pair-wise comparison preference information
over alternatives is required to be provided by the DM in advance. Based on the
incomplete preference information on paired comparison of alternatives, an optimal
model in the proposed method is constructed to determine the weights of criteria
and the positive-ideal solution. Apparently, compared with the TOPSIS method, the
proposed approach does not require experts to provide the weights of criteria and the
positive-ideal solution in advance, but constructs the optimal model to objectively
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determine the weights and the positive-ideal solution, which avoids the subjective
randomness of selecting the weights of criteria and the positive-ideal solution.

5 Conclusions and future research directions

The theory of HFEs has turned out to be an efficient tool in quantifying the ambiguous
and vague nature of subjective judgments in the real-world decision process. This
paper has developed a hesitant fuzzy programming approach for handling the MCDM
problems with incomplete weights in which the ratings of alternatives with each cri-
terion are taken as HFEs and the incomplete judgments on pair-wise comparisons of
alternatives with hesitant degrees are also represented by HFEs. Compared with Wan
and Li’s method, our proposed method is capable of better modeling the real-world
MCDMproblems, especially dealingwith theMCDMproblems in case of considering
the hesitancy of the DM. This proposed approach makes several contributions to the
literature and practices. First, the concept of hesitant fuzzy programming model in
which both the objective function and some constraints’ coefficients take the form of
HFEs has been proposed. Second, an effective approach has been presented to solve
the derived model. Third, a bi-objective programming model has been constructed to
address the issues of incomplete and inconsistent weights of the criteria. Finally, the
real-life green supplier selection problem is introduced to illustrate the feasibility and
applicability of the proposed method.

In future studies we will develop the corresponding decision support systems based
on the proposed method to solve the real-world decision problems in case of consider-
ing the DM’s hesitation. We will also focus on some additional experimental studies
with different sizes of randomly generated problems and discuss how the components
of the optimal weight vector are obtained. Furthermore, the potential of combining the
proposed hesitant fuzzy programming method with other useful MCDM techniques
within the environment of HFEs will also be taken into consideration in the future.
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Appendix

min

{ {0.5, 0.6, 0.7} ⊗ z12 + {0.6, 0.65, 0.7} ⊗ z23 + {0.8, 0.85, 0.9} ⊗ z24 + {0.5, 0.7} ⊗ z25

+ {0.4, 0.5, 0.6} ⊗ z31 + {0.6, 0.7, 0.95} ⊗ z34 + {0.7, 0.9} ⊗ z45

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.00667w1 + 0.157w2 + 0.0175w3 − 0.321w4 + 0.0667ϑ1
1 − 0.2ϑ2

1 − 0.0667ϑ2
2

+0.0333ϑ3
2 + 0.133ϑ1
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3 − 0.3ϑ1
4 − 0.133ϑ2

4 − 0.167ϑ3
4 + z45 ≥ 0
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+0.133ϑ2
1 + 0.133ϑ2

2 + 0.0667ϑ3
2 − 0.0667ϑ1

3 − 0.0667ϑ1
4 − 0.0667ϑ2

4 )

+ {0.8, 0.85, 0.9} ⊗ (−0.09w1 − 0.39w2 + 0.522w3 − 0.345w4 + 0.333ϑ2
1 + 0.0667ϑ3

1

+0.2ϑ2
2 + 0.2ϑ3
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3 − 0.0333ϑ1

4 + 0.1ϑ2
4 + 0.133ϑ3

4 )

+ {0.4, 0.5, 0.6} ⊗ (0.14w1 − 0.02w2 − 0.608w3 + 0.288w4 − 0.2ϑ1
1 − 0.0667ϑ2

1

−0.0667ϑ2
2 − 0.0667ϑ3

2 + 0.0667ϑ1
3 + 0.0333ϑ2

3 − 0.0667ϑ1
4 − 0.1ϑ2

4 − 0.133ϑ3
4 )

+ {0.6, 0.7, 0.95} ⊗ (0.0433w1 − 0.253w2 + 0.478w3 − 0.438w4 − 0.133ϑ1
1 + 0.2ϑ2

1 + 0.0667ϑ3
1

−0.0667ϑ2
2 + 0.133ϑ3

2 − 0.133ϑ1
3 − 0.233ϑ2

3 − 0.3ϑ3
3 + 0.333ϑ1

4 + 0.3ϑ2
4 + 0.3ϑ3

4 )

+ {0.7, 0.9} ⊗ (0.293w1 − 0.09w2 − 0.63w3 + 0.25w4 − 0.133ϑ1
1 − 0.133ϑ2

1 + 0.2ϑ3
1 + 0.0667ϑ2

2

+0.0667ϑ3
2 + 0.267ϑ1

3 + 0.333ϑ2
3 + 0.0333ϑ3

3 − 0.3ϑ1
4 − 0.133ϑ2

4 − 0.167ϑ3
4 )�{0.01}

w4 ≥ w1, 0.05 ≤ w2 − w2 ≤ 0.3, w4 − w3 ≥ w2 − w1, w2 ≥ 2w1, 0.15 ≤ w4 ≤ 0.5

w1 + w2 + w3 + w4 = 1, 0.01 ≤ w j ≤ 1 ( j = 1, 2, 3, 4)

z12, z23, z24, z31, z34, z25, z45 ≥ 0

0 ≤ ϑ1
j ≤ ϑ2

j ≤ ϑ3
j ≤ w j ( j = 1, 2, 3, 4)

(5.1)
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min

{ {0.5, 0.6, 0.7} ⊗ z12 + {0.6, 0.65, 0.7} ⊗ z23 + {0.8, 0.85, 0.9} ⊗ z24 + {0.5, 0.7} ⊗ z25

+ {0.4, 0.5, 0.6} ⊗ z31 + {0.6, 0.7, 0.95} ⊗ z34 + {0.7, 0.9} ⊗ z45

}

min
{
�−

141 + �−
132 + �−

223 + �+
223 + �−

34321 + �−
421 + �+

54 + �−
54

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.00667w1 + 0.157w2 + 0.0175w3 − 0.321w4 + 0.0667ϑ1
1 − 0.2ϑ2

1 − 0.0667ϑ2
2

+0.0333ϑ3
2 + 0.133ϑ1

4 + 0.167ϑ2
4 + 0.133ϑ3

4 + z12 ≥ 0

−0.133w1 − 0.137w2 + 0.0433w3 + 0.0933w4 + 0.133ϑ1
1 + 0.133ϑ2

1 + 0.133ϑ2
2 + 0.0667ϑ3

2

−0.0667ϑ1
3 − 0.0667ϑ1

4 − 0.0667ϑ2
4 + z23 ≥ 0

−0.09w1 − 0.39w2 + 0.522w3 − 0.345w4 + 0.333ϑ2
1 + 0.0667ϑ3

1 + 0.2ϑ2
2 + 0.2ϑ3

2

−0.2ϑ1
3 − 0.233ϑ2

3 − 0.3ϑ3
3 + 0.267ϑ1

4 + 0.233ϑ2
4 + 0.3ϑ3

4 + z24 ≥ 0

0.203w1 − 0.48w2 − 0.0983w3 − 0.095w4 − 0.133ϑ1
1 + 0.2ϑ2

1 − 0.133ϑ3
1 + 0.267ϑ2

2 + 0.267ϑ3
2

+0.0667ϑ1
3 + 0.1ϑ2

3 + 0.0333ϑ3
3 − 0.0333ϑ1

4 + 0.1ϑ2
4 + 0.133ϑ3

4 + z25 ≥ 0

0.14w1 − 0.02w2 − 0.608w3 + 0.288w4 − 0.2ϑ1
1 − 0.0667ϑ2

1 − 0.0667ϑ2
2 − 0.0667ϑ3

2

+0.0667ϑ1
3 + 0.0333ϑ2

3 − 0.0667ϑ1
4 − 0.1ϑ2

4 − 0.133ϑ3
4 + z31 ≥ 0

0.0433w1 − 0.253w2 + 0.478w3 − 0.438w4 − 0.133ϑ1
1 + 0.2ϑ2

1 + 0.0667ϑ3
1 − 0.0667ϑ2

2

+0.133ϑ3
2 − 0.133ϑ1

3 − 0.233ϑ2
3 − 0.3ϑ3

3 + 0.333ϑ1
4 + 0.3ϑ2

4 + 0.3ϑ3
4 + z34 ≥ 0

0.293w1 − 0.09w2 − 0.63w3 + 0.25w4 − 0.133ϑ1
1 − 0.133ϑ2

1 + 0.2ϑ3
1 + 0.0667ϑ2

2 + 0.0667ϑ3
2

+0.267ϑ1
3 + 0.333ϑ2

3 + 0.0333ϑ3
3 − 0.3ϑ1

4 − 0.133ϑ2
4 − 0.167ϑ3

4 + z45 ≥ 0

{0.5, 0.6, 0.7} ⊗ (−0.00667w1 + 0.157w2 + 0.0175w3 − 0.321w4 + 0.0667ϑ1
1 − 0.2ϑ2

1

−0.0667ϑ2
2 + 0.0333ϑ3

2 + 0.133ϑ1
4 + 0.167ϑ2

4 + 0.133ϑ3
4 )

+ {0.6, 0.65, 0.7} ⊗ (−0.133w1 − 0.137w2 + 0.0433w3 + 0.0933w4 + 0.133ϑ1
1

+0.133ϑ2
1 + 0.133ϑ2

2 + 0.0667ϑ3
2 − 0.0667ϑ1

3 − 0.0667ϑ1
4 − 0.0667ϑ2

4 )

+ {0.8, 0.85, 0.9} ⊗ (−0.09w1 − 0.39w2 + 0.522w3 − 0.345w4 + 0.333ϑ2
1 + 0.0667ϑ3

1

+0.2ϑ2
2 + 0.2ϑ3

2 − 0.2ϑ1
3 − 0.233ϑ2

3 − 0.3ϑ3
3 + 0.267ϑ1

4 + 0.233ϑ2
4 + 0.3ϑ3

4 )

+ {0.5, 0.7} ⊗ (0.203w1 − 0.48w2 − 0.0983w3 − 0.095w4 − 0.133ϑ1
1 + 0.2ϑ2

1 − 0.133ϑ3
1

+0.267ϑ2
2 + 0.267ϑ3

2 + 0.0667ϑ1
3 + 0.1ϑ2

3 + 0.0333ϑ3
3 − 0.0333ϑ1

4 + 0.1ϑ2
4 + 0.133ϑ3

4 )

+ {0.4, 0.5, 0.6} ⊗ (0.14w1 − 0.02w2 − 0.608w3 + 0.288w4 − 0.2ϑ1
1 − 0.0667ϑ2

1

−0.0667ϑ2
2 − 0.0667ϑ3

2 + 0.0667ϑ1
3 + 0.0333ϑ2

3 − 0.0667ϑ1
4 − 0.1ϑ2

4 − 0.133ϑ3
4 )

+ {0.6, 0.7, 0.95} ⊗ (0.0433w1 − 0.253w2 + 0.478w3 − 0.438w4 − 0.133ϑ1
1 + 0.2ϑ2

1 + 0.0667ϑ3
1

−0.0667ϑ2
2 + 0.133ϑ3

2 − 0.133ϑ1
3 − 0.233ϑ2

3 − 0.3ϑ3
3 + 0.333ϑ1

4 + 0.3ϑ2
4 + 0.3ϑ3

4 )

+ {0.7, 0.9} ⊗ (0.293w1 − 0.09w2 − 0.63w3 + 0.25w4 − 0.133ϑ1
1 − 0.133ϑ2

1 + 0.2ϑ3
1 + 0.0667ϑ2

2

+0.0667ϑ3
2 + 0.267ϑ1

3 + 0.333ϑ2
3 + 0.0333ϑ3

3 − 0.3ϑ1
4 − 0.133ϑ2

4 − 0.167ϑ3
4 )�{0.01}

z12, z23, z24, z31, z34, z25, z45 ≥ 0

0 ≤ ϑ1
j ≤ ϑ2

j ≤ ϑ3
j ≤ w j ( j = 1, 2, 3, 4)

w4 + �−
141 ≥ w1, w3 + �−

132 ≥ w2, w2 − w3 + �−
223 ≥ 0.05, w2 − w3 − �+

223 ≤ 0.3,

w4 − w3 − w2 + w1 + �−
34321 ≥ 0 , w2/w1 + �−

421 ≥ 2, w4 − �+
54 ≤ 0.5, w4 + �−

54 ≥ 0.15

w1 + w2 + w3 + w4 = 1, 0.01 ≤ w j ≤ 1 ( j = 1, 2, 3, 4)

�−
141, �

−
132, �

−
223,�

+
223,�

−
34321,�

−
421,�

+
54,�

−
54 ≥ 0

(5.2)
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min {χ}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.6z12 + 0.65z23 + 0.85z24 + 0.6z25 + 0.5z31 + 0.75z34 + 0.8z45 ≤ χ

�−
141 + �−

132 + �−
223 + �+

223 + �−
34321 + �−

421 + �+
54 + �−

54 ≤ χ

−0.00667w1 + 0.157w2 + 0.0175w3 − 0.321w4 + 0.0667ϑ1
1 − 0.2ϑ2

1 − 0.0667ϑ2
2

+0.0333ϑ3
2 + 0.133ϑ1

4 + 0.167ϑ2
4 + 0.133ϑ3

4 + z12 ≥ 0

−0.133w1 − 0.137w2 + 0.0433w3 + 0.0933w4 + 0.133ϑ1
1 + 0.133ϑ2

1 + 0.133ϑ2
2 + 0.0667ϑ3

2

−0.0667ϑ1
3 − 0.0667ϑ1

4 − 0.0667ϑ2
4 + z23 ≥ 0

−0.09w1 − 0.39w2 + 0.522w3 − 0.345w4 + 0.333ϑ2
1 + 0.0667ϑ3

1 + 0.2ϑ2
2 + 0.2ϑ3

2

−0.2ϑ1
3 − 0.233ϑ2

3 − 0.3ϑ3
3 + 0.267ϑ1

4 + 0.233ϑ2
4 + 0.3ϑ3

4 + z24 ≥ 0

0.203w1 − 0.48w2 − 0.0983w3 − 0.095w4 − 0.133ϑ1
1 + 0.2ϑ2

1 − 0.133ϑ3
1 + 0.267ϑ2

2 + 0.267ϑ3
2

+0.0667ϑ1
3 + 0.1ϑ2

3 + 0.0333ϑ3
3 − 0.0333ϑ1

4 + 0.1ϑ2
4 + 0.133ϑ3

4 + z25 ≥ 0

0.14w1 − 0.02w2 − 0.608w3 + 0.288w4 − 0.2ϑ1
1 − 0.0667ϑ2

1 − 0.0667ϑ2
2 − 0.0667ϑ3

2

+0.0667ϑ1
3 + 0.0333ϑ2

3 − 0.0667ϑ1
4 − 0.1ϑ2

4 − 0.133ϑ3
4 + z31 ≥ 0

0.0433w1 − 0.253w2 + 0.478w3 − 0.438w4 − 0.133ϑ1
1 + 0.2ϑ2

1 + 0.0667ϑ3
1 − 0.0667ϑ2

2

+0.133ϑ3
2 − 0.133ϑ1

3 − 0.233ϑ2
3 − 0.3ϑ3

3 + 0.333ϑ1
4 + 0.3ϑ2

4 + 0.3ϑ3
4 + z34 ≥ 0

0.293w1 − 0.09w2 − 0.63w3 + 0.25w4 − 0.133ϑ1
1 − 0.133ϑ2

1 + 0.2ϑ3
1 + 0.0667ϑ2

2 + 0.0667ϑ3
2

+0.267ϑ1
3 + 0.333ϑ2

3 + 0.0333ϑ3
3 − 0.3ϑ1

4 − 0.133ϑ2
4 − 0.167ϑ3

4 + z45 ≥ 0

0.6 × (−0.00667w1 + 0.157w2 + 0.0175w3 − 0.321w4 + 0.0667ϑ1
1 − 0.2ϑ2

1

−0.0667ϑ2
2 + 0.0333ϑ3

2 + 0.133ϑ1
4 + 0.167ϑ2

4 + 0.133ϑ3
4 )

+0.65 × (−0.133w1 − 0.137w2 + 0.0433w3 + 0.0933w4 + 0.133ϑ1
1

+0.133ϑ2
1 + 0.133ϑ2

2 + 0.0667ϑ3
2 − 0.0667ϑ1

3 − 0.0667ϑ1
4 − 0.0667ϑ2

4 )

+0.85 × (−0.09w1 − 0.39w2 + 0.522w3 − 0.345w4 + 0.333ϑ2
1 + 0.0667ϑ3

1

+0.2ϑ2
2 + 0.2ϑ3

2 − 0.2ϑ1
3 − 0.233ϑ2

3 − 0.3ϑ3
3 + 0.267ϑ1

4 + 0.233ϑ2
4 + 0.3ϑ3

4 )

+0.6 × (0.203w1 − 0.48w2 − 0.0983w3 − 0.095w4 − 0.133ϑ1
1 + 0.2ϑ2

1 − 0.133ϑ3
1

+0.267ϑ2
2 + 0.267ϑ3

2 + 0.0667ϑ1
3 + 0.1ϑ2

3 + 0.0333ϑ3
3 − 0.0333ϑ1

4 + 0.1ϑ2
4 + 0.133ϑ3

4 )

+0.5 × (0.14w1 − 0.02w2 − 0.608w3 + 0.288w4 − 0.2ϑ1
1 − 0.0667ϑ2

1

−0.0667ϑ2
2 − 0.0667ϑ3

2 + 0.0667ϑ1
3 + 0.0333ϑ2

3 − 0.0667ϑ1
4 − 0.1ϑ2

4 − 0.133ϑ3
4 )

+0.75 × (0.0433w1 − 0.253w2 + 0.478w3 − 0.438w4 − 0.133ϑ1
1 + 0.2ϑ2

1 + 0.0667ϑ3
1

−0.0667ϑ2
2 + 0.133ϑ3

2 − 0.133ϑ1
3 − 0.233ϑ2

3 − 0.3ϑ3
3 + 0.333ϑ1

4 + 0.3ϑ2
4 + 0.3ϑ3

4 )

+0.8 × (0.293w1 − 0.09w2 − 0.63w3 + 0.25w4 − 0.133ϑ1
1 − 0.133ϑ2

1 + 0.2ϑ3
1 + 0.0667ϑ2

2

+0.0667ϑ3
2 + 0.267ϑ1

3 + 0.333ϑ2
3 + 0.0333ϑ3

3 − 0.3ϑ1
4 − 0.133ϑ2

4 − 0.167ϑ3
4 ) ≥ 0.01

z12, z23, z24, z31, z34, z25, z45 ≥ 0

w4 + �−
141 ≥ w1, w3 + �−

132 ≥ w2, w2 − w3 + �−
223 ≥ 0.05, w2 − w3 − �+

223 ≤ 0.3,

w4 − w3 − w2 + w1 + �−
34321 ≥ 0 , w2/w1 + �−

421 ≥ 2, w4 − �+
54 ≤ 0.5, w4 + �−

54 ≥ 0.15

w1 + w2 + w3 + w4 = 1, 0.01 ≤ w j ≤ 1 ( j = 1, 2, 3, 4)

0 ≤ ϑ1
j ≤ ϑ2

j ≤ ϑ3
j ≤ w j ( j = 1, 2, 3, 4)

�−
141, �

−
132, �

−
223,�

+
223,�

−
34321,�

−
421,�

+
54,�

−
54 ≥ 0

(5.3)
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min
{〈0.5, 0.3〉 z12 + 〈0.6, 0.3〉 z23 + 〈0.8, 01〉 z24 + 〈0.5, 0.3〉 z25 + 〈0.4, 0.4〉 z31 + 〈0.6, 0.05〉 z34 + 〈0.7, 0.1〉 z45

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.2u2 − 0.1u1 + 0.6u4 − 0.2v1 + 0.4v2 − 0.2v4 + 0.13w1 − 0.26w2 − 0.1w4 + z12 ≥ 0

0.2u2 − 0.2u1 + 0.1u3 + 0.5u4 − 0.4v1 + 0.1v2 + 0.2v3 + 0.2v4 + 0.28w1 − 0.17w2 − 0.14w3 − 0.13w4 + z23 ≥ 0

0.2u1 + 0.3u2 − 0.6u3 + 0.2u4 + 0.1v1 − 0.3v2 + 0.15v3 − 0.35v4 − 0.14w1 − 0.19w2 − 0.3675w3 − 0.02w4 + z24 ≥ 0

0.4u2 − 0.2u1 + 0.05u4 + 0.2v1 − 0.4v2 − 0.15v3 + 0.3v4 − 0.36w1 − 0.48w2 + 0.0725w3 − 0.595w4 + z25 ≥ 0

0.3u1 − 0.4u2 − 0.1u3 + 0.5u4 + 0.6v1 − 0.5v2 − 0.2v3 − 0.48w1 + 0.36w2 + 0.13w3 + 0.22w4 + z31 ≥ 0

0.4u1 + 0.1u2 − 0.7u3 + 0.1u4 + 0.5v1 − 0.4v2 − 0.05v3 − 0.55v4 − 0.48w1 + 0.07w2 + 0.4825w3 + 0.105w4 + z34 ≥ 0

0.4u2 − 0.2u1 + 0.05u4 + 0.2v1 − 0.4v2 − 0.15v3 + 0.3v4 + 0.04w1 − 0.08w2 + 0.0725w3 − 0.395w4 + z45 ≥ 0

〈0.5, 0.3〉 (0.2u2 − 0.1u1 + 0.6u4 − 0.2v1 + 0.4v2 − 0.2v4 + 0.13w1 − 0.26w2 − 0.1w4) +
〈0.6, 0.3〉 (0.2u2 − 0.2u1 + 0.1u3 + 0.5u4 − 0.4v1 + 0.1v2 + 0.2v3 + 0.2v4 + 0.28w1 − 0.17w2 − 0.14w3 − 0.13w4) +
〈0.8, 01〉 (0.2u1 + 0.3u2 − 0.6u3 + 0.2u4 + 0.1v1 − 0.3v2 + 0.15v3 − 0.35v4 − 0.14w1 − 0.19w2 − 0.3675w3 − 0.02w4) +
〈0.5, 0.3〉 (0.4u2 − 0.2u1 + 0.05u4 + 0.2v1 − 0.4v2 − 0.15v3 + 0.3v4 − 0.36w1 − 0.48w2 + 0.0725w3 − 0.595w4) +
〈0.4, 0.4〉 (0.3u1 − 0.4u2 − 0.1u3 + 0.5u4 + 0.6v1 − 0.5v2 − 0.2v3 − 0.48w1 + 0.36w2 + 0.13w3 + 0.22w4) +
〈0.6, 0.05〉 (0.4u1 + 0.1u2 − 0.7u3 + 0.1u4 + 0.5v1 − 0.4v2 − 0.05v3 − 0.55v4 − 0.48w1 + 0.07w2 + 0.4825w3 +
0.105w4) + 〈0.7, 0.1〉 (0.4u2 − 0.2u1 + 0.05u4 + 0.2v1 − 0.4v2 − 0.15v3 + 0.3v4 +
0.04w1 − 0.08w2 + 0.0725w3 − 0.395w4)� 〈0.01, 0.99〉
w2 ≥ 2w1, 0.05 ≤ w2 − w2 ≤ 0.3, 0.15 ≤ w4 ≤ 0.5

w1 + w2 + w3 + w4 = 1, 0.05 ≤ w j ≤ 1 ( j = 1, 2, 3, 4)

z12,z23,z24,z31,z34,z25,z45 ≥ 0

u j , v j ≥ 0, u j + v j ≤ w j ( j = 1, 2, 3, 4)

(5.4)
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