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Abstract The multi-depot open vehicle routing problem (MDOVRP) is a recent hard
combinatorial optimizationproblem that belongs to the vehicle routingproblem family.
In theMDOVRP, the vehicles depart from several depots and once they have delivered
the goods to the last customers in their routes they are not required to return to the
depots. In this work, we propose a newmixed integer programming formulation for the
MDOVRP by improving some constraints from the literature and proposing new ones.
The computational experience carried out over problem instances from the literature
indicates that our proposed model outperforms the existing one.
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1 Introduction

The open vehicle routing problem (OVRP) differs from the well-known vehicle rout-
ing problem (VRP) (Dantzig and Ramser 1959) in that the vehicles are not required
to return to the depot once they have delivered the goods to the customers. That is,
the route of each vehicle starts at the depot and finishes at its last customer. The work
by Schrage (1981) may be seen as the blueprint of this problem whereas the work by
Sariklis and Powell (2000) can be considered as the first one to propose a solution
approach for solving the OVRP without considering a maximum route length. After
these works, several researchers have also tackled the OVRP. For instance, Brandão
(2004) presented an effective tabu search approach for the OVRP that served as bench-
mark for various other approaches thereafter. An exact branch-and-cut algorithm can
be found in Letchford et al. (2007). They also compare the difficulty of closed and
open versions of the problem, indicating that the open version might be slightly eas-
ier. Russell et al. (2008) present an OVRP with time windows and zoning constraints
to model the production and delivery of multi-product newspapers to bulk delivery
locations. Pisinger and Ropke (2007) develop a general heuristic for solving variants
of the VRP, including the OVRP. Repoussis et al. (2010) present a population-based
hybrid metaheuristic for tackling the OVRP. A comprehensive review on the OVRP
can be consulted in Li et al. (2007).

In real-world contexts,we canfindamultitudeof environments inwhich thevehicles
may depart from different depots when starting their routes. This practical issue is
addressed by the multi-depot vehicle routing problem (MDVRP). In this extension of
the VRP, every customer is visited by exactly one vehicle, for which its route starts
from one of the available depots. The natural translation to the OVRP is known as the
multi-depot open vehicle routing problem (MDOVRP). In this problem, the vehicles
depart from one of the available depots and finish their deliveries at their last customers
visited. Figure 1 shows an example of a solution of the MDOVRP composed of 29
customers and 3 depots. In this solution, three vehicles depart from depot 1 and visit
a total of 12 customers along their routes.

The MDOVRP was firstly proposed by Tarantilis and Kiranoudis (2002) within
the context of distribution of fresh meat in a real application. The authors solved the
problem using a list-based threshold-accepting algorithm. Recently, Liu et al. (2014)
proposed a mixed integer programming (MIP) formulation for the MDOVRP. Due to
the extensive time and memory requirements when applying this formulation through
a general-purpose solver such as CPLEX, the authors additionally proposed a hybrid
genetic algorithm.

The goal of this paper is to provide a new mathematical formulation for the
MDOVRP by proposing an enhancement of the subtour elimination constraints as
well as new sets of constraints. The comparison with the unique MIP formulation
given in the literature so far (see Liu et al. 2014) indicates that our model outperforms
the previous one in terms of both solution quality and computational time.

The remainder of this paper is organized as follows. The proposed mathematical
formulation for the MDOVRP is introduced in Sect. 2. The computational experience
carried out in this work is presented in Sect. 3. Finally, some conclusions are drawn
in Sect. 4.
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Fig. 1 Example of a solution
for the MDOVRP. This example
is composed of 29 customers
and 3 depots
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2 Mathematical formulation

The MDOVRP can be defined as follows. Let G = (V, A) be a directed graph,
where V = N ∪ D is the vertex or node set and A is the arc set. Vertex set
D = {1, 2, . . . ,m} represents the set of uncapacitated depots, whereas vertex set
N = {m+1,m+2, . . . ,m+n} represents the customers to be served.A travelling cost,
ci j > 0, is defined for each arc between each pair of vertices (i, j), i, j ∈ V, i �= j .
Without loss of generality, the travelling cost can represent, according to the appli-
cation environment, the distance, time, fuel consumption, etc. between each pair of
vertices. In this regard, as in the paper of Liu et al. (2014), ci j = 0, ∀i ∈ N , j ∈ D,
that is, the travelling cost from each customer to each depot is set to zero. Moreover,
each depot d ∈ D stores and supplies enough goods to serve all the customers. With
this goal in mind, each depot has an unlimited fleet of identical vehicles with the same
positive capacity, denoted as Q. Each customer i ∈ N has a certain demand of goods,
denoted as qi , where 0 < qi ≤ Q. The MDOVRP pursues to determine the routes of
minimum travelling cost satisfying the following conditions:

1. Each customer must be visited on exactly one route.
2. Each customer has to be fully served when visited.
3. Each vehicle departs from one of the available depots and finishes at the last cus-

tomer it serves.
4. The total demand of the customers on any route does not exceed the capacity of

the vehicles, that is, Q.
5. The travelling cost of any vehicle route cannot exceed a preset value H .

In the following, we introduce a new mathematical formulation for solving the
MDOVRP. The following are the decision variables:

xi jk 1 if a vehicle starting from depot k ∈ D travels directly from node i ∈ V to
node j ∈ V , 0 otherwise.
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yi 1 if the minimum travelling cost to visit a customer i ∈ N is from a depot, 0
otherwise.

ui Upper bound on the load already distributed by a vehicle upon leaving node
i ∈ V .

hi Upper bound on the travelling cost of a vehicle upon leaving node i ∈ V .

The following additional parameters are used:

qi For each customer i ∈ N , maximum value of q j , ∀ j ∈ N , i �= j , i.e.,
max(q j ) j∈N , j �=i .

di Minimum travelling cost from any depot k ∈ D to customer i ∈ V , i.e.,
min(c ji ) j∈D . Note that dk = 0, k ∈ D.

ri Minimum travelling cost from any customer j ∈ N to customer i ∈ N , i �= j ,
i.e., min(c ji ) j∈N , j �=i .

gi Maximum travelling cost from customer i ∈ N to any other customer j ∈ N ,
i �= j , i.e., max(ci j ) j∈N , j �=i .

The mathematical model we propose is defined as follows:

minimize
∑

i∈V

∑

j∈V

∑

k∈D

ci j xi jk (1)

subject to:

∑

i∈V

∑

k∈D

xi jk = 1, ∀ j ∈ N (2)

∑

i∈V

xi jk =
∑

i∈V

x jik, ∀ j ∈ V,∀k ∈ (3)

ui − u j +Q
∑

k∈D

xi jk +(Q − qi − q j )
∑

k∈D

x jik ≤ Q − q j , ∀i, j ∈ N , i �= j (4)

ui ≥ qi +
∑

j∈N ,i �= j

∑

k∈D

q j x jik, ∀i ∈ N (5)

ui ≤ Q − (Q − qi − qi )
∑

k∈D

xkik −
∑

j∈N ,i �= j

∑

k∈D

q j xi jk, ∀i ∈ N (6)

uk = 0, ∀k ∈ D (7)

hi − h j + M
∑

k∈D

xi jk + (M − ci j − c ji )
∑

k∈D

x jik ≤ M − ci j ,

∀i, j ∈ N , i �= j (with M ≥ H − d j + ci j ) (8)

hi ≥ di +
∑

j∈V,i �= j

∑

k∈D

(d j − di + c ji )x jik, ∀i ∈ N (9)

hi ≤ H −
∑

j∈N ,i �= j

∑

k∈D

ci j xi jk − (H − gi )
∑

k∈D

xkik +
∑

k∈D

cki xkik, ∀i ∈ N (10)

hk = 0, ∀k ∈ D (11)

di + Myi ≥ ri , ∀i ∈ N (12)
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xk′ik′ ≥ yi , ∀i ∈ N , k′ = argmin(cki )k∈D (13)
∑

i∈N

∑

k∈D

xkik ≥
∑

i∈N qi

Q
(14)

xi jk ∈ {0, 1}, ∀i, j ∈ V, k ∈ D (15)

yi ∈ {0, 1}, ∀i ∈ N (16)

hi ≥ 0, ∀i ∈ N (17)

where M is a sufficiently large constant defined for constraint set (8) in order not to
eliminate feasible solutions when xi j = 0 (see Desrochers and Laporte 1991).

The objective function (1) aims at minimizing the total travelling cost of the routes
used to deliver the goods to the customers. Constraints (2) guarantee that each cus-
tomer is visited exactly once. Constraints (3) impose the degree balance of each node,
including both customers and depots. Constraints (4)–(7) eliminate the subtours in
the solutions found by considering the capacity of the vehicles and ensure that their
capacity is not exceeded. Analogously, constraints (8)–(11) eliminate subtours in the
solution considering the travelling cost and ensure that the maximum travelling cost
per vehicle is not exceeded. Constraints (12) and (13) establish that if the minimum
travelling cost to visit a customer is from a depot, then a vehicle will visit the customer
directly by departing from the depot requiring minimum travelling cost. Constraint
(14) sets a lower bound over the number of vehicles required to serve the customers.
Finally, constraints (15)–(17) are the integrality and non-negativity constraints for the
different kinds of variables.

Note that one might but need not add a redundant constraint (18) which would
explicitly rule out arcs connecting pairs of depots from the solutions.

∑

i∈D

∑

j∈D

∑

k∈D

xi jk = 0. (18)

Constraints (4)–(6) and (8)–(10) in the above mathematical model replace those
proposed in the work of Liu et al. (2014). In this case, we have considered the improve-
ments and extensions of the Miller–Tucker–Zemlin subtour elimination constraints
(see Miller et al. 1960) to the VRP proposed by Desrochers and Laporte (1991) and
Kara et al. (2004). These improvements are based upon adapting and lifting theMiller–
Tucker–Zemlin subtour elimination constraints. In this way, constraints (4) and (8) are
the subtour elimination constraints adapted to hold capacities and distances, respec-
tively. These constraints ensure the continuity of the route of a vehicle in terms of the
demand and distance, respectively. Constraints (5)–(6) and (9)–(10) through lifting
restrict the lower and upper bounds of the free variables ui and hi , respectively.

Constraints (5) consider that at least the distributed load of a vehicle till node i ∈ N
is the one required by that node, qi and the quantity of its predecessor customer node,
q j , if any. Constraints (6) establish the upper bound ui of node i . In this case, if this
node is the first of its route, then the upper bound of ui is the quantity required by node,
qi , plus the quantity of a node requiring the largest quantity, qi . Namely, ui ≤ qi +qi .
In case node i has a successor j ∈ N , the upper bound takes into account its requiring
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quantity, q j , by subtracting it, ui ≤ qi + qi − q j . In that case, node i is not the first
node in its route, and has a successor j , then it can be easily checked that ui ≤ Q −q j .
Note that, if a node i is the last of its route, then ui ≤ Q.

In a similar way, constraints (9) establish the lower bound of hi . Namely, at least
the distance of a vehicle till node i ∈ N is the one required by that node either from
the depot, di , or from another node, d j + c ji . On the other hand, constraints (10)
establish the upper bound of hi of node i . In this case, if this node is the first of
its route, then the upper bound of hi is the distance required to get that node from
the corresponding assigned depot k, cki , plus the distance to reach the farthest node,
gi . Namely, hi ≤ cki + gi . In case node i has a successor j ∈ N , the upper bound
takes into account the distance to reach it from node i , ci j . Thus, it is subtracted,
hi ≤ cki + gi − ci j . In case, node i is not the first node in its route and has a successor
j , then hi ≤ H − ci j . In case, a node i is the last of its route, then hi ≤ H .
On the other hand, in this work, we also propose additional constraints, i.e., con-

straints (12)–(14) aimed at reducing and tightening the mathematical model.

Proposition 1 As a preprocessing option it is obvious that the constraints (12)–(13)
are valid as long as the assumption of an unlimited vehicle fleet holds. Nevertheless,
we propose the following proposition. Adding the constraint system composed of (12)
and (13) to the MDOVRP formulation allows for an optimal solution of the MDOVRP
with

di + Myi ≥ ri , ∀i ∈ N

xk′ik′ ≥ yi , ∀i ∈ N , k′ = argmin(cki )k∈D

where ri = min(c ji ) j∈N , j �=i and di = min(c ji ) j∈D.

Proof By contradiction. Let us consider the scenario composed of a set of depots
D = {v1, v2, . . . , vm} and a set of customers N = {vm+1, vm+2, . . . , vm+n} (note that
subscripts are used for ease of exposition to easily distinguish between arcs and routes
later on). Let us suppose that the optimal solution for that scenario sopt is composed
by each customer (ranging unit-increasingly from vm+1 up to vm+n) being directly
visited by a vehicle departing from one of the depots due to constraints (12) and
(13), such that yvm+1 = yvm+2 = · · · = yvm+n = 1. Hence, we may have a solution
composed of |N | routes, one for each customer vi ∈ N and composed of the cus-
tomer itself and that depot vk ∈ D that allows the minimum travelling cost for it. That
is, (vargmin(cvkvm+1 )vk∈D , vm+1),(vargmin(cvkvm+2 )vk∈D , vm+2), . . . , (vargmin(cvkvm+n )vk∈D ,

vm+n). The associated objective function value copt = ∑i=m
i=1

∑ j=m+n
j=m+1 cviv j xviv jvi

(see (1)).
Suppose we have another solution termed s where s �= sopt and such that its objec-

tive function value, cs , meets the following cs < csopt . Consequently, at least one
of the customers is not directly visited from a depot. Consider the case of one cus-
tomer, for example customer vm+n , is not directly visited from a depot such that its
objective function value is the following cs = (

∑i=m
i=1

∑ j=m+n−1
j=m+1 cviv j xviv jvi ) +

(
∑i=m

i=1
∑ j=m+n−1

j=m+1 cv jvm+n xv jvm+nvi ). Since
∑i=m

i=1
∑ j=m+n−1

j=m+1 cv jvm+n xv jvm+nvi ≮

min(cvkvm+n )vk∈D , it indicates a contradiction cs ≮ csopt .
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An improved formulation for the multi-depot open VRP 181

On the opposite case, let us consider the scenario with the following optimal
solution composed of a unique route sopt = (v1, vm+1, vm+2, . . . , vm+n) where
v1 is the starting depot and the sequence of customers, sorted by visiting order,
starting from vm+1 and finishing at customer vm+n . The travelling cost associ-
ated to this solution is csopt = ∑i=m

i=1
∑ j=m+n

j=m+1 cviv j xviv jvi . Let us consider that
the minimum travelling cost to visit customer vm+n is from the depot v1 such
that min(cv1vm+n ) < min(cv jvm+n )v j ∈V,v j �=v1 , accomplished solely for this customer
m + n. Then according to these constraints we may have a solution s∗ composed
of two routes, (v1, vm+1, vm+2, . . . , vm+n−1) and (v1, vm+n). Consider the objective
function value related to s∗ as c∗ = ∑i=m

i=1
∑ j=m+n−1

j=m+1 cviv j xviv jvi+ cv1vm+n . Since
cv1vm+n < cvm+n−1vm+n , c∗ < csopt , and, thus, sopt is not the optimal solution. 
�

Obviously, constraint (14) is valid for the MDOVRP. The model proposed by Liu
et al. (2014) has been strengthened by improving some of the related subtour elim-
ination constraints and adding some additional ones (12)–(14). As indicated in the
proposition above, these latter constraints are valid inequalities and the model can
still be solved without them. Hence, below we discuss the contribution of these new
constraints in terms of quality of the solutions.

3 Computational results

This section is devoted to present the computational experiments carried out for assess-
ing the performance of the mathematical model proposed in this work (see Sect. 2).
With this goal in mind, we compare its performance with that of the mathematical
model proposed by Liu et al. (2014).

The computational experiments related to our mathematical model were conducted
on a computer equipped with an Intel Dual Core 3.5 GHz and 4 GB of RAM. The
model was implemented in a general-purpose solver, CPLEX version 12.3, with a
maximum computational time of 2 h (7200 s). Concerning the computational results
reported by the mathematical model proposed by Liu et al. (2014), as reflected in that
work, they were carried out on a computer equipped with a processor 3.2 GHz Dual
Core and 4 GB of RAM. In their case, they implemented their mathematical model
on CPLEX version 12.2 with a maximum computational time of 12 h (43,200 s).

The problem instances used in this work are those proposed by Cordeau et al.
(1997) and also used by Liu et al. (2014). It is worth mentioning that, due to the fact
that for these problem instances there is not a maximum travelling cost for the routes
(parameter H ), as done by Liu et al. (2014), we relax the constraints related to the
route length, in order to report a fair comparison.

The computational results obtained by the mathematical model proposed by Liu
et al. (2014) and the one proposed in this paper are depicted in Table 1. In this case,
the first column, divided into four subcolumns, shows the identifier of each problem
instance to solve, id, the number of customers, n, the number of depots, m, and the
capacity of each vehicle, Q. The next columns show the results obtained by the model
of Liu et al. (2014) (Liu et al. Model), our proposed model without constraints (12)–
(14) (Proposed model without constraints (12)–(14)), and our model with constraints
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(12)–(14) (Proposed model). In each case, columns UB and LB present the upper and
lower bounds reported by CPLEX within the time limit set by default, respectively.
Columns Gap (%) report the relative error of the bounds, whereas columns t (s) show
the required computational time measured in seconds to solve the problem instance at
hand. Finally, the last row, Average, summarises the average values.

As can be seen from the computational results shown in Table 1, our mathematical
model, either with or without constraints (12)–(14), provides a better performance in
terms of narrower linear bounds and computational times than the model of Liu et al.
(2014). In this regard, both models improve or at least equal the quality of the linear
bounds obtained by the model by Liu et al. (2014) in all cases. Specifically, with the
model that considers constraints (12)–(14) we obtain a gap of only 7.77 % on average
in comparison with the gap of 62.03 % on average reported by the model proposed by
Liu et al. (2014). Additionally, our mathematical model (with and without constraints
(12)–(14)) is able to provide new optimal solutions for the problem instances p03,
p15, p18, and pr02. In the cases where both mathematical models, namely the one
proposed by us and the one proposed by Liu et al. (2014), provide the optimal solution,
our model requires considerably less computational time than the model by Liu et al.
(2014). This is the case, e.g., for the problem instance p01, for which the model by
Liu et al. (2014) requires more than 14,000 s, whereas our model requires less than 70
s when constraints (12)–(14) are considered. Furthermore, in those cases where the
optimal solution is not achieved, our mathematical model enhances the quality of the
bounds for all cases without running out of memory.

The comparison of our model when constraints (12)–(14) are not considered indi-
cates the following.

(a) Including the improved Miller–Tucker–Zemlin subtour elimination constraints
(4)–(6) and (8)–(10) proposed in this work, which are related to restrict the bounds
of the free variables and eliminate illegal subtours, improves the quality of the
solutions in comparison to the one proposed by Liu et al. (2014). As can be seen
the gap is reduced from 62.03 to 13.25 % within less computational time.

(b) The contribution of the set of constraints (12)–(14) proposed in this work over
the model with the improved constraints (4)–(6) and (8)–(10) shows that there is
an enhancement in the quality of the majority of the bounds in terms of objective
function value.

(c) Both models, with and without constraints (12)–(14), exhibit a similar time per-
formance in terms of computational time, on average, about 4524 s. In this regard,
the proposed model reports a better gap with a difference of 5.48 % with respect
to the proposed model without constraints (12)–(14).

Figures 2 and 3 show the structure of the mathematical models in terms of number
of rows and binaries generated by CPLEX when solving the problem instances under
analysis. As can be seen, in terms of number of rows, our mathematical model requires
a lower number of rows than the model proposed by Liu et al. (2014) and a similar
number of binaries. In this regard, as indicated by Hooker (2011), when a formulation
is tightened in terms of constraints it may be solved faster by a general-purpose solver
such as CPLEX due to the fact that it is able to explore a larger feasible region in
shorter computational time. This makes sense if we take into account the improvement
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Fig. 2 Number of rows processed by CPLEX for solving each instance

Fig. 3 Number of binaries processed by CPLEX for solving each instance
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of the convergence by means of computational time over the already-known optimal
solutions. It should be noted that this is just a comparison by means of the number of
constraints; however, some constraints are different and restrict the feasible region in
a different way.

4 Conclusions and further research

In this work, we have presented an improved MIP formulation for the MDOVRP.
The formulation provides better results in terms of solution quality and tighter linear
bounds than the formulation reported in the literature for this optimization problem.
The modification of the subtour elimination constraints as well as the additional con-
straints proposed in this work considerably improves the convergence speed over those
problem instances where the optimal solution was already known. This is done by
reducing the search space through the refinement of some constraints and by includ-
ing some new constraints related to the minimum use of vehicles required and the
first customer to visit. Therefore, the computational effort required is considerably
reduced. On the other hand, the computational results showed that our mathematical
model reduces the computational burden while achieving better solutions for those
instances for which the optimal solution was not known previously. In this regard, it
is able to provide new best values for all those problem instances as well as provide
the optimal solutions for some instances that have not been reported so far.

While this formulation has been tested only for the MDOVRP, it can be further
extended to other variants of the VRP, where similar results would be expected. This
will be a topic for further research.
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