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Abstract In this paper, we propose a tabu search algorithm for the resource-
constrained project scheduling problem with transfer times. Solutions are represented
by resource flows extending the disjunctive graphmodel for shop scheduling problems.
Neighborhoods are defined by parallel and serial modifications rerouting or reversing
flow on certain arcs. This approach is evaluated from a theoretical and experimental
point of view. Besides studying the connectivity of different neighborhoods, com-
putational results are presented for benchmark instances with and without transfer
times.

Keywords RCPSP · Transfer times · Tabu search · Resource flow

1 Introduction

In the classical resource-constrained project scheduling problem (RCPSP), activities
have to be scheduled under precedence and resource constraints such that a givenobjec-
tive function is minimized. For the execution of these activities, renewable resources
with limited capacities are available. This problem has been extensively studied in
scientific literature since the early 1960s and several books as well as surveys have
been published dealing with the RCPSP and its extensions (cf. Demeulemeester and
Herroelen 2002; Brucker and Knust 2011, or Hartmann and Briskorn 2010).
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To solve the classical RCPSP, various exact as well as heuristic solution approaches
have been proposed. While branch-and-bound algorithms can only solve smaller
instances to optimality, heuristics obtain quite good results. For an evaluation of dif-
ferent heuristic approaches, see Hartmann and Kolisch (2000) as well as Kolisch and
Hartmann (2006).

In this paper, we study an extension of the RCPSPwhere additionally transfer times
(also called setup times or changeover times) are taken into account. Such times occur
in practice when a resource is physically moved from one location to another (e.g.,
when a crane has to be transported between construction sites) or when a resource
has to be adjusted between different activities (e.g., when a machine has to be cleaned
between producing different products). In contrast to the classical RCPSP, only few
papers deal with this extension. Mika et al. (2006) introduced a classification of setup
times in the context of the RCPSP. This classification was extended by Krüger (2009)
in her Ph.D. thesis as well as in a paper by Krüger and Scholl (2010) to include
higher-tier resource transfers (i.e., transfers of resources that are required to support
the transfer of other resources).

Apart from this, for example, Vanhoucke (2008) considered the RCPSP with pre-
emption and sequence-independent setup times where a setup becomes necessary
whenever a preempted activity is resumed. Schwindt and Trautmann (2000) dealt
with batch scheduling problems in process industries and modeled these as a RCPSP
with sequence- and resource-dependent changeover times as well as various other
constraints. Similarly, Schwindt and Trautmann (2003) presented a model based on
the RCPSP with sequence- and resource-dependent changeover times for a real-world
production planning problem in the aluminum industry while Neumann et al. (2003)
tackled the RCPSPwith sequence- and resource-dependent changeover times and time
windows. Here, both Schwindt and Trautmann (2003) aswell as Neumann et al. (2003)
used branch-and-bound algorithms to solve the respective problems.

The RCPSP with sequence- and resource-dependent transfer times has also been
considered in the context of multi-project scheduling by Krüger and Scholl (2009)
and Krüger (2009). Besides a mixed-integer linear programming formulation of this
problem, Krüger (2009) introduced adaptions of the serial as well as the parallel
schedule generation scheme (cf. Kolisch 1996) that select resource transfers based on
priority rules. Additionally, she presented a genetic algorithm that represents solutions
as activity lists to solve this problem.

While in most approaches for the RCPSP solutions are represented by activity lists
or generated by schedule generation schemes, in this paper we represent solutions as
resource flows. Such a representation has been suggested byArtigues et al. (2003) who
proposed a tabu search algorithm where resource flows are modified by removing and
reinserting an activity in an optimal position in relation to the current resource flow.
We have opted to use this solution representation because it represents from which
activities resource units are transferred to other activities. In contrast to this, if activity
lists or schedule generation schemes are used, resource transfers are not immediately
represented, but have to be selected separately (e.g., based on a priority rule). As a
consequence, such an approach has only limited influence on how resource transfers
are chosen (limited to, for example, selecting one out of several available priority
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rules). Furthermore, we will show in Sect. 3 that with such an approach an optimal
schedule may be excluded from the search space.

Based on the resource flow representation, we introduce neighborhoods for the
RCPSP with transfer times. These neighborhoods are defined by parallel and serial
modifications as suggested by Fortemps and Hapke (1997). However, in Fortemps and
Hapke (1997), the ideas are only sketched and no computational results are reported.
One purpose of our paper is to study these neighborhoods inmore detail from a theoret-
ical and practical point of view and to evaluate their efficiency in some computational
experiments.

An advantage of the resource flow representation and the neighborhoods is that they
can be extended to the RCPSP with first- and second-tier resource transfers, where
the transfer of some resources has to be supported by other resources. For this more
complex problem, no solution approaches have been developed so far. Based on the
definitions and results reported in this paper, the necessary extensions are introduced
by Poppenborg (2014).

The remainder of this paper is structured as follows. In Sect. 2, we give a formal
description of the RCPSP with transfer times. Then, in Sect. 3, the solution represen-
tation based on resource flows is introduced and it is shown that the set of schedules
represented by resource flows always contains an optimal solution. In Sect. 4, we
define neighborhoods based on this solution representation. Additionally, we consider
the connectivity of these neighborhoods. Finally, a tabu search algorithm is proposed
in Sect. 5, while computational results are reported in Sect. 6. We conclude this paper
with some remarks in Sect. 7.

2 Problem formulation

In this section, we describe the studied problem more formally. In the RCPSP, a setR
consisting of r renewable resources k = 1, . . . , r with limited capacities Rk aswell as a
set V consisting of n activities i = 1, . . . , nwith processing times pi > 0 and resource
requirements rik ≥ 0 for k ∈ R are given. Furthermore, a dummy source activity 0
as well as a dummy sink activity n + 1 with processing times p0 = pn+1 = 0 and
resource requirements r0k = rn+1,k = Rk for all k ∈ R are introduced. It is assumed
that all resource units are initially located at the dummy source activity 0 and have
to be collected by the dummy sink activity n + 1 at the end of the project. In the
following, the set Vall = {0, 1, . . . , n, n + 1} contains all real activities from the set
V as well as the two dummy activities, while the two sets V0 = {0, 1, . . . , n} and
V∗ = {1, . . . , n, n + 1} contain subsets of these activities.

Furthermore, precedence constraints (i, j) ∈ Amayexist between pairs of activities
i, j ∈ Vall, i �= j requiring that activity j can only start after activity i has been
completed. We assume that the set A contains precedence constraints 0 → j for all
activities j ∈ V without any predecessor activity (i.e., the dummy activity 0 is the first
activity to be processed in any feasible schedule) and precedences i → n + 1 for all
activities i ∈ V without any successor (i.e., n + 1 is the last activity to be processed).
In the studied extension of the RCPSP, additionally sequence- and resource-dependent
transfer times Δi jk ≥ 0 are given for all i, j ∈ Vall and k ∈ R denoting the amount
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Fig. 1 Precedence constraints for the problem in Example 1

of time required to transfer resource k from activity i to activity j . The special case
Δi jk = 0 for all i, j ∈ Vall and all k ∈ R corresponds to the classical RCPSP. It should
be noted that during the transfer of a resource unit from one activity to another activity,
this resource unit cannot be used to process other activities. Usually, it is assumed that
the triangle inequality Δihk + Δh jk ≥ Δi jk for all i, j ∈ Vall and all k ∈ R holds. All
parameters are assumed to be integer.

The problem consists in determining starting times S j for all activities j ∈ V∗ (the
dummy activity 0 is assumed to start at time S0 = 0) respecting the given precedence
constraints (i.e., activity j can only start after all its predecessors i ∈ V0 with (i, j) ∈ A
have been completed) and the resource constraints (i.e., all resource requirements r jk
of resources k ∈ R have to be satisfied simultaneously for p j time periods to process
activity j while no more than Rk units of resource k can be used in any time period).
Preemption of the activities is not allowed. Additionally, if some units of resource
k ∈ R are transferred from activity i ∈ V0 to activity j , the transfer time Δi jk has to
be observed between the completion time Ci = Si + pi of activity i and the starting
time S j of activity j , i.e., S j ≥ Ci +Δi jk has to hold. The objective is to minimize the
makespan Cmax, i.e., the time required to complete all activities, which is determined
by the completion time Cn+1 of activity n + 1.

Example 1 We consider a small project consisting of n = 5 activities with precedence
constraints 1 → 2, 1 → 5, 3 → 4, and 4 → 5 (cf. Fig. 1). Furthermore, r = 2
renewable resources with capacities R1 = 4 and R2 = 3 are available. The processing
times pi and resource requirements rik of the activities as well as the transfer times
Δi jk are given in Table 1. It is assumed that Δ0 jk = Δi,n+1,k = 0 holds for all
transfer times involving the dummy activities. A feasible schedule for this project
with makespan Cmax = 15 is displayed in Fig. 2.

3 Solution representation

In this section, we discuss how solutions for the RCPSP with transfer times can be
represented. As already explained in Sect. 1, it cannot be guaranteed that always an
optimal schedule can be found by an algorithm that selects resource transfers based
on fixed priority rules. This is the case, for example, if a schedule generation scheme
is used to generate schedules (e.g., based on an activity list). Such generation schemes
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Table 1 Data for the problem in
Example 1

i pi ri1 ri2

1 2 2 2

2 3 1 2

3 1 1 0

4 1 2 1

5 2 0 3

i\ j 1 2 3 4 5

Transfer times Δi j1

1 0 2 2 3 2

2 2 0 3 2 2

3 2 3 0 2 2

4 3 2 2 0 2

5 2 2 2 2 0

Transfer times Δi j2

1 0 2 1 2 3

2 2 0 2 3 2

3 1 2 0 2 2

4 2 3 2 0 2

5 3 2 2 2 0

R1

3 Δ341

1
Δ141

Δ121

4

2
0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R2

1
Δ142

Δ152

4 Δ452

5
Δ522 2

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2 A feasible schedule for the project in Example 1

usually start each activity as early as possible and hence produce semi-active (or even
active) schedules where no activity can be shifted locally (or globally) to the left
without violating feasibility (cf. Sprecher et al. 1995). As already observed for the
parallel machine problem with precedence constraints and setup times (cf. Hurink and
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Fig. 3 Schedules for Example 2

Knust 2001), an optimal solution might be excluded from the search space if activities
are scheduled as early as possible:

Example 2 We consider a project consisting of n = 3 activities as well as r = 1
renewable resource with a capacity of R1 = 2. The processing times of activities i =
1, 2, 3 are given by pi = 1 while the resource requirements are ri1 = 1. Furthermore,
we assume transfer timesΔ121 = Δ211 = 2,Δ131 = Δ311 = 4,Δ231 = Δ321 = 4 and
Δ0 j1 = Δi,n+1,1 = 0 for the transfer times involving the dummy activities. Finally,
the precedence constraints 1 → 2 and 2 → 3 are given between the activities.

For this project, the only precedence-feasible activity list is given by (1, 2, 3).
Now, a schedule generation scheme (i.e., either the serial or the parallel scheme) tries
to schedule these activities as early as possible (cf. the adapted schedule generation
schemes described by Krüger and Scholl 2009). As a result of this, both schedule
generation schemes would generate the schedule displayed in Fig. 3a in which activity
2 is scheduled to start at time S2 = 1.While this schedule has amakespan ofCmax = 6,
the unique optimal schedule displayed in Fig. 3b in which activity 2 is scheduled to
start at time S2 = 3 has a makespan of Cmax = 5. ��

To avoid that an optimal schedule may be excluded from the search space, in our
algorithm we represent solutions as resource flows. A disadvantage of this represen-
tation is a larger solution space. However, with this representation, it can be ensured
that the solution space always contains an optimal schedule.

The resource flow representation for the RCPSP was first introduced in Fortemps
and Hapke (1997) as well as Artigues and Roubellat (2000) as an extension of the
disjunctive graph model (cf. Roy and Sussmann 1964) which is frequently used as
a solution representation in shop scheduling problems. While a disjunctive graph
represents the sequence in which disjunctive machines are used to process operations
in a shop scheduling problem, this representation is extended for the RCPSP to also
denote the amounts of resources k ∈ R transferred from an activity i ∈ V0 to another
activity j ∈ V∗.

In the following, fi jk ≥ 0 denotes the amount of resource k ∈ R transferred from
activity i ∈ V0 to activity j ∈ V∗. All resource transfers fi jk of a resource k ∈ R
between activities i ∈ V0 and j ∈ V∗ are then collected in a resource flow Fk , while a
set of resource flows Fk for all resources k ∈ R is denoted by F . A feasible resource
flow F is defined as a flow that satisfies the following conditions:

∑

j∈V∗
f0 jk =

∑

j∈V0
f j,n+1,k = Rk (k ∈ R) (1)
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Fig. 4 AON-flow network corresponding to the feasible schedule from Fig. 2

∑

j∈V∗
fi jk =

∑

j∈V0
f j ik = rik (i ∈ V, k ∈ R) (2)

First of all, all resource units are initially located at the dummy source activity 0 and
have to be collected by the dummy sink activity n + 1 at the end of the project [cf.
(1)]. Furthermore, for each activity i ∈ V and each resource k ∈ R, the amount of all
incoming resource units as well as the amount of all outgoing resource units have to be
equal to the resource requirement rik [flow conservation constraints (2)]. Finally, the
resource flow has to be acyclic, i.e., no activity sends (directly or indirectly) resource
units to itself and the flow must observe the given precedence constraints (i.e., for
(i, j) ∈ A activity j may not send (directly or indirectly) resource units to activity i).

A feasible resource flow F can be represented by a graph where each activity
i ∈ Vall is modeled as a node and each resource transfer fi jk > 0 of a resource k ∈ R
from activity i ∈ V0 to activity j ∈ V∗ is represented by a directed arc (i, j)k from
node i to node j . It should be noted that the resulting graph for a given resource flow
F is a multigraph if more than one resource k ∈ R is transferred from activity i to
activity j , i.e., there may be a total of up to r arcs (i, j)k connecting two activities i
and j .

Similar to the disjunctive graph model for shop scheduling problems, an AON-
flow network (cf. Artigues et al. 2003) incorporates the activity-on-node network
representing the precedence constraints (i, j) ∈ A as well as the graph representing
a resource flow F . In this graph, each arc (i, j) representing a precedence constraint
(i, j) ∈ A is weighted with the processing time pi of activity i . To incorporate transfer
times, we weight all flow arcs (i, j)k satisfying fi jk > 0 with the value pi + Δi jk .

Example 3 We again consider the project from Example 1. A corresponding AON-
flow network is shown in Fig. 4. Thin arcs represent precedence constraints, solid thick
arcs represent resource transfers of resource 1, and dashed thick arcs represent resource
transfers of resource 2. The arcs are weighted with the fi jk-values. The earliest start
schedule corresponding to this AON-flow network is the same as the original schedule
from Fig. 2.
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0 1 2 3
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Fig. 5 An earliest start schedule which is not semi-active

In the same way as for the classical RCPSP (cf. Artigues 2010), for each AON-
flow network with transfer times incorporated, it is possible to generate an earliest
start schedule S (i.e., a schedule in which all activities start as early as possible with
respect to the given precedence constraints (i, j) ∈ A and the resource transfers fi jk
from the given resource flow F). This can be done by calculating the lengths li j of the
longest paths between all activities i, j ∈ Vall in the AON-flow network (e.g., using the
Floyd–Warshall algorithm, cf. Floyd 1962). Here, the length of a path is defined as the
sum of the weights of its arcs where only the arc with the largest weight between two
activities is considered. Then, in a corresponding earliest start schedule each activity
i ∈ Vall is started at time Si = l0i (corresponding to the length of a longest path from
0 to i). The makespan Cmax is given by the length l0,n+1. A corresponding longest
path is a critical path.

Conversely, the problem of generating a resource flowF corresponding to a feasible
schedule S can be modeled as a feasible flow problem (cf. Poppenborg 2014). Based
on these results, similar to the situation of the classical RCPSP (cf. Artigues 2010), it
can be shown that the set of schedules represented by resource flows always contains
an optimal schedule (cf. Poppenborg 2014 for a proof of this theorem):

Theorem 1 For the RCPSP with transfer times, the set of schedules represented by
resource flows always contains an optimal schedule.

Note that the set of schedules represented by resource flows contains the set of all
semi-active (and active) schedules as a proper subset. This is due to the fact that each
semi-active schedule can be represented as an earliest start schedule of a corresponding
flow (cf. Poppenborg 2014). On the other hand, there are schedules represented by
resource flowswhich are not semi-active. This can be seen from the following example
with n = 3 activities and a single renewable resource with capacity R1 = 2. The
processing times of the activities are p1 = p2 = p3 = 1, the resource requirements
are r11 = r21 = r31 = 1. There are no precedence constraints, all transfer times Δi j1
between the activities are assumed to be zero. A feasible resource flow for this project
is given by f011 = f041 = f121 = f231 = f341 = 1, the corresponding earliest start
schedule is shown in Fig. 5. Obviously, this schedule is not semi-active, since either
activity 2 or activity 3 can be shifted to the left. Hence, the set of schedules represented
by resource flows is a proper superset of the set of semi-active schedules.

Based on the definitions in Neumann et al. (2003), the schedules represented by
resource flows can be classified as quasiactive schedules. In particular, each resource
flow F defines a strict order such that Si + pi + Δi jk ≤ S j holds for each arc (i, j)k
in the corresponding graph and the activities in a corresponding earliest start schedule
start as early as possible with respect to these arcs.
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i j

u v

fijk
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fijk − q

fuvk − q
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fujk + q

After modification(a) (b)

Fig. 6 Resource flow before and after a reroute move has been applied

4 Neighborhoods

Based on the resource flow solution representation for the RCPSP with transfer times
described in Sect. 3, we now introduce neighborhoods. These neighborhoods are
defined by parallel and serialmodifications as suggested in Fortemps andHapke (1997)
extending neighborhoods developed for the job-shop problem with only disjunctive
resources. However, in Fortemps and Hapke (1997), the ideas are only sketched and
no further results (neither experimental not theoretical) are reported. To the best of
our knowledge, also no additional literature has been published dealing with these
neighborhoods any further.

First of all, neighborhood Nreroute is introduced based on the parallel modification
described in Fortemps andHapke (1997). For amodification in this neighborhood, two
arcs (i, j)k and (u, v)k between activities i, u ∈ V0 and j, v ∈ V∗ representing resource
transfers fi jk > 0 and fuvk > 0 of a resource k ∈ R are selected in a resource flow F
such that in the AON-flow network no directed path exists from activity j to activity u
or fromactivityv to activity i . Then, an amount ofq ∈ {1, . . . ,min{ fi jk, fuvk}}units of
resource k is rerouted from activity i to activity v aswell as from activity u to activity j .
This results in a resource flowF ′ with the modified resource transfers f ′

i jk = fi jk −q,
f ′
uvk = fuvk − q, f ′

ivk = fivk + q, and f ′
v jk = fv jk + q as displayed in Fig. 6.

Next, neighborhoodNreverse is introducedbasedon the serialmodification described
in Fortemps and Hapke (1997). For a modification in this neighborhood, two activities
i, j ∈ V with fi jk > 0 for at least one resource k ∈ R are selected in a resource flow
F such that (i, j) /∈ A and no other directed path exists from activity i to activity j
via other activities h ∈ V in the AON-flow network consisting of precedence or flow
arcs. Additionally, sets Uk of activities u ∈ V0 are selected for each resource k ∈ R
with fi jk > 0 based on a priority rule (e.g., based on the numbering of the activities)
such that an arc (u, i)k with fuik > 0 exists between each activity u ∈ Uk as well as
activity i and

∑

u∈Uk

fuik ≥ fi jk

holds for the amount of resource k transferred between these activities. These sets are
chosen such that no activity u ∈ Uk can be removed from the setUk without violating
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this inequality (i.e., the inequality does not hold for any proper subset of the set Uk).
Similarly, sets Vk of activities v ∈ V∗ are selected for each resource k ∈ R with
fi jk > 0 based on a priority rule such that an arc ( j, v)k with f jvk > 0 exists between
activity j as well as each activity v ∈ Vk and

∑

v∈Vk
f jvk ≥ fi jk

holds for the amount of resource k transferred between these activities. Again, these
sets Vk are chosen such that no activity v ∈ Vk can be removed from the set Vk without
violating this inequality.

It should be noted that in Fortemps and Hapke (1997) it is not described how the
sets Uk and Vk are selected and how the resource units are redirected. Instead, only
a trivial case is treated where a single activity u ∈ V0 with fuik ≥ fi jk as well as a
single activity v ∈ V∗ with f jvk ≥ fi jk can be selected for each resource k ∈ R with
fi jk > 0. In the following, we assume that for resource k ∈ R the subset Uk contains
a total of ak activities u1, . . . , uak with fi jk > 0, while the subset Vk contains a total
of bk activities v1, . . . , vbk .

Now, a reverse move (cf. Fig. 7) first reverses the direction of all arcs (i, j)k for
resources k ∈ R with fi jk > 0 between activities i and j such that an amount of
f ′
j ik = fi jk units of resource k ∈ R is transferred from activity j to activity i in

the resulting resource flow F ′. Additionally, for each resource k ∈ R with fi jk > 0,
the resource transfers for all activities u ∈ Uk as well as for all activities v ∈ Vk are
adapted. Here, all fuλik units of resource k are redirected from activities uλ ∈ Uk with
λ = 1, . . . , ak−1 to activity j . Additionally,

qak = fi jk −
ak−1∑

λ=1

fuλik

units of resource k are redirected from the remaining activityuak to activity j . Similarly,
all f jvνk units of resource k are redirected from activity i to activities vν ∈ Vk with
ν = 1, . . . , bk−1 while

qbk = fi jk −
bk−1∑

ν=1

f jvνk

units of resource k are redirected from activity i to the remaining activity vbk . These
modifications ensure that flow conservation is maintained in the resulting resource
flow F ′. It should be noted that the last activities uak and vbk to be considered are also
the last activities that have been selected by the corresponding priority rule.

As described above, some conditions have to apply for the selected activities for
a reroute or reverse modification to ensure that the resulting resource flow is acyclic.
Here, ensuring that no directed path exists from activity j ∈ V∗ to activity u ∈ V0
and from activity v ∈ V∗ to activity i ∈ V0 for a modification in the neighborhood
Nreroute can be done in O(1) time based on the matrix containing the longest path
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(a)

(b)

Fig. 7 Resource flow before and after a reverse move has been applied

lengths between the activities. Similarly, it can be ensured in O(1) time that activity
i ∈ V is no direct or indirect predecessor of activity j ∈ V for a modification in
the neighborhood Nreverse. However, on the other hand, for a reverse modification,
additional computational time is required to ensure that no other directed path from
activity i ∈ V to activity j ∈ V exists in theAON-flownetwork. This can, for example,
be determined by a depth-first search in O(n2) time if an adjacency matrix is used to
represent which activities are connected by arcs.

Example 4 We again consider the project introduced in Example 1 as well as the
resource flow F for this project as it is displayed in Fig. 4. Now, we use a reroute
modification in the neighborhood Nreroute to reroute 1 unit of resource 1 on the arcs
(0, 6)1 and (1, 4)1. The AON-flow network incorporating the resulting resource flow
F ′ is displayed in Fig. 8, while the corresponding earliest start schedulewithmakespan
C ′
max = 14 is shown in Fig. 9.
Next, we use a reverse modification in the neighborhoodNreverse to reverse the only

arc (5, 2)2 between activities 5 and 2 in resource flowF ′. Then, the incoming resource
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Fig. 8 AON-flow network based on the resource flowF ′ after applying a reroute modification to resource
flow F from Fig. 4
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Fig. 9 Earliest start schedule corresponding to the AON-flow network from Fig. 8

transfers f052 = 1, f152 = 1, and f452 = 1 can be redirected to activity 2, while only
the outgoing resource transfer f262 = 2 can be redirected to originate from activity 5.
For example, using a priority rule that selects resource transfers based on increasing
activity numbers, 1 unit of resource 2 from activity 0 as well as 1 unit of resource 2
from activity 1 are redirected to activity 2, and 2 units of resource 2 are redirected
from activity 5 to activity 6 in the resulting resource flow F ′′. The AON-flow network
visualizing this resource flow is shown in Fig. 10, while a corresponding earliest start
schedule with makespan C ′′

max = 11 is displayed in Fig. 11. ��
It should be noted that the neighborhood Nreverse closely resembles the neighbor-

hood based on disjunctive graphs introduced in van Laarhoven et al. (1992) for the
job-shop scheduling problem. While modifications in this neighborhood change the
sequence in which activities are processed by the same resource units, the neighbor-
hood Nreroute changes the resource plan for a selected resource k ∈ R.

Now, we consider the size of the neighborhoodsNreroute andNreverse. Here, because
an acyclic directed graph representing a resource flowFk for a resource k ∈ R consists
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Fig. 10 AON-flow network based on the resource flowF ′′ after applying a reversemodification to resource
flow F ′ from Fig. 8
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Fig. 11 Earliest start schedule corresponding to the AON-flow network from Fig. 10

of at most n(n−1)
2 directed arcs, the size of the neighborhood Nreverse is bounded by

O(n2). It should be noted that the size of this neighborhood does not depend on the
number of arcs connecting two activities i, j ∈ V because all arcs between these
activities are reversed simultaneously by a modification in the neighborhoodNreverse.

For the neighborhood Nreroute, two arbitrary arcs (i, j)k and (u, v)k for a resource
k ∈ R as well as an amount q ∈ {1, . . . ,min{ fi jk, fuvk}} of resource units to be
rerouted have to be selected. Thus, the size of this neighborhood is bounded by
O(rn4Rmax)where Rmax = maxk∈R{Rk} is themaximal amount of available resource
units of a resource k ∈ R. For this neighborhood, if multiple arcs for resources k ∈ R
connect two activities, each of these arcs has to be considered separately.

Due to the size of these neighborhoods (in particular, the pseudo-polynomial neigh-
borhood Nreroute may be quite large), we now reduce the neighborhoods. First of all,
similar to Fortemps and Hapke (1997), we introduce the neighborhood N ca

reverse in
which reverse moves are limited to critical activities i, j ∈ V with fi jk > 0 for at
least one resource k ∈ R. As before, to reverse the arcs (i, j)k for all resources k ∈ R
with fi jk > 0 between these activities, i must not be a direct or indirect predecessor
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of j according to the precedence constraints. For the classical RCPSP (i.e., the situ-
ation without transfer times) similar to the job-shop problem, it can be shown that if
consecutive activities on a critical path are chosen, reversing these arcs always results
in a feasible (acyclic) resource flow (see Poppenborg 2014). However, for the RCPSP
with transfer times, this property is lost (see Example 6). The size of the reduced
neighborhood N ca

reverse is limited to O(n).
Next, we introduce a neighborhoodNmax,ca

reroute in which one critical arc (i, j)k as well
as an arbitrary arc (u, v)k representing resource transfers fi jk > 0 and fuvk > 0 are
selected instead of two arbitrary arcs. Additionally, similar to Fortemps and Hapke
(1997), always the maximal amount of q = min{ fi jk, fuvk} units of resource k is
rerouted. The size of this neighborhood is then limited toO(rn3). This neighborhood
can be further reduced to a neighborhoodNmax,ca,Δ

reroute of sizeO(n3) by only considering
one arc (i, j)k with the largest transfer time Δi jk for each critical arc (i, j) (in case of
a tie, one of the possible arcs is randomly selected).

In the following, we deal with the question whether the defined neighborhoods
are connected (i.e., every solution can be reached from any other solution by a finite
number ofmodifications in the neighborhood) or at least opt-connected (i.e., from each
solution, an optimal solution can be reached). We show that neither the neighborhood
Nreroute nor the neighborhood Nreverse alone is opt-connected (and hence also not
connected) already for the classical RCPSP without transfer times.

Example 5 We consider a project consisting of n = 3 real activities as well as r = 1
renewable resourcewith a capacity of R1 = 2. The processing times of the activities are
pi = 1 for i = 1, 2, 3, while the resource requirements are r11 = 2 and r21 = r31 = 1.
All transfer times Δi j1 are assumed to be zero. Finally, only the precedence constraint
1 → 3 exists. The AON-flow network incorporating the unique optimal resource flow
F∗ for this project as well as the corresponding earliest start schedule with makespan
C∗
max = 2 are displayed in Fig. 12.
Now, we consider the feasible resource flow F shown in Fig. 13. If only the

neighborhood Nreverse is available, it is not possible to improve the makespan of the
corresponding schedule by reversing all arcs (i, j)1 between two activities i, j ∈ V
because this only changes the sequence in which the activities are processed but not
the resource plan. As a result of this, it is not possible to transform this resource flow
F into the unique optimal resource flowF∗ using only the neighborhoodNreverse, i.e.,
the neighborhood Nreverse is not opt-connected. Instead, to transform this resource
flow into the optimal resource flow F∗, the arcs (2, 3)1 and (1, 4)1 would have to be
modified based on the neighborhood Nreroute.
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Fig. 12 Optimal resource flow F∗ and the corresponding earliest start schedule for Example 5
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Fig. 13 Resource flow F and the corresponding earliest start schedule for Example 5
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Fig. 14 Resource flow F ′ and the corresponding earliest start schedule for Example 5

Finally, we consider another feasible resource flow F ′ shown in Fig. 14. In this
case, if only the neighborhood Nreroute is available, it is not possible to improve the
makespan of the corresponding schedule by only rerouting arcs. In particular, it is not
possible to select an arc from the left side of the graph (i.e., between activities 0, 1,
and 2) as well as one arc from the right side of the graph (i.e., between activities 1,
3, and 4) for a modification because these arcs are always connected by a path via
activity 1. For this reason, it is not possible to transform this resource flow into the
optimal resource flowF∗ using only the neighborhoodNreroute, i.e., the neighborhood
Nreroute is not opt-connected. Instead, to transform this resource flow into the optimal
resource flow F∗, it is necessary to reverse the critical arc (2, 1)1 between activities 2
and 1 based on the neighborhood Nreverse. Using a priority rule that selects activities
according to increasing numbers, this results in resource flow F which can then be
transformed into the optimal resource flow F∗ as described above. ��

As visualized in this example, neither the neighborhood Nreroute nor the neigh-
borhood Nreverse alone is opt-connected. We now consider the larger neighborhood
N1 = Nreroute ∪ Nreverse. As shown in the appendix, this neighborhood is even con-
nected:

Theorem 2 For the RCPSP with transfer times, the neighborhood N1 is connected.

Next, we consider the connectivity of the reduced neighborhoodN2 = Nmax,ca,Δ
reroute ∪

N ca
reverse. Here, it can be shown that this neighborhood is not connected for the RCPSP

with transfer times:

Example 6 We consider a project consisting of r = 3 renewable resources with
capacities R1 = R2 = R3 = 1 as well as n = 4 activities with the precedence
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Table 2 Data for the problem in
Example 6

i pi ri1 ri2 ri3

1 1 1 1 1

2 5 0 0 1

3 1 1 1 0

4 1 0 1 0

i\ j 1 2 3 4

Transfer times Δi j1

1 0 6 6 6

2 6 0 6 6

3 6 6 0 6

4 6 6 6 0

Transfer times Δi j2

1 0 2 2 2

2 2 0 2 2

3 2 2 0 2

4 2 2 2 0

1 2

0 5

3 4

1

1
1

1
1

1

1

1
1

1

Fig. 15 Unique optimal resource flow F∗

constraints 1 → 2 and 3 → 4. The processing times pi and resource requirements
rik of the activities as well as the transfer times Δi jk for resources k = 1, 2 are
given in Table 2. It is assumed that Δ0 jk = Δi,n+1,k = 0 holds for all transfer times
involving the dummy activities and Δi j3 = 0 holds for all transfer times involving
resource 3.

The unique optimal resource flow for this project is displayed in Fig. 15 where
thick arcs represent transfers of resource 1, dashed arcs represent transfers of resource
2, and dotted arcs represent transfers of resource 3. The corresponding earliest start
schedule with makespan C∗

max = 11 is shown in Fig. 16.
Now, we consider the feasible resource flowF from Fig. 17 where thick arcs graph

represent transfers of resource 1, dashed arcs represent transfers of resource 2, and
dotted arcs represent transfers of resource 3. The corresponding earliest start schedule
with makespan Cmax = 13 is displayed in Fig. 18. The unique critical path of this
schedule is 0 → 3 → 1 → 2 → 5. This resource flow cannot be transformed
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Fig. 16 Earliest start schedule corresponding to the optimal resource flow F∗ from Fig. 15
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Fig. 18 Earliest start schedule corresponding to flow F from Fig. 17

into resource flow F∗ for the following reasons. First of all, no modification in the
neighborhood Nmax,ca,Δ

reroute (or Nreroute) can be used because all resources have unit
capacity (i.e., no resource units can be rerouted). Furthermore, on the critical path,
only the order of activities 3 and 1 is not predetermined by precedence constraints.
The arc (3, 1)1 between these activities cannot be reversed based on a modification in
the neighborhood N ca

reverse, however, because another directed path from activity 3 to
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Fig. 19 Feasible resource flows F ,F ′ for the project from Example 7

activity 1 via activity 4 exists (i.e., reversing the arc (3, 1)1 would result in a cyclic and
hence infeasible resource flow). Thus, the neighborhood N2 = Nmax,ca,Δ

reroute ∪ N ca
reverse

is not opt-connected (and hence also not connected). ��

It should be noted that this result only holds for the RCPSP with transfer times. For
the classical RCPSP without transfer times, the question whether the neighborhood
N2 is opt-connected remains open.

Finally, we consider the neighborhood N3 = Nmax,ca,Δ
reroute ∪ Nreverse. This neigh-

borhood is neither connected for the RCPSP with transfer times nor for the classical
RCPSPwithout transfer times. In particular, already the neighborhoodN4 = Nmax

reroute∪
Nreverse that restricts reroute moves to the maximal amount of q = min{ fi jk, fuvk}
resource units prevents the resulting neighborhood from being connected for the clas-
sical RCPSP and hence also for the RCPSP with transfer times. This can be seen by
the following example.

Example 7 We consider a project consisting of n = 4 activities as well as r = 1
renewable resource with a capacity of R1 = 4. The processing times of the activities
are pi = 1 for i = 1, . . . , 4 while the resource requirements are ri1 = 2 for all
activities i = 1, . . . , 4. There are no precedence constraints between the real activities,
all transfer times Δi j1 are assumed to be zero. Two feasible resource flows F ,F ′ are
displayed in Fig. 19.

Here, because modifications in both neighborhoods Nmax
reroure and Nreverse always

redirect the maximal amount of q = 2 units of resource 1 in resource flow F ′ as well
as in any resulting resource flow, it is impossible to transform resource flow F ′ into
resource flow F . ��

This example only shows that the neighborhood N3 is not connected. It remains
open whether the neighborhood is opt-connected or not.
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5 A tabu search algorithm

To evaluate the solution representation as well as the neighborhoods described above,
we implemented a tabu search algorithm inwhich solutions are represented by resource
flows. An initial solution for a problem instance is generated by a parallel schedule
generation scheme with forward–backward improvement as it has been described in
Krüger and Scholl (2009). For this, the activity priority rule LFT is used that selects
activities according to non-decreasing latest finish times. Furthermore, the transfer
priority rule GAP is used that selects resource transfers according to non-decreasing
differences between the earliest arrival time of the resource units at the activity and
the starting time of the activity. It should be noted that the transfer priority rule is only
used if more resource units than necessary can be transferred to the activity until its
starting time.

In each iteration of the tabu search, a solution is selected from the neighborhood
N2 = Nmax,ca,Δ

reroute ∪ N ca
reverse as it has been introduced above. Here, to choose sets Uk

for a reverse modification, the priority rule ES is used that selects activities according
to non-decreasing earliest arrival times of the resource units at the receiving activity.
To choose sets Vk , the priority rule TT is used that selects activities according to non-
decreasing transfer times between the activities. Ties are always broken by the smallest
index rule. To accelerate the search process, only non-tabumodifications are evaluated
which implies that also no aspiration criterion is used. Furthermore, if a solution with
a better objective function value than the current solution is found, this solution is
immediately accepted. Otherwise, the best non-tabu solution from the neighborhood
is chosen.

After a solution has been chosen, the tabu lists are updated based on the selected
modification. Here, two tabu lists TLadd and TLdrop are used as described by Glover
and Laguna (1998). If a reroute move has been applied to reroute resource units of
resource k ∈ R on two selected arcs between activities i ∈ V0 and j ∈ V∗ as well as
between u ∈ V0 and v ∈ V∗, the tabu list TLadd stores the triples (i, j, k) and (u, v, k)
(indicating that less units of resource k are transferred from activity i to activity v as
well as from u to j), while the tabu list TLdrop stores the triples (i, v, k) and (u, j, k)
(indicating that more units of resource k are transferred from activity i to activity
j as well as from u to v). Similarly, if a reverse move has been applied to reverse
all arcs between two activities i, j ∈ V , the tabu list TLadd stores all triples (i, j, k)
corresponding to resources k ∈ R for which at least one arc has been reversed while
the tabu list TLdrop stores all triples ( j, i, k).

A reroutemove for two selected arcs of a resource k′ ∈ R between activities i ′ ∈ V0
and j ′ ∈ V∗ as well as between u′ ∈ V0 and v′ ∈ V∗ is tabu if the triple (i ′, u′, k′) or
(u′, j ′, k′) is contained in the tabu list TLadd or if the triple (i ′, j ′, k′) or (u′, v′, k′)
is contained in the tabu list TLdrop. Similarly, a reverse move between two selected
activities i ′, j ′ ∈ V is tabu if for all resources k′ ∈ R for which at least one arc exists
in the resource flow at least one triple ( j ′, i ′, k′) is contained in the tabu list TLadd or
if at least one triple (i ′, j ′, k′) is contained in the tabu list TLdrop.

Both tabu lists TLadd and TLdrop are able to avoid cycling (i.e., the revisiting of a
solution that has recently been visited) for the neighborhoods considered in this paper.
In particular, the tabu list TLdrop prevents the tabu search from removing specific arcs
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from a resource flow that have recently been inserted, while the tabu list TLadd prevents
the tabu search from inserting specific arcs to a resource flow that have recently been
removed. However, cycles may still occur because tabu restrictions only apply for
a limited number of iterations (i.e., the tabu tenure) after which the corresponding
solutions could be revisited. In the tabu search algorithm, it is possible to use either
only one of the two tabu lists or both depending on the selected tabu tenures. If both
tabu lists are used, this generally results in a stronger tabu restriction because the tabu
condition is satisfied more frequently for similar tabu tenures.

The tabu tenures tadd and tdrop are chosen independently for both tabu lists TLadd and
TLdrop based on the size of the selected neighborhood N2. We set tadd := rand(a) +
α · |N2| and tdrop := rand(b) + β · |N2|, where a, b are two positive integer values
and α, β are selected from the interval [0, 1[. The function rand(r) randomly selects
a number from the interval [0, r [ using a random number generator with a fixed seed.
These values are calculated in each iteration of the tabu search and assigned to the
corresponding triples in the tabu lists such that these modifications are tabu for the
next tadd or tdrop iterations, respectively.

To intensify the search process, a total of lmax elite solutions can be stored during the
search as described in Nowicki and Smutnicki (1996). An elite solution is a solution
that improves the currently best solution during an iteration. If such a solution is
generated, both the solution as well as the current tabu lists are stored in the set of elite
solutions. It should be noted that the tabu list stored here is also updated to contain the
move made in the next iteration to avoid making the same move when the tabu search
is restarted from this elite solution. Now, if no new solution could be generated during
an iteration or if a given number of iterations has passed without an improvement of
the best solution found so far, the tabu search restarts from the oldest elite solution.

Otherwise, if the set of elite solutions is empty, the tabu search restarts from a new
solution that is generated by the parallel schedule generation scheme.Here, to diversify
the search, we calculate the total number of iterations that activities i ∈ V have been
critical and use this information to select these activities with a higher priority (i.e.,
the priority values based on the selected activity rule are modified accordingly). This
ensures that activities that are often critical are scheduled with a higher priority than
activities that are less often critical. It should be noted that the tabu search also restarts
from a new solution if the best solution could not be improved during a given number
of iterations after the tabu search has been restarted from an elite solution.

Finally, the tabu search terminates when a certain stopping condition (e.g., maximal
number of iterations reached) is satisfied.

6 Computational results

To evaluate the tabu search algorithm presented above, we implemented it in Java and
tested it on a computer with an Intel Core i5-3470 (3.20GHz) processor with 8GB
RAM (not using multi-threading abilities). We applied this algorithm to the problem
instances for the classical RCPSP with 30, 60, 90, and 120 activities as they have
been generated by Kolisch and Sprecher (1997). These instances are available online
at the website of the project scheduling problem library PSPLIB (http://www.om-db.
wi.tum.de/psplib/main.html).
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Table 3 Parameter settings for
calculating the tabu tenures

n a α b β

(a) Parameter settings 1

30 5 0.3 0 0.0

60 10 0.2 0 0.0

90 15 0.2 0 0.0

120 20 0.2 0 0.0

(b) Parameter settings 2

30 4 0.3 3 0.01

60 7 0.2 3 0.01

90 12 0.2 3 0.01

120 15 0.2 5 0.02

Table 4 Results for the classical RCPSP

n # Tabu search PSPLIB

Δmin Δmax Δ0
min Δ0

max tavg tmax opt Δ opt

30 480 0.50 0.75 2.49 2.72 2.4 13.4 402 0.00 480

60 480 12.67 13.25 2.54 2.94 16.6 65.0 345 10.37 431

90 480 12.31 12.85 1.87 2.25 46.4 177.6 339 9.48 402

120 600 37.60 38.71 2.98 3.70 221.3 366.5 164 29.18 291

The tabu search algorithmhas been set up to terminate after atmost 10,000 iterations
or, alternatively, if the best known lower bound (or the optimal makespan) has been
reached. In each iteration, at most 50 reroute modifications as well as at most 5 reverse
modifications may be evaluated. Furthermore, after some preliminary experiments, it
turned out best to store lmax = 1 elite solution. The algorithm restarts from this elite
solution if no improving solution (i.e., a solution that improves the currently best
solution) could be found in the last 750 iterations. If no improving solution could
be found in the last 1500 iterations, the algorithm restarts from a new solution as
described above. The parameters a, b, α, and β used to calculate tadd and tdrop were
selected independently for each set of instances based on preliminary experiments as
displayed in Table 3. While (a) displays parameter settings if only the tabu list TLadd
is used, (b) displays the parameter settings if both tabu lists are used.

Computational results for the problem instances of the classical RCPSP that were
obtained based on the two parameter settings from Table 3 can be found in Table 4.
The algorithm was run with both settings, one after each other, we report minimum
and maximum deviations Δmin,Δmax (both in percent). Similar to the extensive com-
putational studies by Hartmann and Kolisch (2000) and Kolisch and Hartmann (2006),
we report deviations from the optimal solution for the instances with 30 activities and
deviations from the critical path lower bound LB0 for the instances with 60, 90, and
120 activities. Furthermore, we list the minimal and maximal improvements Δ0

min,
Δ0

max (both in percent) from the initial solution, as well as the average and maximum
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Table 5 Results for the RCPSP with transfer times (instances from Krüger 2009)

n # Tabu search

Δ
opt
min Δ

opt
max Δ

LB0
min Δ

LB0
max Δ0

min Δ0
max tavg tmax opt

30 480 0.81 1.21 13.92 14.46 3.82 4.16 2.6 13.2 393

60 400 0.84 1.18 4.12 4.52 3.08 3.39 9.9 57.3 337

n # Multi-pass GA

Δopt opt Δopt opt

30 480 1.63 322 0.16 459

60 400 1.61 284 0.38 355

computational time tavg and tmax (both in seconds). Furthermore, we report the number
opt of instances for which an optimal solution could be found. These results are then
compared to the results of the best heuristic solutions as they have been reported on
the website of the PSPLIB.

In can be seen that our results are worse than the best PSPLIB results for all sets of
instances (up to almost 9% for the instances with 120 activities).

In terms of computational time, a comparison of the different algorithms is difficult
since different hardware was used. However, it is likely, that our algorithm generally
requires more time than other algorithms that represent solutions as activity lists due
to the large size of the neighborhoods (in particular, the neighborhoodNmax,ca,Δ

reroute can
be very large) as well as the time required to evaluate a single solution (which is
O(n3) due to the calculation of the longest path lengths after a modification). Thus,
while our algorithm is still able to obtain reliable results for these instances, it cannot
compete with algorithms that are specifically designed to solve the classical RCPSP.
Additionally, for the classical RCPSP, the effect of Example 2 does not apply. Most
algorithms for the RCPSP are based on the smaller solution spaces of semi-active
(or even only active) schedules, for which it is guaranteed that they always contain
an optimal solution. Here, the larger solution space of resource flows seems to be
disadvantageous.

Furthermore, we solved the instances for the RCPSP with transfer times consisting
of 30 and 60 activities as they were generated by Krüger and Scholl (2009) based
on the corresponding problem instances from the PSPLIB. It should be noted that
they generated instances for which the optimal solutions are known. There are 480
instances with n = 30 and 400 instances with n = 60. The results for these instances
can be found in Table 5.We again report our results for the best solutions that have been
obtained byone of the twoparameter settings listed inTable 3. These are then compared
to the results obtained by a multi-pass heuristic using the serial and parallel schedule
generation scheme with forward–backward improvement and different priority rules
(cf. Krüger 2009), as well as the results obtained by a genetic algorithmwith a stopping
condition of 5000 schedules (cf. Krüger 2009). For all of these approaches, we report
the deviations from the optimal solution as well as from the lower bound LB0, and
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the improvements of the initial solutions. It should be noted that we used the adapted
lower bound LB0 introduced inKrüger (2009) that also incorporates the transfer times.
In particular, if two activities i and j with (i, j) ∈ A require rik + r jk > Rk units of
resource k, additionally the transfer timeΔi jk is regarded when calculating the longest
path lengths.

For these instances, the solutions obtained by our algorithm are worse than those
obtained by the genetic algorithm introduced in Krüger (2009). A closer examination
of the results reveals that in particular instances with a large resource factor RF as
well as a small resource strength RS are hard to solve due to the large number of
resource transfers associated with these instances (i.e., the resulting solution space is
very large). For example, we have an average deviation of 5.20% from the optimal
solutions for the 30 hard instances with 30 activities where RF = 1.0 and RS = 0.2. In
comparison, Krüger (2009) reports an average deviation of 1.03% for these instances
for the genetic algorithm.

Again, it seems to be difficult to compare computational times. For the genetic
algorithm by Krüger (2009), on an Intel Pentium 4 processor with 1GB RAM an
average computational time of tavg = 5.3 s was reported for the instances with 30
activities and tavg = 45.8 s for n = 60.

It should be noted that the extended instances fromKrüger (2009) seem to be biased
due to the process by which they have been generated. At first, optimal solutions for
the PSPLIB instances were calculated using a branch-and-bound algorithm. Based on
these solutions (i.e., vectors containing the starting times of the activities), Krüger then
calculated a resource flow representing the optimal solution. Finally, she extended the
instances by transfer times based on an integer linear program such that the trans-
fer times between the activities are maximized while at the same time ensuring that
optimality of the calculated resource flow as well as the optimal makespan is retained.

To ensure this condition, Krüger has chosen maximal transfer times Δmax
i jk for

resources k ∈ R between each pair of activities i, j ∈ Vall based on the calculated
resource flows. In particular, if a resource transfer fi jk > 0 of resource k exists between
activities i and j , the maximal transfer time is given by Δmax

i jk = φ · (S j − (Si + pi ))
with φ ∈ [0, 1] (Krüger uses the value φ = 0.5), i.e., the maximal transfer time is
bounded by the gap between the end of activity i and the start of activity j . Otherwise,
if no resource transfer of resource k exists between activities i and j (i.e., for fi jk = 0),
a random value Δmax

i jk ∈ [0,maxk] is selected where the upper bound maxk = 3 · ��k
ϑk



depends on time span �k between the first and the last usage of resource k in the
optimal schedule as well as on the number ϑk of jobs that require resource k during
this time span.

As a result of this, the calculation of the transfer times for the extended instances
is strongly influenced by the corresponding optimal resource flows. In particular, the
transfer times for resources k between activities i and j with fi jk > 0 are generally
small, while the transfer times between activities i and j with fi jk = 0 are larger.
Moreover, the transfer times for resources k ∈ R between two consecutive critical
activities i ∈ V0 and j ∈ V∗ with fi jk > 0 are always equal to zero (otherwise, the
optimal makespan could not be retained). These observations can also be verified by
taking a closer look at the extended instances. For example, for hard instances with
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Table 6 Results for the RCPSP
with transfer times (new
instances)

n # Δ
LB0
min Δ

LB0
max Δ0

min Δ0
max tavg tmax

30 96 33.11 34.48 7.05 7.89 7.3 12.9

60 96 35.79 37.16 6.22 7.24 36.5 60.6

90 96 36.21 37.79 5.61 6.66 94.4 165.2

120 120 89.27 91.43 4.87 5.95 265.8 359.2

RF = 1.0 and RS = 0.2, it can be seen that almost all transfer times are equal to zero
(i.e., the optimal schedule is very tight and a lot of resource transfers occur between
the activities). For this reason, the extended instances as they have been introduced
in Krüger (2009) are not entirely representative of the RCPSP with transfer times (in
particular, for these instances, the phenomenon from Example 2 may not hold).

Due to this, we generated and solved additional instances (see http://www2.
informatik.uni-osnabrueck.de/kombopt/data/rcpsp/). In particular, we randomly
selected two instances for each configuration from the sets with 30, 60, 90, and 120
activities and extended them by transfer times (i.e., we have 96 instances with 30,
60, and 90 activities, respectively, as well as 120 instances with n = 120). These
instances were extended by transfer times as follows. First of all, the transfer times
Δ0 jk and Δi,n+1,k involving the dummy activities are set to zero. Furthermore, to
generate the remaining transfer times between the real activities, we represented each
activity i ∈ V as a randomly generated point (xik, yik) with 0 ≤ xik, yik ≤ 5 for each
resource k ∈ R and calculated the transfer times based on the Euclidean distance as

Δi jk = min

{
5,

⌈√(
xik − x jk

)2 + (
yik − y jk

)2
⌉}

.

This ensures that the transfer times are randomly selected from the interval [0, 5] and
the triangle inequality is satisfied. We selected this interval because the processing
times for all instances are from the interval [1, 10] and we wanted to ensure that the
transfer times are mostly smaller than the processing times.

In Table 6, we report the results of our algorithm based on the parameter settings
from Table 3. As before, we report the minimal/maximal deviations Δ

LB0
min , Δ

LB0
max (in

percent) from the adapted lower bound LB0, the minimal/maximal improvements
Δ0

min, Δ
0
max (in percent) from the initial solution, and the average/maximal computa-

tion time tavg and tmax (in seconds).
In this table, it can be seen that our approach is able to achieve considerable

improvements from the initial solutions (up to an average of more than 7.9%). This
improvement is larger than in Tables 4 and 5 where the average improvement is always
smaller than 4.2%.

It should be noted that the adapted lower bound LB0 is a very weak lower bound for
this problem. Already for the classical RCPSP, the average deviations from the lower
bound LB0 are between 8 and 40%. Here, with the addition of transfer times between
the activities, this problem grows even more prominent (cf. Krüger 2009). Thus, it can
be assumed that the actual deviations from the optimal makespan are much smaller
than the deviations from the lower bound LB0 reported above.
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Table 7 Comparison of the tabu search algorithmwith the truncated branch-and-bound algorithmdescribed
in Neumann et al. (2003) (new instances)

n # Tabu search (TS) Branch-and-bound (BB)

Δmin Δmax Δbest
min Δbest

max opt Δ Δbest tavg opt

30 96 27.56 28.93 0.22 1.18 40 32.90 3.41 352.5 42

60 96 35.16 36.53 0.13 1.25 30 48.77 7.98 450.2 25

90 96 36.21 37.79 0.16 1.32 26 54.10 10.09 456.9 23

120 120 89.27 91.43 0.08 1.23 2 133.90 21.47 600.9 0

n # Comparison

TS < BB TS = BB TS > BB

30 96 43 45 8

60 96 64 27 5

90 96 63 27 6

120 120 119 0 1

Additionally, we solved the new instances by a truncated branch-and-bound algo-
rithm described in Neumann et al. (2003) (Chapter 2.14). This algorithmwas designed
to solve amore general problem, namely the RCPSPwith generalized precedence con-
straints (i.e., minimal and maximal time lags) as well as sequence-dependent setup
times. We ran this algorithm on a Windows computer with an Intel Core i5-2410
(2.30GHz) processor with 4GB RAM and a time limit of 600 s.

In Table 7, we report the results and compare them to the results obtained by our
algorithm. Here, it should be noted that some solutions could be verified to be optimal
by the branch-and-bound algorithm or if themakespan of the generated solution equals
the adapted lower bound LB0.

In this table,Δmin,Δmax, andΔ (in percent) denote the deviations from the optimal
makespan (if verified) or from the adapted lower bound LB0, while Δbest

min , Δ
best
max, and

Δbest (in percent) denote the deviations from the best solution found by the tabu search
or the branch-and-bound algorithm. The value opt denotes the number of solutions
that could be verified to be optimal, while the time tavg (in seconds) denotes the
average computation time of the branch-and-bound algorithm (bounded by the given
time limit). Here, a solution is regarded as optimal if the makespan is equal to the
adapted lower bound LB0 or to the optimal makespan C∗

max (with C∗
max ≥ LB0)

verified by the branch-and-bound algorithm. Finally, we compare how often the best
solution found during the first or the second pass of the tabu search algorithm is better
(TS < BB), equal (TS = BB) or worse (TS > BB) than the solution found by the
branch-and-bound algorithm.

Overall, it can be seen that our algorithm was able to obtain considerably better
results than the branch-and-bound algorithm for these problem instances. In particular,
it is often able to generate solutions with either a better or at least an equal makespan
within a shorter amount of time compared to the solutions obtained by the branch-and-
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bound algorithm. Finally, it should be noted that in some cases, solutions generated
by the tabu search could be proved to be optimal despite the fact that these solutions
have not been proved to be optimal by the branch-and-bound algorithm. This is the
case if the makespan of the solution obtained by the tabu search algorithm is equal to
the adapted lower bound LB0.

7 Concluding remarks

In this paper, we introduced a tabu search algorithm for the RCPSP with transfer times
that is based on a resource flow representation and two types of modifications. Apart
from theoretical results (in particular, studying the connectivity of the neighborhoods),
we report computational results for both, the classical RCPSP as well as the RCPSP
with transfer times. While our algorithm could not compete with state-of-the-art algo-
rithms for the classical RCPSP,wewere able to obtain promising results for theRCPSP
with transfer times. Especially, an extension of the approach to the RCPSP with first-
and second-tier resource transfers in Poppenborg (2014) makes a further consideration
of this approach worthwhile.

For further research, it would be interesting to consider further reductions of the
neighborhoods as well as a more efficient evaluation of neighbors. Also extensions to
other regular objective functions (like the maximum lateness or sum of completion
times) could be studied.

Acknowledgments We would like to thank Doreen Becker for providing her test instances and results
fromKrüger (2009) as well as Christoph Schwindt for giving us the code of the branch-and-bound algorithm
described in Neumann et al. (2003). Additionally, we are very grateful for the constructive comments of
two referees which helped us to improve the presentation of the paper.

8 Appendix

Theorem 2 For the RCPSP with transfer times, the neighborhood N1 is connected.

Proof To prove this, it is necessary to calculate topological orderings for AON-flow
networks based on given resource flows. A topological ordering defines a sequence in
which the activities can be processed such that all precedence constraints as well as all
resource transfers between the activities are observed (i.e., if a precedence constraint
(i, j) ∈ A or a resource transfer fi jk > 0 for some resource k ∈ R exists between
activities i ∈ V0 and j ∈ V∗, activity i comes before activity j in the topological
ordering).

However, it should be noted that a topological ordering is not necessarily unique.
In particular, if no directed path exists from activity i to activity j and from activity
j to activity i , no particular order has to exist between activities i and j (i.e., activity
i can come either before or after activity j in a topological ordering). This is the
case, for example, if both activities can be processed in parallel by different resource
units. In this case, we assume that activities that can be processed in parallel are
ordered according to increasing numbers. Then, a unique topological ordering can be
calculated for each AON-flow network.
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Let F and F ′ be two arbitrary feasible resource flows with F �= F ′. Furthermore,
let π = (π0, . . . , πn+1) and π ′ = (π ′

0, . . . , π
′
n+1) be the topological orderings of

the corresponding AON-flow networks. We now show that the neighborhood N1 is
connected by transforming resource flow F ′ into resource flow F by a finite number
of modifications in N1.

First, we consider all activities i, j ∈ V with f ′
i jk > 0 for some resource k ∈ R

in resource flow F ′ (i.e., activity i comes before activity j in π ′) where activity j
comes before activity i in π for resource flow F . This implies that in resource flow F
there are no direct or indirect resource transfers from activity i to activity j . If such
activities i, j exist, it is always possible to select two of these activities such that in
resource flow F ′ no other path exists from activity i to activity j via other activities.
This follows from the following reasoning.

Let u, w ∈ V be two of these candidates for which at least one path P =
(u, v1, . . . , vμ,w) via μ other activities v1, . . . , vμ ∈ V exists from activity u to
activity w. In this case, none of the activities v1 to vμ can simultaneously be a suc-
cessor of activity u as well as a predecessor of activity w in the topological ordering
π for resource flow F . Otherwise, if an activity v ∈ {v1, . . . , vμ} came after activ-
ity u as well as before activity w in the topological ordering π for resource flow F ,
this would imply that also activity u comes before activity w which contradicts the
condition that activity w comes before activity u in the topological ordering π . Thus,
it is always possible to identify two consecutive activities i ∈ {u, v1, . . . , vμ} and
j ∈ {v1, . . . , vμ,w} on this path such that activity i comes after activity j in π . By
this reasoning, we find two activities i, j ∈ V with the above property.

Now, the arcs (i, j)k for all resources k ∈ R with f ′
i jk > 0 between the selected

activities i and j can be reversed based on amodification in the neighborhoodNreverse.
In the resulting resource flow, activity j comes before activity i , i.e., the order of these
two activities is reversed and matches the order of the activities in the topological
ordering π for resource flowF . Additionally, incoming resource transfers to activity i
as well as outgoing resource transfers from activity j have to be adapted as described
above. Here, it can be inferred from Fig. 7 that the order in which these activities have
to be processed in relation to activities i and j does not change. Instead, all activities
u ∈ V0 from which resource units are redirected to activity j are still predecessors
of activity i in the resulting topological ordering and all activities v ∈ V∗ to which
resource units are redirected from activity i are still successors of activity j .

It should be noted that activities u ∈ V0 from which resource units are transferred
to activity i in resource flow F ′ (as well as direct and indirect predecessors of these
activities u) that are not affected by a reversemove (i.e., no resource units are redirected
from these activities u to activity j) can be processed in parallel to activity j (as well as
in parallel to direct and indirect successors of activity j) in the resulting resource flow
unless other directed paths exist between these activities. Similarly, activities v ∈ V∗
to which resource units are transferred from activity j in resource flow F ′ (as well as
direct and indirect successors of these activities v) that are not affected by a reverse
move (i.e., no resource units are redirected from activity i to these activities v) can be
processed in parallel to activity i (as well as in parallel to direct and indirect successors
of activity i) in the resulting resource flow unless other directed paths between these
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Fig. 20 Reversing the arc between activities 7 and 4

activities exist. Here, while the topological ordering of these activitiesmay be different
in the resulting resource flow, no additional arcs are inserted into the resource flow
that might have to be reversed to obtain the order π .

An example for this situation is visualized in Fig. 20. Here, an extract of a resource
flow is shown before as well as after the only arc between activities 7 and 4 has been
reversed. In the resulting resource flow, activity 4 comes before activity 5.Additionally,
activity 6 (from which no resource unit is redirected to activity 4) can be processed in
parallel to activities 4 and 5 and activity 5 (to which no resource unit is redirected from
activity 7) can be processed in parallel to activities 7, 3, and 8 such that the topological
ordering of these activities changes based on their numerical ordering.

Thus, each reverse move changes the order of two activities i, j ∈ V into the same
order as in the topological ordering π for resource flowF and no additional arcs result
from these moves that have to be reversed to obtain π . For this reason, it is possible to
transform resource flowF ′ into a resource flowF ′′ by a finite number of modifications
in the neighborhoodNreverse such that the topological ordering of all activities i, j ∈ V
on directed paths in resource flow F ′′ is the same as for resource flow F .

Now, if f ′′
i jk = fi jk holds for all resource transfers of resource k ∈ R between

activities i ∈ V0 and j ∈ V∗ in resource flows F ′′ and F , resource flow F ′ has
been transformed into resource flow F and we are finished. Otherwise, due to flow
conservation, at least two resource transfers f ′′

i jk > 0 and f ′′
uvk > 0 between activities

i, u ∈ V0 and j, v ∈ V∗ have to exist with the following properties:
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– The amount of resource units of resource k transferred on these arcs is larger than
in resource flow F , i.e., fi jk < f ′′

i jk and fuvk < f ′′
uvk hold.

– Without loss of generality, it can be assumed that the amount of resource k trans-
ferred from activity i to activity v in resource flow F ′′ is smaller than in resource
flow F , i.e., fivk > f ′′

ivk holds.
– Activity j does not comebefore activityu in the topological orderingπ for resource
flowF . This is assured because all activities share at least one commonpredecessor
(e.g., the dummy activity 0) as well as one common successor (e.g., the dummy
activity n + 1) and all activities on directed paths from 0 to n + 1 are ordered
according to the topological ordering π .

After such activities have been identified in resource flow F ′′, it is possible to reroute
an amount of q = min{ f ′′

i jk − fi jk, f ′′
uvk − fuvk, fivk − f ′′

ivk} units of resource k from
activity i to activity v as well as from activity u to activity j by a modification in
the neighborhood Nreroute. Now, we can consider the four affected resource transfers
before and after the modification in comparison to resource flow F :

– We have fi jk < f ′′
i jk before the modification. After the modification, q ≤ f ′′

i jk −
fi jk units of resource k are redirected from activity i to activity v, i.e., we have
fi jk ≤ f ′′

i jk − q. Thus, the deviation of the resulting resource transfers is reduced
by q units.

– We have fuvk < f ′′
uvk before the modification. After the modification, q ≤ f ′′

uvk −
fuvk units of resource k are redirected from activity u to activity j , i.e., we have
fuvk ≤ f ′′

uvk − q. Thus, the deviation of the resulting resource transfers is reduced
by q units.

– We have fivk > f ′′
ivk before the modification. After the modification, q ≤ fivk −

f ′′
ivk units of resource k are redirected from activity i to activity v, i.e., we have
fivk ≥ f ′′

ivk + q. Thus, the deviation of the resulting resource transfers is reduced
by q units.

– In the worst case, we have fu jk ≤ f ′′
u jk before the modification. After the modi-

fication, q units of resource k are redirected from activity u to activity j , i.e., we
have fu jk < f ′′

u jk + q. Thus, the deviation of the resulting resource transfers is
increased by q units.

As a result of this, the deviation for three of the resulting resource transfers is reduced
by q units while it is increased by at most q units for one resource transfer. Then,
because all other resource transfers remain unchanged, the deviation of the resulting
resource flow from F is always reduced by at least 2q compared to the deviation of
F ′′ and F . Furthermore, because the modified resource transfers are selected such
that activity u comes before activity j in the topological ordering π for resource flow
F , no arc is inserted that would have to be reversed based on a modification in the
neighborhood Nreverse.

Thus, because each reroute move reduces the deviation of the corresponding flows
(and at least one resource transfer is set to the same value as in resource flow F), it is
possible to transform F ′′ into a resource flow F ′′′ by a finite number of modifications
in the neighborhood Nreroute such that f ′′′

i jk = fi jk holds for all i ∈ V0, j ∈ V∗, and
k ∈ R, i.e., resource flow F ′ can be transformed into resource flow F by a finite
number of modifications in the neighborhood N1. ��
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