
OR Spectrum (2015) 37:761–786
DOI 10.1007/s00291-015-0396-9

REGULAR ARTICLE

Data-driven portfolio management with quantile
constraints

Elçin Çetinkaya · Aurélie Thiele

Received: 24 May 2013 / Accepted: 27 February 2015 / Published online: 14 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We investigate an iterative, data-driven approximation to a problem where
the investor seeks to maximize the expected return of her portfolio subject to a quantile
constraint, given historical realizations of the stock returns. The approach, which was
developed independently from Calafiore (SIAM J Optim 20:3427–3464 2010) but
uses a similar idea, involves solving a series of linear programming problems and thus
can be solved quickly for problems of large scale. We compare its performance to
that of methods commonly used in the finance literature, such as fitting a Gaussian
distribution to the returns (Keisler, Decision Anal 1:177–189 2004; Rachev et al.
Advanced stochastic models, risk assessment and portfolio optimization: the ideal
risk, uncertainty and performance measures, Wiley, New York 2008). We also analyze
the resulting efficient frontier and extend our approach to the case where portfolio
risk is measured by the inter-quartile range of its return. Our main contribution is in
the detail of the implementation, i.e., the choice of the constraints to be generated in
the master problem, as well as the numerical simulations and empirical tests, and the
application to the inter-quartile range as a risk measure.
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1 Introduction

Determining the optimal allocation of an investment budget into a portfolio of assets
while achieving a trade-off between the portfolio return and the risk measure is a
central task in portfolio management. Harlow (1991) mentions that the most difficult
and crucial task in this decision-making process is defining the risk. As Cornuejols and
Tütüncu (2007) state, managing the risk requires a good understanding of quantitative
risk measures.

Variance Markovitz (1952), semi-variance Markovitz (159), safety-first ratio Roy
(1952), Sharpe ratio Sharpe (1966), Sortino ratio Sortino and Price (1994), portfo-
lio’s beta Szegö (2002), mean absolute deviation (MAD) Sharpe (1971), Gini’s mean
difference Yitzhaki (1982), expected regret Harlow (1991), value at risk (VaR) Rock-
afellar and Uryasev (2000), and conditional value at risk (CVaR) Artzner et al. (1999)
are some of the risk measures used both in the academic literature and in practice.
Stochastic dominance has also received significant interest in recent years, see for
instance Dentcheva and Ruszczynski (2006), Ruszczynski and Vanderbei (2003). In
this paper, we focus on quantile-based risk measures such as VaR.

Benninga and Wiener (1998) define VaR as “the lowest quantile of the potential
losses that can occur within a given portfolio during a specific time period”. In other
words, it focuses on the worst anticipated loss in a pre-defined period at a given confi-
dence level. Linsmeier and Pearson (2000) motivate the need for a measure like VaR
due to significant volatility in exchange rates, interest rates, and commodity prices, in
addition to the increasing popularity of derivative instruments. Kim and Powell (2011)
argue that the quantile function is a relatively reliable measure of risk-adjusted return
even in a very volatile environment. The authors add that quantile optimization is robust
and a reasonable procedure in a complex, volatile, and heavy-tailed environment. In
addition, VaR has been widely used since JP Morgan’s endeavor to standardize risk
measurement throughout the market in 1994. Later, the Basel Capital Accords of 1996
let banks calculate their capital requirements for market risk according to their own
VaR models, and the US Securities and Exchange Commission suggested VaR as one
of the three possible disclosure methods in 1997 Linsmeier and Pearson (2000).

Rodriguez (1999) uses the portfolio optimization problem with VaR constraint as
an example of stochastic programming with chance constraint. Solution techniques
of these problems involve non-gradient-based or gradient-based techniques. In addi-
tion, nonlinear optimization techniques, where Monte Carlo simulation procedures
are applied to determine the gradients of the probability functions, are also mentioned
in the literature. Uryasev (2002) presents developments in probabilistic constrained
optimization up to 2000. Naumov and Kibzun (1992) present an approach to opti-
mize the unconditional quantile function with a General Minimax Approach (GMA),
which provides an upper bound on the optimal value of the objective function. Pankov
et al. (2002) investigate a single-step portfolio management problem with a quantile
criterion. The authors provide a modeling and solution of a minimax optimization
problem with a quantile criterion. Moreover, El-Ghaoui et al. (2000) assume that only
the bounds of the mean and the covariance matrix of the return distribution are known,
and formulate the worst-case VaR optimization problem as a semi-definite program-
ming problem. Benati and Rizzi (2007) formulate the portfolio optimization problem
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Data-driven portfolio management 763

with a VaR criterion via a data-driven mixed integer linear programming. The model
is NP-hard. However, in special cases a polynomial time algorithm exists. Those cases
are: (1) the number of observations is bounded by a constant, and (2) the number
of assets is bounded by a constant. In that case, the authors invoke a classical result
in computational geometry to prove that the number of LP problems that needs to
be solved is polynomial (once the number of assets is fixed). Gaivoronski and Pflug
(2005) provide a computational approach for VaR portfolio optimization that approx-
imates historical VaR using smoothed VaR, which filters out local irregularities, and
show that the efficient frontier differs quite significantly from that obtained in a mean-
CVaR framework. Fabozzi et al. (2007) discuss the state of the art in robust portfolio
management up to 2007, including quantile models.

More recently, Kim and Powell (2011) develop a provably convergent algorithm
that optimizes the quantile of a random function in a heavy-tailed environment. The
suggested algorithm replaces the stochastic gradientwith the asymmetric signum func-
tion.Wozabal (2012) formulates VaR as the difference between two CVaR. The author
solves the portfolio optimization problem with a VaR constraint by the difference of
convex (DCA) algorithm. Goh et al. (2012) investigate VaR optimization for asym-
metrically distributed returns by partitioning asset distributions between positive and
negative half-spaces and minimizing a new measure called Partitioned Value-at-Risk.
Zymler et al. (2013) provide tractable, conservative approximations to the worst-case
VaR of a derivative portfolio using the delta-gamma approximation. An extensive
treatment of risk and uncertainty measures in the context of portfolio optimization is
also available in Rachev et al. (2008). Beasley (2013) provides a tutorial on models
and solution approaches for portfolio optimization up to 2013.

In this paper, we propose a fast-convergent approximation method for the portfo-
lio management problem with quantile a criterion, which is tractable and leads to a
close-to-optimal solution in numerical studies. Our approach, which we presented in
2012 at the ISMP conference in Berlin, was developed independently from but offers
similarities with Calafiore (2013) and Calafiore and Monastero (2012), who lever-
age the theory of random convex programming Calafiore (2010) to provide a direct
route to reliable portfolio optimization with explicit bounds on the shortfall proba-
bilities by appropriately selecting the number of return scenarios. The randomness
in Calafiore (2013) comes from selecting scenario subsets of appropriate cardinality
for the returns in order to compute the desired percentile. The author is able to offer
probability guarantees depending on the number of observations, independently of the
scenario selection rule, assuming the return scenarios are i.i.d.

Our approach focuses on a heuristic, iterative scenario selection rule, which we
demonstrate through numerical experiments performswell in practice. Because our set
selection rule satisfies the conditions in Calafiore (2013), we can thus use the author’s
results to determine quantile probability guarantees for our own problem. Calafiore
(2013) then compares the portfolios he obtains in the data-driven method with those
obtained in a classical VaR (ValueAtRisk)-Normal framework.We consider both VaR-
Normal and VaR-LogNormal frameworks, in line with financial industry practice.
The specific methodology we consider does not use random convex programming
but involves solving a series of linear problems iteratively and, therefore, can solve
problems of large scale quickly. We extend the proposed method to the inter-quartile
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764 E. Çetinkaya, A. Thiele

riskmanagement problemwhere the risk, which is measured as the difference between
two specified quartile levels, is minimized while the expected portfolio return at least
equals a specified level for the given data set. Our specific contribution is in the
selection of the scenarios to be included in the master portfolio optimization problem
(the constraint generation mechanism) as well as in the numerical experiments and
the extension to the inter-quartile range as a risk measure.

We set up the problems in Sect. 2. Solution approaches are provided in Sect. 3.
Section 4 contains the numerical experiments.

2 Problem setup

2.1 Portfolio management with quantile constraints

We aim to maximize the expected return of a portfolio of stocks, or more generally
a random objective bilinear in the decision variables and the random variables, while
guaranteeing that the random objective achieves a target with a given probability based
on a finite set of historical scenarios. We will use the following notations:

n : the number of decision variables, i.e., assets,
xi : the dollar amount in asset i ,
W : the current wealth i ,
μ : the sample mean vector of the returns,
Q : the covariance matrix of the returns,
τ : the target expected portfolio return,
T : the number of observations, e.g., time periods in historical data set,
rti : the t th observation of random variable i , e.g., return of stock i on day t ,
α : the specified quantile level, α ∈ (0, 1),
m : the index of the observation corresponding to the 100αth quantile.,

m = �α · T �,
qm : the desired value for the 100αth-quantile (mth smallest observation),
y(k) : the kth smallest value in the set (y1, . . . , yn) for k = 1, . . . , n,
zt : binary variable, equal to 1 when the portfolio return in that scenario t is among

the m − 1 smallest ones,
X : the feasible set for the asset allocation, for instance including sector limits,

limits in the amount of asset i sold, bought or held.

The portfolio management problem where the manager seeks to maximize expected
return with a quantile constraint guaranteeing the portfolio return will be at least qm
with a given probability level α, can be formulated as:

max 1
W

n∑

i=1

μi xi

s.t. 1
W

(
n∑

i=1

r·i xi

)

(m)

≥ qm,

x ∈ X,

(1)
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where (1/W )
(∑n

i=1 r·i xi
)
(m)

refers to the mth lowest value of the portfolio return,
with m the observation rank corresponding to the confidence level α.

If m = 1, Problem (1) can be linearized easily, because the portfolio return must
then be at least the threshold in all realizations. However, ifm > 1, Problem (1) is hard
to solve because it involves ranking the objective (portfolio return) values for every
candidate solution. Our goal is to investigate an efficient approximation approach to
solve Problem (1) for the case when m > 1, using binary variables to identify the
scenarios for which the portfolio return will be at least the threshold.

2.2 Extension to inter-quartile range minimization

Our approximation approach can be extended to any risk management problem that
uses quantiles of the portfolio return to define risk, in particular, it also applies to
problems where risk is defined as the inter-quantile range (IQR) of a random variable,
i.e., the 75th percentileminus the 25th percentile of a variable such as a portfolio return,
or more generally, to any difference of quantiles. The IQR measure is commonly used
in finance to quantify risk, but has not been used so far in the context of portfolio
optimization due to the difficulty in optimizing quantiles. To the best of our knowledge,
we are the first to explicitly provide a tractable approximation for IQR minimization
in portfolio management.

In what follows, we will refer to a, respectively b, as the rank of the observation
corresponding to the lower, respectively higher, quantile considered. The problem,
using notation similar to Problem (1), can be formulated as:

min

(
n∑

i=1

rt,i xi

)

(b)

−
(

n∑

i=1

rt,i xi

)

(a)

s.t.
n∑

i=1

μi xi ≥ τ,

x ∈ X.

(2)

Using observation ranks in the data set (such as m, a, b), or more specifically,
whether or not a scenario is of rank at most m − 1, a − 1 or b, respectively, makes
it possible to obtain high-quality approximate solutions to the quantile management
problem using an iterative approximate algorithm.

3 Solution approach

In the heuristicmethod, the decision-maker identifies the historical returns correspond-
ing to the worst m − 1, a − 1 and b portfolio return values using appropriately chosen
binary variables. This is made more precise below.

3.1 Portfolio optimization with quantile constraints

Considering Problem (1), we approach constraint 1
W

(∑n
i=1 r·i xi

)
(m)

≥ qm by deter-
mining heuristically for which of the T scenarios under consideration the portfolio
return constraint should be satisfied, i.e., the portfolio return should be at least qm .
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766 E. Çetinkaya, A. Thiele

There should be at least T − m + 1 scenarios for which the portfolio return is at
least equal to the mth smallest portfolio return, and m − 1 that are no higher than this
threshold value.

This insight allows us to explain our algorithm as follows. The specific method
we analyze involves solving a linear problem iteratively where the set of constraints
used to express the quantile constraint (them−1 scenarios mentioned above) changes
at each iteration. At each iteration, a set of portfolio return scenarios for which the
objective must equal or exceed the threshold is determined. Next, the linear problem
maximizes the expected portfolio return with the constraints corresponding to these
scenarios. Specifically,m−1 scenarios for which the objective does not need to exceed
the threshold are identified by ranking the portfolio return scenarios in ascending order,
identifying the first m − 1 of them by the vector z ∈ RT .

When zt = 1 for a scenario t , the portfolio return calculated in that scenario t does
not need to exceed the threshold level qm since only the mth greatest portfolio return
or higher should attain or exceed the threshold qm . The master problem to obtain the
decision allocation is then formulated as:

max 1
W

n∑

i=1

μi xi

s.t. (1 − zt )
1
W

n∑

i=1

rt,i xi ≥ qm(1 − zt ), ∀t ∈ {1, . . . , T },
x ∈ X.

(3)

We repeat solving Problem (3) for a scenario identification vector z and then update
the vector z based on the latest portfolio allocation decision x iteratively until the
algorithm stops to an approximate solution of the original problem. We provide our
heuristic in more details below.

Algorithm 1

Step 1: Start with a feasible solution x ∈ X to serve as a candidate solution x̄ and set
the iteration number, s = 1.

Step 2: Obtain a new active scenario selection decision z, namely zs for the candidate
solution x̄ . If there are more than one scenarios leading to the same portfolio return
value and they are both candidates to be the (m−1)th scenario based on the current
investment decision, then select the one with the smallest index.

Step 3: Solve the linear problem for zs identified in Step 2. Obtain a new candidate
solution, xs, and set s = s + 1 and x̄ = xs .

Step 4: Repeat Steps 2 and 3 until the algorithm generates the same set of active
scenarios or the same candidate solution x ∈ X in two consecutive steps, whichever
happens sooner.

We make the following additional comments on our heuristic. First, note that the
feasible region of the master problem is a closed polyhedron, therefore in the case
of multiple solutions at, an interior point method algorithm terminates at the analytic
center of the optimal face (see Colombo 2007). Namely, if the master problem is
solved by an interior point algorithm, the algorithm will have a unique solution at
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each iteration s for a given passive scenario set As{i : 1 ≤ i ≤ T ∩ zsi = 1}. The
algorithm will terminate if the sets As and As+1 are identical, since the constraint sets
for the Problem (3) will be identical for the iterations s and s + 1 which lead to the
same solution under the assumption that it is solved by interior point method.

Secondly, if there is one scenario, scenario-t , belonging to set As+1 but not the
set As , then the portfolio return value obtained by scenario-t is less than or equal
to that obtained by the scenario-t ′ which is in the set As but not in the set As+1. If
these two scenarios lead to the same portfolio return value for the given investment
decision xs , the current investment decision xs will be a feasible decision with the
set of constraints r ′

j x ≥ qm, ∀ j ∈ As+1, therefore the objective function value at
iteration s + 1 will improve with a new investment decision or stay the same with the
same investment decision and the algorithm will terminate. If the scenario t ∈ As+1

leads to a lower portfolio return value than the scenario-t ′ in As for the decision xs ,
then this implies that the scenario-t ′ in set As leads to a higher portfolio return value
than the target qm , since at iteration s the master problem is solved while zt = 0 and
the solution xs satisfies the inequality r ′

t x
s ≥ qm. Considering that the portfolio return

obtained by the scenario-t ′ is greater than the portfolio return value obtained by the
scenario-t ′ which is greater than or equal to qm , we can conclude that the quantile
target is satisfied for a smaller probability level at iteration s. Therefore, transforming
the active set from As to As+1 enlarges the feasible region for the master problem and
it provides an improved objective function value. For the cases where there are more
than one scenarios belonging to the set As+1 but not to the set As , the same argument is
also valid. Therefore, the proposed algorithm improves at each iteration until it stops.

3.2 Minimization of inter-quartile range

The interest of the IQRextension lies in the use of twoquantile constraints. Specifically,
Problem (2) can be written as:

min qb − qa

s.t. qa ≤
(

n∑

i=1

rt,i xi

)

(a)

qb ≥
(

n∑

i=1

rt,i xi

)

(b)
n∑

i=1

μi xi ≥ τ, x ∈ X.

We define two auxiliary problems. The first one identifies b scenarios for which
the portfolio return must not exceed qb. Therefore, it actually determines scenarios
leading b smallest portfolio return values while investment decision is given. The
second one detects a − T + 1 scenarios for which the portfolio return must be at least
qa , or equivalently, the scenarios corresponding to the a− 1 smallest return values for
which the constraints do not need to be enforced.

For specific ranks a and b, the vectors za and zb are the solutions of the following
auxiliary problems:
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min
T∑

t=1

(
n∑

i=1

xirt,i

)
zat

s.t.
T∑

t=1

zat = a − 1,

0 ≤ zat ≤ 1, ∀t.

(4)

and

min
T∑

t=1

(
n∑

i=1

xirt,i

)
zbt

s.t.
T∑

t=1

zbt = b,

0 ≤ zbt ≤ 1, ∀t.

(5)

We need to rank the scenarios in order to determine the worst a−1 and b scenarios
while the investment decision is given. For specific ranks a and b, the vectors za and
zb are the active-scenario identification vectors such that we have zat = 1, if scenario t
is among those that achieve the a−1 smallest returns and zbt = 1, if scenario t among
those that achieve b smallest returns. The vectors za and zb will have a − 1 + T − b
values in common (a − 1 “ones” and T − b “zeros”).

The problem to obtain a decision allocation for given ranking vectors zat and zbt is
formulated as follows:

min
qm ,qa ,x

qb − qa

s.t. (1 − zat )qa ≤
n∑

i=1

rt,i xi (1 − zat ), ∀t,

zbt qb ≥
n∑

i=1

xirt,i z
b
t , ∀t,

n∑

i=1

μi xi ≥ τ, x ∈ X.

(6)

The algorithm for the inter-quantile range management problem is very similar to
Algorithm 1. The only difference is that we need to identify both a − 1 and b worst-
case scenarios instead of m − 1 scenarios as in Algorithm 1.

Algorithm 2

Step 1: Start with a feasible solution x ∈ X to serve as a candidate solution x̄ and set
iteration number, s = 1.

Step 2: Solve Problems 4 and 5 for the candidate solution x̄ , and obtain a new
za and zb, namely za,s and zb,s .

Step 3: Solve the master problem for za,s and zb,s identified in Step 2. Obtain a new
candidate solution, xs, and set s = s + 1 and x̄ = xs .
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Step 4: Repeat Steps 2 and 3 until the algorithm generates the same corner point of for
Problems 4 and s5 or the same candidate solution x ∈ X in two consecutive steps,
whichever happens sooner.

4 Numerical results

From an algorithmic perspective, the contribution of our paper is to test the perfor-
mance our rather naive iterative algorithm using historical data and compare it with
that of other, better-known benchmarks. Our results suggest that, although our algo-
rithm is a heuristic, this simple technique deserves becoming better known among
practitioners due to its strong empirical performance in terms of solution time and
solution quality.

4.1 Portfolio optimization with quantile constraint

This section tests the performance of Algorithm 1 in terms of solution time and solu-
tion quality. As comparison benchmarks, we use portfolio optimization models with
quantile constraints where the asset returns are assumed to be Normally and Log-
Normally distributed as in Keisler (2004), Lobo et al. (2006), and Rockafellar and
Uryasev (2000). We refer to these benchmark models as the “Normal Approximation”
and the “Log-Normal Approximation” methods. In particular, we compare our solu-
tion with the optimal solution in the Normal Approximation method which assumes
that the portfolio return is a Normally distributed random variable and that in the
Log-Normal Approximation method which is built by approximating the portfolio
return by a Log-Normally distributed random variable based on a moment matching
approach. The motivation for this choice is that decision-makers might make the Nor-
mal or Log-Normal assumption due to the increased tractability, even when they know
the true returns do not obey these distributions. In addition, a data-driven iterative VaR
optimization algorithm introduced by Larsen et al. (2002) (Algorithm-A1 thereafter)
is used an another benchmark model. Algorithm A1 provides an approximated solu-
tion to the quantile optimization problem by iteratively solving a linear optimization
problem which maximizes the CVaR of the portfolio return and was first introduced
by Rockafellar and Uryasev (2000).

Our results suggest that:

1. Our iterative algorithm converges in a small number of iterations. Total solution
time in terms of CPU seconds is close to that obtained with the benchmark meth-
ods. Indeed, in some experiments with relatively small observations, the Linear
Approximation methods terminates earlier than the benchmark models, especially
the Log-Normal Approximation method.

2. For a given data set, the number iterations and time to reach a solution change for
the proposedLinearApproximationmethod in a set of experiments; however, those
for Algorithm-A1 stay relatively consistent within the same data set. The upper
bounds of the ranges of the observed number of iterations and time to convergence
for the Linear Approximation problem in different numerical experiments are
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770 E. Çetinkaya, A. Thiele

closer to the number of iterations and time to convergence for Algorithm-A1 than
the lower bounds of the ranges.

3. The proposed method generally outperforms the benchmark methods in terms of
return-risk efficiency in both in-sample and out-of-sample performance tests. That
is, for a given quantile target qm , the proposed algorithm generally leads to a
portfolio allocation decision providing higher expected portfolio return with both
the training and testing data set.

4. Portfolios generated by the proposed algorithm are generally more robust against
unexpected stock return realizations in the out-of-sample data sets than the ones
generated by the benchmark methods.

4.1.1 Setup

A traditional approach for the portfoliomanagement problemwith quantile constraints
assumes that the asset returns followa jointlyGaussian distribution because this special
case can be formulated as a (more tractable) second-order cone problem. In other
words, the quantile constraint, which is hard to formulate, is in general approximated
by the quantile function of a Normal distribution. Another approach, which is known
as the Fenton–Wilkinson method (1969), calculates an approximation to the Log-
Normal sum distribution based on a moment matching method. In contrast with the
Gaussian case, a linear combination of Log-Normal random variables is not Log-
Normal, therefore this is an approximation even if each single stock return series
obeys a Log-Normal distribution. The Fenton–Wilkinson method approximates the
Log-Normal sum by a single Log-Normal random variable by matching the first and
the second moments. Therefore, we will refer to these models as the Normal and the
Log-Normal Approximation methods, respectively. Our proposed algorithm will be
referred as the Linear Approximationmethod since it involves solving a series of linear
problems.

The portfolio management problem according to the Normal Approximation
method for a given α probability level is formulated as:

max 1
W μT x

s.t. μT x + φ−1(α)
√
xT Qx ≥ qmW,

x ∈ X,

(7)

where φ is the CDF of a standard Gaussian random variable.
The portfolio management problem according to the Log-Normal Approximation

(Fenton–Wilkinson) method for a given α probability level is written as follows:

max 1
W bT x

s.t. 2 ln(bT x) − 1
2 ln(x

T Ax) + φ−1(α)
√
ln(bT x) − 2 ln(xT Ax) ≥ ln(Wqm),

x ∈ X,

(8)
where the vector b ∈ Rn is such that
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bi = e

(
μ̃i T+ σ̃i

2T
2

)

∀i,

and the matrix A ∈ Rnxn is such that

Ai, j = e

(
(μ̃i+μ̃ j )T+ T

2 (σ̃i
2+σ̃ j

2+2ρi, j σ̃i σ̃ j )
)

∀i, ∀ j and i 
= j

Ai,i = e2T μ̃i+2T σ̃i
2 ∀i.

The explanation of the Fenton–Wilkinsonmethod and derivation of theLog-Normal
approximation problem are provided in Appendix 1.

Note that the objective function formulation according to this approach differs
from that of the Linear Approximation method. In order to have a fair comparison, we
update this benchmark model so that the objective function is the same as that of the
Linear Approximation method (namely, the sample average of return rates), while the
quantile function is approximated according to the Fenton–Wilkinson method. This
hybrid benchmark model is:

max 1
W μT x

s.t. 2 ln(bT x) − 1
2 ln(x

T Ax) + φ−1(α)
√
ln(bT x) − 2 ln(xT Ax) ≥ ln(Wqm),

x ∈ X.

(9)
Algorithm-A1 provides an approximated solution to the quantile maximization

problem by iteratively maximizing the tail conditional expectation of the portfolio
return for updated probability levels so that at the next iteration the new tail conditional
expectation, which will be maximized (by using the linear problem suggested by
Rockafellar and Uryasev 2000) is a closer lower bound to the original quantile level of
interest. The linear tail conditional expectation optimization problemand the algorithm
introduced by Larsen et al. (2002) is adjusted to our problem setting as follows:

Algorithm 3

Step 1: Assign a lower bound on the expected portfolio return, the probability level
parameter for the tail conditional expectation, and a value for the algorithm constant
ζ , 0 ≤ ζ ≤ 1.

Step 2: Set α0 = α and s = 0.
Step 3: Solve the tail conditional expectation maximization problem:

maxx+,x−,x,κ
1

Wts

ts∑

t=1

(
n∑

i=1

r.i xi

)

t
s.t. μT x ≥ η,

n∑

i=1

rt,i xi ≥ κ ∀t ≥ ts,

n∑

i=1

rt,i xi ≤ κ ∀t < ts,

x ∈ X.

(10)
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Step 4: Sort the scenarios according to their return values 1
W

∑n
i=1 rt,i x

s
i based on

the solution of the Problem (10) at iteration s.
Step 5: Set s = s+1, bs = α + (1−α)(1− ζ )s , ts = �T (1−bs)�, and αs = 1− 1−α

bs
.

Step 6: If ts ≤ �[Tα�] repeat Step 3,4, and 5, otherwise exit.

In the numerical experiments below, the constant ζ is set to 0.5.

4.1.2 Time and number of iterations to convergence

We compare the CPU seconds used by the solver calls (variable _solve_t ime) for each
approach using different quantile targets over different data sets with varying sample
sizes and number of assets. The Mosek solver is used through the AMPL modeling
language on a 2.10 GHz Pentium(R) machine. The results are provided in Table 1. The
number of decision variables increases with the number of stocks considered in all the
approximation methods. However, as the number of scenario increases, the number of
constraints of the Linear Approximation method and Algorithm-A1 increases. There-
fore, the total time spent by solvers for these methods is more vulnerable to the data set
size than those in the Normal and LogNormal Approximation methods. In addition,
generally the Linear Approximation method requires fewer iterations and less time to
terminate than Algorithm-A1.

Each row in Table 1 summarizes a set of experiments conducted with different
quantile targets (between 0.90 and 1.09) over the same training data identified by the
number of assets and sample size. For each set of experiments, the minimum and
maximum values of the observed solution time values for each approximation method
are recorded in CPU seconds. In addition, the minimum and maximum values of the
observed number of iterations to converge for the iterative methods are also presented.

4.1.3 Performance of approximation methods

We now analyze the performance of approximation methods based on two different
types of data sets, namely training and testing data sets. The allocation decision is
determined based on the training data set for each approach (Linear, Normal, and
Log-Normal Approximation methods, and Algorithm-A1). The Linear, Normal, and
Log-Normal Approximation methods are run for given quantile targets to obtain the
highest expected portfolio return. Then, Algorithm-A1 is run for each expected return-
quantile target pair of theLinearApproximationmethod tomaximize the approximated
quantile function.

Furthermore, we compare the portfolio return rates based on these allocation deci-
sions over the testing data sets, which are used as out-of-sample data sets for testing
purposes. In addition, we use a performance measure (ω) which is the ratio between
the portfolio return realization of the Linear Approximation method and that of the
benchmark method with the training and testing data set. We provide 95 % one-sided
confidence intervals (CI) of ω for each case.

We follow the same approach for four different numerical experiments sets. In
each of these sets, a different scenario generation method is used. Also, in each set of
numerical experiments three different time-period lengths (daily, weekly, andmonthly
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stock return scenarios) are considered. The stocks the manager can invest in are 30,
50, or 100 stocks listed on the New York Stock Exchange (NYSE) in all of the four
sets of numerical experiments.

The goal of the proposed approach is to manage the downside risk. Therefore, we
are particularly interested in the low quantile values such as the 5th percentile. The
quantile constraints will enforce that approximated quantile function values do not fall
below the pre-specified qm level 95 % of the time (hence φ−1(α) = 1.645). The set of
feasible allocation X incorporates transaction costs constraints, with unit transaction
coefficients assumed to be 0.02. The lower and upper bounds on the holding in a single
asset are selected to be 0 and 30 % of the overall wealth. Limit on sector holdings,
also incorporated in the definition of X , is assumed to be 50 %. Simulations were
performed using MATLAB R2012a and R Statistical Software. The reader is referred
to Pfaff Pfaff (2013) for an introduction to financial modeling using R.

Numerical experiments set 1
In this set of numerical experiments, three training data sets are composed of 100 daily,
weekly, and monthly rate of return (ROR) observations of 30, 50, and 100 stocks listed
in the NewYork Stock Exchange (NYSE). For each case, a testing data set is a random
data set of 100 scenarios generated byMonte Carlo simulation assuming that the stock
returns follow a multivariate t-distribution. The motivation for this distribution choice
is that it has fat tails and thus can generate more adverse events than have been
observed in the historical data set. This allows us to gain insights into the robustness
of the solution obtained by our algorithm to left-tail risk and adverse events.

The parameters of the multivariate distribution are extracted from the historical
data. In addition, for each stock a set of additional noisy data is generated from its left
tail distribution (5th percentile and lower). The additional noisy data are included in
each testing data set in order to ensure that the empirical probability distribution of the
return rate has heavier left tail. In other words, we seek to compare the dependence
between random stock returns, and the fat-tailed nature of stock returns by the t-
copula and additional adverse return realizations. Thisway, we compare the robustness
of the approximation methods against unexpected return rate movements within a
similar (perturbed by additional noisy data) interdependence structure of the stock
market.

In other words, the losses (rate of return values less than 1) are more likely to occur
in testing data sets than in corresponding training data sets. This lets us compare the
robustness of the approximation methods against undesired realizations of the stock
returns. In other words, if the Linear Approximation approach performs better than
benchmark models in terms of return-risk efficiency, then it can be inferred that the
Linear Approximation method is more robust against undesired return movements
within a similar (perturbed by additional noisy data) interdependence structure of the
stock market.

The portfolio return realization according to both the testing (out-of-sample) and
training (in-sample) data sets are calculated based on the allocation decision obtained
over the training data for all of the approximation methods. Next, 95 % confidence
intervals for ω are calculated in order to compare the risk-return performance of the
linear approximation method with that of the benchmark models.
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Table 2 provides the 95 % CI of ω for all benchmark models over both the testing
and training data sets.The relative performance of the Linear Approximation method
with respect to the Algorithm-A1 over the training data set is not provided, since the
expected portfolio return values of these approaches over the training data sets are
the same. Table 2 suggests that generally Linear Approximation method’s investment
decisions perform better than those of the benchmark models in both the testing and
training data sets (except Algorithm-A1) with more than 95 % confidence.
Numerical experiments set 2
Here,we test the performance of theLinearApproximationmethodwhile daily,weekly
and monthly training data sets are generated according to Monte Carlo simulation
with Geometric Brownian Motion (GBM) and corresponding testing data sets are
historical stock return observations. That is, 100 daily, weekly and monthly historical
observations of 30, 50 and 100 stocks (listed on NYSE) are used to forecast stock
return realizations for the following 100 days, 100weeks and 100months, respectively.
These daily, weekly and, monthly stock return forecasts are used as training data sets
and the actual stock return values during the same period are used as testing data
sets. Investment decisions according to all of the quantile management approaches
are determined based on these training data sets. Portfolio return realizations of these
investment decisions with the actual stock returns (testing data) are compared.

95% one-sided confidence intervals (CI) ofω for each case are constructed in order
to compare the portfolio return realizations with both the testing and training data sets.
Table 2 summarizes the results. They suggest that the Linear Approximation method
and the benchmark models’ performances are similar when the data frequency is a
day.However, theNormalApproximation benchmarkmethod provides better portfolio
return realizations in testing data for some observations. On the other hand, the Linear
Approximation method outperforms the benchmark methods with 95 % confidence
when the data frequency is a month and a week in both testing and training data sets.

Numerical experiments set 3
Here, we generate three training data sets (daily, weekly, and monthly) using the
Fama-French three-factor model. Daily, weekly and monthly series of factors are
obtained from Prof. Kenneth R. French’s website at: http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/. That is, 100 daily, 100 weekly, and 100 monthly historical
factor values are used to construct the Fama-French three-factor model for each of the
30, 50, and 100 NYSE stocks considered. Next, stock returns of each stock for the
following 100 days, 100 weeks, and 100 months, respectively, are forecast according
to the corresponding three-factor model. The actual stock returns during the same
periods are used as testing data sets. Investment decisions according to each method
are determined based on training data sets. Portfolio return realizations over both actual
stock return observations (testing data) and training data are compared. According to
Table 2, portfolios generated by the Linear Approximation method usually lead to
higher return values than those generated by benchmark methods with both training
and testing data sets.

Numerical Experiments Set 4
Here, we generate daily, weekly and monthly training data sets by using a multi-factor
model with macro-factors. We follow the forecasting approach presented in a working
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paper of the InternationalMonetary Fund (Oyama 2007). First, effectivemacro-factors
are selected among 10 macro-factors by principal component analysis (PCA) using
100 daily, weekly and monthly observations of each factor. The macro-factors are
West Texas Intermediate (WTI) Crude Oil Spot Price, Dow Jones Industrial Average
Index (DJI), Aruoba–Diebold–Scotti (ADS) Business Conditions Index, US Dollar to
Japanese Yen Exchange Rate, EURO to US Dollar Exchange Rate, Chicago Board
of Options Exchange (CBOE) Volatility Index (VIX), BofA Merrill Lynch US Corp
AA Total Return Index, BofA Merrill Lynch US Corp BBB Total Return Index, 1-
Year Treasury Constant Maturity Rate and 3-Month Treasury Constant Maturity Rate.
Regarding our 30, 50 and 100 stocks, we obtain each stock’s exposure tomacro-factors
by regressing its returns on the series of daily, weekly and monthly changes in growth
rates of the macro-factors over the period.

During the principal component analysis, both the Kaiser criterion and the value
of the cumulative proportion of variance explained by the components are consid-
ered. That is, the components whose corresponding eigenvalues are greater than 1 are
accepted. If the cumulative proportion of variance explained by the components is
less than 80 %, an additional component with the next highest eigenvalue is accepted
as well. Effective factors are selected by associating each component with a factor
by the VARIMAX rotation method in Principal Component Analysis (PCA). In our
study, when the data frequency is a day, a week, and a month, the number of effective
macro-factors are five, five, and four, respectively.

Oyama (2007) uses the residual of each regression model as an index representing
the information explained by the market but not by other variables and uses this index
as another factor. We follow the same approach and regress each individual stock’s
returns on effectivemacro-factors and on this residual index in order to obtain the factor
loadings for each stock. We treat each factor as a stationary time series (according to
AugmentedDickey–Fuller (ADF) test results) andfit a suitableAutoregressiveMoving
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Fig. 1 Empirical distribution of average ROR of 10 stocks
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Average (ARMA) model to it by considering the autocorrelation function, the partial
autocorrelation function and the maximum likelihood function value. In addition, the
quality of fit for each time series is controlled via residual analysis. We generate 100
daily, weekly, and monthly future scenarios for each factor based on its corresponding
time seriesmodel. Next, future return scenarios for each individual stock are calculated
according to the corresponding multi-factor model. These forecast scenarios stand for
the training data set and investment decisions are made based on this training data set.
Actual stock return realizations over the same period form the testing data set.

According to Table 2, when the data frequency is a month the Normal Approxima-
tion provides higher expected portfolio return values than the Linear Approximation
method over testing data sets for given quantile targets.
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Fig. 2 Empirical distribution of average ROR of 50 stocks
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Table 3 95th quantile for θ ,
normally distributed data

Number of scenarios Number of assets 95th quantile for θ

500 10 0.000101

500 20 0.000017

500 30 0.000302

500 40 0.000333

500 50 0.000103

500 60 0.000272

500 70 0.000178

500 80 0.000112

500 90 0.000133

500 100 0.000099

1000 10 0.000089

1000 20 0.000156

1000 30 0.000083

1000 40 0.000193

1000 50 0.000188

1000 60 0.000385

1000 70 0.000371

1000 80 0.000032

1000 90 0.000107

1000 100 0.000061

2000 10 0.000033

2000 20 0.000077

2000 30 0.000115

2000 40 0.000343

2000 50 0.000071

2000 60 0.000063

2000 70 0.000102

2000 80 0.000143

2000 90 0.000126

2000 100 0.000184

4.1.4 Closeness to optimality

In this section, we measure the closeness of the solutions proposed by the Linear
Approximation method to optimality. We assume that the optimal solution is obtained
by theNormal (Log-Normal) Approximationmethodwhen the data set is composed of
Normally (Log-Normally) distributed stock return scenarios since the Normal (Log-
Normal) Approximation method assumes that the stock returns are Normally (Log-
Normally) distributed.

Multi-variate Normally and Log-Normally distributed rate of return (ROR) scenar-
ios are generated according to the samplemean and standard deviation of the historical
data set composed of 100 observations of 30 stocks listed in NYSE. 60 cases are con-
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Table 4 95th quantile for θ ,
log-normally distributed data

Number of scenarios Number of assets 95th quantile for θ

500 10 0.000175

500 20 0.000403

500 30 0.000136

500 40 0.000426

500 50 0.000269

500 60 0.000279

500 70 0.000214

500 80 0.000220

500 90 0.000212

500 100 0.000131

1000 10 0.000049

1000 20 0.000003

1000 30 0.000148

1000 40 0.001165

1000 50 0.000088

1000 60 0.000216

1000 70 0.000282

1000 80 0.000074

1000 90 0.000528

1000 100 0.000529

2000 10 0.000116

2000 20 0.000158

2000 30 0.000050

2000 40 0.000110

2000 50 0.000180

2000 60 0.000136

2000 70 0.000140

2000 80 0.000052

2000 90 0.000056

2000 100 0.000118

sidered, namely, the cases where the data sets are composed of 500, 1000 and 2000
scenarios for Normally and Log-Normally distributed RORs of 10, 20,. . .,90, and 100
assets. Figures 1, 2, and 3 represent the empirical probability distribution of Nor-
mally and Log-Normally distributed 1000 ROR scenarios of 10, 50 and 100 stocks,
respectively.

We define the measure for closeness to optimality, θ , as the relative difference
between the objective function values of the Linear Approximation and Normal (Log-
Normal) Approximation methods, where

θ = |Obj∗ − ObjApp|
|Obj∗| .
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Table 5 95th quantile for θ ,
benchmark: Brute Force method

Data set index 95 % CI for θ

1 0.000383

2 0.000045

3 0.000104

4 0.000181

5 0.000025

6 0.000002

7 0.000047

8 0.000032

9 0.000063

10 0.000006

Table 6 Amount of time (CPU
seconds) and number of
iterations to convergence

Sample Asset Iteration Min. Max.
size number range solution solution

time time

100 30 [2,6] 0.060 0.324

1000 30 [3,7] 0.312 0.840

2000 30 [2,18] 0.320 6.492

5000 30 [2,16] 1.012 7.617

100 50 [3,4] 0.172 0.244

1000 50 [2,13] 0.312 4.472

2000 50 [5,16] 3.100 10.473

5000 50 [4,17] 7.609 24.469

100 100 [5,7] 1.052 1.284

1000 100 [5,10] 3.472 8.825

2000 100 [4,12] 7.657 24.125

5000 100 [3,6] 10.185 26.414

100 200 [2,5] 0.512 1.908

1000 200 [3,12] 31.338 133.038

2000 200 [2,15] 9.901 63.288

5000 200 [3,18] 40.043 293.532

Tables 3 and 4 provide the 95th quantile value for θ obtained by comparing the pro-
posed Linear Approximation method and the benchmark approximation methods (the
Normal approximation and the Log-Normal approximation) over samples of obser-
vations. For each data set, the Linear Approximation method and the corresponding
benchmark model are run multiple times with different quantile targets (qm), then θ

values are obtained for each single run. Next, the 95th quantile value for θ is calculated
from the sample of θ specific to the corresponding data set. Tables 3 and 4 suggest
that solutions suggested provided by the Linear Approximation approach are close to
optimality.

123



Data-driven portfolio management 783

We use also the Brute Force method as another benchmark to measure the closeness
of the Linear Approximation method to optimality. The Brute Force method consists
in enumerating all possible candidates for the solution and selecting the one which
satisfies the constraints and provides the best objective function. Therefore, it leads to
the optimal solution (Rodriguez 1999).

In this study, 2 assets and 500 observations of both are considered. Both the Linear
Approximation method and the Brute Force method are run for the same qm targets
and the 95th quantile value is calculated for 10 different data sets. The results are
summarized in Table 5.

4.2 Portfolio management with inter-quartile range minimization

In this section, we present numerical results pertaining to CPU time and number of
iterations for IQR minimization.

Each row in Table 6 represents a set of experiments where the inter-quartile range
management problem is solved with several expected portfolio return targets over the
data set with the same number of observations and assets. The numerical experiments
are repeated with different data sets having various number of scenarios and assets.

From Table 6, we see that the number of iterations and solution time for the inter-
quartile range problem heuristic are slightly higher than those for the quantile man-
agement algorithm presented in the previous section. As the number of scenarios
increases, the number of iterations also increases, because determining the worst-case
scenarios leading to the min inter-quartile range value becomes harder as more scenar-
ios are considered. Additional results, including efficient frontier graphs, are provided
in Çetinkaya (2014).

5 Conclusions

In this paper, we investigated an approximation method to solve the portfolio manage-
ment problem with quantile constraints, with an extension to the inter-quartile range
minimization problem. The algorithm, which was developed independently from but
uses a similar idea as Calafiore (2013), involves solving a series of linear problems
iteratively and is thus highly tractable. Our contribution is in terms of constraint selec-
tion set for the master algorithm and in extensive numerical experiments. Our results
suggest that our method leads to high-quality portfolio allocation decisions.
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Appendix 1

Denote eR
t
i the return of stock i during time period t . Then return of stock i from time

1 to time T is e
∑T

t=1 R
t
i . Therefore, the portfolio return over T period can be formulated

as:
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W =
n∑

i=1

xi e
∑T

t=1 R
t
i .

Then, the first and the second moments of the portfolio return are calculated as:

E[W ] =
T∑

i=1

xi E[e
∑T

t=1 R
t
i ] =

n∑

i=1

e

(
μ̃i T+ σ̃i

2T
2

)

(11)

E[W 2] = E

⎡

⎣
(

T∑

i=1

xi e
∑T

t=1 R
t
i

)2⎤

⎦

=
n∑

i=1

⎛

⎝x2i e
2T μ̃i+2T σ̃i

2 +
n∑

j=1, j 
=i

xi x j e

(
(μ̃i+μ̃ j )T+ T

2 (σ̃i
2+σ̃ j

2+2ρi, j σ̃i σ̃ j )
)
⎞

⎠

(12)

We define the vector b ∈ Rn such that

bi = e

(
μ̃i T+ σ̃i

2T
2

)

∀i,

and the matrix A ∈ Rnxn such that

Ai, j = e

(
(μ̃i+μ̃ j )T+ T

2 (σ̃i
2+σ̃ j

2+2ρi, j σ̃i σ̃ j )
)

∀i, ∀ j, and i 
= j

Ai,i = e2T μ̃i+2T σ̃i
2 ∀i.

The Log-Normal approximation of the portfolio return is represented as eY where
Y ∼ N (μ∗, σ ∗). Then the following equations hold:

E[W ] = b′x = E[eY ] = eμ∗+ σ∗2
2

E[W 2] = x ′Ax = e2μ
∗+2σ ∗2

(13)

The solution of this system of equations is as follows:

μ∗ = 2ln(b′x) − 1

2
ln(x ′Ax)

σ ∗2 = ln(x ′Ax) − 2ln(b′x) (14)
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Then, the expected return maximization problem with quantile constraint is written
as:

max

(
eμ∗+ σ∗2

2

)

s.t. μ∗ + φ−1(α)σ ∗ ≥ ln(qm),

x ∈ X,

which is equivalent to

max bT x
s.t. 2 ln(bT x) − 1

2 ln(x
T Ax) + φ−1(α)

√
ln(bT x) − 2 ln(xT Ax) ≥ ln(qm),

x ∈ X.

(15)
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