
OR Spectrum (2015) 37:869–902
DOI 10.1007/s00291-015-0393-z

REGULAR ARTICLE

Buffer allocation in stochastic flow lines via
sample-based optimization with initial bounds

Sophie Weiss · Raik Stolletz

Received: 4 June 2014 / Accepted: 16 February 2015 / Published online: 13 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract The allocation of buffer space in flow lines with stochastic processing times
is an important decision, as buffer capacities influence the performance of these lines.
The objective of this problem is to minimize the overall number of buffer spaces
achieving at least one given goal production rate. We optimally solve this problem
with a mixed-integer programming approach by sampling the effective processing
times. To obtain robust results, large sample sizes are required. These incur large
models and long computation times using standard solvers. This paper presents a
Benders Decomposition approach in combination with initial bounds and different
feasibility cuts for theBufferAllocationProblem,which provides exact solutionswhile
reducing the computation times substantially. Numerical experiments are carried out
to demonstrate the performance and the flexibility of the proposed approaches. The
numerical study reveals that the algorithm is capable to solve long lines with reliable
and unreliable machines, including arbitrary distributions as well as correlations of
processing times.

Keywords Buffer allocation · Stochastic flow lines · Benders Decomposition ·
Sampling · Bounds

1 Introduction

Flow lines consist of a number of stations that are arranged in series and separated
by limited buffer spaces. The workpieces flow through the system from station to
station, waiting in the buffer if the downstream station is not available. This type of

S. Weiss (B) · R. Stolletz
Business School, Chair of Production Management, University of Mannheim,
Schloss, 68131 Mannheim, Germany
e-mail: weiss@bwl.uni-mannheim.de

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-015-0393-z&domain=pdf

870 S. Weiss, R. Stolletz

production system is often applied in practice, mainly for mass production. Examples
can be found in the automotive industry (Colledani et al. 2010; Li 2013) and in food
production (Cooke et al. 2005; Liberopoulos and Tsarouhas 2005), among others.

Burman et al. (1998) note that there is a great potential in the systematic opti-
mization of the buffer allocation in such stochastic flow lines, as it highly influences
the performance of the line. The stochastic influences are due to random machine
breakdowns, uncertain times of repair, and random processing times. This can lead to
blocking and starvation of the stations, which may lead to a reduction of the through-
put. The allocation of additional buffer space may increase the throughput, although
it leads to an increase of the average work in process in the line. In this paper, we
develop an optimization approach for the buffer allocation in a linear flow line with
all those stochastic influences.

Two basic streams of research can be found regarding the allocation of buffers in
stochastic flow lines: performance evaluation and optimization. Dallery and Gershwin
(1992) and Gershwin and Schor (2000) provide an overview of the different evalua-
tion approaches. Exact evaluation is only possible for small lines as analytical results
are difficult to obtain (Li and Meerkov 2009). For longer lines, simulation and other
approximative methods, e.g., decomposition or aggregation, are applied. The methods
proposed in the literature on performance evaluation can also be used as integral parts
of optimization approaches by applying generative methods and evaluative methods
iteratively. The generative methods are used to obtain candidate solutions that are then
evaluated. The optimization of buffer allocations, referred to as Buffer Allocation
Problem (BAP) in literature, is NP-hard (MacGregor Smith and Cruz 2005). Three
types of objective functions can be found: minimization of the total buffer capaci-
ties with respect to a given goal throughput, throughput maximization with respect
to a limited number of buffers, and profit maximization. This paper focuses on the
minimization of total buffer capacities.

The optimization approaches can be divided into exact approaches, heuristics, and
rules of thumb. Demir et al. (2014) provide an overview on the approaches published
after 1998. Exact approaches only exist for small lines because of the combinatorial
complexity and the lack of exact evaluation methods (MacGregor Smith and Cruz
2005; Li andMeerkov 2009). Recently, sample-based approaches have been proposed
to optimize flow lineswith limited buffer capacities. For sufficiently large sample sizes,
the obtained allocations converge to the exact solution. Matta and Chefson (2005)
propose an iterative change of configurations to determine buffer allocations based on
a mathematical programming formulation developed by Schruben (2000) and Chan
and Schruben (2008). Matta (2008) presents an exact mixed-integer programming
(MIP) formulation that optimizes the number of buffer spaces behind each station,
using samples of the processing times in continuous time.

Heuristic methods based on samples are developed by Gürkan (2000), Helber
et al. (2011) and Alfieri and Matta (2012, 2013). Gürkan (2000) uses sample-based
gradient estimates of performance measures to obtain buffer allocations in contin-
uous lines. She points out that this approach may also be used to approximate
lines with discrete goods. Helber et al. (2011) present a discrete-time linear pro-
gramming (LP) formulation that incorporates the BAP. The authors use sampling
to transform the stochastic processing times of the different jobs at a given sta-

123

Buffer allocation in stochastic flow 871

tion into the corresponding realizations of production capacities per discrete time
period. This method leads to simulation and discretization errors. Alfieri and Matta
(2012) introduce the concept of time buffers, which can be used to derive approx-
imate buffer allocations. This approach can also be applied to reduce the feasible
region of the buffer capacities as necessary in Matta (2008). Recently, Alfieri and
Matta (2013) proposed a time-based decomposition approach that solves the math-
ematical programming formulation by iteratively solving a number of subsystems.
These subsystems contain only a portion of the entities in the whole model. The
subsystems are connected via additional constraints reflecting the status of the sys-
tem defined by previous subsystems. Other heuristic methods include Tabu Search
and Simulated Annealing, as generative methods, in combination with simulation or
decomposition, as evaluation methods (Lutz et al. 1998; Spinellis and Papadopoulos
2000). Yamashita and Altiok (1998) and Diamantidis and Papadopoulos (2004) apply
Dynamic Programming in combination with decomposition or aggregation. In addi-
tion to the risk of obtaining local optima as final solutions, some of these methods
are based on restrictive assumptions. Caramanis (1987) applies Generalized Ben-
ders Decomposition with gradient estimates for performance approximation. How-
ever, due to errors in the gradient estimates, optimal solutions cannot be guaranteed.
Li and Meerkov (2009) propose heuristics based on closed formulas and recursion
approaches. They show that these heuristics are fast, but do not necessarily provide
good allocations.

Rules of thumb based on extensive numerical studies are proposed by Hillier et al.
(1993), Powell and Pyke (1996), and Hillier (2000). However, these results may not
be generalized, and a large computational effort is needed for their derivation.

This paper deals with exact sample-based MIP formulations, i.e., the obtained
results are sample-exact. The advantage of these sampling approaches compared to
other approaches proposed in literature is based on their flexibility: besides the ability
to cope with both reliable and unreliable lines, they do not require the assumption of
statistical independency. The processing times, times to failure, and repair times can
follow any distribution, or may be taken from empirical data. However, when using
standard solvers, the sample-based MIP formulations proposed in literature remain
intractable for flow lines with more than three stations due to extensive computation
times (Matta 2008). Therefore, to exploit the flexibility of these approaches, a fast
solution method has to be developed. We develop a Benders Decomposition approach
for such a MIP formulation of the BAP.

Themain contribution of this paper is to develop aBendersDecomposition approach
with combinatorial cuts to optimally and efficiently solve the BAP with respect to an
underlying sample. The performance of this algorithm is improved via the derivation
of initial bounds. The numerical study shows the great degree of flexibility of this
approach, as its sample-based structure allows to take account for correlations and
arbitrary distributions of processing times, times to failure, and repair times.

This paper is organized as follows. Section 2 introduces the MIP formulation for
the optimization of flow lines. In Sect. 3, the Benders Decomposition approach and
a procedure to obtain initial bounds are presented. Section 4 provides a numerical
study on the performance of Benders Decomposition and the initial bounds. Section 5
presents the conclusions and further research efforts.

123

872 S. Weiss, R. Stolletz

2 Sample-based flow line model

This section formulates the evaluation problem and the optimization problem with
respect to the buffer allocation in flow lines. First, the underlying assumptions are
given in Sect. 2.1. The Benders Decomposition approach is based on iterative gener-
ation of candidate allocations and evaluation of these candidates. Therefore, Sect. 2.2
presents a fast simulation algorithm for throughput evaluation for a given buffer allo-
cation. Finally, Sect. 2.3 describes the mixed-integer program for buffer optimization.

The key idea of the sample-based modeling approach is to simulate the flow of a
large number of workpieces throughout the line. Therefore, the start and departure
times of processing a workpiece, w, at a station, s, are represented by a set of real-
valued decision variables. The randomprocessing times are replaced by a deterministic
sample. The samples are generated by descriptive sampling (DS) (Saliby 1990a). In
DS, deterministic values serve as the input for the inverse distribution function. These
values are then shuffled randomly to represent random behavior. This method is more
appropriate than simple random sampling (SRS) because it leads to a more precise
description of the underlying distribution (Saliby 1990b). Moreover, DS leads to a
reduction of the variability of the input sample and therefore to a reduction of the
variability of the simulation results. The numerical study in Sect. 4.1 supports this
claim in the case of the BAP [see also Stolletz and Weiss (2013)].

The samples consist of effective processing times, i.e., the repair times are assumed
to be included in the (raw) processing times. This can be accomplished with a single
distribution or the sum of the distributions of processing times and repair times.

2.1 Assumptions

The model of the flow line is based on the following assumptions:

– The flow line consists of S stations, which process W workpieces.
– A number of W0 workpieces corresponds to the warm-up phase.
– The maximum capacity of the buffer behind station s is limited to Bs .
– Thematerial supply to the first station is unlimited, i.e., the first station never starves.
– The buffer behind the last station is infinitely large. Thus, this station cannot be
blocked.

– The processing times of the workpieces at each station are generally distributed or
deterministic. The MIP uses sampled processing times, ds,w, for each station, s,
and each workpiece, w.

– The stations may be subject to operation-dependent failures. Times to failure and
repair times are generally distributed. Sampled repair times are added to the sampled
processing times, ds,w, of theworkpiecew, which is processedwhen the breakdown
of station s occurs.

– In the event of blocking, the station finishes the currently processed workpiece.
Then, the workpiece waits at the station until a buffer space or the following station
becomes available (blocking after service).

– Transportation times are insignificant or are already included in the processing
times.

123

Buffer allocation in stochastic flow 873

Fig. 1 Flow line under consideration

– A minimum throughput rate of TH∗ has to be reached after the warm-up.

Figure 1 shows an example of a flow line according to these assumptions.

2.2 Evaluation of given allocations

If the capacities of the buffers are known, the start times and the departure times of
each workpiece at each station can be derived using a fast simulation algorithm, as
Algorithm 1. The corresponding notation can be found in Table 1.

123

874 S. Weiss, R. Stolletz

Table 1 Notation for the models

Indices

w = 1, . . . ,W Workpieces

s = 1, . . . , S Stations in the flow line

b = 0, . . . , Bs Possible buffer capacities behind station s

Parameters

ds,w Processing time of workpiece w at station s

TH∗ Minimum throughput

W0 Number of workpieces in the warm-up phase

M BigM (sufficiently large positive number)

Real-valued decision variables

XSs,w Start time of workpiece w at station s

XFs,w Departure time of workpiece w from station s

Xs Buffer capacity behind station s

Binary decision variables

Ys,b =
{
1 If the buffer behind station s is equal

0 Otherwise

The algorithm calculates the start and departure times of each workpiece w at each
station s. The first workpiece starts processing at the first station at time zero (line
1) and flows through the line without ever being blocked, because the line is empty.
Consequently, it leaves a station s after the processing time elapsed (line 3) and starts
processing at the subsequent station s + 1 as soon as it leaves s (line 4). Lines 7–24
model the flowof the remainingworkpieces. Start timesXSs,w of stations s = 2, . . . , S
depend on the availability of the workpiece w. Since the first station never starves,
processing of a workpiecew starts whenw−1 leaves the station (line 10). At stations
s = 2, . . . , S, it may happen that no workpieces are available. In this case, s idles until
station s−1 provides a workpiece (lines 12 and 22). Departure times XFs,w of stations
s = 2, . . . , S − 1 depend on the downstream buffer capacities Xs and the occurrence
of blocking. If the capacities Xs are set to zero, a workpiece w leaves station s after it
finished processing and the subsequent station becomes available (that is, workpiece
w − 1 leaves station s + 1, line 15). In contrast, if buffer spaces are allocated behind
station s, but the available buffer capacity suffices for all workpieces in the system,
blocking can never occur (line 17). If there are more workpieces in the system than
buffer capacities at station s, blocking may occur. Therefore, workpiece w leaves
station s when its processing is completed and a buffer space becomes available (that
is, a workpiece leaves the buffer, because it starts processing at station s + 1, line 19).
The last station S is never blocked and consequently, workpieces leave this station
directly after processing (line 23).

Based on this information, the realized throughput TH is calculated by the fraction
of the number of finished parts W −W0 and the required time XFS,W −XFS,W0 after
the warm-up phase:

123

Buffer allocation in stochastic flow 875

TH = W − W0

XFS,W − XFS,W0

(1)

2.3 Optimization of buffer allocations

The problem of allocating a minimum number of total buffer spaces while achieving
a given minimum throughput can be solved by a MIP formulation as follows. Addi-
tionally to the notation used in Sect. 2.2, a binary variable Ys,b is required to indicate
that the buffer capacity behind station s equals b.

Minimize
S−1∑
s=1

Xs (2)

s.t. XSs,w + ds,w ≤XFs,w, ∀s, ∀w (3)

XFs,w ≤XSs+1,w, ∀s ≤ S − 1, ∀w (4)

XFs,w ≤XSs,w+1, ∀s, ∀w ≤ W − 1 (5)

XFS,W − XFS,W0 ≤ W − W0

TH∗ , (6)

XSs+1,w − XFs,w+b ≤ M · (1 − Ys,b), ∀s ≤ S − 1, ∀b, ∀w ≤ W − b
(7)

Bs∑
b=0

Ys,b = 1 ∀s ≤ S − 1, (8)

Xs =
Bs∑
b=0

b · Ys,b ∀s ≤ S − 1, (9)

XSs,w,XFs,w ≥ 0, ∀s, ∀w (10)

Ys,b ∈ {0, 1} ∀s ≤ S − 1, ∀b (11)

The objective function (2) minimizes the overall number of buffer spaces in the line.
The constraints are linearizations of the formulas given in Algorithm 1. Constraint (3)
states that a workpiece, w, departs from station s at the earliest time after being
processed. Consequently, the slack of the inequality corresponds to the blocking time
of workpiece w after being processed at station s. A workpiece cannot start being
processed by station s + 1 until it departs from station s. This is ensured by the
inequality described by (4). The slack of this inequality defines the waiting time of
workpiece w in the buffer between station s and station s + 1. As a station can only
process one workpiece at a given time, the inequality in (5) states that workpiecew+1
does not start processing at station s until the preceding workpiece w departs from
this station. A station may starve between the processing of two consecutive work-
pieces, which is equivalent to the slack of Constraint (5). Inequality (6) ensures that
a minimum throughput, TH∗, is reached [see Equality (1)]. Constraint (7) states that
the buffer capacity is not exceeded. If b = Xs , the inequality ensures that workpiece

123

876 S. Weiss, R. Stolletz

w departs from the buffer between stations s and s+1 before workpiecew+b enters.
Otherwise, the inequality is deactivated by the BigM on the right-hand side (RHS).
We choose BigM as the product of the maximum possible buffer capacity, maxs Bs ,
and the maximum processing time, maxs,w ds,w. If there is no buffer between station
s and station s + 1, i.e., b = 0, the inequality reduces to XSs+1,w ≤ XFs,w. Together
with Inequality (4), the departure time of workpiece w at station s is assured to equal
the starting time of w at station s + 1. Compared to the formulation presented by
Matta (2008), we assume blocking after service instead of blocking before service.
The capacity of each buffer between two stations must be unique. This is stated in Eq.
(8). Constraint (9) connects the (redundant) buffer space variables Xs and the binary
variables Ys,b. Variables Xs are used for notational convenience.

Note that the combination of Equalities (4) and (5) determines the start times as
in Algorithm 1. Accordingly, the combination of Eqs. (3) and (7) determines the
completion times.

If the buffer capacities behind each station are given, the MIP can also be used for
evaluation (instead of Algorithm 1). However, the throughput may be overestimated,
because the warm-up phase is based on the number of workpieces instead of a specific
point in time. This results in a degree of freedom regarding the start and departure times
in the warm-up phase of the optimal solution. Due to this flexibility, the workpieces
do not necessarily start processing as soon as possible. To avoid this overestimation,
the start and departure times have to be added to the objective function (2).

3 Application of Benders Decomposition to the Buffer Allocation Problem

The complexity of the MIP presented in the previous section incurs long computation
times. Therefore, it is necessary to apply certain techniques to reduce the computation
time. One literature stream concerns decomposition methods, which aim to split the
original problem into smaller parts and to solve them iteratively. One of these meth-
ods is Benders Decomposition (Benders 1962). Benders Decomposition divides the
original problem into a master problem and a subproblem, both of which are solved
iteratively. The master problem is a relaxation of the original problem, calculates a
solution, and passes it to the subproblem. The subproblem uses this solution to gen-
erate cuts that contain information about the feasibility and optimality of the current
master solution. These cuts are added to the master problem such that optimality is
proven at the termination of the algorithm. Consequently, a sequence of master- and
subproblems has to be solved to obtain an optimal solution of the original problem.

3.1 Adjustments and specific features

Figure 2 provides an overview of the decomposition procedure for the BAP. The
master problem contains only binary and integer decision variables. The subprob-
lem considers the remaining variables, assuming that the variables of the master
problem are fixed. In the case of the MIP formulation presented in Sect. 2, the
binary variables, Ys,b, and the integer variables, Xs , become part of the master prob-

123

Buffer allocation in stochastic flow 877

Fig. 2 Overview of Benders Decomposition for buffer allocation

lem. The real-valued decision variables, XSs,w and XFs,w, belong to the subprob-
lem.

Constraints (3)–(6) and (10) only contain real-valued decision variables and thus
belong to the subproblem. Constraints (8)–(11) are included in the master problem,
as they only contain binary variables. Constraint (7) contains both types of variables.
It forms part of the subproblem and contains the master variables, Xs , as parameters.
Consequently, Constraint (7) can be replaced by (12).

XSs+1,w − XFs,w+Xs ≤ 0, ∀s ≤ S − 1, ∀w ≤ W − Xs (12)

Moreover, as the integer variables are assumed to be known when the subproblem is
solved, the subproblem reduces to the evaluation version of the MIP. Note that the
objective function (2) includes no real-valued decision variables. Thus, the objective
function of the master problem is equal to the objective function (2). To avoid an
overestimation of the throughput as outlined in Sect. 2.3, we use Algorithm 1 to
evaluate the throughput of a given buffer allocation. The feasibility of this throughput
is then checked by comparison to the goal throughput, TH∗.

The information on feasibility is expressed in additional constraints, which include
only the integer variables.We add these constraints, called feasibility cuts, to themaster
problem. If the master problem contains all of the feasibility cuts, it is equivalent to
the original problem.

In general, an exponential number of such constraints exists, which are usually not
known in advance. Therefore, we consider a relaxed master problem, which includes
no feasibility constraints at the beginning of the solution process. By iterating between
the relaxedmaster problem and the subproblem, additional cuts are generated to ensure
the feasibility of the final solution. If the subproblem is feasible, the resulting solution
is optimal.

Based on Eqs. (2) and (8)–(11), the complete master problem is defined as follows.

123

878 S. Weiss, R. Stolletz

Minimize
S−1∑
s=1

Xs (2)

s.t.
Bs∑
b=0

Ys,b = 1 ∀s ≤ S − 1, (8)

Xs =
Bs∑
b=0

b · Ys,b ∀s ≤ S − 1, (9)

Feasibility cuts

Ys,b ∈ {0, 1} ∀s ≤ S − 1, ∀b (11)

If the master problem is infeasible, the original problem is also infeasible because
the master problem is a relaxation of the original problem as long as not all feasibility
cuts are added. Because of the restriction of the buffer capacities to Bs , unboundedness
cannot occur in the master problem. The subproblem cannot be unbounded because it
is a simple evaluation. If the original problem has an optimal solution, the algorithm
finishes after a finite number of iterations when the subproblem does not return new
feasibility cuts.

As described in the literature on Benders Decomposition, the feasibility cuts are
obtained from inequality (13) (classical feasibility cut).

0 ≥−
(
S−1∑
s=1

W−bs∑
w=1

µh
5,s,w,bs · M · (1− Ys,bs)+ µh

4 · W − W0

TH∗ −
S∑

s=1

W∑
w=1

µh
1,s,w · ds,w

)

(13)

µh is an extreme ray. The cut only contains the binary variables associated with the
buffer capacities in the current solution. Note that we use the LP to solve the subprob-
lem in the case of the classical feasibility cut, as information from the dual subproblem
is needed for the extreme rays. Because the original formulation usesBigMcoefficients
in Constraints (7), the classical feasibility cuts (13) are weak. As a solution, Codato
and Fischetti (2006) propose combinatorial cuts for Benders Decomposition. These
cuts force at least one variable to be changed and exclude the redundant constraints
that are caused by the usage of BigM coefficients. For the BAP, more information is
available. We develop new Combinatorial Cuts based on the following observations.
If the current buffer allocation is infeasible, the capacity of at least one buffer has to
be increased. If the buffer capacities are decreased, the throughput remains the same
or decreases and the goal throughput cannot be reached. Therefore, all solutions that
include only the combinations of smaller buffer capacities than the current solution
are known to be infeasible as well. We propose the following combinatorial cut if the
current buffer capacity behind station s equals bs :

1 ≤
S−1∑
s=1

Bs∑
b=bs+1

Ys,b. (14)

123

Buffer allocation in stochastic flow 879

Fig. 3 Course of the lower and upper bounds during the solution process

The RHS sums all the variables of possible buffer capacities for every station that are
larger than the current buffer capacities (b > bs). At least one of these variables must
assume a value of one, i.e., at least one of the buffers increases.

3.2 Generation of lower bounds from subsystems

Figure 3 depicts the solution process usingBendersDecompositionwith combinatorial
cuts for an exemplary flow line with 5 stations, a sample size of W = 250,000
workpieces, and a bottleneck at the end of the line. One can observe that the solver
takes only a few steps to find upper bounds that are close to the optimum, while the
lower bound increases in many small steps. This is because if a candidate solution
reaches the goal throughput, the optimal total buffer capacity has to be smaller or
equal to the total buffer capacity of this solution. In contrast, if a candidate solution
does not fulfill the requirement of the goal throughput, it does not necessarily mean
that the total buffer capacity of this solution has to be increased. There may be other
solutions with the same total number of buffer spaces (or even less) but with a different
allocation that are feasible. Therefore, it is crucial to find appropriate lower bounds.

In literature, numerous studies propose algorithms, which approximate the optimal
buffer allocation. Li and Meerkov (2009) propose several approaches to approximate
the optimal solution for lines with more than three stations, which have determinis-
tic processing times and stochastic up and down times of the stations. To use these
solutions as bounds, they have to be evaluated. Depending on whether the solution is
feasible or infeasible, it serves as a feasibility cut or as an upper bound on the total
number of buffer spaces. Derivation of guaranteed lower bounds or individual upper
bounds cannot be accomplished with these approaches. Therefore, we focus on the
generation of guaranteed lower bounds and compare the different strategies in the
numerical study in Sect. 4.

123

880 S. Weiss, R. Stolletz

We decompose the line into several subsystems assuming that the supply of the first
station of each subsystem is unlimited. As a result, the effect of starvation, which can
occur in the original line, is neglected for the first station in each subsystem. Addi-
tionally, it is assumed that the workpieces can always leave the subsystem. Therefore,
the last station of each subsystem is never blocked. Thus, for given buffer capacities,
the isolated subsystem will never have a lower throughput than the original system as
proven in the following theorems.

Theorem 1 In steady-state, the throughput of a system with unlimited supply at the
first station is higher or equal to the throughput of an identical system with limited
supply.

Proof Let Arrw ≥ 0 be the arrival time of workpiece w in the system with limited
supply. According to Algorithm 1, the start times of workpieces 1 and 2 at the first
station of the system with limited supply are calculated from XSlim1,1 = Arrw and

XSlim1,2 = max{XF1,1,Arrw}, respectively. As Arrw = 0 for all w in the system with

unlimited supply, the start times equal XSunl1,1 = 0 and XSunl1,2 = XF1,1. Consequently,

XSunl1,2 ≤ XSlim1,2. With mathematical induction using the above formulas for w and
the formulas of Algorithm 1 to calculate start and departure times, it follows that
XFunlS,W ≤ XFlimS,W , i.e., less time to produceW workpieces is required in the unlimited
case, and therefore, the throughput of the system with unlimited outflow is higher or
equal to the throughput of an identical system with limited outflow. ��
Theorem 2 In steady-state, the throughput of a system with unlimited outflow at the
last station is higher or equal to the throughput of an identical system with limited
outflow.

Proof Let Depw ≥ 0 be the time, workpiece w is allowed to leave the system with
limited supply. According to Algorithm 1, the departure time of workpiece 1 at the
last station, S, is calculated as XFlimS,1 = max

{
XSS,1 + dS,1,Dep1

}
for the system

with limited outflow. As Depw = 0 for all w in the system with unlimited outflow,
the departure time equals XFunlS,1 = XSS,1 + dS,1. Consequently, XFunlS,1 ≤ XFlimS,1.
With mathematical induction using the above formulas for w and the formulas of
Algorithm 1 to calculate start and departure times, it follows that XFunlS,W ≤ XFlimS,W ,
i.e., less time to produceW workpieces is required in the unlimited case, and therefore,
the throughput of the systemwith unlimited outflow is higher or equal to the throughput
of an identical system with limited outflow. ��

Consequently, the optimal buffer capacities of the subsystems are lower than or
equal to the optimal buffer capacities in the original line. Levantesi et al. (2001) use
lower bounds from subsystems of size 2 as a starting point for a gradient algorithm to
approximate optimal buffer allocations in continuous lines.

The larger the subsystems are, the better the original setting is approximated. How-
ever, for large subsystems, the computation time may be long. Therefore, we propose
an iterative procedure. We first solve subsystems with i = 2 stations, as shown in
Fig. 4. Each solution of a subsystem provides a certain buffer capacity that forms a
lower bound for the respective buffer. These buffer capacities are then used as lower

123

Buffer allocation in stochastic flow 881

Fig. 4 Generation of lower bounds via subsystems of size i = 2

Fig. 5 Generation of lower bounds via subsystems of size i = 3

bounds in the original system and all of the subsequent subsystems. In the next step,
we solve the subsystems of size i ≥ 3. The optimal buffer capacity of each subsystem
l = 1, . . . , S − i + 1 of size i at station s is denoted by bs,l,i . Figures 4 and 5 depict
a line with 5 stations divided into subsystems of size i = 2 and i = 3, respectively.

123

882 S. Weiss, R. Stolletz

Fig. 6 Overview of bound
calculation

In contrast to the subsystems of size i = 2, the lower bounds derived from the sub-
systems of larger sizes do not form bounds for individual buffers. Individual bounds,
i.e., bs,l,i ≤ Xs for i ≥ 3, may force a certain buffer to be larger than necessary in
the original line, resulting in a sub-optimal final solution for the original line. This
is because the buffer allocation of the subsystem, which is found by the solver, may
not be unique, as only the total number of buffer spaces is minimized. However, their
sum forms a lower bound for all of the respective buffer capacities in the original line.
Figure 5 illustrates this case for a subsystem of size i = 3. Inequality (15) presents
the bounds obtained from subsystems of size i .

i−2∑
j=0

b j+l,l,i ≤
i−2∑
j=0

X j+l ∀l (15)

We apply Benders Decomposition to solve each subsystem. The size of the subsys-
tems is increased iteratively, until the size of the original line is reached. This procedure
is depicted in Fig. 6.

4 Numerical study

All of the algorithms are implemented in C++. Gurobi 5.0, with default settings, is
used to solve the linear andmixed-integer programs. The numerical study is performed
on an Intel Core i7-3930K with 6× 3.2 GHz and 32 GB RAM.

For all instances, the capacity of each buffer is limited to Bs = 20, and the warm-up
phase is chosen to be W0 = 2000.

To further speed up the solution process, we use callbacks, i.e., the master problem
is not solved to optimality before handing over the values of the binary variables to the
subproblem. Instead, a potential incumbent solution (the best integer solution found
at any point of the search) is tested by the subproblem algorithm whenever the solver
identifies one. If the solution is feasible, it becomes the new incumbent solution, and
the solution process continues. Otherwise, a feasibility cut (13) or (14) is added to the
master problem. We thereby avoid proving optimality in every step and visiting the
nodes several times during different runs of the master problem. Both aspects waste

123

Buffer allocation in stochastic flow 883

time (Bai and Rubin 2009). Note that an implementation without callbacks would lead
to complete enumeration for the BAP.

4.1 A note on robustness

We investigate the robustness based on the instances from the numerical study ofMatta
(2008). We assume a line with 5 stations and a bottleneck at the end. The processing
times are exponentially distributed, with a base processing rate of 7.0. The processing
rate of the bottleneck is assumed to be 6.0. The goal throughput is set to 5.776.

Figure 7 depicts the results of a throughput evaluation for different optimal buffer
allocations for a varying number of workpieces. These allocations are obtained by
independently solving 20 samples with 10,000 (Fig. 7a), 250,000 (Fig. 7b), 1,000,000
(Fig. 7c), and 5,000,000 workpieces (Fig. 7d) each. The throughput evaluation is
conducted with 20 additional samples of 5,000,000 workpieces. Figure 7 presents
the relative deviation of the minimum, average, and maximum throughput from the
goal throughput that is obtained by these 20 samples for each buffer allocation. For
10,000 workpieces (Fig. 7a), the independent optimization of 20 samples leads to
19 different buffer allocations. The total buffer capacity lies between 36 and 44 for
the different samples. For a total number of buffer spaces of 39 or above, the goal
throughput is always reached, whereas a total number of 37 (or less) is not (even in
the best case) sufficient. On average, the goal throughput is reached for the allocations
with a buffer capacity of 38 in total. This means that in the case of the allocation with
44 buffer spaces in total, 6 redundant buffer spaces (14 % of the total buffer space
needed) are allocated in the line. In Fig. 7b (250,000 workpieces), only 8 different
buffer allocations are obtained with a total number of 38 or 39 buffer spaces in the
line. On average, the goal throughput is always reached for all allocations. Even in the
worst case, the maximum deviation from the goal throughput equals 0.03 %. Figure
7c shows very similar results for W = 1, 000, 000, with a maximum deviation of
0.01 %. Therefore, it can be concluded that 250,000 workpieces is sufficient to obtain
robust results for the given configuration. However, for increasing number of stations
or increasing squared coefficients of variation (SCV), additional workpieces may be
required to obtain robust results, because more different allocations are obtained (see
Tables 11 and 12 in the Appendix, respectively). Figure 7d shows that the algorithm
converges to a unique solution of the total buffer capacity, i.e., 38 buffer spaces are
allocated. Two allocations result from the optimization of 20 samples, which both
always reach the goal throughput.

Figure 8 shows the results of a throughput evaluation for the different optimal
buffer allocations obtained from samples generated with simple random sampling
(SRS) instead of descriptive sampling (DS), as explained in Sect. 2 (W = 250,000).
Compared to the results in Fig. 7b, the total number of buffer spaces varies between
37 and 39. The total number of different solutions obtained for 20 samples is 11 for
SRS instead of 8 for DS. Moreover, the maximum deviation from the goal throughput
is 0.03 % for DS. In contrast, in the case of SRS, a maximum deviation of 0.15 % is
observed. Consequently, this demonstrates that DS leads to more robust results than
SRS.

123

884 S. Weiss, R. Stolletz

(a)

(b)

(c)
Fig. 7 Robustness of the approach regarding the no. of workpieces (S = 5, bottleneck last)

123

Buffer allocation in stochastic flow 885

(d)
Fig. 7 continued

Fig. 8 Robustness of simple random sampling (S = 5,W = 250,000, bottleneck last)

4.2 Impact of bounds

This subsection compares three types of bounds: bounds derived from rules of thumb,
bounds obtained from the optimal allocation (theoretical best case), and bounds gen-
erated from the subsystems as described in Sect. 3.2.

We use the rules of thumb developed by Powell and Pyke (1996) to generate alloca-
tions for given total buffer capacities. Powell and Pyke (1996) point out that balanced
allocations lead to better throughput unless the imbalance caused by the bottleneck is
more than 20 %. In the case of an imbalance of more than 20 %, the buffer capacity
of the buffer, which is located farthest from the bottleneck, shall be decreased. The
available buffer space shall be placed around the bottleneck. Infeasible allocations are
used as feasibility cuts (14), while feasible allocations are upper bounds.

We investigate bounds from the optimal allocation (theoretical best case) to show
the impact of near-optimal buffer allocations. In general, however, this solution is not
known and can only be approximated, e.g., by rules of thumb and heuristics. The

123

886 S. Weiss, R. Stolletz

Table 2 Time saving potential of approximate solutions

Type of bound Feasible Infeasible Computation time (s) Time savings (%)

None 7142 −
Rules of thumb

8, 9, 9, 11 × 7214 −1

9, 9, 9, 10 × 7250 −2

8, 9, 10, 11 × 5753 20

9, 9, 10, 10 × 5834 18

Theoretical best cases

7, 8, 9, 13 × 5721 20

8, 7, 9, 13 × 5860 18

8, 8, 8, 13 × 7093 1

8, 8, 9, 12 × 4892 32

8, 8, 9, 13 × 4711 34

Subsystems 69 99

optimal solution provides the best upper bound for the buffer capacities. Moreover,
solutions that are infeasible but close to the optimumare good candidates for feasibility
cuts. Therefore, as upper bound, the optimal solution is used, whereas S−1 feasibility
cuts can be generated, each by decreasing the optimal capacity of a buffer by one.

The bounds generated from the subsystems according to Sect. 3.2 are of a different
type as they provide (individual) lower bounds instead of only feasibility cuts.

Table 2 demonstrates the benefit of using different types of bounds for the exem-
plary flow line, which is described in the previous chapter. The first row shows the
computation time without bounds of 7142 s as a reference. For the rules of thumb and
the theoretical best cases, column 1 shows the tested allocations. Each of these alloca-
tions results either in a feasibility cut or a (non-individual) upper bound. We apply the
rules of thumb for total buffer capacities of 37 and 38. Columns 2 and 3 depict whether
the evaluation of the allocations results in a feasible or an infeasible throughput. The
fourth and the fifth column show the computation times using these bounds and the
resulting time savings in comparison to the calculation without bounds.

It can be observed that, in most of the cases, the bounds have a positive impact
on the computation time. The feasibility cuts generated from rules of thumb with 38
buffer spaces in total reduce the computation time by around 20 %. In contrast, the
feasibility cuts with a total buffer capacity of 37 have little impact on the computation
time. The effect of feasibility cuts generated from the theoretical best cases varies
for the different allocations from 1 to 32 %. The upper bound obtained from the
optimal solution leads to the highest decrease in computation time (34 %). However,
even in this case, the impact is rather low. Moreover, approximate solutions generated
by rules of thumb or heuristics, in general, are worse than the allocations generated
from known optimal solutions, which further reduces the usefulness of such bounds.
In contrast, the (individual) lower bounds generated from the subsystems reduce the
computation time by 99%. Therefore, it is more advantageous to implement the lower

123

Buffer allocation in stochastic flow 887

Table 3 Mean computation times (exponential)

S Bottleneck W Original
formulation

Computation time (s)

Benders Decomposition

Cl. Cut Comb. Cut

Without callbacks Without bounds With bounds

3 Middle 10.000 306 8806 4 <1 <1

3 Last 10.000 906 6060 2 <1 <1

3 Middle 250.000 >10,000 >10,000 9 5 <1

3 Last 250.000 >10,000 >10,000 6 4 <1

5 Middle 10.000 >10,000 >10,000 >10,000 1745 1

5 Last 10.000 >10,000 >10,000 >10,000 2392 3

5 Middle 250.000 >10,000 >10,000 >10,000 5724 38

5 Last 250.000 >10,000 >10,000 >10,000 6720 66

7 Middle 10.000 >10,000 >10,000 >10,000 >10,000 1134

7 Last 10.000 >10,000 >10,000 >10,000 >10,000 5402

7 Middle 250.000 >10,000 >10,000 >10,000 >10,000 5998

7 Last 250.000 >10,000 >10,000 >10,000 >10,000 7484

bounds generated from the subsystems as described in Sect. 3.2 instead of feasibility
cuts or upper bounds from near-optimal solutions. Due to this reason, we omit further
investigations of these upper bounds and feasibility cuts and focus on the lower bounds
obtained from the subsystems.

4.3 Exponentially distributed processing times

The investigation of instances with exponentially distributed processing times is based
on the instances from the numerical study of Matta (2008), but varies the number of
stations and the location of the bottleneck. The distribution of the processing times is
as described in Sect. 4.1. We test instances with 3, 5, and 7 stations with bottleneck at
the end of the line or in the middle of the line. We generate 10 independent samples
for each configuration. As the original MIP formulation is able to solve only small
instances, we use samples of 10,000 workpieces to demonstrate the improvements in
the computation time of Benders Decomposition. However, Sect. 4.1 shows that this
sample size is not sufficient to obtain robust results. Therefore, further studies use
samples with W = 250,000.

Table 3 presents the computation times of complete enumeration, the original for-
mulation, Benders Decomposition with classical feasibility cuts (Cl. Cut), and benders
decomposition with combinatorial feasibility cuts (Comb. Cut). In the latter case, we
present both results with and without initial bounds. The computation time is limited
to 10,000 s. Only two settings are solvable within this time limit using the original
MIP or the Benders Decomposition approach with classical cuts.

123

888 S. Weiss, R. Stolletz

Fig. 9 Course of the lower and upper bounds during the solution process (S = 5,W = 250,000,
bottleneck last)

Benders Decomposition with combinatorial cuts finds the optimal solution much
faster than the implementation with classical cuts. This matches the findings of
Codato and Fischetti (2006). Even the implementation without callbacks leads to
faster computation times. However, callbacks are required to solve instances with
more than 3 stations. The procedure with Combinatorial Cuts without bounds is
able to solve instances with up to 5 stations within the time limit. The additional
computation time of Benders Decomposition with Classical Cuts is composed of
the computation time due to the usage of the LP and the computation time that
stems from the weakness of the cut. Benders Decomposition with Combinatorial Cuts
and initial bounds solves all instances to optimality within a reasonable amount of
time.

Table 3 also shows that the instances with a bottleneck in the middle of the line
are easier to solve than the instances with a bottleneck at the end. The reason is that
a bottleneck in the middle of the line is covered by more subsystems. Therefore, the
obtained bounds are better, which results in a smaller feasible region.

To analyze the impact of the initial bounds, Fig. 9 compares the course of the
lower and upper bounds for Benders Decomposition with Combinatorial Cuts, with
and without initial bounds, for one sample of a 5-station line with 250,000 workpieces
and bottleneck at the end. To derive the lower bounds, we optimized four 2-station
subsystems, three 3-station subsystems, and two 4-station subsystems. The compu-
tation of the bounds is completed after 8 s, with a lower bound of 31 buffer spaces
for the whole line. The lower bound for the case without bounds slowly rises by 1 in
each step. In the case with initial bounds, the optimal solution of 38 is found after 19 s
and is proven after 69 s. Without bounds, the upper bound drops in large steps until
the optimal solution is found after 7051 s. This solution is proven to be optimal after
7141 s.

Figure 10 depicts the shares of computation time for the bound calculation, the
time until the optimal solution is found by the upper bound, and the time until this

123

Buffer allocation in stochastic flow 889

Fig. 10 Share of computation times for bound calculation and optimality proof (S = 5,W = 250,000,
bottleneck last)

Table 4 Parameter settings for
the base case Number of stations S 7

Number of workpieces W 250,000

Distribution Erlang-k

Squared coefficient of variation (SCV) 0.25

Base processing rate 0.5

Bottleneck Middle

Processing rate of bottleneck 90 % of base rate

Goal throughput TH∗ 90 % of bottleneck rate

solution is proven to be optimal for a 5-station line with 250,000 workpieces and a
bottleneck at the end. Most of the computation time is needed for the optimality proof.
The calculation of the bounds represents only a small proportion of the total time,
ranging from 9 to 15 % of the total computation time.

4.4 Generally distributed processing times

The following experiments give further insights on the performance of Benders
Decomposition with Combinatorial Cuts and initial bounds. We investigate the per-
formance of the algorithm with respect to generally distributed effective processing
times. The generation of instances focuses on a base case, which is adapted from Hel-
ber et al. (2011) according to Table 4. We generate 10 independent samples for each
configuration.

The experiment varies the distribution of the effective processing times and the
number of stations based on the study in Helber et al. (2011). The Erlang-k distri-
bution is used to generate processing times with squared coefficients of variation of
0.25 and 0.5, while the balanced mean variant of the Cox-2 distribution (Buzacott
and Shanthikumar 1993) is used to generate processing times with squared coeffi-

123

890 S. Weiss, R. Stolletz

Table 5 Mean computation times (Erlang-k and Cox-2)

Distribution S SCV Bottleneck Range of total
buffer capacities

Computation time (s) Max. deviation from
goal throughput (%)

Benders Decomposition
(Comb. Cut)

Bounds Total

Erlang-4 5 0.25 Middle 6 <1 <1 0.36

Erlang-4 7 0.25 Middle 10 2 3 −0.05

Erlang-2 5 0.5 Middle 14 1 3 0.05

Erlang-2 7 0.5 Middle 22 27 76 −0.09

Cox-2 5 1.0 Middle 29–30 4 17 −0.22

Cox-2 7 1.0 Middle 46–47 308 1786 −0.04

Cox-2 5 2.0 Middle 60–62 20 74 −0.26

Cox-2 7 2.0 Middle 95–98 1509 6075 −0.36

Table 6 Detailed results (Erlang-k distribution, S = 5)

Sample SCV Optimal
allocation

Max. dev.
from TH∗ (%)

Initial bounds

i = 2 i = 3 i = 4

b1 b2 b3 b4
2∑
j=1

b j
3∑
j=2

b j
4∑
j=3

b j
3∑
j=1

b j
4∑
j=2

b j

1–10 0.25 1, 2, 2, 1 0.36 1 1 1 1 3 3 3 5 5

1–7, 9, 10 0.5 3, 4, 4, 3 0.52 1 2 2 1 6 6 6 10 10

8 0.5 3, 5, 3, 3 0.05 1 2 2 1 5 6 5 10 10

cients of variation 1.0 and 2.0, respectively. The number of stations is set to 5 and 7,
respectively.

The computational results are given in Table 5. The first four columns describe the
setting. Column 5 gives the range of the total number of buffer spaces in the optimal
solutions of 10 samples. The average computation times for the bounds and the total
time are given in columns 6 and 7. The last column presents the maximum deviation
from the goal throughput of all samples.

The instances with low SCV are solved quickly. The reason is that the initial lower
bounds are better for small SCVs, as less starving and blocking occurs; see Tables 6,
10, 11, and 12 in the Appendix. Tables 6, 10, 11, and 12 present the values of the
optimal solutions and the initial bounds for all of the subsystems of all of the samples
(samples with identical bounds and identical optimal solutions are aggregated in a
single line). For an SCV of 0.25, some initial bounds are tight (marked in bold).

Instances with Cox-2 distributed processing times and 7 stations are especially
difficult to solve, the computation time takes more than 1 h on average.

123

Buffer allocation in stochastic flow 891

Table 5 also shows the computation time for the initial bounds. For Erlang-k
instances with an SCV of 0.25, the calculation of the initial bounds takes a significant
proportion of the total amount of computation time, summing up to approximately
50 % or even more. With increasing SCV, this proportion decreases. In the case of an
SCV of 2.0, the portion of the bound calculation accounts for approximately 15 % and
less of the total time. The detailed results for the initial bounds in Tables 6, 10, 11,
and 12 show that it is reasonable to calculate all subsystems, as even large subsystems
improve the (aggregated) bounds on the buffer capacities.

The column “Max. deviation from goal throughput” depicts the results of a through-
put evaluation for the different optimal buffer allocations obtained from the different
samples. The throughput evaluation is conducted with 10 new samples of 1,000,000
workpieces for each category of instances. The column shows the largest relative
downward deviation of all optimal allocations if the goal throughput was not reached
and the smallest relative upward deviation if it was reached. The deviation for each
buffer allocation is shown in Tables 6, 10, 11, and 12. Very small downward and
upward deviations are denoted as −0.00 and 0.00, respectively.

The maximum downward deviation obtained from all 80 optimization runs is only
0.36 %. Altogether, this shows that the Benders Decomposition approach with combi-
natorial cuts and initial bounds is able to optimize flow lines with generally distributed
processing times quite well.

4.5 Correlated processing times

This experiment investigates the impact of statistical dependency on the optimal buffer
allocation. Inman (1999) points out that statistical dependency of processing times,
i.e., workpiece-dependent processing times at each station, occurs for example in the
automotive industry when two- and four-door models are manufactured on the same
line. We model this by generating processing times from Erlang-4 distribution with
different rates for the two different types of workpieces. The rate corresponding to a
workpiece of type 1 is set to 0.5, while the rate for workpieces of type 2 is 0.25. We
assume that the probability that aworkpieces is of type 2 is 20%.Non-listed parameters
remain as in the base case (Table 4). We compare the results to allocations obtained
from instances generated by Generalized Erlang distribution based on identical para-
meters. This corresponds to the case where correlation is neglected and approximated
by independent identically distributed processing times. Generalized Erlang distribu-
tion may be interpreted as a random decision on the type for each processed workpiece
at each station.

All instances were solved in less than 15 min. Further computational results are
given in Table 7. Columns 2–4 correspond to the instances with correlation in process-
ing times and the last three columns to the instances with Generalized Erlang distribu-
tion. The results show that the instances with Generalized Erlang distribution underes-
timate the throughput and therefore allocate more buffer spaces than necessary, mainly
around the bottleneck. For the instances under investigation, on average 26 % addi-
tional buffer spaces were allocated. In conclusion, the approximation of correlated
processing times by identical independently distributed processing times leads to sub-

123

892 S. Weiss, R. Stolletz

Table 7 Detailed results (correlated processing times)

Sample Correlation Generalized Erlang

Total
buffer
capacities

Optimal
allocation

Max. dev. from
TH∗ (%)

Total buffer
capacities

Optimal
allocation

Max. dev. from
TH∗ (%)

1 30 5, 4, 7, 7, 4, 3 −0.04 38 4, 5, 11, 9, 5, 4 0.07

2 30 3, 6, 6, 7, 4, 4 0.06 37 5, 6, 8, 7, 6, 5 −0.15

3 30 3, 5, 7, 6, 5, 4 0.09 38 4, 7, 7, 10, 5, 5 −0.00

4 29 4, 4, 7, 5, 6, 3 −0.29 37 4, 6, 9, 8, 6, 4 −0.06

5 29 4, 4, 6, 7, 5,3 −0.14 37 4, 6, 9, 8, 6, 4 −0.06

6 30 3, 6, 6, 6, 5, 4 0.03 37 4, 7, 8, 8, 5, 5 −0.12

7 30 3, 5, 7, 6, 5, 4 0.09 37 4, 7, 8, 8, 5, 5 −0.12

8 30 4, 5,6, 7, 5, 3 0.08 38 3, 7, 9, 9, 5, 5 −0.04

9 29 4, 4,7, 6, 4, 4 −0.13 37 4, 6, 8, 9, 6, 4 −0.06

10 30 3, 5, 7, 8, 3, 4 −0.02 38 4, 7, 8, 8, 6, 5 0.03

Fig. 11 Setting of the 14-station line

Fig. 12 Setting of the 24-station line

stantial misallocation of buffer spaces. Therefore, it is important that correlations are
considered in the solution approach, as it is possible with our approach.

4.6 Long lines with reliable and unreliable stations

This experiment is devoted to long lines comprising 14 and 24 stations, respectively,
some of which are reliable and others are unreliable (see Figs. 11, 12).

Reliable stations have Erlang-4-distributed (E4) or deterministic (D) processing
times, both with rate 0.5. Unreliable stations (DF) have deterministic processing times
with rate 0.5 and exponentially distributed times to failure (TTF) and times to repair
(TTR). The mean TTF and the mean TTR are chosen such that stations in the middle
of the line, i.e., 7 and 8 in the line with 14 stations and 12 and 13 in the line with 24
stations, form the bottlenecks of the line. Non-listed parameters remain as in the base
case (Table 4).

123

Buffer allocation in stochastic flow 893

Table 8 Detailed results (S = 14)

Sample Total
buffer
capacities

Optimal
allocation

Computation
times (s)

Max. dev.
from TH∗
(%)

Subsystems Total

TTF = 10; TTR = 4

1 13 0, 0, 0, 1, 2, 0, 7, 2, 1, 0, 0, 0, 0 178 234 −0.74

2 13 0, 0, 0, 1, 0, 2, 7, 2, 1, 0, 0, 0, 0 138 140 −0.90

3 14 0, 0, 0, 0, 0, 4, 7, 2, 1, 0, 0, 0, 0 384 393 −0.67

4 14 1, 0, 0, 0, 3, 0, 7, 2, 1, 0, 0, 0, 0 295 298 −0.61

5 14 1, 0, 0, 1, 2, 0, 6, 2, 0, 1, 0, 1, 0 276 279 −0.61

6 14 0, 0, 2, 0, 1, 1, 7, 2, 1, 0, 0, 0, 0 320 325 −0.54

7 14 0, 0, 0, 2, 2, 0, 6, 3, 1, 0, 0, 0, 0 387 466 −0.42

8 14 0, 0, 1, 0, 3, 0, 7, 2, 1, 0, 0, 0, 0 371 375 −0.40

9 14 0, 0,1, 1, 1, 1, 6, 2, 2, 0, 0, 0, 0 324 326 −0.49

10 13 0, 0, 0, 1, 2, 0, 7, 2, 1, 0, 0, 0, 0 223 257 −0.74

∅ 290 309 −0.61

TTF = 5; TTR = 2

1 8 0, 0, 1,0, 1, 0, 3, 2, 0, 1, 0, 0, 0 47 49 −0.26

2 8 0, 0, 1, 0, 1, 0, 3, 2, 0, 1, 0, 0, 0 42 44 −0.26

3 8 0, 0, 0, 0, 1, 1, 4, 1, 0, 1, 0, 0, 0 52 54 0.04

4 8 0, 0, 1, 0, 1, 0, 3, 2, 0, 1, 0, 0, 0 42 44 −0.26

5 8 0, 0, 1, 0, 1, 0, 3, 2, 0, 1, 0, 0, 0 52 54 −0.26

6 8 0, 0, 1, 0, 1, 0, 3, 2, 0, 1, 0, 0, 0 52 54 −0.26

7 8 0, 0, 1, 0, 1, 0, 3, 2, 0, 1, 0, 0, 0 49 50 −0.26

8 8 0, 0, 1, 0, 1, 0, 3, 2, 0, 1, 0, 0, 0 52 54 −0.26

9 8 0, 0, 1, 0, 1, 0, 3, 2, 0, 1, 0, 0, 0 46 48 −0.26

10 8 0, 0, 0, 0, 0, 2, 4, 2, 0, 0, 0, 0, 0 48 49 0.15

∅ 48 50 −0.01

Tables 8 and9 contain the results of the third experiment on long lines. The algorithm
solves instances with 14 stations within 310 s on average for TTF = 10 and TTR = 4. If
TTF = 5 and TTR= 2, the algorithm takes 50 s on average. For the line with 24 stations,
14 h on average are required to prove the optimal solution for TTF = 10 and TTR =
4. The instances with TTF = 5 and TTR = 2 can be solved within 10 min on average.
The algorithm spends most of the time to calculate the results for the subsystems (93–
98 % of the total time). Altogether, under consideration of the strategic nature of the
Buffer Allocation Problem, the algorithm is able to optimize long lines in acceptable
time.

The majority of the buffer spaces (in many cases half of the total allocated
capacities) is allocated between the bottleneck stations. At the beginning and at
the end of the line, zero or only few buffer spaces are required. The last column

123

894 S. Weiss, R. Stolletz

Ta
bl
e
9

D
et
ai
le
d
re
su
lts

(
S

=
24

)

Sa
m
pl
e

To
ta
lb

uf
fe
r
ca
pa
ci
tie
s

O
pt
im

al
al
lo
ca
tio

n
C
om

pu
ta
tio

n
tim

es
(s
)

M
ax
.d
ev
.f
ro
m

T
H

∗
(%

)

Su
bs
ys
te
m
s

To
ta
l

T
T
F
=
10
;T

T
R
=
4

1
17

0,
0,
0,
0,
0,
0,
0,
1,
0,
1,
3,
8,
0,
3,
0,
0,
0,
1,
0,
0,
0,
0,
0

53
,8
03

54
,1
89

−0
.6
8

2
17

0,
0,
0,
0,
1,
0,
1,
0,
1,
0,
2,
8,
1,
1,
1,
0,
0,
1,
0,
0,
0,
0,
0

48
,4
36

50
,5
19

−0
.5
6

3
17

0,
0,
0,
0,
0,
0,
0,
0,
0,
2,
3,
8,
1,
1,
1,
0,
0,
1,
0,
0,
0,
0,
0

24
,4
32

25
,9
99

−0
.6
5

4
17

0,
0,
0,
0,
0,
1,
1,
0,
1,
1,
2,
6,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
0

49
,4
14

49
,8
18

−0
.6
8

5
17

0,
0,
0,
0,
0,
0,
0,
1,
1,
0,
3,
8,
1,
2,
0,
1,
0,
0,
0,
0,
0,
0,
0

47
,8
30

48
,9
13

−0
.6
9

6
17

0,
0,
0,
0,
1,
0,
0,
0,
0,
2,
3,
7,
0,
2,
1,
0,
1,
0,
0,
0,
0,
0,
0

61
,0
35

61
,0
64

−0
.5
4

7
17

0,
0,
0,
1,
0,
0,
0,
1,
0,
1,
2,
8,
1,
1,
1,
0,
1,
0,
0,
0,
0,
0,
0

69
,2
25

69
,2
34

−0
.4
3

8
17

0,
0,
0,
0,
0,
1,
1,
0,
1,
1,
2,
6,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
0

52
,2
57

52
,6
48

−0
.6
8

9
17

0,
0,
0,
0,
0,
0,
1,
0,
0,
1,
3,
7,
0,
3,
2,
0,
0,
0,
0,
0,
0,
0,
0

47
,0
98

48
,7
03

−0
.6
6

10
17

0,
0,
0,
0,
0,
1,
0,
0,
0,
1,
3,
7,
1,
2,
0,
2,
0,
0,
0,
0,
0,
0,
0

52
,5
72

53
,5
13

−0
.7
1

∅
50
,6
10

51
,4
60

−0
.6
3

T
T
F
=
5;

T
T
R
=
2

1
9

0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
2,
3,
1,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0

60
1

61
6

−0
.6
5

2
9

0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
2,
4,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0

73
7

78
7

−0
.3
6

3
9

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
3,
4,
2,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0

53
0

53
8

−0
.4
8

4
9

0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
2,
4,
0,
2,
0,
0,
0,
0,
0,
0,
0,
0,
0

51
3

52
8

−0
.3
6

5
9

0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
2,
4,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0

57
4

61
3

−0
.3
6

6
9

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
3,
4,
2,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0

75
1

76
7

−0
.4
8

7
9

0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
2,
4,
0,
2,
0,
0,
0,
0,
0,
0,
0,
0,
0

58
1

59
6

−0
.3
3

8
9

0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
2,
4,
0,
1,
0,
1,
0,
0,
0,
0,
0,
0,
0

69
7

71
3

−0
.3
2

9
9

0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
2,
4,
0,
2,
0,
0,
0,
0,
0,
0,
0,
0,
0

51
8

52
1

−0
.3
6

10
9

0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
2,
4,
0,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0

50
5

51
1

−0
.1
8

∅
60
1

61
9

−0
.3
8

123

Buffer allocation in stochastic flow 895

in each table depicts the results of a throughput evaluation for the different opti-
mal buffer allocations obtained from the different samples. The throughput eval-
uation is conducted with 10 new samples of 1,000,000 workpieces for each cate-
gory of instances. The column shows the largest relative downward deviation of all
optimal allocations if the goal throughput was not reached and the smallest relative
upward deviation if it was reached. The maximum deviation obtained from all opti-
mization runs is only 0.61 % for the 14-station line and 0.62 % for the 24-station
line.

5 Conclusion and further research

In this paper, we develop a Benders Decomposition approach that is able to opti-
mally solve the BAP with respect to an underlying sample. This approach divides
the original problem into a master problem and a subproblem, which are both solved
iteratively by exchanging information via cuts. We compared two types of cuts, clas-
sical feasibility cuts and combinatorial feasibility cuts. Our numerical study shows
that the application of combinatorial cuts leads to substantial reductions in the com-
putation time. Furthermore, we develop initial lower bounds based on the iterative
solutions of subsystems for the original line. This approach is able to optimally allo-
cate buffer spaces in long lines with arbitrary distributions of processing times, times
to failure, and repair times within a reasonable amount of time. The numerical study
also reveals that correlation effects in processing times have a significant effect, as
the optimal buffer allocation is highly influenced. This demonstrates the necessity
for flexible solution approaches, as the sample-based mathematical programming
formulations.

Further research should be directed towards improving the computation times for
lines with more stations. This may be performed by the analysis of additional bounds
or by the development of a problem-specific branch and bound method. Additionally,
the approach could be extended to more complex systems, such as flow lines with
closed loops or several product types.

6 Appendix: Detailed results for Erlang-k and Cox-2 distributed instances

See Tables 10, 11, and 12.

123

896 S. Weiss, R. Stolletz

Ta
bl
e
10

D
et
ai
le
d
re
su
lts

(C
ox
-2

di
st
ri
bu
tio

n,
S
=
5)

Sa
m
pl
e

SC
V

O
pt
im

al
al
lo
ca
tio

n
M
ax
.d

ev
.

fr
om

T
H

∗ (
%
)

In
iti
al
bo

un
ds

i
=

2
i
=

3
i
=

4

b 1
b 2

b 3
b 4

2 ∑ j=
1
b
j

3 ∑ j=
2
b
j

4 ∑ j=
3
b
j

3 ∑ j=
1
b
j

4 ∑ j=
2
b
j

1,
2

1.
0

7,
8,

8,
6

−0
.2
2

3
5

5
3

12
13

12
21

21

3,
7

1.
0

6,
8,

9,
6

−0
.1
2

3
5

5
3

12
13

12
21

21

4
1.
0

6,
9,

8,
6

−0
.1
2

3
5

5
3

12
13

12
21

21

5
1.
0

7,
7,

10
,6

0.
04

3
5

5
3

12
13

12
21

21

6,
9,
10

1.
0

5,
10

,1
0,

5
0.
12

3
5

5
3

12
13

12
21

21

8
1.
0

5,
10

,8
,6

−0
.2
1

3
5

4
3

12
12

11
21

20

1
2.
0

12
,1

8,
18

,1
3

0.
01

6
9

9
5

24
26

24
44

43

2
2.
0

11
,1

8,
18

,1
3

−0
.2
6

5
9

9
5

24
26

24
43

43

3
2.
0

13
,2

0,
17

,1
2

0.
12

6
9

9
5

25
27

25
44

44

4
2.
0

11
,1

8,
20

,1
2

−0
.0
9

5
9

9
5

24
26

24
43

43

5
2.
0

13
,1

9,
15

,1
4

−0
.1
7

5
9

9
5

24
26

24
43

43

6
2.
0

13
,1

7,
18

,1
3

−0
.0
2

5
9

9
6

24
26

24
43

44

7
2.
0

13
,1

8,
18

,1
2

0.
00

6
9

9
5

25
27

24
44

44

8
2.
0

14
,1

7,
18

,1
2

−0
.0
5

5
9

9
6

24
26

25
43

44

9
2.
0

13
,1

6,
20

,1
3

0.
09

5
9

9
5

24
26

25
44

44

10
2.
0

12
,1

9,
17

,1
4

0.
16

5
9

9
5

24
26

24
44

43

123

Buffer allocation in stochastic flow 897

Ta
bl
e
11

D
et
ai
le
d
re
su
lts

(E
rl
an
g-
k
di
st
ri
bu
tio

n,
S
=
7)

Sa
m
pl
e

SC
V

O
pt
im

al
al
lo
ca
tio

n
M
ax
.d

ev
.

fr
om

T
H

∗ (
%
)

In
iti
al
bo

un
ds

i
=

2
i
=

3

b 1
b 2

b 3
b 4

b 5
b 6

2 ∑ j=
1
b
j

3 ∑ j=
2
b
j

4 ∑ j=
3
b
j

5 ∑ j=
4
b
j

6 ∑ j=
5
b
j

1,
4,
10

0.
25

1,
2,
2,

3,
1,

1
0.
21

1
1

1
1

1
1

2
3

3
3

2

2,
5,
7

0.
25

1,
2,
2,

2,
1,

2
0.
14

1
1

1
1

1
1

2
3

3
3

2

3,
6

0.
25

1,
1,
3,

3,
1,

1
−0

.0
5

1
1

1
1

1
1

2
3

3
3

2

8,
9

0.
25

1,
1,
3,

2,
2,

1
0.
26

1
1

1
1

1
1

2
3

3
3

2

1,
3,

4,
7–

10
0.
5

2,
5,

4,
4,

4,
3

−0
.0
0

1
1

2
2

1
1

4
6

6
6

4

2
0.
5

2,
5,

5,
4,

3,
3

−0
.0
4

1
1

2
2

1
1

4
6

6
5

4

5
0.
5

4,
3,

4,
5,

4,
2

−0
.0
9

1
1

2
2

1
1

4
5

6
5

4

6
0.
5

2,
4,

5,
5,

4,
2

0.
03

1
1

2
2

1
1

4
6

6
6

4

123

898 S. Weiss, R. Stolletz

Ta
bl
e
11

co
nt
in
ue
d

Sa
m
pl
e

SC
V

O
pt
im

al
al
lo
ca
tio

n
M
ax
.d
ev
.

fr
om

T
H

∗
(%

)
In
iti
al
bo
un
ds

i
=

4
i
=

5
i
=

6

3 ∑ j=
1
b
j

4 ∑ j=
2
b
j

5 ∑ j=
3
b
j

6 ∑ j=
4
b
j

4 ∑ j=
1
b
j

5 ∑ j=
2
b
j

6 ∑ j=
3
b
j

5 ∑ j=
1
b
j

6 ∑ j=
2
b
j

1,
4,
10

0.
25

1,
2,
2,
3,
1,

1
0.
21

4
5

5
4

6
6

6
8

8

2,
5,
7

0.
25

1,
2,
2,
2,
1,

2
0.
14

4
5

5
4

6
6

7
8

8

3,
6

0.
25

1,
1,

3,
3,

1,
1

−0
.0
5

4
5

5
4

6
6

6
8

8

8,
9

0.
25

1,
1,

3,
2,

2,
1

0.
26

4
5

5
4

7
6

7
8

8

1,
3,

4,
7–
10

0.
5

2,
5,

4,
4,

4,
3

−0
.0
0

9
10

10
9

14
14

14
18

18

2
0.
5

2,
5,
5,
4,
3,

3
−0

.0
4

9
10

10
9

14
14

14
18

18

5
0.
5

4,
3,
4,
5,
4,

2
−0

.0
9

9
10

10
9

14
14

14
18

18

6
0.
5

2,
4,
5,
5,
4,

2
0.
03

9
10

10
9

14
14

14
18

18

123

Buffer allocation in stochastic flow 899

Ta
bl
e
12

D
et
ai
le
d
re
su
lts

(C
ox
-2

di
st
ri
bu
tio

n,
S
=
7)

Sa
m
pl
e

SC
V

O
pt
im

al
al
lo
ca
tio

n
M
ax
.d

ev
.

fr
om

T
H

∗ (
%
)

In
iti
al
bo

un
ds

i
=

2
i
=

3

b 1
b 2

b 3
b 4

b 5
b 6

2 ∑ j=
1
b
j

3 ∑ j=
2
b
j

4 ∑ j=
3
b
j

5 ∑ j=
4
b
j

6 ∑ j=
5
b
j

1
1.
0

6,
7,
10

,1
2,
7,

5
0.
11

3
3

5
5

3
3

9
12

13
12

9

2
1.
0

7,
7,
8,

10
,9
,6

0.
05

3
3

5
5

3
3

9
12

13
12

9

3
1.
0

6,
7,
10

,1
0,
7,

6
0.
03

3
3

5
5

3
3

9
12

13
12

9

4
1.
0

6,
7,
10

,1
0,
7,

6
0.
03

3
3

5
5

3
3

9
12

13
12

9

5
1.
0

6,
7,
11

,9
,7
,6

−0
.0
4

3
3

5
5

3
3

9
12

13
12

9

6
1.
0

7,
8,
8,

9,
8,
7

0.
06

3
3

5
5

3
3

9
12

13
12

9

7
1.
0

6,
7,
11

,9
,7
,6

−0
.0
4

3
3

5
5

3
3

9
12

13
12

9

8
1.
0

6,
8,
9,

10
,7
,6

0.
01

3
3

5
5

3
3

9
12

13
12

9

9
1.
0

5,
8,
10

,1
0,
6,

8
0.
04

3
3

5
5

3
3

9
12

13
12

9

10
1.
0

6,
7,
10

,9
,7
,7

−0
.0
4

3
3

5
5

3
3

9
12

13
12

9

1
2.
0

13
,1

8,
18

,1
9,

16
,1
3

−0
.1
3

5
5

9
9

5
5

18
24

26
24

18

2
2.
0

13
,1

6,
19

,2
0,

15
,1
4

−0
.0
9

6
5

9
9

5
6

18
24

26
24

18

3
2.
0

13
,1

6,
19

,2
0,

17
,1
3

0.
07

6
6

9
9

6
6

18
25

26
25

18

4
2.
0

12
,1

8,
20

,1
9,

14
,1
4

−0
.1
5

5
6

9
9

5
5

18
24

26
24

18

5
2.
0

13
,1

5,
20

,1
9,

16
,1
3

−0
.2
0

6
5

9
9

5
5

18
24

25
24

18

6
2.
0

12
,1

6,
19

,2
0,

18
,1
3

0.
03

5
6

9
9

5
5

18
25

27
25

18

7
2.
0

13
,1

5,
19

,1
9,

16
,1
3

−0
.3
6

5
5

9
9

5
5

18
23

26
24

18

8
2.
0

11
,1

7,
20

,2
0,

16
,1
3

−0
.0
9

5
6

9
9

5
6

18
24

26
24

19

9
2.
0

12
,1

6,
20

,2
0,

16
,1
3

−0
.0
5

5
5

9
9

5
5

18
24

26
24

18

10
2.
0

12
,1

7,
20

,1
9,

16
,1
3

−0
.0
7

6
5

9
9

6
6

18
24

26
24

18

123

900 S. Weiss, R. Stolletz

Ta
bl
e
12

co
nt
in
ue
d

Sa
m
pl
e

SC
V

O
pt
im

al
al
lo
ca
tio

n
M
ax
.d
ev
.

fr
om

T
H

∗
(%

)
In
iti
al
bo
un
ds

i
=

4
i
=

5
i
=

6

3 ∑ j=
1
b
j

4 ∑ j=
2
b
j

5 ∑ j=
3
b
j

6 ∑ j=
4
b
j

4 ∑ j=
1
b
j

5 ∑ j=
2
b
j

6 ∑ j=
3
b
j

5 ∑ j=
1
b
j

6 ∑ j=
2
b
j

1
1.
0

6,
7,
10
,1

2,
7,
5

0.
11

19
21

21
20

29
30

30
38

38

2
1.
0

7,
7,
8,
10
,9

,6
0.
05

20
21

21
20

29
29

29
38

38

3
1.
0

6,
7,
10
,1

0,
7,
6

0.
03

20
21

21
19

29
30

29
38

38

4
1.
0

6,
7,
10
,1

0,
7,
6

0.
03

20
21

21
19

29
29

29
38

38

5
1.
0

6,
7,
11
,9

,7
,6

−0
.0
4

19
21

21
20

29
29

29
38

38

6
1.
0

7,
8,
8,
9,

8,
7

0.
06

19
21

21
20

29
30

29
38

38

7
1.
0

6,
7,
11
,9

,7
,6

−0
.0
4

20
21

21
19

29
29

29
38

38

8
1.
0

6,
8,
9,
10
,7

,6
0.
01

19
21

21
20

29
29

29
38

38

9
1.
0

5,
8,
10
,1

0,
6,
8

0.
04

19
21

21
20

29
30

29
38

38

10
1.
0

6,
7,
10
,9

,7
,7

−0
.0
4

19
21

21
19

29
29

29
38

38

1
2.
0

13
,1
8,
18
,1

9,
16
,1
3

−0
.1
3

40
43

43
41

60
61

61
79

78

2
2.
0

13
,1
6,
19
,2

0,
15
,1
4

−0
.0
9

40
43

43
41

60
61

61
78

79

3
2.
0

13
,1
6,
19
,2

0,
17
,1
3

0.
07

41
43

44
41

61
62

62
80

80

4
2.
0

12
,1
8,
20
,1

9,
14
,1
4

−0
.1
5

41
44

43
40

61
61

61
79

79

5
2.
0

13
,1
5,
20
,1

9,
16
,1
3

−0
.2
0

40
42

43
40

60
61

60
79

78

6
2.
0

12
,1
6,
19
,2

0,
18
,1
3

0.
03

41
44

44
41

61
62

62
80

80

7
2.
0

13
,1
5,
19
,1

9,
16
,1
3

−0
.3
6

39
43

43
40

60
60

60
78

78

8
2.
0

11
,1
7,
20
,2

0,
16
,1
3

−0
.0
9

40
43

43
41

60
61

61
79

80

9
2.
0

12
,1
6,
20
,2

0,
16
,1
3

−0
.0
5

40
43

43
41

60
61

61
79

79

10
2.
0

12
,1
7,
20
,1

9,
16
,1
3

−0
.0
7

40
43

43
41

61
61

61
79

79

123

Buffer allocation in stochastic flow 901

References

Alfieri A, Matta A (2012) Mathematical programming formulations for approximate simulation of multi-
stage production systems. Eur J Oper Res 219(3):773–783

Alfieri A, Matta A (2013) Mathematical programming time-based decomposition algorithm for discrete
event simulation. Eur J Oper Res 231(3):557–566

Bai L, Rubin PA (2009) Combinatorial benders cuts for the minimum tollbooth problem. Oper Res
57(6):1510–1522

Benders J (1962) Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik 4(1):238–252

Burman M, Gershwin SB, Suyematsu C (1998) Hewlett-packard uses operations research to improve the
design of a printer production line. Interfaces 28(1):24–36

Buzacott JA, Shanthikumar JG (1993) Stochastic models of manufacturing systems, vol 4. Prentice Hall,
Englewood Cliffs

Caramanis M (1987) Production system design: A discrete event dynamic system and generalized benders’
decomposition approach. Int J Prod Res 25(8):1223–1234

Chan WKV, Schruben L (2008) Optimization models of discrete-event system dynamics. Oper Res
56(5):1218–1237

Codato G, Fischetti M (2006) Combinatorial benders cuts for mixed-integer linear programming. Oper Res
54(4):756–766

Colledani M, Ekvall M, Lundholm T, Moriggi P, Polato A, Tolio T (2010) Analytical methods to support
continuous improvements at scania. Int J Prod Res 48(7):1913–1945

Cooke RM, Bosma A, Härte F (2005) A practical model of heineken’s bottle filling line with dependent
failures. Eur J Oper Res 164(2):491–504

Dallery Y, Gershwin SB (1992) Manufacturing flow line systems: a review of models and analytical results.
Queueing Syst 12(1):3–94

Demir L, Tunali S, Eliiyi DT (2014) The state of the art on buffer allocation problem: a comprehensive
survey. J Intell Manuf 25(3):371–392

DiamantidisA, PapadopoulosC (2004)Adynamic programming algorithm for the buffer allocation problem
in homogeneous asymptotically reliable serial production lines. Math Probl Eng 2004(3):209–223

Gershwin SB, Schor JE (2000)Efficient algorithms for buffer space allocation.AnnOperRes 93(1):117–144
GürkanG (2000) Simulation optimization of buffer allocations in production lineswith unreliablemachines.

Ann Oper Res 93(1–4):177–216
Helber S, Schimmelpfeng K, Stolletz R, Lagershausen S (2011) Using linear programming to analyze and

optimize stochastic flow lines. Ann Oper Res 182(1):193–211
Hillier FS, So KC, Boling RW (1993) Toward characterizing the optimal allocation of storage space in

production line systems with variable processing times. Manag Sci 39(1):126–133
Hillier MS (2000) Characterizing the optimal allocation of storage space in production line systems with

variable processing times. IIE Transactions 32(1):1–8
Inman RR (1999) Empirical evaluation of exponential and independence assumptions in queueing models

of manufacturing systems. Prod Oper Manag 8(4):409–432
Levantesi R, Matta A, Tolio T (2001) A new algorithm for buffer allocation in production lines. In: Proceed-

ings of the 3rd Aegean international conference on design and analysis of manufacturing systems, pp
19–22

Li J (2013) Continuous improvement at toyota manufacturing plant: applications of production systems
engineering methods. Int J Prod Res 51(23–24):7235–7249

Li J,Meerkov SM (2009) Production SystemsEngineering. Springer Science+BusinessMedia LLC,Boston
Liberopoulos G, Tsarouhas P (2005) Reliability analysis of an automated pizza production line. J Food Eng

69(1):79–96
Lutz CM, Davis KR, Sun M (1998) Determining buffer location and size in production lines using tabu

search. Eur J Oper Res 106(2):301–316
MacGregor Smith J,CruzF (2005)The buffer allocation problem for general finite buffer queueing networks.

IIE Trans 37(4):343–365
Matta A (2008) Simulation optimization with mathematical programming representation of discrete event

systems. In: Proceedings of the 2008 winter simulation conference, Miami, pp 1393–1400

123

902 S. Weiss, R. Stolletz

Matta A, Chefson R (2005) Formal properties of closed flow lines with limited buffer capacities and random
processing times. In: Proceedings of the European simulation and modelling conference, Portugal, pp
190–194

Powell SG, Pyke DF (1996) Allocation of buffers to serial production lines with bottlenecks. IIE Trans
28(1):18–29

Saliby E (1990a) Descriptive sampling: a better approach to monte carlo simulation. J Oper Res Soc
41(12):1133–1142

Saliby E (1990b) Understanding the variability of simulation results: an empirical study. J Oper Res Soc
41(4):319–327

Schruben LW (2000) Mathematical programming models of discrete event system dynamics. In: Proceed-
ings of the 32nd conference on winter simulation, Orlando, pp 381–385

Spinellis DD, Papadopoulos CT (2000) A simulated annealing approach for buffer allocation in reliable
production lines. Ann Oper Res 93(1–4):373–384

Stolletz R, Weiss S (2013) Buffer allocation using exact linear programming formulations and sampling
approaches. In: 7th IFAC conference on manufacturing modelling, management, and control, St.
Petersburg, pp 1435–1440

Yamashita H, Altiok T (1998) Buffer capacity allocation for a desired throughput in production lines. IIE
Trans 30(10):883–892

123

	Buffer allocation in stochastic flow lines via sample-based optimization with initial bounds
	Abstract
	1 Introduction
	2 Sample-based flow line model
	2.1 Assumptions
	2.2 Evaluation of given allocations
	2.3 Optimization of buffer allocations

	3 Application of Benders Decomposition to the Buffer Allocation Problem
	3.1 Adjustments and specific features
	3.2 Generation of lower bounds from subsystems

	4 Numerical study
	4.1 A note on robustness
	4.2 Impact of bounds
	4.3 Exponentially distributed processing times
	4.4 Generally distributed processing times
	4.5 Correlated processing times
	4.6 Long lines with reliable and unreliable stations

	5 Conclusion and further research
	6 Appendix: Detailed results for Erlang-k and Cox-2 distributed instances
	References

