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Abstract We deal with risk-averse multistage stochastic programs with coherent risk
measures such as multiperiod extensions of conditional value at risk or polyhedral
risk measures. Their basic properties are discussed and applied to scenario-based
input data. Using the contamination technique we quantify the influence of changes
in the structure of the scenario-based approximation to the optimal value of the prob-
lem. Stochastic dual dynamic programming algorithm is used to provide illustrative
numerical comparisons for different choices of risk measures and changes of input
data for a simple multistage risk-averse stock allocation problem with scenario trees
based on log-normal distribution of the asset returns.
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1 Multistage stochastic program

In a common T stage stochastic program, one thinks of a stochastic data process
ξ = (ξ1, ξ2, . . . , ξT ) and a decision process x = (x1, . . . , xT ). The components
ξ2, . . . , ξT of ξ and the decisions x2, . . . , xT are assumed to be random vectors, not
necessarily of the same dimension, defined on some probability space (�,F,P),
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560 J. Dupačová, V. Kozmík

while ξ1 is deterministic and x1 is a nonrandom vector-valued variable. The sequence
of decisions and observations is

x1, ξ2, x2(x1, ξ2), . . . , xT (xT−1, ξ2, . . . , ξT ). (1)

The decision process is nonanticipative which means that decisions taken at any
stage of the process neither depend on future realizations of stochastic data nor on
future decisions, whereas the past information as well as the knowledge of the proba-
bility distribution of the data process are exploited. This can be expressed as follows:
Let Ft ⊆ F be the σ -field generated by the projection �tξ = ξ[t] := (ξ1, . . . , ξt )

of the stochastic data process ξ that includes data up to stage t , and F1 = {∅,�} the
trivial σ -field. The dependence of the t th stage decision xt only on the available infor-
mation means that xt is Ft -measurable. Similarly, we let �t x = x[t] := (x1, . . . , xt )
denote the sequence of decisions at stages 1, . . . , t , P the probability distribution of
ξ , Pt the marginal probability distribution of ξt , and Pt

[·|ξ[t−1]
]
, t = 2, , . . . , T, its

conditional probability distribution.
The first-stage decisions consist of all decisions that have to be selected before fur-

ther information is revealed, whereas the second-stage decisions are allowed to adapt
to this information, etc. In each of the stages, the decisions are limited by constraints
that may depend only on the previous decisions and observations. Stages do not nec-
essarily refer to time periods; rather, they correspond to steps in the decision process.
The outcome of the decision process (1) is f (x, ξ) and one wants to find a nonantic-
ipative feasible decision x(ξ) or policy that minimizes the expectation EP [ f (x, ξ)]
subject to prescribed constraints; it will be denoted by x∗. Nonanticipativity means
that decision xt at stage t depends only on the realization of ξ[t] and also on previous
decisions.

An example is the nested form of the multistage stochastic linear program (MSLP)
which resembles the backward recursion of stochastic dynamic programming with an
additive overall cost function:

min
x1∈X1

c�
1 x1 + EP

[
Q2(x1, ξ2)

]
with X1 := {x1| A1x1 = b1, x1 ≥ 0} , (2)

and Qt (xt−1, ξ[t]), t = 2, . . . , T , defined recursively as

Qt (xt−1, ξ[t]) = min
xt

ct (ξ[t−1])
�xt + EPt+1[·|ξ[t]]

[
Qt+1(xt , ξ[t+1])

]
(3)

subject to constraints xt ∈ Xt (xt−1, ξ[t]), e.g.,

At (ξ[t−1])xt = bt (ξ[t−1]) − Bt (ξ[t−1])xt−1, xt ≥ 0 a.s.,

QT+1(·) is explicitly given, e.g., QT+1(·) ≡ 0.
Matrices At are of a fixed (mt , nt ) type and the remaining vectors and matrices are

of consistent dimensions. For the first stage, known values of all elements of c1, A1, b1
are assumed and the main decision variable is x1 that corresponds to the first stage.
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Risk-averse multistage stochastic programs 561

The first-stage problem (2) has the form of the expectation-type stochastic program
with the set of feasible decisions independent of P.

One can rewrite (2)–(3) briefly as

min
x1

c�
1 x1 + E

[
min
x2

c2(ξ[1])
�x2 + E

[
· · · + E

[
min
xT

cT (ξ[T−1])
�xT

]]]
(4)

with corresponding conditional expectations as in (3) and subject to linear constraints
xt ∈ Xt (xt−1, ξ[t]), t = 1, . . . , T, on decision variables. Constraints involving ran-
dom elements hold almost surely and for simplicity we assume that all infima are
attained, which is related to the relatively complete recourse, and that all conditional
expectations exist. In the case of stage-wise independence, the conditional probabil-
ity distributions boil down to marginal distributions Pt of ξt . Notice that the basic
nonanticipativity condition is clearly spelled out.

In the risk-neutral convex case, one assumes e.g., that f (x, ξ) is an inf-compact
convex normal integrand whose finite expectation exists and that the set of feasible
decisionsX(ξ) is closed, convex-valued, nonanticipative and uniformly boundedmap-
ping, i.e., the assumption of relatively complete recourse. The optimal decisions can be
obtained by application of dynamic programming technique, for example, by telescop-
ing the T stage problem into t stage ones as done in Rockafellar andWets (1976). The
following proposition follows from Theorem 1 of Rockafellar and Wets (1976) where
it was formulated for extended real integrand f (x, ξ). (Here, we assume explicitly
formulated nonanticipative constraint mappings as well as existence of expectations
and of optimal decisions.)

Theorem 1 Consider the T stage stochastic program

minimize EP [ f (x, ξ)] (5)

subject to constraints xt ∈ Xt (x[t−1], ξ[t]), t = 1, . . . , T .

Take fT (xT , x[T−1], ξ[T ]) := f (x, ξ); for t = 1, . . . , T − 1 define the t-th stage
integrands

ft (xt , x[t−1], ξ[t]) = EP

[
min
x[τ ]

{ fτ (xτ , x[τ−1], ξ[τ ]) : �tξ[τ ] = ξ[t],�t x[τ ] = x[t]}
]

for t ≤ τ ≤ T and consider the t stage problems

minimize EP
[
ft (xt , x[t−1], ξ[t])

]
(6)

subject to constraints xt ∈ Xt (x[t−1], ξ[t]). Then all programs (6) are solvable and the
following property holds true:

If x∗ is an optimal solution of (5), then its projection �t x∗ solves (6) and if x∗
[t]

solves (6), it can be extended to an optimal solution x∗ of (5) such that �t x∗ = x∗
[t].

This theorem forms a bridge between multistage stochastic programs solved
as a sequence of rolling horizon stochastic programs with a reduced number of
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stages and the stochastic dynamic programming methodology. For convex multistage
expectation-based stochastic programs, it can be evidently linked with the concept of
dynamic or time-consistency property introduced later on, e.g.,

TC1 Carpentier et al. (2012) The sequence of dynamic optimization problems (6)
is dynamically consistent if the optimal strategies obtained when solving the original
problem remain optimal for all subsequent problems.

When the normal integrand f (x, ξ) is separable with respect to stages, one can
design an alternative dynamic programming recursion such as in (2)–(3) or inPennanen
and Perkkiö (2012) for convex multistage stochastic programs where result akin to
Theorem 1 can be found.

In applications, one mostly approximates the true probability distribution P of ξ

by a discrete probability distribution carried by a finite number of atoms (scenarios),
say, ξ1, . . . , ξ K . They are organized in a scenario tree and, in principle, the optimal
policy can be obtained by solving a large deterministic program. See, e.g., the recent
book Shapiro et al. (2009a) for details and more general cases. Every node of the
tree is a root of a scenario subtree which does not contain any branches of other
subtrees. Hence, the optimal solutions of a nodal subproblem do not reflect the future
information carried by branches of the full tree that, from the point of view of the
relevant nodal subproblem, cannot happen in the future. This observation is behind a
modified time-consistency concept

TC2 Shapiro (2009b) At each state of the system, optimality of a decision policy
should not involve states which cannot happen in the future.

Hence, under modest assumptions, optimal solutions of risk-neutral scenario-based
multistage stochastic programs possess both of these time-consistency properties,
whereas there are still open questions concerning time-consistency notions for risk-
averse multistage stochastic programs.

With reference to the book Pflug and Römisch (2007) and to Chapter 6 of Shapiro
et al. (2009a), Sect. 2 opens briefly the risk-averse extensions of multistage stochastic
programming problems. In Sect. 3, the selected properties of multiperiod risk mea-
sures are presented.Variousmultistage stochastic linear programswithCVaR-type risk
measures are given in Sect. 4. In Sect. 5, an adaptation of stochastic dual dynamic pro-
gramming algorithm is proposed for their numerical solution. In this problem frame-
work, the contamination technique is elaborated in Sect. 6 to deal with changes of
the reference probability distribution P. This is illustrated in Sect. 7 by numerical
examples dealing with large-scale multistage portfolio optimization problems.

2 Risk-averse multistage stochastic programs

Maximization of expected gains or minimization of expected losses means to get
decisions that are optimal on average and do not reflect possible risks. This need not
be an acceptable goal. The present tendency is to spell out explicitly the concern for
risk monitoring and control. There are various types of risk and the choice of a suitable
risk definition depends on the context, the decision maker’s attitude, etc.
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Risk-averse multistage stochastic programs 563

To reflect risks in the stochastic programming formulation, it is necessary to quantify
it. Both in theoretical considerations and in applications, sensible properties of risk
measures are requested. A risk measure is a functional which assigns a real value to
the random outcome f (x, ξ). Similarly to the risk-neutral expected value criterion,
risk measures ρ should not depend on individual realizations of ξ, but they depend
on decisions and on probability distribution P. Moreover, they should also reflect the
filtrationF1 ⊂ · · · ⊂ Ft · · · ⊆ F.

Coherence of ρ (monotonicity, translation invariance, positive homogeneity and
subadditivity) cf. Artzner et al. (1999) is mostly expected. Risk measures value at risk
(VaR), which is not coherent in general, and the coherent conditional value at risk
(CVaR) are examples of ρ. Monotonicity with respect to the pointwise partial order-
ing and subadditivity are evident requirements. Convexity allows to keep a relatively
friendly structure of the problem, both for computational and theoretical purposes,
polyhedral property, cf. CVaR introduced in Rockafellar and Uryasev (2002) or poly-
hedral risk measures, cf. Eichhorn and Römisch (2005), to rely on linear programming
techniques for scenario-based MSLP.

Whereas there exist many suggestions of risk measures for static stochastic pro-
grams, verified by numerical experiments and applications, see, e.g., Krokhmal et
al. (2011) and references therein, for multistage problems the situation is much more
involved. Thefirst idea is to replace the expectationEP [ f (x, ξ)] by a suitable riskmea-
sure ρ and to keep all constraints including nonanticipativity. Assigning a riskmeasure
ρ to the final outcome f (x, ξ) does not take into account the information structure
given by the filtration. It corresponds to monitoring risk only at the horizon which
need not be sufficient. To include risk monitoring in individual stages, one may relate
the risk measure to the partial outcomes, f1(x1), ft (xt , x[t−1], ξ[t]), t = 2, . . . , T .
Different risk measures ρt can be applied at individual stages. As a result, we may
construct, e.g., objective function

min
x1

c�
1 x1 + ρ2

(
min
x2

c2(ξ[1])
�x2 + ρ3

(
· · · + ρT

(
min
xT

cT (ξ[T−1])
�xT

)))
(7)

and use it in place of (4). It is important to agree on acceptable properties of risk
measures, e.g., multiperiod risk measures should be coherent. The full formulation of
the risk-averse stochastic program (7) has to include the nonanticipativity constraints.
Depending on the risk-averse problem and on the applied solution technique, a form
of time consistency of optimal solutions is desirable.

Having in mind tractable numerical techniques such as stochastic dual dynamic
programming (SDDP), cf. Pereira and Pinto (1991) applied to sample average approx-
imation (SAA) of the underlying problem, we shall focus on finite discrete probability
distributions and study mainly multiperiod extensions of conditional value at risk and
multiperiod polyhedral riskmeasures. The next section comments on basic definitions.

3 Definitions

We will model the risk by representing the loss which could be incurred in stages
1, . . . , T by random functions Z = (Z1, . . . , ZT ) that will be defined on a suitable
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linear spaceZ . The following definition, introduced in Artzner et al. (2007), extends
the notion of coherent risk measures, introduced in Artzner et al. (1999) and widely
accepted in static risk-averse optimization, to the multistage case.

Definition 1 (Multiperiod risk measures) A functional ρ onZ =×T
t=1Lp (�,Ft ,P)

with p ∈ [1,∞] is called a multiperiod coherent risk measure if it satisfies the fol-
lowing:

1. Zt ≥ Z̃t a.s., t = 1, . . . , T �⇒ ρ (Z1, . . . , ZT ) ≥ ρ
(
Z̃1, . . . , Z̃T

)
(monotonic-

ity);
2. For each r ∈ R: ρ (Z1 + r, . . . , ZT + r) = ρ (Z1, . . . , ZT )+r (translation invari-

ance);

3. ρ
(
μZ1 + (1 − μ)Z̃1, . . . , μZT + (1 − μ)Z̃T

)

≤ μρ (Z1, . . . , ZT ) + (1 − μ)ρ
(
Z̃1, . . . , Z̃T

)
for μ ∈ [0, 1] (convexity);

4. For μ ≥ 0 we have ρ (μZ1, . . . , μZT ) = μρ (Z1, . . . , ZT ) (positive homogene-
ity).

Two special classes of multiperiod risk measures have received a lot of attention,
polyhedral risk measures and conditional risk mappings. Polyhedral risk measures are
defined as the optimal value of a multistage stochastic program in the following way;
see Eichhorn and Römisch (2005).

Definition 2 (Multiperiod polyhedral risk measures) A risk measure ρ on ×T
t=1

Lp (�,Ft ,P) with p ∈ [1,∞] is called multiperiod polyhedral if there are kt ∈ N,
ct ∈ Rkt , t = 1, . . . , T , wt,τ ∈ Rkt−τ , t = 1, . . . , T , τ = 0, . . . , t − 1, a polyhedral
set M1 ⊂ Rk1 , and polyhedral cones Mt ⊂ Rkt , t = 2, . . . , T , such that

ρ (Z) = inf E

[
T∑

t=1

c�
t Yt

]

s.t. Yt ∈ Lp (�,Ft ,P) ∀t ∈ {1, . . . , T }
(8)

Yt ∈ Mt a.s. ∀t ∈ {1, . . . , T }
t−1∑

τ=0

w�
t,τYt−τ = Zt a.s. ∀t ∈ {1, . . . , T } .

When replacing the expectation of the total outcomeof amultistage risk-neutral SLP
by the multiperiod polyhedral risk measure, it is possible to carry out the minimization
with respect to the original decision variable x andminimization in (8) simultaneously;
see Proposition 4.1 in Eichhorn and Römisch (2005). Moreover, the scenario form of
(8) and that of the combined problem is a linear program.

The class of conditional risk mappings resembles the conditional expectations in
(4). It is especially convenient for the construction of nested risk measures to obtain
the time-consistency property. Let F ⊂ F

′
be σ -fields of subsets of � and Z and

Z
′
be linear spaces of real-valued functions f (ω), ω ∈ � measurable with respect

toF and F
′
, respectively. Following Ruszczyński and Shapiro (2006), we define:
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Risk-averse multistage stochastic programs 565

Definition 3 (Conditional risk mappings) We say that mapping ρ : Z
′ → Z is

conditional risk mapping if the following properties hold:

(1) Convexity. If α ∈ [0, 1] and X,Y ∈ Z
′
, then

αρ (X) + (1 − α)ρ (Y ) � ρ (αX + (1 − α)Y ) .

(2) Monotonicity. If Y � X , then ρ (Y ) � ρ (X) .

(3) Predictable Translation Equivariance. If Y ∈ Z and X ∈ Z
′
, then

ρ (X + Y ) = ρ (X) + Y.

The inequalities in (1) and (2) are understood component-wise, i.e., Y � X means
that Y (ω) ≥ X (ω) for every ω ∈ �.

For conditional riskmappings defined above, we shall use notation ρ (·|F ). Notice,
that Predictable Translation Equivariance is a natural generalization of translation
invariance from Definition 1. Using it, we can construct composite risk measures as
follows:

Consider conditional risk mappings ρ2, . . . , ρT and a risk function ρ : Z1 × · · · ×
ZT → R given by:

ρ (Z1, . . . , ZT ) = Z1 + ρ2 (Z2 + · · · ρT−1 (ZT−1 + ρT (ZT ))) .

Using Predictable Translation Equivariance, we get

ρT−1 (ZT−1 + ρT (ZT )) = ρT−1 ◦ ρT (ZT−1 + ZT ) .

By continuing this process, we end upwith a composite riskmeasure ρ̄ := ρ2◦· · ·◦ρT .
It holds that

ρ̄(Z1 + · · · + ZT ) = ρ (Z1, . . . , ZT ) .

Using notation of Definition 3 we continue by introducing a concept of dynamic or
time-consistent conditional risk mappings Kovacevic and Pflug (2009).

Definition 4 (Time-consistent risk mappings) A conditional risk mapping
(ρt (·|Ft ))t=1,...,T is called time consistent if for all 1 ≤ t1 ≤ t2 ≤ T and
X,Y ∈ Lp (�,F,P):

ρt2
(
X |Ft2

) ≤ ρt2
(
Y |Ft2

) �⇒ ρt1
(
X |Ft1

) ≤ ρt1
(
Y |Ft1

)
.

There exist various other related consistency concepts for risk measures, see e.g.,
Roorda and Schumacher (2007); when demanded, they may limit substantially the
choice of acceptable riskmeasures up to the risk-neutral case, see e.g., Shapiro (2012b).
In comparison to the time-consistency concepts [TC1] and [TC2], which relate to the
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decisions, the Definition 4 defines time consistency for the risk measure itself. To eval-
uate the properties [TC1] and [TC2], we have to specify the subsequent optimization
models for every state of the system. Without additional assumptions about the model
structure, we cannot expect that time consistency of a risk measure automatically
guarantees time consistency of the model.

For scenario-based programs, the time-consistency property [TC1] holds truewhen-
ever it is possible to reformulate the risk-averse multistage stochastic problem into the
form of a classical risk-neutral stochastic program. This is provided by the Theo-
rem 1. It should be noted that such reformulations usually require additional decision
variables and are therefore harder to solve than corresponding risk-neutral versions
of these models. Further discussion on the structure of risk-averse multistage sto-
chastic programs can be found in articles Guigues (2014) and Guigues and Römisch
(2012a, b).

4 Multistage stochastic programs with CVaR-type risk measures

Weformulate amultistage stochastic linear programwithCVaR riskmeasure in various
versions. With the first version, nested CVaR, we follow the same manner as Shapiro
(2011), largely using his notation. Secondly, we formulate a multistage stochastic pro-
gram with a multiperiod CVaR risk measure and with a sum of CVaR risk measures
following the notion of Pflug and Römisch (2007). All models have random parame-
ters in stages t = 2, . . . , T , e.g., ξt = (

ct (ξ[t−1]), At (ξ[t−1]), Bt (ξ[t−1]), bt (ξ[t−1])
)

in (3), which are governed by a known conditional distribution. All models can be
also formulated in a more general convex form (which is solvable using the SDDP
algorithm), but we have chosen the linear versions for easier presentation of our
results. For simplicity of notation, we will drop the (ξ[t−1]) arguments and denote
the random parameters only by ξt = (ct , At , Bt , bt ). The parameters of the first stage,
ξ1 = (c1, A1, b1), are assumed to be known. Our models allow specification of dif-
ferent risk aversion coefficients λt and confidence levels αt ∈ [0, 1] at each stage,
t = 1, . . . , T .

4.1 Nested CVaR model

The nested CVaR model is based on the following composite risk measure, cf. Pflug
and Römisch (2007):

ρn (Z) = CVaRα [·|F1] ◦ · · · ◦ CVaRα

[·|FT−1
]
(

T∑

t=1

Zt

)

.

According to Kovacevic and Pflug (2009), this risk measure is time consistent
with respect to the Definition 4. To provide the nested formulation of the model,
we introduce the following operator, which forms a weighted sum of conditional
expectation and risk associated with random loss Z :

ρt,ξ[t−1] [Z ] = (1 − λt )E
[
Z

∣∣ξ[t−1]
] + λt CVaRαt

[
Z

∣∣ξ[t−1]
]
. (9)
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Risk-averse multistage stochastic programs 567

We suppose λt ∈ [0, 1], which with λt = 0 covers the risk-neutral problems, whereas
λt = 1 puts emphasis on risk control only. The case of λt = 0 for t < T and λT �= 0
models the importance of risk only at the final stage.

We can write the corresponding risk-averse linear multistage model with T stages
in the following form:

min
A1x1=b1
x1≥0

c�
1 x1 + ρ2,ξ[1]

⎡

⎣ min
A2x2=b2−B2x1

x2≥0

c�
2 x2 + · · · (10)

+ρT,ξ[T−1]

⎡

⎣ min
AT xT =bT −BT xT−1

xT ≥0

c�
T xT

⎤

⎦

⎤

⎦ .

We assume model (10) is feasible, has relatively complete recourse, and has a finite
optimal value.

Our model, with the nested risk measure, allows a dynamic programming formu-
lation to be developed, as described in Shapiro (2011). Using in (9) the definition of
conditional value at risk from Rockafellar and Uryasev (2002),

CVaRα [Z ] = min
u

(
u + 1

α
E [Z − u]+

)
, (11)

where [ · ]+ ≡ max{ · , 0}, we can rewrite (10) as

min
x1,u1

c�
1 x1 + λ2u1 + Q2(x1, u1, ξ[1])

s.t. A1x1 = b1
x1 ≥ 0.

(12)

The recourse value Qt (xt−1, ξ[t]) at stage t = 2, . . . , T is given by:

Qt (xt−1, ξ[t]) = min
xt ,ut

c�
t xt + λt+1ut + Qt+1(xt , ut , ξ[t])

s.t. At xt = bt − Bt xt−1
xt ≥ 0,

(13)

where

Qt+1(xt , ut , ξ[t])

(14)
= EPt+1[·|ξ[t]]

[
(1 − λt+1)Qt+1(xt , ξ[t+1]) + λt+1

αt+1

[
Qt+1(xt , ξ[t+1]) − ut

]
+

]
.

We take QT+1(·) ≡ 0 and λT+1 ≡ 0 so that the objective function of model (13)
reduces to c�

T xT when t = T ; compare with (2)–(3).
The interpretation of the objective function is not straightforward, but it can be

viewed as the real cost we would be willing to pay at the first stage instead of incurring
the sequence of random costs Z1, . . . , ZT ; cf. Ruszczyński (2010).
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568 J. Dupačová, V. Kozmík

The nested model is formulated in the framework of conditional risk mappings and
this formulation is time consistent with respect to both [TC1] and [TC2], cf. Shapiro
(2009b). However, due to its nesting structure, it cannot be represented as a polyhedral
risk measure.

4.2 Multiperiod CVaR model

The multiperiod CVaR model is based on the following risk measure, see Pflug and
Römisch (2007):

ρm (Z) =
T∑

t=2

μtE
[
CVaRαt

[
Zt |Ft−1

]]
. (15)

with
∑T

t=2 μt = 1, μt ≥ 0 ∀t. The multiperiod CVaR risk measure is time consistent
with respect to the Definition 4, according to Theorem 3.3.11 of Kovacevic and Pflug
(2009).

Using this risk measure and mean-risk operator (9), we obtain a multiperiod CVaR
model:

min
x1,...,xT

c�
1 x1 + μ2ρ2,ξ[1]

[
c�
2 x2

] + · · · + μTE
[
ρT,ξ[T−1]

[
c�
T xT

]]

s.t. A1x1 = b1
A2x2 = b2 − B2x1

...

AT xT = bT − BT xT−1
xt ≥ 0, xt ∈ Lp (�,Ft ,P) , t = 1, . . . , T .

(16)

We assume that model (16) is feasible, has a relatively complete recourse and a finite
optimal value. While ρ2,ξ[1] is deterministic, ρt,ξ[t−1] , t = 3, . . . , T are random vari-
ables and expectation is applied to get a sensible model. The difference between this
model and the nested CVaR model (10) is that here we apply expectation instead of
the risk measure nesting. We also give a reformulation which uses the definition (11)
of conditional value at risk:

min
xt ,ut ,qt∀t

c�
1 x1 +

T−1∑

t=1
μt+1E

[
λt+1ut

] +
T∑

t=2
μtE

[
(1 − λt ) c�

t xt + 1
αt

λt qt
]

s.t. A1x1 = b1
At xt = bt − Bt xt−1, t = 2, . . . , T
qt ≥ c�

t xt − ut−1, t = 2, . . . , T
qt ≥ 0, t = 2, . . . , T
ut ∈ Lp (�,Ft ,P) , t = 1, . . . , T − 1
qt ∈ Lp (�,Ft ,P) , t = 2, . . . , T
xt ≥ 0, xt ∈ Lp (�,Ft ,P) , t = 1, . . . , T .

(17)

As shown in the book Pflug and Römisch (2007), the multiperiod risk measure (15) is
polyhedral. Moreover, with reference to the dynamic programming equations, multi-
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Risk-averse multistage stochastic programs 569

period CVaRmodel is time consistent with respect to [TC1] and [TC2]. Other concepts
of time consistency with this risk measure are discussed in an example in Artzner et
al. (2007) and also in Kovacevic and Pflug (2009).

Similarly as in the casewith nestedCVaRmodel,wedevelop dynamic programming
equations. Using the interchangeability principle, we have:

min
x1,u1

c�
1 x1 + μ2λ2u1 + Q2(x1, u1, ξ[1])

s.t. A1x1 = b1
x1 ≥ 0

(18)

with the recourse value Qt (xt−1, ut−1, ξ[t]) at stage t = 2, . . . , T given by:

Qt (xt−1, ut−1, ξ[t]) = min
xt ,ut ,qt

μt (1 − λt ) c�
t xt + μt+1λt+1ut

+μt
1
αt

λt qt + Qt+1(xt , ut , ξ[t])
s.t. At xt = bt − Bt xt−1

qt ≥ c�
t xt − ut−1

qt ≥ 0
xt ≥ 0,

(19)

where:

Qt+1(xt , ut , ξ[t]) = EPt+1[·|ξ[t]]
[
Qt+1(xt , ut , ξ[t+1])

]
. (20)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0.

4.3 Sum of CVaR model

Theweighted sumofCVaRmodel is based on the following riskmeasure, seeEichhorn
and Römisch (2005):

ρs (Z) =
T∑

t=2

μt CVaRαt [Zt ]

with
∑T

t=2 μt = 1, μt ≥ 0 ∀t.
It can be shown that the sum of CVaR is not a time-consistent risk measure with

respect to Definition 4; see Artzner et al. (2007) and Rudloff et al. (2010). The sum of
CVaR model does not include nesting of the recourse values. It can be deduced from
the scalarization technique of the multiobjective optimization. Using (9), it reads as

min
x1,...,xT

c�
1 x1 + μ2ρ2,ξ[1]

[
c�
2 x2

] + · · · + μT ρT,ξ[1]

[
c�
T xT

]

s.t. A1x1 = b1
A2x2 = b2 − B2x1
...

AT xT = bT − BT xT−1
xt ≥ 0, xt ∈ Lp (�,Ft ,P) , t = 1, . . . , T .

(21)
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We assume again that model (21) is feasible, has relatively complete recourse and a
finite optimal value. Please note that no nesting of the CVaR values is present and that
we always condition the operator ρ with the first stage information ξ[1], i.e., ρt,ξ[1] is
deterministic ∀t = 2, . . . , T .

Using themean-risk operator (9) and auxilliary variables qt to express the nonlinear
term in (11), we can rewrite the model as the following multistage stochastic linear
program:

min
xt ,ut ,qt∀t

c�
1 x1 +

T−1∑

t=1
μt+1λt+1ut +

T∑

t=2
μtE

[
(1 − λt ) c�

t xt + 1
αt

λt qt
]

s.t. A1x1 = b1
At xt = bt − Bt xt−1, t = 2, . . . , T
qt ≥ c�

t xt − ut−1, t = 2, . . . , T
qt ≥ 0, t = 2, . . . , T
ut ∈ Lp (�,F1,P) , t = 1, . . . , T − 1
qt ∈ Lp (�,Ft ,P) , t = 2, . . . , T
xt ≥ 0, xt ∈ Lp (�,Ft ,P) , t = 1, . . . , T .

(22)

It can be seen that the risk measure ρs (Z) used in this linear program satisfies the
requirements of Definition 2 and is therefore polyhedral. Moreover, the corresponding
optimizationmodel is time consistent under theDefinition [TC1]. On the other side, all
variables ut are decided in the first stage and the model is therefore not time consistent
according to Definition [TC2].

We again develop dynamic programming equations using the interchangeability
principle:

min
x1,u1,...uT−1

c�
1 x1 +

T−1∑

t=1
μt+1λt+1ut + Q2(x1, u1, . . . , uT−1, ξ[1])

s.t. A1x1 = b1
x1 ≥ 0

(23)

with recourse value Qt (xt−1, ut−1, . . . , uT−1, ξ[t]) at stage t = 2, . . . , T , given by:

Qt (xt−1, ut−1, . . . , uT−1, ξ[t])

= min
xt ,qt

μt (1 − λt ) c
�
t xt + μt

1

αt
λt qt + Qt+1(xt , ut , . . . , uT−1, ξ[t])

s.t. At xt = bt − Bt xt−1 (24)

qt ≥ c�
t xt − ut−1

qt ≥ 0

xt ≥ 0,
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where:

Qt+1(xt , ut , . . . , uT−1, ξ[t]) = EPt+1[·|ξ[t]]
[
Qt+1(xt , ut , . . . , uT−1, ξ[t+1])

]
. (25)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0.
Other multiperiod polyhedral risk measures and their comparison can be found in

Eichhorn and Römisch (2005). The final decision regarding which of the multiperiod
risk measures to choose depends on the solved problem.

5 Stochastic dual dynamic programming

We use stochastic dual dynamic programming to solve, or rather approximately solve,
models presented in the previous section. SDDP does not operate directly on these
models. Instead, we first form a sample average approximation (SAA) of the model,
and SDDP approximately solves the SAA. Thus in our context, SDDP forms estima-
tors by sampling within an empirical scenario tree. In the remainder of this article, we
restrict attention to solving SAA via SDDP. See Shapiro (2003) for a discussion of
asymptotics of SAA for multistage problems, Philpott and Guan (2008) for conver-
gence properties of SDDP, and Chiralaksanakul and Morton (2004) for procedures to
assess the quality of an SDDP-based policy.

To apply the SDDP algorithm, we have to assume ξt , t = 2, . . . , T , to be stage-wise
independent. We further assume that for each stage t = 2, . . . , T, there is a known
(possibly continuous) distribution Pt of ξt and that we have a procedure to sample
i.i.d. observations from this distribution. Using this procedure, we obtain empirical
distributions P̂t , t = 2, . . . , T . The scenarios generated by this procedure all have the
same probabilities, but this is not required by the SDDP algorithm, which also applies
to the case where the scenario probabilities differ.

We let �̂t denote the stage t sample space, where |�̂t | = Nt . We use jt ∈ �̂t to
denote a stage t sample point, which we call a stage t scenario. We define the mapping
a( jt ) : �̂t → �̂t−1, which specifies the unique stage t − 1 ancestor for the stage t

scenario jt . Similarly, we use �( jt ) : �̂t → 2�̂t+1 to denote the set of descendant
nodes for jt , where |�( jt )| = Dt+1. The empirical scenario tree therefore has stage
t realizations denoted by ξ

jt
t , jt ∈ �̂t . At the last stage, we have ξ

jT
T , jT ∈ �̂T ,

and each stage T scenario corresponds to a full path of observations through each
stage of the scenario tree. That is, given jT , we recursively have jt−1 = a( jt ) for
t = T, T − 1, . . . , 2. For this reason and for notational simplicity, when possible,
we suppress the stage T subscript and denote jT ∈ �̂T by j ∈ �̂.

Weemphasize using the same set of Dt observations at stage t to form thedescendant
nodes of all Nt−1 scenarios at stage t−1. This ensures the resulting empirical scenario
tree is stage-wise independent. The SDDP algorithm does not apply, for example, to a
scenario tree in which we instead use a separate, independent set of i.i.d. observations
ξ1t , . . . , ξ

Dt
t for each of the stage t − 1 scenarios, because the resulting empirical

scenario tree would not be stage-wise independent. Note that fully general forms of
dependency lead to inherent computational intractability as even the memory require-
ments to store a general sampled scenario tree grow exponentially in the number
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of stages. Tractable dependency structures are typically rooted in some form of the
independent increments between stages; e.g., autoregressive models, moving-average
models, and dynamic linear models.

Under the stage independence assumption, the expected future cost function sim-
plifies in the following way. In the nested CVaR model, function Qt+1(xt , ut , ξ[t])
from Eq. (13) now takes the form Qt+1(xt , ut ). The dynamic programming equations
are given by:

min
x1,u1

c�
1 x1 + λ2u1 + Q2(x1, u1)

s.t. A1x1 = b1
x1 ≥ 0

(26)

with the recourse value Qt (xt−1, ξt ) at stage t = 2, . . . T given by:

Qt (xt−1, ξt ) = min
xt ,ut

c�
t xt + λt+1ut + Qt+1(xt , ut )

s.t. At xt = bt − Bt xt−1
xt ≥ 0,

(27)

where

Qt+1(xt , ut ) = E
[
(1 − λt+1)Qt+1(xt , ξt+1) + λt+1

αt+1

[
Qt+1(xt , ξt+1) − ut

]
+

]
.

(28)

Similar development applies to the function Qt+1(xt , ut , ξ[t]) from Eq. (19) and
the function Qt+1(xt , ut , . . . , uT−1, ξ[t]) from Eq. (24) which will be written as
Qt+1(xt , ut , . . . , uT−1) in the stage-independent case.

We give a brief description of the SDDP algorithm to give sufficient context for
presenting our results. For further related details on SDDP, see Kozmík and Morton
(2014), Pereira and Pinto (1991) and Shapiro (2011). SDDP applies to the dynamic
programming equations developed in Sect. 4. During a typical iteration of the SDDP
algorithm, cuts have been accumulated at each stage. These represent a piecewise
linear outer approximation of the expected future cost function, Qt+1(xt , ut ) or
Qt+1(xt , ut , . . . , uT−1). On a forward pass we sample a number of linear paths
through the tree. As we solve a sequence of master programs (which we specify
below) along these forward paths, the cuts that have been accumulated so far are used
to form decisions at each stage. Solutions found along a forward path in this way form
a policy, which does not anticipate the future. In fact, the solutions can be found at
a node on a sample path via the stage t master program, even before we sample the
random parameters at stage t + 1. The sample mean of the costs incurred along all the
forward sampled paths through the tree forms an estimator of the expected cost of the
current policy, which is determined by the master programs.

In the backward pass of the algorithm, we add cuts to the collection defining the
current approximation of the expected future cost function at each stage. We do this
by solving subproblems at the descendant nodes of each node in the linear paths from
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the forward pass, except in the final stage, T . The cuts collected at any node in stage
t apply to all the nodes in that stage, and hence we maintain a single set of cuts for
each stage. We let Ct denote the number of cuts accumulated so far in stage t . This
reduction is possible because of our stage-wise independence assumption.

The following model (29) is based on a nested formulation (13) and acts as a master
program for its stage t+1 descendant scenarios and as a subproblem for its stage t−1
ancestor. We will refer to it as sub( jt ) for scenario jt .

Q̂t = min
xt ,ut ,θt

c�
t xt + λt+1ut + θt (29a)

s.t. At xt = bt − Bt xt−1 : π t (29b)

θt ≥ Q̂ j
t+1 +

(
g j
t+1

)� [
(xt , ut ) −

(
x j
t , u j

t

)]
, j = 1, . . . ,Ct (29c)

xt ≥ 0. (29d)

Decision variable θt in the objective function (29a), coupled with cut constraints
in (29c), forms the outer linearization of the recourse function Qt+1(xt , ut ) from
model (27) and equation (28). This outer linearization is represented by the average
values of the recourse function, Q̂ j

t+1, and its subgradients g j
t+1. The structural and

nonnegativity constraints in (29b) and (29d) simply repeat the same constraints from
model (27). In the final stage T , we omit the cut constraints and the θT term.

As we indicate in constraint (29b), we use π t to denote the dual vector associated
with the structural constraints. As detailed in the articles Kozmík and Morton (2014)
and Shapiro (2011), this dual vector is used to develop the cuts in the backward pass of
the SDDP algorithm. For simplicity in stating the SDDP algorithm below, we assume
we have known lower bounds Lt on the recourse functions. The presentation applies to
the nested CVaR model (27), and the remaining models are solved in a similar fashion.

Algorithm 1 Stochastic dual dynamic programming algorithm

1. Let iteration k = 1 and append lower bounding cuts θt ≥ Lt , t = 1, . . . , T − 1.
2. Solve the stage 1 master program (t = 1) and obtain xk1 , u

k
1, θ

k
1 .

Let zk = c�
1 x

k
1 + λ2uk1 + θk1 .

3. Forward pass: sample i.i.d. paths from �̂ and index them by Sk .

For all j ∈ Sk {
for t = 2, . . . , T {

form and solve sub( jt ) to obtain
(
x jt
t

)k
and

(
u jt
t

)k
;

}
}

Form the upper bound estimator zk based on equation (31) in Kozmík and Morton
(2014).

4. If a stopping criterion, given zk and zk , is satisfied. then stop and output first stage
solution x1 = xk1 and lower bound z = zk , otherwise continue to step 5.
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5. Backward pass:
For t = T − 1, . . . , 1 {

for all j ∈ Sk {
for all descendant nodes jt+1 ∈ �( jt ) {

form and solve sub( jt+1) to obtain Q̂ jt+1
t+1 and π

jt+1
t+1 ;

calculate subgradient

(see Kozmík and Morton (2014), Shapiro (2011));
}
obtain Q̂t+1 and gt+1 by averaging the optimal values and subgradients;
append the resulting cut to the collection (29c) for stage t

(see Kozmík and Morton (2014), Shapiro (2011)) ;
}

}

6. Let k = k + 1 and go to step 2 with extended sets of cuts.

See Bayraksan and Morton (2011) for stopping rules that can be employed in step
4 and Philpott et al. (2013) for an alternative upper bound evaluation procedure.

6 Contamination for multistage risk-averse problems

The contamination technique for stochastic programs was developed in a series of
papers as one of the tools for analysis of robustness of the optimal value with respect
to deviations from the assumed probability distribution P and/or its parameters. The
results were applied mainly to scenario-based two-stage stochastic linear programs;
see, e.g., Dupačová (1990, 1996) for static and two- stage stochastic programs with
risk-averse objective functions, Dupačová and Polívka (2007) for CVaR and VaR risk
criteria and Dupačová (2008) for polyhedral risk measures.

The first ideas dealing with contamination for multistage stochastic linear programs
were presented in Dupačová (1995) and their application to study the influence of
changes in the structure of multistage problems with polyhedral risk measures can be
found in Dupačová et al. (2009).

For construction of global contamination bounds, it is important that the stochastic
program gets reformulated as

min
x∈X

F(x,P) := min
x∈X

∫

�

f (x, ξ)P(dξ) (30)

with X independent of P, such as in (12). Notice that the reformulations of the three
considered models with CVaR-type risk measures comply with this requirement.

Possible changes in probability distribution P are modeled using contaminated
distributions Pk,

Pk := (1 − k)P + kQ, k ∈ [0, 1],
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withQ as another fixed probability distribution.Via contamination, robustness analysis
with respect to changes in P gets reduced to a much simpler analysis with respect to
a scalar parameter k.

Assume that (30) was solved for a probability distribution P and denote ϕ(P) the
optimal value and X∗(P) the set of optimal (first stage) solutions.

The objective function in (30) is linear in P; hence,

F(x, k) :=
∫

�

f (x, ξ)Pk(dξ) = (1 − k)F(x,P) + kF(x,Q)

is linear in k. Suppose that the stochastic program (30) has an optimal solution for all
considered distributions Pk, 0 ≤ k ≤ 1. Then the optimal value function

ϕ(k) := min
x∈X

F(x, k)

is concave on [0, 1]which implies its continuity and existence of directional derivatives
in (0, 1). Continuity at the point k = 0 is a property related with the stability results
for the stochastic program in question. In general, one needs a nonempty, bounded
set of optimal solutions X∗(P) of the initial stochastic program (30). This assumption
together with stationarity of derivatives ∂F(x,k)

∂k = F(x,Q)−F(x,P) is used to derive
the form of the directional derivative:

ϕ′(0+) = min
x∈X∗(P)

F(x,Q) − ϕ(0), (31)

which enters the upper bound for the concave optimal value function ϕ(k)

ϕ(0) + kϕ′(0+) ≥ ϕ(k) ≥ (1 − k)ϕ(0) + kϕ(1), k ∈ [0, 1]; (32)

see Dupačová (1990, 1996) and Dupačová and Polívka (2007) and references therein.
Contamination bounds (32) can be relaxed to

(1 − k)ϕ(P) + kF(x,Q) ≥ ϕ(Pk) ≥ (1 − k)ϕ(P) + kϕ(Q) (33)

valid for an arbitrary x ∈ X∗(P) and k ∈ [0, 1].
The development so far applies to general distributions P andQ. To be able to solve

the problem in practice, we usually form a sample average approximation version of
the problem and obtain a finite discrete distribution P̂. Tomake the contaminated prob-
lem solvable, the same property is required for the distribution Q̂. To apply the SDDP
algorithm, we have to assume that stage independence holds true for both the origi-
nal distribution P̂ and the contaminating distribution Q̂. That way, the contaminated
distribution P̂k shares the same property.

When the problem is too large to be solved precisely, we obtain only approximate
suboptimal solutions. In that case, an SDDP algorithm provides a lower bound ϕ on
the optimal objective function value; see Step 2 of the Algorithm 1. Since we always
have ϕ < ϕ, the contamination lower bound follows easily:
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ϕ(P̂k) ≥ (1 − k)ϕ(P̂) + kϕ(Q̂). (34)

With the approximate (suboptimal) solution x̃∗ of the problem with original dis-
tribution P̂, we proceed in the following fashion. Since x̃∗ is feasible, but in general
suboptimal for the contaminated problem with P̂k , we have:

ϕ(P̂k) ≤ F(x̃∗, k) = F(x̃∗, P̂) + k
∂F(x̃∗, P̂k)

∂k

= F(x̃∗, P̂) + k
(
F(x̃∗, Q̂) − F(x̃∗, P̂)

)
. (35)

Therefore, the following is a valid upper bound for the contaminated problem:

ϕ(P̂k) ≤ (1 − k)F(x̃∗, P̂) + kF(x̃∗, Q̂). (36)

Since the upper bound (36) is provided by the approximate solution x̃∗, we replace
the deterministic quantity F(x̃∗, P̂) by its statistical estimator ϕ(P̂). This estimator is
provided by the SDDP algorithm; see Step 3 of the Algorithm 1. By Proposition 3
from Kozmík and Morton (2014), we have that ϕ(P̂) → ϕ∗(P̂), w.p.1, as the number
of scenarios used to compute ϕ grows to infinity and that ϕ∗(P̂) ≥ F(x̃∗, P̂).

The value F(x̃∗, Q̂) cannot be computed directly as well. Instead, we form an upper
bound estimator under the distribution Q̂ in a similar fashionas the SDDP algorithm
does (see again Step 3 in Algorithm 1), but this time we use decisions x̃∗ as given.
In a practical large-scale application, the decisions x̃∗ cannot be stored in a memory.
We solve the original problem and store the cuts that are collected when the algorithm
ends. Then, we proceed with the upper bound estimator under the distribution Q̂ and
sample the scenarios. For these sampled scenarios, we use the stored cuts to obtain
decisions x̃∗ and apply these under the new distribution Q̂. With this approach, we
again get a statistical upper bound, say F̄(x̃∗, Q̂), for the value of F(x̃∗, Q̂). Plugging
this value into our formula (36), we reach the final upper contamination bound:

(1 − k)ϕ(P̂) + k F̄(x̃∗, Q̂). (37)

This bound is based on the set of scenarios used to compute the upper bounds and
therefore it is not deterministic.We have an asymptotic validity of this bound provided
by the results of Proposition 3 of Kozmík and Morton (2014):

(1 − k)ϕ(P̂) + k F̄(x̃∗, Q̂) → ϕ∗
F , w.p.1.; ϕ(P̂k) ≤ ϕ∗

F , (38)

as the sizes of samples to compute both upper bounds grow to infinity.
The contamination bounds we have just developed depend on the specification or

choice of Q and Q̂, respectively. When the contaminating distribution Q is not fully
specified, a natural idea is to use the worst distribution of the considered alternatives.
For simple uncertainty sets and under the assumption of stage independence, such
worst-case or robust contamination bounds can be applied. See, e.g., Shapiro (2012a)
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for an example of a manageable choice of uncertainty set of one-dimensional prob-
ability distributions specified by a known support and expectation; or for two-stage
problems see also Bertsimas et al. (2010).

7 Numerical illustrations

Webeginwith a simple asset allocationmodelwithout transaction costs and emphasize
that our primary purpose is to illustrate the performance of contamination bounds as
opposed to building a high-fidelity model for practical use. At stage t, the decisions
xt denote the allocations, and pt denotes gross return per stage; i.e., the ratio of the
price at stage t to that in stage t − 1. These represent the only random parameters in
the model. Without transaction costs, the nested CVaR model (13) specializes to:

Qt (xt−1, ξt ) = min
xt ,ut

−1�xt + λt+1ut + Qt+1(xt , ut ) (39a)

s.t. 1�xt = p�
t xt−1 (39b)

xt ≥ 0, (39c)

except that in the first stage: (i) the right-hand side of (39b) is instead 1 and (ii) because
−1�x1 is then identically −1, we drop this constant from the objective function.

We also consider the case with transaction costs, which are proportional to the value
of the assets sold or bought. We must modify the rebalancing equation between stage
t − 1 and stage t to include the transaction costs of ft1�|xt − xt−1|, where the | · |
function applies component-wise. Linearizing we obtain the following special case of
model (13):

Qt (xt−1, ξt ) = min
xt ,zt ,ut

−1�xt + λt+1ut + Qt+1(xt , ut )

s.t. 1�xt + ft1�zt = p�
t xt−1

zt − xt ≥ −xt−1
zt + xt ≥ xt−1
xt ≥ 0.

We usedmonthly price data of the most important assets traded on the Prague Stock
Exchange, January 2009 to February 2012. The summary of the month-to-month price
ratios can be found in Table 1.We have fitted amultidimensional correlated log-normal
distribution to the price ratios to obtain the original distribution P. The contaminating
distribution Q was then constructed from P by increasing the variance by 20 %.
Scenario trees were constructed by sampling P̂ and Q̂ from these distributions, using
the polar method, cf. Knopp (1966) for normal distribution sampling. The L’Ecuyer
random generator, cf. L’Ecuyer (2004) was used to generate the required uniform
random variables. The computation was implemented in our own C++ software, using
IBM ILOGCPLEX (2014) to solve the required linear programs andArmadillo (2014)
library for matrix computations. The CVaR levels αt were always set to 5 %.
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Table 1 Data summary
Asset Mean SD

AAA 1.0290 0.1235

CETV 0.9984 0.2469

CEZ 0.9990 0.0647

ERSTE GROUP BANK 1.0172 0.1673

KOMERCNI BANKA 1.0110 0.1157

ORCO 1.0085 0.2200

PEGAS NONWOVENS 1.0221 0.0863

PHILIP MORRIS CR 1.0213 0.0719

TELEFONICA C.R. 0.9993 0.0595

UNIPETROL 1.0079 0.0843

VIENNA INSURANCE GROUP 1.0074 0.1100

Table 2 Testing problems setup
Stages Descendants per node Total scenarios

3 1, 000 1, 000, 000

5 1, 000 1012
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Fig. 1 Three-stage problem contamination bounds with no transaction costs

We evaluated themodel with risk coefficients λt = 0.1. Both cases, with transaction
costs of 0.3 % and without transaction costs, were considered. We have computed the
contamination bounds for problems with 3 and 5 stages. In Table 2, we show the setup
for the scenario trees used in our algorithm.

The three-stage problems can be solved to optimality using our SDDP algorithm,
meaning that there is no gap between the lower bound and the upper bound, which
is formed by computing the population mean rather than sampling. Figures 1 and 2
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Fig. 2 Three-stage problem contamination bounds with transaction costs 0.3 %
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Fig. 3 Five-stage problem contamination bounds with no transaction costs

present the obtained lower and upper contamination bounds based on inequalities (34)
and (36).

For the case of five-stage problems, we are unable to compute the solutions exactly
and provide the contamination bounds based on the lower and upper bounds from the
SDDP algorithm. The lower bound based on the inequality (34) remains deterministic,
but the terms present in inequality (37) are estimated ten times and we provide their
mean as well as the empirical statistical upper bounds with confidence level of 95 %.
The results are presented in Figs. 3 and 4.

The first-stage decisions found for all considered setups are listed in Table 3.
The presented results show that for smaller problems, we are able to obtain tight

contamination bounds; in our testing setupwith three stageswe have a spread of 0.09%
in the case without transaction costs and 0.17 % spread in the case with transaction
costs, both cases considering k = 50 % contamination. For large-scale problems,
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Fig. 4 Five-stage problem contamination bounds with transaction costs 0.3%

Table 3 First-stage decisions
for three and five stages with the
original and contaminating
distributions

Stages Trans.
costs (%)

Distr. AAA PEGAS PHILIP M.

3 0 P̂ 0.1978 0.6214 0.1808

3 0 Q̂ 0.3394 0.2834 0.3773

3 0.3 P̂ 0.2065 0.5294 0.2642

3 0.3 Q̂ 0.4204 0.1391 0.4405

5 0 P̂ 0.4096 0.1868 0.4036

5 0 Q̂ 0.3399 0.4143 0.2458

5 0.3 P̂ 0.3652 0.2113 0.4235

5 0.3 Q̂ 0.2547 0.4011 0.3442

we can rely on the statistically valid bound or on the mean of sampled estimates.
For our five-stage setup, we obtained spreads of 1.13 and 1.03 % in the analogous
cases when using empirical statistical upper bounds. Even though we consider these
bounds pretty tight, we can also rely on the mean estimators, which are usually used
in the SDDP algorithms. That gives us spreads of 0.38 and 0.19 %, respectively. The
straightforward interpretation of our results would then state that the results of our
model can be considered stable with respect to growing variance of the underlying
random distribution which drives the asset price evolution.

8 Conclusion

We have shown three different models based on the CVaR risk measure for modeling
risk in the multistage stochastic programs and discussed their basic properties and
differences. Under the assumption of stage-wise independence, we present and apply
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stochastic dual dynamic programming algorithm to the model with nested CVaR risk
measure. For the purposes of output analysis, the contamination technique is extended
to cover the large-scale cases where we are not able to solve the problem precisely,
but we can obtain approximate solutions through SDDP. Numerical results with the
asset allocation problem provide sufficiently tight bounds that can be used in practical
applications to test the stability.

Further research should include extended numerical experiments, including all three
presented models and problems with more stages. Other risk measures and probability
distributions than those presented in the article could be also considered. More general
structures without the stage independence assumption would provide another topic for
further application of our ideas. In such a case, the SDDP algorithm does not apply
and some other way to compute the contamination bounds for large-scale problems
has to be developed.
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Ruszczyński A (2010) Risk-averse dynamic programming for Markov decision processes. Math Program

125:235–261
Shapiro A (2003) Inference of statistical bounds for multistage stochastic programming problems. Math

Methods Oper Res 58:57–68
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