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Abstract There are numerous practical vehicle routing applications in which vehicles
have to stop at certain facilities along their routes to be able to continue their service.
At these stops, the vehicles replenish or unload their cargo or they stop to refuel. In this
paper, we study the vehicle routing problem with intermediate stops (VRPIS), which
considers stopping requirements at intermediate facilities. Service times occur at these
stops and may depend on the load level or fuel level on arrival. This is incorporated into
the routing model to respect route duration constraints. We develop an adaptive variable
neighborhood search (AVNS) to solve the VRPIS. The adaptive mechanism guides the
shaking step of the AVNS by favoring the route and vertex selection methods according
to their success within the search. The performance of the AVNS is demonstrated on test
instances for VRPIS variants available in the literature. Furthermore, we conduct tests
on newly generated instances of the electric vehicle routing problem with recharging
facilities, which can also be modeled as VRPIS variant. In this problem, battery electric
vehicles need to recharge their battery en route at respective recharging facilities.
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1 Introduction

Intermediate stops have to be considered in many practical vehicle routing applications,
e.g., for (1) replenishment of the goods to be delivered, (2) refueling (or recharging
in case of battery electric vehicles), or (3) unloading of collected goods or disposal
of waste. These stops differ from regular customer stops in two aspects: first, they are
optional, and second, they depend on the state of the vehicle with respect to load and
fuel level (which decides the latest possible moment at which an intermediate stop has
to occur). Contrary to optional customer stops, e.g., in vehicle routing problems with
profits (Archetti et al. 2013), intermediate stops are not directly related to customer
service or profit maximization, but aim at keeping the vehicle operational.

As mentioned above, major applications of intermediate stops are good replenish-
ment, refueling, and waste disposal, which are detailed in the following. Intermediate
replenishment stops are used in distribution systems with several facilities storing the
products to be delivered (Angelelli and Speranza 2002; Crevier et al. 2007; Tarantilis et
al. 2008). The aim is to avoid returning to a central depot to reload the delivery vehicle.
Concrete applications can be found in the distribution of heating oil (Prescott-Gagnon
et al. 2012), road maintenance (Amaya et al. 2007) or in city logistics, where city
freighters may visit satellite facilities to be replenished (Crainic et al. 2009).

Intermediate stops for unloading operations are common in waste collection or snow
ploughing. Here, intermediate disposal sites need to be visited, at the latest, when the
maximal capacity of the vehicle is reached (see, e.g, Kim et al. 2006; Benjamin and
Beasley 2010).

Intermediate refueling stops occur in several practical applications. For example,
some companies keep contracts with gas station chains to get special rates at the
respective stations, which makes it profitable to consider refueling stops in the route
planning. Without such contracts, this is not the case because the network of gas
stations is generally quite dense in developed countries. The refueling topic gains
further relevance by the strong growth in alternative fuels, namely biodiesel, ethanol,
hydrogen, methanol, natural gas or propane, for which only a sparse infrastructure
is existent. Finally, battery electric vehicles (BEVs) need to stop to recharge during
longer routes due to their limited driving range (Conrad and Figliozzi 2011; Schneider
et al. 2014). BEV technologies have recently gained importance due to city logistics
concepts, which aim at reducing the negative external effects of urban freight trans-
portation. In this context, BEVs seem to be a very good choice as they have no local
emissions, operate very efficiently at the stop-and-go level and have low noise lev-
els (Wang and Lin 2013). Moreover, BEVs are defined to be emission free by EU
regulation No 510/2011 and are, therefore, a major means to comply with laws and
regulations on emissions.

This paper is the first to introduce the vehicle routing problem with intermediate
stops (VRPIS), a routing model that considers visits to intermediate facilities to keep
vehicles operational. The necessity to visit an intermediate facility depends on the
fuel and/or the load level of a delivery vehicle. The time spent at a facility is defined
as a function of the fuel and load level on arrival. By abstracting from the actual
purpose of the intermediate stop, be it for replenishment, refueling or disposal, our
problem definition comprises several problems with specific applications proposed in
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the literature. The objective of VRPIS is to minimize the total costs composed of travel
costs and fixed costs for the deployment of vehicles.

VRPIS extends the NP-hard capacitated VRP (CVRP) by several combinatorial
aspects, which makes exact methods unsuitable for solving large problem instances in
fast computation time. We develop a heuristic solution approach, namely an adaptive
variable neighborhood search (AVNS), which combines ideas of VNS (Hansen and
Mladenovi¢ 2001) and adaptive large neighborhood search [ALNS, see (Pisinger and
Ropke 2007)]. This method has been successfully applied to single- and multi-depot
routing problems [see (Stenger et al. 2013a,b)]. To assess the performance of our
AVNS, we perform computational studies on benchmark instances of VRPIS variants
previously studied in the literature.

Moreover, we investigate the electric VRP with recharging facilities (EVRPRF) as
a special case of VRPIS. EVRPRF models the routing decision of logistics service
providers employing BEVs. The driving range of a vehicle is restricted by the max-
imum battery capacity and a distance-related energy consumption along the route,
which determines the battery charge. We simplify several real-world characteristics
and do not consider the influence of vehicle load, vehicle speed and grades on energy
consumption. The battery can be recharged at any of the available recharging facili-
ties. For this problem, we generate a set of small benchmark instances, which are used
to assess the solution quality of our method in comparison to the commercial solver
CPLEX. In addition, detailed results for a set of large instances are provided.

This paper is organized as follows. In Sect. 2, we review the related literature.
Section 3 presents the problem description and the mathematical models of VRPIS
and of the special case EVRPRFE. The AVNS solution method is detailed in Sect. 4.
Computational tests to assess the performance of the proposed method are described
in Sect. 5. The paper is summarized and concluded in Sect. 6.

2 Literature review

This section gives short reviews of the following strands of literature related to VRPIS
and EVRPRF: (1) VRP with intermediate replenishment or disposal stops, (2) VRP
with refueling or recharging stops, and (3) refueling problems occurring in other
application areas.

Crevier et al. (2007) introduce the multi-depot VRP with inter-depot routes
(MDVRPI), which considers intermediate depots at which vehicles can be replenished
with goods during the course of a route. The authors develop a heuristic procedure that
combines ideas from adaptive memory programming (Rochat and Taillard 1995), tabu
search (TS) and integer programming. Although the multi-depot case is described, all
proposed benchmark instances consider only one depot at which the vehicle fleet is
stationed. Therefore, Tarantilis et al. (2008) rename the problem to VRP with interme-
diate replenishment facilities (VRPIRF), and we adopt this acronym for the remainder
of this paper. They propose a hybrid guided local search heuristic that follows a three-
step procedure. First, an initial solution is constructed by means of a cost-savings
heuristics. Second, a VNS algorithm is applied using a TS in the local search phase.
Third, the solution is further improved by means of a guided local search.

@ Springer



356 M. Schneider et al.

Prescott-Gagnon et al. (2012) propose three metaheuristics to solve a VRP aris-
ing in heating oil distribution, considering intra-route replenishments, heterogeneous
vehicles, optional customer visits and time windows. The authors design a TS, an LNS
based on the TS and a column generation heuristic and report computational results
obtained on test instances derived from a real-world dataset. Other problems similar
to VRPIREF arise in the collection of waste (see, e.g., Angelelli and Speranza 2002;
Kim et al. 2006; Coene et al. 2010; Benjamin and Beasley 2010), in snow clearance
(Perrier et al. 2007), or in road maintenance and marking (Amaya et al. 2007; Salazar-
Aguilar et al. 2013). A recent review of the literature on waste collection can be found
in Belién et al. (2014).

Hemmelmayr et al. (2013) study the periodic vehicle routing problem with inter-
mediate facilities (PVRP-IF) in the context of waste collection. The authors introduce
a hybrid solution approach consisting of a VNS using dynamic programming to insert
intermediate facilities. The solution procedure is also applied to the VRPIRF problem
instances provided by Crevier et al. (2007) and Tarantilis et al. (2008) and is able to
outperform both approaches.

The literature on routing problems with refueling stops is still relatively scarce.
Conrad and Figliozzi (2011) present the recharging VRP, in which vehicles with lim-
ited range have the possibility of recharging en route at certain customer locations.
The recharging time is assumed to be fixed. The impact of maximum driving range,
recharging time and time window existence is studied using a selection of the VRP
with time windows (VRPTW) instances of Solomon (1987). Moreover, bounds are
formulated to predict average tour lengths. Erdogan and Miller-Hooks (2012) propose
the green VRP (G-VRP), which considers a limited fuel capacity of the vehicles and
the possibility of refueling at facilities along the route with a fixed refueling time.
Neither capacity restrictions nor time window constraints are considered. The authors
propose two heuristics to solve G-VRP. The first is a modified Clarke and Wright
savings algorithm (MCWS) which creates routes by establishing feasibility through
the insertion of refueling facilities, merging feasible routes according to savings and
removing redundant facilities. The second heuristic is a density-based clustering algo-
rithm (DBCA) designed as cluster-first and route-second approach.

Schneider et al. (2014) develop a hybrid heuristic approach that combines VNS with
TS to address the electric vehicle routing problem with time windows and recharging
stations (E-VRPTW). Contrary to the EVRPREF studied in this paper, their E-VRPTW
includes time windows, but features no maximal route duration constraints. Moreover,
their objective is hierarchical and inspired by the objective function used in heuristic
methods for the VRPTW: they first minimize the number of employed vehicles and
only minimize traveled distance second, whereas we follow the objective of minimiz-
ing total costs composed of travel costs and fixed vehicle costs. Their VNS/TS is able
to significantly improve on the results of Erdogan and Miller-Hooks (2012) on the
G-VRP instances and achieves convincing results on the VRPIRF instances, although
the method is not specifically designed for this type of problem.

Refueling problems are also investigated in other application areas, e.g., the refuel-
ing of aircraft or locomotives. In Barnes et al. (2004), tanker aircraft stationed at several
bases have to be assigned to receiver aircraft to perform refueling in midair. Raviv and
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Kaspi (2012) deal with the optimal refueling schedule of locomotives pulling trains,
i.e., the determination of the yards at which the locomotives have to be refueled.

3 Problem definition

This section presents a mixed-integer program of the VRPIS (Sect. 3.1) and derives
the formulation of the special case EVRPRF (Sect. 3.2).

3.1 The vehicle routing problem with intermediate stops (VRPIS)

We start with the introduction of some necessary notation. Let C = {1, ..., n} denote
the set of n customers and let F' denote the set of facilities. The set F itself comprises
the set of refueling facilities Fr, the set of replenishment or unloading/disposal facil-
ities (in the following denoted as loading facilities) F7, and the set Fry of facilities
where both refueling and loading are possible (from now on referred to as combined
facilities), i.e., F = Fg U Fp U Fpr. We use a set of dummy vertices F’ to allow
several visits to the facilities in F (see, e.g., Bard et al. 1998; Schneider et al. 2014).
Further, let vertices 0 and n 4 1 denote instances of the same depot representing the
start and end of each vehicle route. To indicate which depot instances are included in
a fictive set X, the respective depot instances are used as indices, i.e., Xo = X U {0},
Xp+1 = XU{n+1}and Xo 41 = X U{0}U{n+ 1}. Finally, let V' = C U F’ denote
the set of all customers and visits to facilities.

Then, VRPIS can be defined on the complete directed graph G = (Vé’n +1- A) with
the set of arcs A = {(i,j) : i,j € V(;,n+1’ i # j}. Arcs (i, j) € A are associated
with a cost ¢;;, a distance d;; and a travel time ;. A homogeneous fleet of m vehicles
with load capacity ¢, fuel capacity p and fixed costs per use ¢ is stationed at the
depot. Fuel capacity is expressed in distance units and denotes the distance that can
be traveled with maximum fuel level.

Each customeri € C has apositive demand u; and service time #; . Each facility visit
J € F'is associated with a docking time t;], which marks the time span between the
arrival at the facility and the beginning of the actual refueling and/or loading process.
The time span for the refueling and loading process is determined by functions &/ ( f )
and @' (/j), respectively. It may depend on the fuel level f; (the cargolevel/;) on arrival
at the facility. Visiting a facility j € Fr completely refills the fuel tank of a vehicle and
vehicles are fully replenished or unloaded at facilities in Fz,. For combined facilities,
we assume that vehicles are fully loaded and are simultaneously refueled during the
time span occupied by the loading process. The increase in fuel during that time span
is given by the function ®(/;), which depends on the loading time and thus on the
load level /; on arrival at the facility. A refueling process at a combined facility that
takes longer than the loading time is modeled by a visit to a refueling facility in Fr
with the same location as the combined facility. Each facility is assumed to have an
unlimited fuel and cargo capacity, respectively, and can be simultaneously used by any
number of vehicles. This assumption seems adequate for many real-world scenarios,
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Table 1 Parameters and decision variables of the VRPIS model

O,n+1 Instances of the depot

C Set of customers = {1, ..., n}

F 1/7 Set of visits to refueling facilities

F i Set of visits to loading facilities

F ;7 L Set of visits to combined facilities

F’ Set of visits to all intermediate facilities, F' = F 1’,,- UF i UF I,FL

14 Set of all customers and visits to facilities C U F’

6’n+1 Set of all vertices Vé,n+1 =V uQju{n+1}

v Set of all vertices excluding depot instance n + 1, Vj = {0} U V/

Vi Set of all vertices excluding depot instance 0, V, | = {n + 1} U V'

ofix Fixed cost per used vehicle

cij Travel costs between vertices i and j

dij Distance between vertices i and j

u; Demand of customer i (u; = 0ifi ¢ C)

m Number of available vehicles

P Maximal fuel capacity of a vehicle expressed as possible range without refueling

q Maximal loading capacity of a vehicle

lij Travel time between vertices i and j

pmax Maximum route duration

i Docking time at intermediate facility i

£ Service time at customer i () = 0ifi ¢ C)

;) Function returning the amount that is refueled at vertex i during the loading process, given
the current load level /;

o/ ( fi) Function returning the refueling time at a refueling facility depending on fuel level f;

ol i) Function returning the loading time at a loading facility depending on the current load
level [;

aj Decision variable specifying the arrival time at vertex i

fi Decision variable specifying the fuel level at vertex i expressed in distance units

l; Decision variable specifying the load level at vertex i

Xij Binary decision variable indicating if arc (i, j) € A is traversed

but clearly represents a simplification for scenarios in which capacity and loading
possibilities are constrained.

To represent working hour restrictions of real-world applications, we assume that
the arrival time of all vehicles at depot instance n + 1 may not exceed the maximum
route duration ¥, The following variables are used in the model: a; specifies the
time on arrival at vertex j, f; the fuel level, and /; the load level. Binary decision
variables x;; take value 1 if vertex j is visited after vertex i and 0 otherwise. Thus, the
mixed-integer program of VRPIS is as follows (Table 1 summarizes the notation):

min 3 Y x4+ > g ()

i€V eV, it jev'
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> oxj=1 VjeC 2)

Vg it
> oxj <1 VjeF 3)

ieVi#j
2 Xoj =m “4)

jev’
> oxmj— X xi=0 VeV ®)

ieVyi#j i€V, it

0 <a; < tmax Vi€ Vi (6)
a; + (tij +t))xij — " (1 = x;5) < a; VieCU{0},jeV, ,i#] @)
ai + (tij + txij + O (fi) — 1" (1 —x;j) <a; Vi€ Fp, je Vi i# ] (8)
ai + (tij +tHxij + OLU) — 1" (1 —x;j) <a; Yie FJUFy, jeV, .i#] 9)
0< fj < fi —dijxij + p(1 — xij) VYieCUF[,jeV, . i#] (10)
0<fj<p—djxi Vie Fpulo),j eV, .i#j (11)
0<fj < fi+0OW)—dijxij + p(l —x;j) VieFp,jeVy,i#] (12)
fi+0U) < p Vi € Fpy (13)
0<1lj <l —uixij +q(l —x;j) ViGCUFI,:,jGV,:_'_I,i;ﬁj (14)
0<1lj <q—uxi Vi e {(QyUF, UFg,jeV,,i#j (15)
xij €{0, 1} Vie Vg, je Vo i#j (16)

The goal of the VRPIS is to minimize the sum of the total travel cost and the
fixed vehicle cost, expressed by the objective function (1). Constraints (2) ensure that
every customer must be visited, while optional intermediate stops are ensured by Con-
straints (3). Constraints (4) guarantee that the number of routes does not exceed the
number of available vehicles. Flow conservation is given by Constraints (5). Con-
straints (6) limit the arrival time at each vertex to the maximum route duration. Time
feasibility for arcs leaving customers or the depot is defined by Constraints (7). The
same is ensured for arcs leaving refueling facilities and loading facilities in Con-
straints (8) and (9). Constraints (10) control the fuel feasibility for arcs leaving cus-
tomers or loading facilities and Constraints (11) guarantee that a refueling facility is
left in a completely refueled state. The fuel increase during loading at combined facili-
ties is defined in Constraints (12). Constraints (13) guarantee that no refueling beyond
the maximal fuel capacity is possible at combined facilities. Constraints (14) control
the load feasibility for arcs leaving customers or refueling facilities. Constraints (15)
ensure that vehicles leave loading facilities and the depot in a fully loaded state. Binary
decision variables are defined in Constraints (16).

3.2 New special VRPIS case: the electric vehicle routing problem with recharging
facilities (EVRPRF)

As described above, we investigate the EVRPRF as a special case of the VRPIS. The
VRPIS model is transformed into a formulation of the EVRPRF as follows:
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1. No intermediate cargo loading takes place. Therefore, no loading facilities are
present in the EVRPRF and sets F;, and FFry, are empty and Constraints (9), (12)
and (13) can be neglected. To allow for recharging at the depot, dummy instances
of 0 are now contained in the set F7,.

2. We assume a linear recharging process of the vehicle battery, depending on a given
average recharging speed g. Since the fuel capacity is expressed as the maximum
travel range without refueling, g describes the increase of range per time unit.

Thus, the function for the refueling time is defined as: ®/ (f;) = p%f".

3.3 Special cases from the literature: G-VRP and VRPIRF

To assess the performance of our AVNS, we conduct tests on instances of the special
VRPIS cases G-VRP and VRPIRF and compare our results to those presented in the

literature (see Sect. 5).

G-VRP can be addressed as special case of VRPIS as follows:

— As no loading at intermediate facilities is considered in G-VRP, all related con-

straints of VRPIS are omitted.

— /™ is set to zero because no vehicle cost is considered in G-VRP.
— The refueling time ®/(f;) is set to zero and docking time tid is set to the fixed
service time of the G-VRP instances.

VRPIRF can be addressed as special case of VRPIS as follows:

— Since the VRPIRF instances do not consider refueling possibilities, all refueling-

related constraints of VRPIS are omitted.

Loading time ®'(J;) is set to zero because only a fixed docking time tlfi occurs
when visiting a loading facility.

The maximum route duration ™ is reduced by tl.d to account for a docking

operation at the depot at the end of a route, which is considered in the VRPIRF.

No vehicle deployment costs are considered in the VRPIRF, so ¢/* is set to zero.

Table 2 clarifies the relation between VRPIS and the special cases considered in
this paper by comparing the properties of each problem.

Table 2 Relation between VRPIS, the introduced special case EVRPREF as well as the special cases from

the literature VRPIRF and G-VRP

EVRPRF VRPIRF G-VRP VRPIS
Fixed vehicle cost v v
Refueling possible v v v
Loading possible v v
Fuel-/load-dependent service times v v
Fixed docking time v v v v
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4 An adaptive variable neighborhood search algorithm for the VRPIS

In this section, we describe in detail our AVNS algorithm for solving VRPIS. AVNS
follows the VNS diversification paradigm of searching in increasingly large neigh-
borhoods [for a detailed introduction to standard VNS, see (Hansen and Mladenovié
2001)]. However, routes and vertices involved in the shaking step of AVNS are not
selected entirely at random, but are determined by problem-specific rules and the past
search performance of these rules. AVNS has previously provided promising results for
MDVRP, VRP with private fleet and common carriers (VRPPC), multi-depot VRPPC
(Stenger et al. 2013a) and the prize collecting VRP with non-linear cost (Stenger et
al. 2013b).

The choice of AVNS is motivated by two factors. First, the high complexity of
VRPIS makes it necessary to use an algorithm with strong diversification possibili-
ties. Pretests have shown that classical local-search-based algorithms, like TS, often
get stuck in local traps from which they are not able to escape. By contrast, the shaking
step of our AVNS modifies up to four routes and moves sequences of up to six nodes
in one iteration, which proved to be of vital importance to find promising solutions.
Moreover, VNS algorithms presented in the literature have previously shown convinc-
ing performance on VRPs with intermediate stops [see, e.g., (Tarantilis et al. 2008)].
Second, to ensure acceptable runtimes on large problem instances, a high efficiency
of the search is required. The adaptive mechanism of AVNS takes into account the
problem-specific characteristics of VRPIS and adapts based on the recent search per-
formance. Thus, it efficiently guides the search to improving solutions. To sum up,
combining the strong diversification of VNS with an adaptive mechanism results in
a highly efficient heuristic, characterized by short computing times and high-quality
results.

A pseudocode overview of the AVNS is given in Fig. 1. First, the set of neighborhood
structures { Ny |k = 1, ..., k™ } is defined. Next, an initial solution S is constructed
by means of a modified version of the savings algorithm by Clarke and Wright (1964),
which considers the insertion of intermediate stops (Sect. 4.1), and the solution is
subsequently improved by a local search (see Sect. 4.3).

In the AVNS component, a guided shaking step is used to diversify the search, pro-
ducing arandom solution §” within the «-th neighborhood of S (Sect. 4.2.1). The adap-
tive mechanism is characterized by problem-specific selection methods for the routes
and vertices to be shaken instead of an entirely random selection. Besides methods
which have proven their effectiveness in previous works, we design specific methods
which take the characteristics of intermediate stops into account (Sect. 4.2.2). Each
of the selection methods is chosen according to a probability, which is dynamically
updated during the search depending on the performance of the method (Sect. 4.2.3).

Subsequently, a greedy local search procedure is applied to obtain the local optimum
S (Sect. 4.3). In this step, classical operators as well as operators which are able to
rearrange intermediate stops are used. If §” is accepted, it replaces S and « is reset to
one. Otherwise, S” is discarded and « is increased by one, i.e, the next neighborhood
is selected. We reset to the overall best solution after a certain number of iterations
without improvement. The search is stopped after a given number of iterations without
improvement of the best solution.
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Define the neighborhood structures N, with k =1, .., k™%
Generate initial solution S
Improve initial solution by local search
K1
repeat
{Adaptive Shaking}
Select route and vertex selection method and generate S’ € N ()
{Local Search}
S’ « localSearch(S")
{Acceptance Decision}
if accept(S”) then
S — S//
K1
else
K+ k mod K" 41
end if
Update weights of route and customer selection methods
until given number of iterations without improvement reached

Fig. 1 Pseudocode of the AVNS heuristic for solving VRPIS

As described above, we adapt the algorithmic framework of AVNS to the specifics
of VRPIS by incorporating problem-specific knowledge into the selection methods of
our adaptive component and into the local search component. Numerical tests have
proven the positive effects of these novel methods on the solution quality and runtime
of our algorithm (see Appendix for details).

4.1 Initialization with modified savings algorithm

A modification of the savings algorithm, introduced by Clarke and Wright (1964), is
used to quickly generate initial vehicle routes that include intermediate stops. We allow
the initial solution to be infeasible with respect to fuel, load or duration constraints.
The steps of our modified Savings Algorithm are the following:

1. Generate back-and-forth tours for all customers. If such a tour is already infeasible
concerning fuel, perform the cost-optimal insertion of a refueling facility into the
respective route (see Sect. 4.3 for details).

2. Evaluate potential cost savings for merging each pair of routes and sort the merge
moves in decreasing order.

3. Out of the remaining merge moves, select the two routes with highest cost savings
and merge them if the maximum route duration is not exceeded. If no merge with
positive cost savings exists, stop.

4. Evaluate the resulting route:

(a) If fuel or load violations emerge in the resulting route, try to resolve them by
adding intermediate facilities at the optimal position.

(b) Ifthefacility insertion leads to a duration violation, cancel the previous merging
and continue with Step 3.

(c) Iftheresulting route starts or ends with an intermediate facility, i.e., no merging
according to customer-related cost savings can be performed at this position,
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Route 2
Route 1 oue

Fig. 2 Merging of routes that start or end with an intermediate facility. Removed arcs are shown with
dashed lines, inserted arcs with dotted lines

try to connect the facility with one of the remaining routes such that the cost
increase is minimized and all constraints are still met (see Fig. 2).
5. Continue with Step 3.

The resulting number of routes may exceed the number of available vehicles. In
this case, the route with the smallest cumulated customer demand is dissolved and its
customers are inserted into the remaining routes at the cost-optimal position. Load
capacity, fuel capacity and duration violations are handled by means of a penalizing
cost function, see Sect. 4.4. The process of dissolving routes is repeated until the
required number of vehicles is reached. Subsequently, the solution is improved by a
local search step (see Sect. 4.3).

4.2 The adaptive shaking

In the shaking step of our AVNS, new solutions are generated according to prede-
fined neighborhood structures (Sect. 4.2.1). Problem-specific methods are used for
the selection of the routes and vertices to be involved in the shaking (Sect. 4.2.2).
The algorithm guides the shaking step by adapting the selection probabilities of these
methods according to their previous performance during the search (Sect. 4.2.3).

4.2.1 Shaking neighborhoods

Similar to Stenger et al. (2013a), two operators are employed to generate neighboring
solutions: a sequence relocation and a cyclic exchange operator, originally introduced
by Thompson and Orlin (1989). The cyclic exchange moves vertices between routes in
a cyclic fashion. It is characterized by two parameters: the number of routes involved
2 and the maximum number of vertices to be exchanged '™,

For each route k the vertex sequence \IJj?k’Fk with start vertex j; and length Ty is
transferred to route k + 1 at the former position of sequence \I/f:r: Tt In Figure 3, the
cyclic exchange operator is depicted with 2 = 3 routes, exchanging I'y = 1, T, =2
and I's = 2 vertices. Note that, if the total number of existing routes gets below the
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k k+1 k+2 k

r=1 r=2 r=2

Fig. 3 Example of a cyclic exchange with three routes

number of routes to cycle, €2 is reduced accordingly. Similarly, I'; has to be adjusted
if it exceeds the number of vertices of route k, denoted with | Vi]|.

Sequence relocation represents a restriction of the cyclic exchange operator. A
vertex sequence is relocated from one route to another, and the latter keeps all of its
former vertices. Thus, '™ = () applies for the second route.

Table 3 shows the neighborhood structures employed within the search. After six
sequence relocation neighborhoods the search continues with 18 cyclic exchange
neighborhoods, considering €2 = 2 to 2 = 4 routes between which up to '™ = 6
vertices can be transferred. Sequence lengths with up to I'™** = 4 vertices are ran-
domly chosen within the interval [0, min(I"™#*, | V¢|)]. Sequence lengths with more
than four customers are defined to be fixed.

4.2.2 Selection methods

Instead of determining the routes and vertices to be involved in the shaking entirely
at random, the AVNS algorithm guides the shaking step to a certain extent. For this
purpose, several methods are implemented which bias the route and vertex sequence
selection. On the one hand, we use methods which have proven their effectiveness in
previous works on routing problems. On the other hand, we design problem-specific
methods which take into account the new characteristics of intermediate stops, e.g., the
associated detours required. Each of the methods is chosen with a certain probability,
which is dynamically updated during the search depending on the success of the
method in former iterations. The selection methods and the adaptive mechanism are
detailed in the following.
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Table 3 Neighborhood structures examined within the shaking step of the AVNS

K Type Q rmax K Type Q rmax
1 Sequence relocation 2 1 13 Cyclic exchange 3 1
2 Sequence relocation 2 2 14 Cyclic exchange 3 2
3 Sequence relocation 2 3 15 Cyclic exchange 3 3
4 Sequence relocation 2 4 16 Cyclic exchange 3 4
5 Sequence relocation 2 5 17 Cyclic exchange 3 5
6 Sequence relocation 2 6 18 Cyclic exchange 3 6
7 Cyclic exchange 2 1 19 Cyclic exchange 4 1
8 Cyclic exchange 2 2 20 Cyclic exchange 4 2
9 Cyclic exchange 2 3 21 Cyclic exchange 4 3
10 Cyclic exchange 2 4 22 Cyclic exchange 4 4
11 Cyclic exchange 2 5 23 Cyclic exchange 4 5
12 Cyclic exchange 2 6 24 Cyclic exchange 4 6

Route selection The first of the 2, routes of the current neighborhood N, is chosen

according to one of the following five route selection methods:

1.

Random The probability of being selected is equal for every route.

2. Route length The probability of a route for being selected is proportional to the

associated travel distance. The intention is to remove vertices from long routes
and reinsert them into shorter routes to reduce the total costs.

Route length per demand unit The selection probability of a route is proportional
to the relation of the total distance and the cumulated demand of a route. This
criterion shall lead to an improvement of inefficient routes.

Facility density The probability is proportional to the ratio of the number of inter-
mediate stops to the number of customers within a route. The goal is to favor routes
that possibly contain redundant facility visits.

. Facility detour The probability is proportional to the total detour resulting from

intermediate stops. This is intended to reduce the associated detours and thus the
overall costs.

After choosing the first route by means of one of the procedures above, the other

routes to be involved in the shaking are iteratively determined as follows: the next
route is randomly chosen from the set of all remaining routes that are spatially closer
than a predefined threshold d™** to the previously selected route [cp. (Stenger et al.
2013a)].

Vertex sequence selection Once the routes to be involved are determined, the vertex

sequences to be removed from each route must be identified. The following three
methods are used for this selection decision:

1.
2.

Random Each vertex sequence is chosen with the same probability.
Distance to next route The probability of selecting a vertex sequence is inversely
proportional to the distance of the sequence to the route into which it will be
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inserted. This is measured by the sum of the vertex distances to the center of
gravity of the target route.

3. Distance to neighboring vertices The probability of selecting a sequence is pro-
portional to the distance of the sequence to the surrounding vertices. It is given
by the sum of the distance between the first vertex and its predecessor and the
distance between the last vertex and its successor. Removing a sequence which is
far apart from the other vertices of the route can reduce the total costs.

4.2.3 Adaptive mechanism

At each shaking step, the choice of the route and vertex selection methods is based
on probabilities. Each method is assigned the same probability at the beginning of
the search. The probability of each method is then dynamically updated in the course
of the search depending on its success in improving the current solution. To select
the methods, we use the roulette wheel selection procedure as proposed by Pisinger
and Ropke (2007) for ALNS. Given A selection methods, each method s is assigned
a weight wy. The probability of selecting method s is then defined by wy/ Z;LI wj.
After y AVNS iterations, the weight of each method is updated based on its success
during these iterations. The performance of a method is measured by a scoring system.
A score of nine is added to the total score of a method whenever it achieved a new
overall best solution, a score of three if the current solution was improved and a score
of one if the solution is worse than the current one, but accepted according to the
acceptance criterion. If ¢; denotes the current score of method s and s the number
of applications of the method since the last weight update, then the new weight is
calculated as wy; = ws(1 — p) + ,0% The system parameter p € [0, 1] allows to
control to what extent the past value of the weight influences the new one. The values
¢, and x; are reset to zero after each update.

4.3 Local search

The solution generated within the shaking step is subsequently improved by several
greedy local search procedures. All operators are implemented such that the first
improving move is accepted.

First, potential fuel or load violations within a route are handled by adding visits to
intermediate facilities. If the distance between two consecutive refueling facility visits
exceeds the fuel capacity of the vehicle, the fuel level drops below zero at a certain
point. Hence, at least one refueling facility must be visited before this point. Let ¢
denote the position of the last visited refueling facility and o that of the last vertex
reachable from there. The best insertion position is, therefore, determined within the
path {¢ + 1, ..., o + 1}. For each possible position, the cost for inserting the closest
refueling facility i € FF is calculated. The insertion with the lowest cost increase is
performed, but in this step insertions leading to feasible solutions are always preferred
to infeasible solutions. The insertion of loading facilities is carried out in analogous
fashion.
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In a second step, we aim to improve the routing by means of the following operators,
which are applied in random order. The 2-opt operator replaces two edges by two new
ones (Lin 1965). A restricted variant of the Or-Opt exchange (Or 1976) replaces three
existing edges by three new ones such that a sequence of three vertices is relocated
(Stenger et al. 2013a). The intra-route relocate operator moves a customer to a different
position within a route (Savelsbergh 1992). This operator is also defined for moving
facilities. Finally, a facility replacement operator evaluates for each facility visit of each
route whether replacing the facility visit with a visit to a different facility decreases
the routing costs.

This block is followed by an application of a facility removal operator, which
aims at removing redundant facility visits. In a final step, we apply two inter-route
operators. The inter-route relocate operator moves a customer from its current route
to another, and the exchange operator interchanges two customers between two routes
(Savelsbergh 1992).

4.4 Penalty determination

Tightly constrained problems often let the local search get stuck in local optima quickly.
It is, therefore, reasonable to temporarily allow constraint violations and impose
penalty costs on infeasible solutions (see, e.g., Cordeau et al. 1997; Vidal et al. 2012).
We define the total penalty costs of a solution as CostPY = §C.,C 450D 45UV,
with 8¢ denoting the penalty factor for capacity violations, v¢ the capacity violation of
the solution, 82 the duration penalty factor, vP the duration violation of the solution,
8Y the fuel penalty factor, and vY the fuel violation of the solution.

All penalty factors are initialized to 8° and dynamically varied within the interval
[§Min §MaX] After a given number of local search iterations n* with a violation of the
respective constraint, the penalty factor is increased by factor §"P44 Analogously,
after n~ feasible iterations, the penalty factor is reduced by factor §"P42®_ Preliminary
tests showed that choosing different values for n* and n™ limits cycling of the local
search, especially in small-sized problems.

4.5 Acceptance decision

The solution S” obtained by the local search procedure is compared to the yet best
solution S. If S” is accepted, it replaces S as initial solution and « is reset to one.
Standard VNS implementations usually model the local search as a simple descent
step, i.e., S is only accepted if it is improving on S. We use a criterion inspired by
simulated annealing (SA) to control solution acceptance. This approach was originally
proposed by Hemmelmayr et al. (2009) and also applied in Stenger et al. (2013a).

Improving solutions are always accepted, while non-improving ones are accepted

. . —(f ("= (S) . .
with probability e v . The temperature parameter ¥ is decreased from its

initial value ¥° by factor ¥~ after every AVNS iteration. After ¢ non-improving
main iterations, the current solution is reset to the best solution found so far. Solution
diversification is increased by resetting ¥ to 9 after & solution resets.
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5 Computational studies

This section presents the computational studies to examine the effectiveness of the
AVNS. We perform tests on available instances developed for the routing problems
G-VRP (Erdogan and Miller-Hooks 2012) and VRPIRF (Crevier et al. 2007; Tarantilis
et al. 2008), which are both special cases of VRPIS. In addition, we design two sets of
benchmark instances for the EVRPRF introduced in Sect. 3.2. A set of small instances
is used to assess the quality of our solutions by comparing them to the solutions
obtained with the commercial solver CPLEX. A set of large instances is used to
prove the ability of our algorithm to deal with realistically sized problems in terms of
computational effort. Detailed results are provided to enable a comparison with future
methods developed for the EVRPRF. To the best of our knowledge, our numerical
studies cover all special cases of the VRPIS investigated in the literature.

Section 5.1 describes the test environment and the parameter setting. The com-
putational results obtained on the special cases of the VRPIS from the literature are
presented in Sect. 5.2. Section 5.3 details the generation of EVRPRF instances and
the results obtained on this benchmark.

5.1 Experimental environment and parameter settings

The AVNS is implemented as single-thread code in Java. Tests are conducted on a
desktop computer with an Intel Core i5 2.67 GHz processor with 4 GB RAM, running
Windows 7 Professional. All numerical tests are carried out with the same parameter
setting, which was determined during the development and testing of our algorithm.

To determine this parameter setting, we follow the approach described in Ropke
and Pisinger (2006). As test instances, we selected a reasonably large subset of the
test instances of all VRPIS special cases. Then, we use the parameter setting that we
have found during the development of our algorithm as basis for the tuning. Here, we
stepwise refine the value of each parameter. In detail, we adjust the value of a single
parameter while all remaining parameters are fixed. With every parameter setting, we
perform 20 runs on the selected subset of test instances. The setting which produces
the best average result is kept and the procedure is repeated with the next parameter.
The resulting parameter setting is reported in Table 4.

In detail, the table shows the setting for the number of iterations after which the
probabilities are updated (y ), the parameter p, which weighs the old weight and the new
scores in the weight update of the selection methods within the adaptive mechanism,
the initial (8°), minimal (5™") and maximal (§™2*) penalty factors, the penalty update
factor (8“P42®)  the numbers of iterations after which the penalty costs are decreased
(n7) and increased (n™), the initial temperature (99), the temperature reduction factor
(™), and the number of resets of the current solution to the best solution found after
which the temperature is reset to its initial value ().

To achieve reasonable runtimes on the investigated test instances, we set the maxi-
mum number of iterations without improvement (w) and the number of non-improving
iterations after which the current solution is reset to the best solution found (€) as
follows: for EVRPREF, we set @ equal to 2,000 and € to 50, for VRPIRF, we use
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Table 4 Overview of the final

parameter setting of AVNS AVNS Penalties SA
chosen for the numerical studies v 30 50 1.000 90 50
) 0.3 smin 10 i 0.9995
gmax 10,000 & 4
supdate 15
n- 2
nt 3

w = 500, ¢ = 25. Additional tests on VRPIRF showed that a higher iteration number
does not significantly improve the solution quality.

5.2 Experiments on problems with intermediate stops from the literature

To assess the performance of our AVNS, we conduct tests on instances of the special
VRPIS cases G-VRP and VRPIRF and compare our results to those presented in the
literature.

5.2.1 Green VRP

The benchmark instances designed for the G-VRP (see Sect. 2) consist of five sets. Four
sets contain ten instances each comprising 20 customers (which are either uniformly
distributed or clustered) and between two and ten refueling facilities. The fifth set
represents a case study conducted by the authors and consists of twelve instances
involving between 111 and 500 customers and 21 to 28 facilities. Note that, customers
that either cannot be served within the maximum route duration or whose service
requires visiting more than one refueling stop must be identified and removed from
the test instances. The geographical coordinates given in the instances have to be
converted to distances between vertices by means of the Haversine formula using an
average earth radius of 4,182.45 miles.

Tables 5 and 6 show the results of AVNS on the small and, respectively, large G-
VRP instances. We compare our results to those of the MCWS and DBCA heuristics of
Erdogan and Miller-Hooks (2012) and the VNS/TS of Schneider et al. (2014). For each
problem instance, we report the problem name and the best-known solution (BKS)
provided by either Erdogan and Miller-Hooks (2012) or Schneider et al. (2014). For
the MCWS and DBCA of Erdogan and Miller-Hooks (2012), we give only the result
of the better of the two algorithms for each instance. It was originally determined as
the best of multiple runs (L' in the table), but the exact number of runs is not given in
the paper. For the VNS/TS of Schneider et al. (2014) and the AVNS, Lt corresponds
to the best solution found in ten runs. For all algorithms, we further provide the gap
of LPt to the BKS (AP*Y) and the number of served customers (n). For VNS/TS
and AVNS, we also display the average computing time of ten runs (#*¥€) in minutes,
for the algorithms of Erdogan and Miller-Hooks (2012), no runtimes were reported.
The runtimes of VNS/TS and AVNS are directly comparable as both algorithms are
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coded in Java and executed on the same computer. Moreover, we report the average
solution quality of the ten runs for the AVNS (L?'®). Finally, averages of the runtimes
and relative gaps to the BKS over the complete set of instances are given at the end of
the table.

For the small G-VRP instances (Table 5), AVNS finds the best-known solution
(BKS) for all instances. Thus, the AVNS is able to clearly outperform the methods
of Erdogan and Miller-Hooks (2012), even if for each instance only the best result
provided by either MCWS or DBCA is considered. For the comparison with the
VNS/TS of Schneider et al. (2014), note that the large gap of —19.05 % to the BKS
for instance S2_10i6s is not meaningful because Schneider et al. (2014) identify one
more customer to be reachable for this instance. However, even disregarding this
instance, AVNS yields better solution quality than VNS/TS for one instance and is
able to match the quality for all other instances. Moreover, compared to the VNS/TS
approach, it runs nearly four times as fast on average. The results further prove the
robustness of the developed algorithm: For the large majority of instances, the average
solution quality of the ten runs L2 is equal to the quality of the best run L"; for
the remaining instances, the gap is quite small.

On the large-sized G-VRP instances (Table 6), the AVNS algorithm finds new
best-known solution solutions for all instances and achieves an average gap to the
previous BKS of more than 1 %. Moreover, the speed of the AVNS is remarkable,
using approximately 4 % of the runtime of the VNS/TS of Schneider et al. (2014).

5.2.2 VRP with intermediate replenishment facilities

The VRPIRF (see Sect. 2) considers intermediate replenishment facilities for the goods
to be delivered. We run tests on two instance sets. The set of Crevier et al. (2007) com-
prises 22 instances consisting of 48—216 customers, three to six intermediate facilities
and four to six available vehicles. The customers are clustered around the facilities.
The set of Tarantilis et al. (2008) contains 54 instances with 50—175 customers, three
to eight facilities and two to eight vehicles.

Tables 7 and 8 show the results of our AVNS on the instances of Crevier et al.
(2007), compared to the results of Crevier, Cordeau, and Laporte (2007) (CCL), those
of Tarantilis, Zachariadis, and Kiranoudis (2008) (TZK), of the VNS/TS of Schneider
etal. (2014), and the VNS of Hemmelmayr, Doerner, Hartl, and Rath (2013) (HDHR).
For each instance, we report the instance name and the previously known BKS as
determined by the four comparison methods. In Table 7, we report for all algorithms
the average solution quality of ten runs (L"), the gap of the average solution to the
BKS (A?'8) and the average computing time in minutes (1'8). Finally, averages of
the runtimes and the gaps to the BKS over the complete set of instances are given at
the end of the table. Note that, a direct comparison of runtimes is only valid for AVNS
and VNS/TS. The other methods are partly coded in different programming languages
and were run on different platforms to obtain the reported computation times. The best
solution quality obtained by any of the methods on each instance is indicated in bold.

In Table 8, we report the best solution found (L) and the gap of the best solution
to the BKS (AP®Y). The best solutions reported by Crevier et al. (2007), Schneider
et al. (2014), Hemmelmayr et al. (2013) and our AVNS are based on ten runs, those
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of Tarantilis et al. (2008) are the best solutions ever found with the final parameter
setting, which we indicated with an asterisk. Finally, we report for our AVNS the best
solutions found during the overall testing in column AVNS.

Concerning the entire instance set of Crevier et al. (2007), a comparison of AVNS
is only possible with CCL, VNS/TS and HDHR because TZK only provide solutions
for the first subset of the instances. AVNS is able to improve on the solution quality
of CCL and VNS/TS concerning the best as well as the average quality. Moreover,
the runtimes of AVNS are clearly faster than those of VNS/TS. AVNS is not able to
match the solution quality of HDHR, which is superior to all comparison methods in
terms of solution quality.

In Table 9, the results of AVNS on the test instances of Tarantilis et al. (2008) are
compared to those of TZK, the VNS/TS of Schneider et al. (2014) and HDHR. The
reported measures are the same as in Tables 7 and 8. Concerning the average gap to
the BKS, the AVNS is able to improve on the results of TZK and VNS/TS based on
average as well as best solution quality. AVNS is not able to match the solution quality
of HDHR, which again outperforms all other methods concerning solution quality.
AVNS is able to provide two new BKS during the ten test runs and four new BKS
during the overall testing. Runtimes are observably faster than those of VNS/TS.

5.3 Experiments on EVRPREF instances

In this section, we conduct numerical studies on EVRPREF instances. Section 5.3.1
describes the generation of the EVRPRF instances in more detail. Section 5.3.2
presents the computational results of our AVNS on the new instances.

5.3.1 Generation of EVRPRF instances

Our EVRPRFinstances are based on the benchmark instances for the CVRP introduced
by Christofides and Eilon (1969) and Golden et al. (1998). To generate valid EVRPRF
instances, the following adjustments are made: The service time ¢} of each customer
i € C is set to ten time units. The battery capacity p of each vehicle is equal to the
amount of electricity required to travel 60 % of the average route length of a high-
quality solution of the respective CVRP instance. The CVRP solutions are taken from
the website http://neumann.hec.ca/chairedistributique/data/vrp/old/ for the instances
of Christofides and Eilon (1969) and from the paper of Mester and Briysy (2007) for
the instances of Golden et al. (1998). The fixed costs per vehicle ¢ are calculated
by dividing the objective function value of the respective high-quality CVRP solution
by the number of vehicles employed in this solution (rounded up to the next multiple
of 20). The recharging speed g is set such that recharging the amount p takes 30
time units. Due to the additional time-consumption of visiting recharging facilities,
the maximum route durations given by Christofides and Eilon (1969) and Golden et
al. (1998) are increased by #7 multiplied with the average number of customers per
route in the corresponding high-quality CVRP solution.

Further, each problem instance is complemented with eleven recharging facilities,
of which one is located at the depot. The docking time tl.d of each recharging facility
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Fig. 4 Locating recharging facilities

i € FF is set to five time units. The procedure for locating the recharging facilities
is illustrated in Fig. 4. First, we generate a circle around the depot with a radius that
corresponds to the maximal distance d"** of any customer to the depot. From this
circle, we create a circular ring using the radii | = 0.3 - d"* and r, = 0.8 - d"*
and divide this ring into ten sectors of identical size. Within each of this circle ring
sectors, we iteratively draw possible locations for the recharging facility in a random
fashion until the following two criteria are met: (1) the location does not coincide
with a customer location and (2) the distance of the possible location to all previously
placed recharging facilities exceeds a given threshold. This threshold is continuously
decreased after a certain number of the generated random points have not met this
criterion.

In this way, we generate a total of 34 large EVRPRF instances, 14 based on the
instances of Christofides and Eilon (1969) and 20 based on those of Golden et al.
(1998). In addition, we create a set of small problem instances as follows: for each
of the large EVRPREF instances of Christofides and Eilon (1969), we generate four
small instances by (1) drawing 5, 10, 15 and 20 customers of the original instances
and removing the remaining ones and (2) solving the thus generated instances with
our AVNS and removing the recharging facilities that are not used in the produced
solutions. In this way, 56 small instances are generated, which are denoted by the
identifier of the underlying CVRP instance (CE plus instance number) followed by
the number of customers (#C) and the number of facilities (#F) in the instance. For
example, CE-01-05C2F denotes the instance obtained from the CVRP instance CE-01,
containing five customers and two facilities.
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Table 10 Comparison of the AVNS results on the generated small-sized EVRPRF instances with CPLEX

Inst. CPLEX AVNS
L t(s) L.best Abest(%) Lavg AVE(%) 12V€(s)

CE-01-05C2F 292.55 914 292.55 0.00 292.55 0.00 0.23
CE-02-05C1F 195.78 24 195.78 0.00 195.78 0.00 0.17
CE-03-05C1F 225.49 34 225.49 0.00 225.49 0.00 0.16
CE-04-05C2F 207.09 3,988 207.09 0.00 207.09 0.00 0.23
CE-05-05C2F 261.72 68 261.72 0.00 261.72 0.00 0.39
CE-06-05C2F 382.72 51 382.72 0.00 382.72 0.00 0.36
CE-07-05C2F 508.96 91 508.96 0.00 508.96 0.00 0.26
CE-08-05C2F 227.70 75 227.70 0.00 227.70 0.00 0.19
CE-09-05C3F 389.60 217 389.60 0.00 389.60 0.00 0.33
CE-10-05C2F 322.42 17 322.42 0.00 322.42 0.00 0.40
CE-11-05C3F 435.71 72 435.71 0.00 435.71 0.00 0.33
CE-12-05C4F 286.50 7,200 286.50 0.00 286.50 0.00 0.37
CE-13-05C4F 494.33 7,200 494.33 0.00 494.33 0.00 0.47
CE-14-05C5F 322.63 7,200 322.63 0.00 322.63 0.00 0.61
CE-01-10C2F 439.92 7,200 439.92 0.00 439.92 0.00 0.99
CE-02-10C4F 433.39 7,200 433.39 0.00 433.39 0.00 0.67
CE-03-10C4F 312.87 7,200 312.87 0.00 312.87 0.00 0.76
CE-04-10C5F 338.90 7,200 338.90 0.00 338.90 0.00 1.98
CE-05-10C6F 397.11 1,343 397.11 0.00 397.11 0.00 2.21
CE-06-10C4F 544.12 7,200 544.12 0.00 544.12 0.00 0.38
CE-07-10C3F 533.65 7,200 533.65 0.00 533.65 0.00 0.35
CE-08-10C4F 429.21 7,200 429.21 0.00 430.70 0.35 0.48
CE-09-10C5F 736.75 7,200 736.75 0.00 736.75 0.00 0.47
CE-10-10C5F 645.73 7,200 645.73 0.00 645.73 0.00 0.41
CE-11-10C3F 428.14 7,200 428.14 0.00 428.14 0.00 1.03
CE-12-10C6F 499.53 7,200 499.53 0.00 499.66 0.03 1.00
CE-13-10C4F 447.75 7,200 447.75 0.00 447.75 0.00 1.38
CE-14-10C7F 417.64 7,200 417.64 0.00 417.64 0.00 2.68
CE-01-15C4F 491.70 7,200 491.70 0.00 491.70 0.00 1.00
CE-02-15C5F 586.13 7,200 586.13 0.00 587.43 0.22 0.69
CE-03-15C3F 498.00 7,200 498.00 0.00 498.00 0.00 1.22
CE-04-15C5F 488.38 7,200 488.38 0.00 488.38 0.00 1.87
CE-05-15C6F 489.54 7,200 489.54 0.00 489.54 0.00 1.40
CE-06-15C5F 611.58 7,200 611.58 0.00 611.58 0.00 0.64
CE-07-15C5F 876.38 7,200 876.38 0.00 876.38 0.00 0.46
CE-08-15C4F 605.26 7,200 605.26 0.00 607.97 0.45 0.86
CE-09-15C5F 754.09 7,200 754.09 0.00 754.09 0.00 0.54
CE-10-15C5F 515.30 7,200 515.30 0.00 515.30 0.00 0.58
CE-11-15C3F 483.14 7,200 483.14 0.00 483.14 0.00 2.10
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Table 10 continued

Inst. CPLEX AVNS
L £(s) 1.best Abest(%) 1ave AVE(%) £3VE(s)

CE-12-15C7F 595.82 7,200 595.82 0.00 595.82 0.00 1.94
CE-13-15C4F 459.06 7,200 459.06 0.00 459.06 0.00 3.19
CE-14-15C6F 428.83 7,200 428.83 0.00 428.83 0.00 1.80
CE-01-20C6F 718.64 7,200 718.64 0.00 718.64 0.00 1.05
CE-02-20C6F 637.97 7,200 637.41 —0.09 637.41 —0.09 1.08
CE-03-20C4F 526.62 7,200 526.62 0.00 526.62 0.00 2.26
CE-04-20C6F 509.02 7,200 509.02 0.00 509.02 0.00 2.74
CE-05-20C5F 526.41 7,200 526.41 0.00 526.41 0.00 2.19
CE-06-20C5F 602.24 7,200 602.24 0.00 602.24 0.00 1.00
CE-07-20C6F 909.96 7,200 895.52 —-1.59 915.45 0.60 0.53
CE-08-20C4F 806.08 7,200 802.46 —0.45 803.19 —0.36 0.71
CE-09-20C5F 919.69 7,200 773.20 —15.93 773.20 —15.93 0.57
CE-10-20C7F 893.96 7,200 889.74 —0.47 889.74 —0.47 0.96
CE-11-20C3F 662.05 7,200 662.05 0.00 662.05 0.00 2.96
CE-12-20C7F 622.46 7,200 622.46 0.00 622.46 0.00 2.18
CE-13-20C4F 697.26 7,200 697.26 0.00 697.26 0.00 2.57
CE-14-20C8F 614.58 7,200 600.98 -2.21 602.98 —1.89 2.53
Avg. 5,780.25 —0.37 —0.31 1.09

For CPLEX, L denotes the objective function value and ¢ the total runtime in seconds. The maximum
duration for CPLEX was set to 7,200 s. For AVNS, Lest denotes the best solution found in ten runs, L2'8
the average solution of ten runs, APt and A®8 the gaps to the CPLEX solution, and 128 the average
computing time in seconds

5.3.2 Results on the EVRPRF instances

We solve the small EVRPRF instances by means of our AVNS and compare our results
to those of the commercial solver CPLEX. Ten AVNS runs are conducted for each
problem instance. CPLEX is given a time limit of 7,200 s for each instance and we
generate three dummy vertices for each recharging facility to represent visits to the
facility. The results are presented in Table 10. For CPLEX, we report the solution L
and the runtime ¢ in seconds. If CPLEX terminates before the end of the time limit, the
given solution is optimal. Otherwise, the result corresponds to the best upper bound
found within the time limit. For the AVNS, we give the best solution found in the
ten runs (L2¢), the relative gap of this solution to the CPLEX solution (APest), the
average solution (L¢), the gap of the average solution to CPLEX (A“*¢) and the
average runtime in seconds (#“'%).

While CPLEX is only able to solve twelve out of 56 instances to optimality, AVNS
is able to provide high-quality solutions with an average runtime of just above one
second. Concerning the best solution, the quality of all optimal CPLEX solutions and
all CPLEX upper bounds is matched or improved. The robustness of our AVNS is
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again proven by a negative average gap of the average AVNS solution on the CPLEX
solution.

Finally, we provide the results of our AVNS on the large EVRPREF instances in
Table 11. The instances are denoted by the identifier of the underlying CVRP instance
(CE or G, respectively, plus instance number) followed by the number of customers
(#C) in the instance. The same measures as for the AVNS results on the small instances
are reported. Here, no results for comparison are available, however, we want to provide
researchers tackling the EVRPREF in the future with the possibility to compare their
results with those of our AVNS. Moreover, we can show that our AVNS is able to
provide solutions to the large instances within reasonable runtimes.

6 Conclusion

This paper presents an adaptive variable neighborhood search (AVNS) to address
the vehicle routing problem with intermediate stops (VRPIS), in which vehicles are

Table 11 Results of AVNS on large EVRPREF instances

Inst. AVNS AVNS
Lbest Lave t3V€(min)  Inst. Lbest 1ave £3V€ (min)

CE-01-050C  1,148.73  1,148.73 3.3l G-01-240C  12,363.17 12,476.44  23.81
CE-02-075C  1,895.52 1,903.06 3.60 G-02-320C  18,253.91 18,390.20  40.34
CE-03-100C  1,822.43 1,825.80 11.81 G-03-400C  22,504.96 24,069.90 41.68
CE-04-150C  2,344.28 2,353.74 14.19 G-04-480C  29,334.38  29,787.80  41.67
CE-05-199C  3,164.90 3,180.26 19.01 G-05-200C  12,995.39  13,135.66  39.31
CE-06-050C  1,053.82 1,056.98 1.70 G-06-280C  17,135.69  17,206.53  41.67
CE-07-075C  2,040.79 2,046.01 147 G-07-360C  20,650.82  21,833.96 41.68
CE-08-100C  1,703.03 1,709.49 4.74 G-08-440C  25,211.37  25,861.50  41.69
CE-09-150C  2,354.09 2,37532 5.67 G-09-255C 1,564.96 1,573.69 41.62
CE-10-199C  2,856.10 2,885.45 8.20 G-10-323C 1,863.69 1,880.54  39.63
CE-11-120C  2,250.00  2,273.21 13.86 G-11-399C 2,232.24 2,259.98 41.74
CE-12-100C  1,960.85 1,976.11 3.98 G-12-483C 2,540.14 2,583.65 41.80
CE-13-120C  2,23242 2,318.04 9.53 G-13-252C 2,000.50 2,034.28 15.00
CE-14-100C  1,808.34 1,834.67 6.06 G-14-320C 2,455.81 247732 19.95

G-15-396C  3591.95  3,633.86 28.64
G-16-480C  4264.65 429446 3573
G-17-240C  1,667.67  1,682.53 14.77
G-18-300C 225171 227329 1827
G-19-360C 365512 3,69033 34.29
G-20-420C 460323  4,633.80 34.82
Avg. 7.65 33.90

LPest corresponds to the best solution found in ten runs and L2¥8 denotes the average solution of ten runs.

The average computing time in minutes is given by V8
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required to stop at certain facilities along their route to remain operational. The com-
petitiveness of the proposed approach is demonstrated on benchmark instances from
the literature designed for the green VRP and the VRP with intermediate replenish-
ment facilities, which both represent special cases of VRPIS. Our AVNS algorithm
shows a convincing performance compared to the methods from the literature and is
able to obtain numerous new best solutions.

As aspecial case of the VRPIS, we additionally consider the electric vehicle routing
problem with recharging facilities (EVRPRF). We design two sets of small and large

Table 12 Comparison of the results of our final AVNS implementation to those obtained by our AVNS
without the problem-specific methods explicitly addressing intermediate stops (AVNS-without) on the
VRPIRF instances of Crevier et al. (2007)

Inst. BKS AVNS AVNS-without
J AME(%)  V&(min)  LAVE AME(%)  V&(min)

al 1,179.79  1,184.57 041 0.64 1,186.85  0.60 0.78
bl 1,217.07 121821  0.09 4.19 121947 020 8.99
cl 1,866.76  1,92541  3.14 32.98 1,923.19  3.02 37.85
d1 1,059.43  1,061.50  0.20 0.55 1,06224  0.27 1.08
el 1,309.12 131275 028 5.08 131246 025 5.95
fl 1,57041  1,601.40 197 34.99 1,611.08  2.59 39.62
gl 1,181.13  1,183.75  0.22 1.69 1,187.66  0.55 2.67
hl 1,54550  1,567.22 141 14.08 1,571.66  1.69 25.43
il 1,922.18 197497 275 35.11 197747  2.88 42.05
il 1,115.78  1,116.82  0.09 2.02 1,119.00  0.29 2.73
k1 1,576.36  1,60042 153 10.74 1,598.56  1.41 27.30
11 1,863.28 191607 283 40.59 1,921.14  3.11 41.95
Avg. 1.24 15.22 1.40 19.70
a2 997.94 997.94  0.00 0.72 99839  0.05 1.06
b2 1,291.19 130042  0.72 4.83 129752 0.49 10.18
2 1,715.60  1,741.55 151 18.32 1,747.94  1.89 29.12
a2 1,856.84  1903.15  2.49 30.64 191631  3.20 38.91
) 1,919.38  1,957.80  2.00 41.60 1,988.88  3.62 4133
2 223032 2313.08 371 42.80 2,330.63  4.50 42.07
22 1,152.92  1,15821 046 2.20 1,158.57  0.49 3.63
h2 1,57528  1,586.24  0.70 21.20 1,608.81  2.13 26.98
i2 1,919.74 197127 268 41.10 1,982.83  3.29 40.28
j2 224770  2303.67  2.49 41.93 234455 431 41.77
Avg. 1.68 24.53 2.40 27.53
Tot. Avg. 1.44 19.46 1.86 23.26

L2'8 denotes the average solution quality of ten runs. The gap of the average solution found to the BKS
is given by A?'€ and the average computing time in minutes by /*V8. Numbers in bold indicate the best
solution found
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EVRPREF instances based on well-known CVRP benchmarks. On the small instances,
our AVNS, using a runtime of approximately one second, is able to match or improve
all results obtained by the commercial solver CPLEX within a time limit of 2 h.

Appendix: Influence of problem-specific components

Table 12 shows a comparison of our AVNS to an AVNS without the problem-specific
components addressing intermediate stops (denoted as AVNS-without) on the VRPIRF
instances of Crevier et al. (2007). For each instance, we report the instance name and
the BKS. Moreover, we provide the average solution found in the ten runs (L?®), the
gap of the average solution to the BKS (A?'8) and the average runtime in minutes
(t*"¢) for both methods. Finally, averages of the runtimes and the gaps to the BKS
over the complete set of instances are given at the end of the table. Results show that
adding the problem-specific components clearly improves the solution quality while
notably reducing runtimes.
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