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Abstract In this paper, we analyse a market where the risky assets follow defaultable
exponential additive processes, with coefficients depending on the default state of the
assets. In this market we show that when an investor wants to maximize a utility func-
tion which is logarithmic on both his/her consumption and terminal wealth, his/her
optimal portfolio strategy consists in keeping proportions of wealth in the risky assets
which only depend on time and on the default state of the risky assets, but not on
their price or on current wealth level; this generalizes analogous results of Pasin and
Vargiolu (Econ Notes 39:65–90, 2010) in non-defaultable markets without interme-
diate consumption. We then present several examples of market where one, two or
several assets can default, with the possibility of both direct and information-induced
contagion, obtaining explicit optimal investment strategies in several cases. Finally,
we study the growth-optimal portfolio in our framework and show an example with
necessary and sufficient conditions for it to be a proper martingale or a strict local
martingale.
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1 Introduction

In recent years, mainly after the 2008 financial crisis and its aftermath, growing atten-
tion has been paid to financial models where the possibility of default of one or
more firms is explicitly taken into account. This brought to various multiasset models
where one or several risky assets are exposed to default (or bankruptcy) risk and where
the classical problems of optimal investment/consumption and pricing of contingent
claims are studied. However, inmany of thesemodels (see e.g. Bielecki and Jang 2006;
Bo et al. 2010; Callegaro 2013; Callegaro et al. 2012; Capponi and Figueroa-López
2014; Capponi et al. 2014) only one risky asset can encounter a loss (total or partial)
of its value due to the possibility of default, while the other ones are assumed to be
default-free, with the notable exception of Backhaus and Frey (2008) and Cousin et al.
(2011), whose models allow for several defaultable entities but only study the pricing
problem of very specific derivatives, i.e. CDS and CDO.

To fill this gap in the literature, we here present a model for a financial market where
all the risky assets can possibly exhibit shocks in their dynamics, as a consequence of
the default of the issuing companies, resulting in a total (or partial) loss of their value.
In particular, we can distinguish two cases. In the first case, the risky asset represents a
defaultable bond, which loses its value (or a fraction of it) in case of default of the firm
that issues the bond. In this case we can properly refer to this asset as a defaultable
asset. Alternatively, the risky asset might represent the stock of a company that can
possibly default on a loan or a bond, or in general fail to repay the creditors for their
investment. In the latter case, the value of the stock can experience a downward jump
in its dynamics, and possibly jump to a bankruptcy state, when the default of the firm
occurs. Even though in this case the term defaultable asset is not properly justified, in
the sequel we will sometimes abuse this terminology to indicate one of the two assets’
typologies previously described. As the examples of Sect. 6 will illustrate, the model
that we introduce is flexible enough to consider a portfolio containing several assets
issued by the same defaultable company, typically bonds or/and stocks. In this case,
these assets will share the same default time.

More in detail, we analyze amarketmodel given by n risky assets Si and one riskless
asset B, where any risky asset process is supposed to be the stochastic exponential

{
dSit = Sit− dRi

t ,

Si0 = si > 0,
i = 1, . . . , n, (1.1)

with R = (R1, . . . , Rn) being an n-dimensional additive process with regime-
switching coefficients, as for example inAntonelli et al. (2013), Capponi and Figueroa-
López (2014), Capponi et al. (2014) and Valdez and Vargiolu (2013). This market
model naturally allows for defaults events, by assuming that the i th driving process
Ri can jump with amplitude equal to �Ri = −1. We here study the case when the
regimes correspond to the default indicators of the risky assets. In other words, the
coefficients of the dynamics of the risky assets can depend on the current default
configuration, i.e. on which assets are already defaulted.
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A defaultable Lévy-driven market model 619

Under suitable conditions on the jump measure (where jumps can be related to
the default or to the risky assets’ dynamics), we obtain the optimal consumption and
portfolio strategy for an investor who wants to maximize a logarithmic utility function
of both his/her consumption and terminal wealth. The optimal consumption turns
out to be proportional to the current level of the agent’s wealth, while the optimal
portfolio strategy turns out to depend only on the default configuration process, i.e.
it does not depend on the current value of the risky assets Si but only on the current
default configuration. This represents a generalization of the model and the findings
in Pasin and Vargiolu (2010), where the authors did not consider the case of one
or multiple defaults, or of intermediate consumption. On the other hand, the optimal
consumption/investment strategies still depend on time as in Pasin andVargiolu (2010)
(this is also due to the non-stationarity of the increments of the driving process R).
After having characterized the optimal strategies in the general case, we present several
examples with one, two or several defaultable assets, where we usually succeed in
obtaining optimal strategies in closed form. Our results also allow to study with little
effort the so-called growth-optimal portfolio (GOP), and we exhibit an example where
theGOP is a propermartingale or a strict localmartingale depending on someboundary
conditions.

The model in Eq. (1.1) has been chosen as a compromise between analytical
tractability and flexibility in modelling various situations where risky assets are
allowed to default and can have pre-default dynamics driven by diffusion and/or jump
processes, possibly with infinite random activity. The naive way to model this would
have been to take the dynamics in Eq. (1.1), which generalizes several models where
one (Bellamy 2001; Benth et al. 2001; Benth and Schmeck 2012; Framstad et al. 2001;
Jeanblanc-Picqué and Pontier 1990; Liu et al. 2003; ksendal and Sulem 2005) or sev-
eral (Callegaro and Vargiolu 2009; Kallsen 2000; Korn et al. 2003; Pasin and Vargiolu
2010) assets can exhibit jumps in their dynamics and which was already present in
Pasin and Vargiolu (2010), with R still being a n-dimensional additive process, and
allow for it to jump with multiplicative increments �Ri = −1. This allows for direct
contagion, as for suitable choices of the jump measure (see for example Sect. 6.5)
simultaneous defaults are possible, but not for information-induced contagion, i.e.
where the knowledge that previous defaults had occurred does modify the dynam-
ics of the undefaulted assets, as well as their default probabilities. This naive model
is sketched out in Sect. 2. However, in order to take into account also information-
induced effects in both the dynamics and the default probabilities, in Sect. 3 we show
how to incorporate dependencies on past defaults in the risky assets’ dynamics. This
is done via a probabilistic construction, in the spirit of the one proposed in Becherer
(2001), where a process R with independent increments in each time interval between
two consecutive defaults is built; thus, in this model R can be considered a regime-
switching additive process, with regimes corresponding to the default indicators of the
risky assets. Let us observe that the term regime switching has to be interpreted here
in a non-canonical way, if compared to the existing literature concerning multiple-
regime market models. Indeed, regimes are usually associated with types of markets
(bull/bear) defined by risk factors (market indices). By contrast, in this case the regimes
correspond to a current default configuration, which are irreversible states. Here the
idea is that, as in the classical regime-switching models where assets’ characteristics
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620 S. Pagliarani, T. Vargiolu

like returns and volatilities can change depending on a market regime (for empirical
evidences in literature, see e.g. Ang and Bekaert 2002; Dai and Yang 2007; Giesecke
et al. 2011), in this case they can change due to default/bankruptcy events of third
parties in the market: this has been empirically studied e.g. in Dumontaux and Pop
(2012), Gentile and Giordano (2012), Kazi and Salloy (2013) for the Lehman default
and in Bhanot et al. (2014) for the Greek sovereign crisis.

For the model in Eq. (1.1), in Sect. 4 we study the problem of maximizing a
logarithmic utility function; to do this, we characterize a domain for the portfolio
strategies in order for the wealth process to remain strictly positive. We then solve
the utility maximization problem by means of the dynamic programming method (in
Sect. 5), succeeding in proving a verification theorem based on the Hamilton–Jacobi–
Bellman (HJB) equation and in exhibiting an explicit smooth solution to the HJB
equation. The main conclusion of this is that the optimal consumption is an explicit
linear function of the current wealth, while the optimal portfolio strategy turns out to
be the maximizer of a suitable deterministic function depending only on time and on
the current default indicators, but not on the current asset prices or wealth level. This
allows us to present several examples in Sect. 6, where one, two or several defaults
can occur, possibly simultaneously. Particularly, several models already present in
literature Backhaus and Frey (2008), Bielecki and Jang (2006), Callegaro (2013),
Cousin et al. (2011) can be obtained as specific cases of this general framework or
as starting points for the models presented here. In most of the examples, we obtain
optimal investment strategies in closed form and discuss them.

In Sect. 7, we turn our attention to the characterization of the GOP, here defined
as the portfolio which maximizes a logarithmic utility (for equivalent definitions of
the GOP see for instance Christensen and Larsen 2007; Fontana and Runggaldier
2013). In mathematical finance, the existence and the properties of the GOP have been
widely studied by many authors, due to its relation with the numéraire portfolio. In
particular, in Christensen and Larsen (2007) it has been shown in a quite flexible semi-
martingale model that the GOP is such that all the other portfolios, evaluated with the
GOP as numéraire, are supermartingales; this is called the numéraire property, which
can be exploited to develop non-classical approaches in pricing derivative securities.
For instance, in the benchmark approach by Platen (2006) this can be done even
in models where an equivalent martingale measure (EMM) is absent. Christensen
and Larsen (2007) proved that, even when a classical risk neutral measure does not
exist, the existence of the GOP implies the existence of a numéraire under which an
EMM exists. Nevertheless, GOP-denominated prices might fail to be martingale and
being instead strict supermartingales. Examples of this phenomenon are also given
in Becherer (2001), Bühlmann and Platen (2003), Cvitanić and Karatzas (1992) and
Kramkov and Schachermayer (1999). In this regard, we will show that in our model
the inverse GOP process is either amartingale or a strict supermartingale depending on
whether the growth-optimal strategy is an internal or a boundary solution with respect
to the domain of the admissible strategies.

We now give a brief outline of the paper: in Sect. 2 a naive model, where the risky
assets’ prices are defaultable exponential additive models, is presented. In Sect. 3
we build a more general model where asset prices are driven by regime-switching
additive models, with regimes corresponding to default indicators. In Sect. 4 we frame
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A defaultable Lévy-driven market model 621

the portfolio optimization problem and characterize the portfolio strategies such that
the portfoliowealth stays strictly positive. In Sect. 5 the portfolio optimization problem
is solved with the dynamic programming method using the HJB equation. In Sect. 6
we present several examples, with many optimal portfolios written in closed form
and commented. In Sect. 7 we study the GOP and show in an example under which
conditions the GOP is a strictly local martingale or a true martingale.

2 A simplified model

Before rigorously defining our framework in its full generality, we aim in this section
to give a heuristic description of a simplified version of it. This approach allows the
reader to get a quite intuitive idea of the dynamics involved in our model. After this
brief introduction, the definition of the general setting in Sect. 3 will seem a natural
extension of this simple one.

We consider a portfolio composed of a locally riskless asset B and n risky assets
Si , i = 1, . . . , n. By considering discounted prices, we can assume without loss of
generality that B ≡ 1. For the risky assets we assume the dynamics in Eq. (1.1) where
in this section R = (R1, . . . , Rn) is an n-dimensional additive process, i.e. a process
with independent increments Cont and Tankov (2004), that can exhibit jumpswith size
−1 in any of its components, possibly simultaneously. We notice that we can rewrite
Eq. (1.1) in the vectorial form

dSt = diag(St−) dRt ,

where diag(v) is the diagonal matrix in R
n×n with principal diagonal containing the

elements of v. This allows one to represent the n-dimensional additive process R in
Eq. (1.1) explicitly via the Levy–Ito representation as

{
dRt = μ(t)dt + σ(t)dWt + ∫

Rn x(N (dt, dx) − νt (dx)dt),

Ri
0 = 0, i = 1, . . . , n,

(2.1)

with μ = (μ1, . . . , μn) : [0, T ] → R
n , σ = (σi j )i j : [0, T ] → R

n×k deterministic
measurable functions, W = (W 1, . . . ,Wk) a k-dimensional Brownian motion and
N (dt, dx) a jump random measure on R

+ × R
n with compensating measure νt (dx).

The solution of Eq. (1.1) is

Sit = sieR
i
t− 1

2

∫ t
0 ‖σ(u)‖2du ∏

0<u≤t

(1 + �Ri
u)e

−�Ri
u , i = 1, . . . , n, (2.2)

(see Protter 2004, Theorem II.37), where �Ri
u := Ri

u − Ri
u− represents the jump of

Ri at the time u.
Equation (2.2) shows first that we shall impose �Ri

u ≥ −1 for Si to stay non-
negative, and furthermore that the process Si reaches the value 0 as soon as the process
Ri jumps with amplitude �Ri = −1, and stays there forever from that moment on.
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622 S. Pagliarani, T. Vargiolu

Therefore we assume that supp(νt ) ⊆ Xn for all t ∈ [0, T ], where Xn is defined as

Xn := {x ∈ R
n|xi ≥ −1 ∀i = 1, . . . , n}. (2.3)

to have Sit ≥ 0 for all t ∈ [0, T ], and define the default time τ i as the time when Si

jumps to 0, i.e.

τ i := min{t > 0|�Ri
t = −1}. (2.4)

Now, for every i = 1, . . . , n, we introduce the default indicator process

Di
t = 1[[τ i ,∞)(t).

Note that Di admits the differential representation

dDi
t =

∫
Xn

(1 − Di
t−)1{xi=−1}(x)N (dt, dx). (2.5)

According to this setting, two or more Si may simultaneously jump to 0 with positive
probability. Indeed, this scenario is verified any time two or more Ri jumps simultane-
ously with size −1. Nevertheless, the driving process R has independent increments,
and thus, Di

t is independent of (D j
u )u<t , for any j �= i . To sum up, simultaneous

defaults (and simultaneous bankruptcy) are allowed, but defaults occurred in the past
cannot change the probabilities of future ones. Financially speaking, within this frame-
work we are able to capture instantaneous contagion but not information-induced one.

To overcome this shortcoming, a natural extension seems to let the jump measure
N (dt, dx) depend on the current default configuration Dt ; this will be done in the next
section.

3 The general setting

In this section, we generalize the construction of Sect. 2 by introducing different
regimes for the jump measure, the drift and the diffusion of the driving process R =
(R1, . . . , Rn), regimes consisting in the default indicators’ vector D = (D1, . . . , Dn).
This construction is analogous to the one in Becherer (2001).

Let n, k ∈ N, T > 0, and (�,F ,P) be a probability space rich enough to support:

• a k-dimensional Brownian motion W = (W 1, . . . ,Wk);
• a family (Nd , νd)d∈{0,1}n , where Nd ≡ N (d, dt, dx) are independent Poissonmea-
sures on [0, T ]×R

n , and νdt ≡ νt (d, dx) are the respective compensatingmeasures.

Next, by analogy with (2.4)–(2.5), we define the default time of the i th firm τ i by
means of the respective default indicator process Di .
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A defaultable Lévy-driven market model 623

Definition 3.1 Let the {0, 1}n-valuedprocessD ≡ (Dt )0≤t≤T = (D1
t , . . . , D

n
t )0≤t≤T

be the unique strong solution of the n-dimensional system

dDi
t = (1 − Di

t−)

∫
Rn

1{xi=−1}(x)N (Dt−, dt, dx), i = 1, . . . , n, (3.1)

with the initial conditions

Di
0 = 0, i = 1, . . . , n. (3.2)

Then, denoting with F = (Ft )t≥0 the filtration generated by (Dt )t≥0, we define the
F-stopping times

τ i := min{t > 0|Di
t = 1}, i = 1, . . . , n.

Remark 3.2 (Construction) The process D can be constructed pointwise in the follow-
ing way.We first consider two families of random variables (tk)0≤k≤n , tk ∈ R

+ ∪{∞},
and (ζk)0≤k≤n , ζk ∈ {0, 1}n , recursively defined as

t0 = 0, ζ0 = 0,

and

t ik+1 := inf
t>tk

{
t |∃x ∈ R s.t. 1{xi=−1}(x)N (ζk, {t}, {x}) = 1

}
1{ζ ik=0}

+∞1{ζ ik=1},

tk+1 := min
1≤i≤n

t ik+1,

ζ ik+1 := ζ ik + (1 − ζ ik )1{tk+1}(t ik+1), 1 ≤ i ≤ n.

Note that, in the above construction, the random variable tk represents the kth default
time in chronological order, whereas the random vector ζk+1 represents the default
indicators’ configuration when the kth default event occurs. We prefer to remark one
more time that index k in tk is referred to the chronological order, and that tk is in
general different from the time τ k , when the kth firm defaults.

Then, for any t ∈ [0, T ] we define

Dt :=
n∑

k=0

ζk1{[tk ,tk+1[}(t).

It is easy to verify that the {0, 1}n-valued process D ≡ (Dt )0≤t≤T is a solution for
(3.1)–(3.2).

We now define the driving process R ≡ (Rt )0≤t≤T = (R1
t , . . . , R

n
t )0≤t≤T in (1.1)

as the unique strong solution of the n-dimensional system
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{
dRt = μ(t, Dt )dt+σ(t, Dt )dWt+

∫
Rn x

(
N (Dt−, dt, dx)−νt (Dt−, dx)dt

)
,

Ri
0 = 0, i = 1, . . . , n,

(3.3)

where μ(·, d) : [0, T ] → R
n , σ(·, d) : [0, T ] → R

n×d are deterministic measurable
functions for any d ∈ {0, 1}n . Afterwards we will denote with σi (t, d) the i th row
of σ(t, d). For Eq. (3.3) and the further computations to make sense we need the
following assumptions to be satisfied.

Assumption 3.3 (Finite variance) For any d ∈ {0, 1}n ,
∫ T

0

(
‖μ(t, d)‖ + ‖σ(t, d)‖2 +

∫
Rn

‖x‖2 νt (d, dx)

)
dt < +∞, (3.4)

where the ‖·‖ represent the Euclidean norms on R
n and R

n×d .

Assumption 3.4 (Non-negativity of prices) For any d ∈ {0, 1}n and t ∈ [0, T ],
supp(νdt ) ⊆ Xn , where Xn is defined in Eq. (2.3).

Assumption 3.5 (Continuity in time of the compensator) For any d ∈ {0, 1}n and for
any Borel set B ⊂ R, νdt (B) is continuous in t .

Finally, as in the previous section, we let the locally riskless asset B ≡ 1 and the
risky assets Si , i = 1, . . . , n, be the solution of Eq. (1.1), where now the driving
processes Ri , i = 1, . . . , n, are as in Eq. (3.3). As seen in the previous section,
Assumptions 3.4 and 3.5 are equivalent to saying that the risky assets’ prices stay a.s.
non-negative for each t ∈ [0, T ]. Indeed, the solution of the SDE (1.1) is still

Sit = sieR
i
t− 1

2 [Ri ,Ri ]ct
∏

0<s≤t

(1 + �Ri
s)e

−�Ri
s , (3.5)

(see Protter 2004, Theorem II.37) with [Ri , Ri ]c being the continuous part of the
quadratic variation process of R, and (2.3) implies 1+ �Ri

t ≥ 0 for any i = 1, . . . , n
and t ∈ [0, T ]. On the other hand, Eq. (3.5) shows that the process Si jumps to 0 as
soon as the process Ri jumps with amplitude �Ri = −1, and stays there at any future
time. Eventually, by Definition 3.1 combined with Eq. (3.3) we get

τ i = min{t > 0|�Ri
t = −1} = min{t > 0|Sit = 0}, (3.6)

and thus, as in the previous section, the default of i th firm coincides with its reference
asset value jumping to 0.

Notice that, from the credit risk point of view, our model can be framed within the
existing literature in both the classes of structural and intensity-based (or reduced-
form) models. Indeed, in light of identity (3.6), the default time τ i can be interpreted
as the first time when the reference asset value of the firm Si crosses a barrier value
placed at 0, thus providing a structural interpretation of the default time.
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On the other hand, by construction (Remark 3.2) it can be shown that the stopping
time τ i coincides with the first jump time of a Cox process with stochastic intensity

λit := νt
(
(D1

t−, . . . Di−1
t− , 0, Di+1

t− , . . . Dn
t−),Ri−1 × {−1} × R

n−i ). (3.7)

Therefore, λi can be regarded as a default intensity, and τ i as the default time given
by the first time t such that the stochastic hazard rate

∫ t
0 λis ds ≥ Ei , with Ei being

an independent exponentially distributed random variable. It is important to underline
that, from this perspective, the jump of the risky asset value Si to the bankruptcy state
0 is a consequence of the default and admits a double interpretation. One way is to
look at Si as the stock value of a certain firm; in this case the value loss of the stock
can be viewed as the effect of the bankruptcy induced by the default of the firm on a
particular loan or bond. Another way is to consider Si itself as the value of the debt,
e.g. a bond price, on which the company might default. In this case, the value loss
of Si is the immediate consequence of the impossibility of the firm to pay back such
debt.

As it is also made clear in Sect. 6, the model is flexible enough to consider both
these effects simultaneously. Note also that the choice of the bankruptcy state Si

τ i
= 0

is not restrictive. Indeed, both the previous construction and the following analysis
can be extended to consider a generic cemetery state of the form Si

τ i
= (1 − ξ)Si

τ i−,
with ξ ∈ [0, 1]. To this extent, all the examples in Sect. 6 are reported in this more
general fashion.

4 The portfolio optimization problem

Let now πt = (π1
t , . . . , πn

t ) be a trading strategy representing the quantities of the
risky assets (S1t , . . . , S

n
t ) held in a self-financing portfolio, whose value at time t is

given by

V π
t = π0

t + 〈πt , St 〉 = π0
t +

n∑
i=0

π i
t S

i
t ,

where 〈·, ·〉 represents the scalar product in R
n . In the case when V π

t > 0, we can
represent the portfolio in terms of its proportions invested in each risky asset, defining
the vector ht := (h1t , . . . , h

n
t ) componentwise as

hit := π i
t S

i
t

V π
t

, i = 1, . . . , n. (4.1)

Furthermore, we consider a strictly positive process ct denoting the instantaneous
consumption at time t . By the self-financing property we have

dV h,c
t =

n∑
i=1

π i
t−dSit − ctdt =

n∑
i=1

π i
t−Sit−dRi

t − ctdt
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[by (4.3)]

= V h,c
t− 〈ht−, dRt 〉 − ctdt (4.2)

wherewe denoted by V h,c the portfolio value to remark that it is expressed as a function
of its proportions h and the consumption c. Here we used

π i
t−Sit− = V π

t−hit−, t ∈ [0, T ], (4.3)

which is still true also for t > τ i because, by (4.1), we have

hit = 0, ∀ t ∈ [τ i , T ], i = 1, . . . , n. (4.4)

Nevertheless, if h is a generic F-predictable process, the solution of

dV h,c
t = V h,c

t− 〈ht−, dRt 〉 − ctdt, t ∈ [0, T ], (4.5)

still depends on hi even after the time τ i . Thus, we should impose the condition (4.4)
on the control variable h when using Eq. (4.5) for optimization purposes, but this
would lead to a problem with very non-standard control constraints.

In alternative, we prefer to define V h,c as the solution of the SDE

dVt = Vt−〈diag(1 − Dt−)ht−, dRt 〉 − ctdt, t ∈ [0, T ], (4.6)

where 1 = (1, . . . , 1) ∈ R
n , as in Callegaro et al. (2012). In this way, we need no

additional conditions on h, as the process V h,c is independent of hi after τ i . To shorten
notation we introduce the following definition.

Definition 4.1 For any d ∈ {0, 1}n and x ∈ R
n , we define the vector xd ∈ R

n as

xd = x · diag(1 − d).

In other words, xdi is equal to xi if di = 0, i.e. the i th firm did not default yet,
whereas xdi = 0 if di = 1, i.e. the i th firm asset already defaulted. A necessary
condition for V h,c to stay P-a.s. positive for any t ∈ [0, T ] is that

〈hDt−
t− ,�Rt 〉 > −1 P-a.s. ∀t ∈ [0, T ]. (4.7)

Indeed, by (4.6) we have

V h,c
t = V h,c

0 −
∫ t

0
csds +

∫ t

0
V h,c
s− 〈hDs−

s− , dRs〉,
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A defaultable Lévy-driven market model 627

and therefore, as long as V h,c
s is positive for s ∈ [0, t], V h,c

t jumps with size less or

equal −V h,c
t− if 〈hDt−

t− ,�Rt 〉 ≤ −1. A sufficient condition for (4.7) to hold is

ht ∈ Ht := {
h ∈ R

n|〈h, x〉 > −1 νdt (dx)-a.s. ∀d ∈ {0, 1}n}, ∀t ∈ [0, T ]. (4.8)

Example 4.2 If the jumps of the process R are unbounded from above, i.e. supp(νdt ) ≡
Xn for any d ∈ {0, 1}n , with Xn as in (2.3), then Ht is the n-dimensional unit simplex
in Rn , i.e. Ht ≡ {h ∈ R

n| hi ≥ 0,
∑n

i=1 hi < 1}.
We now define the set of admissible strategies.

Definition 4.3 An R
n+1-valued F-predictable process (h, c) ≡ (hu, cu)t≤u≤T is said

to be an admissible strategy if

(a) hu ∈ H P-a.s. for any u ∈ [t, T ], where H is a compact convex set H ⊂ R
n such

that H ⊂ int(∩u∈[t,T ]Hu);
(b) cu > 0 P-a.s. for any u ∈ [t, T ].
(c) For any initial condition Vt = v > 0 and Dt = d ∈ {0, 1}n , the (n + 1)-

dimensional system (3.1)–(4.6) has a unique strong solution (V, D)h,c;t,v,d =
(V h,c;t,v,d

s , Dt,d
s )s∈[t,T ] such that Vs > 0 for any s ∈ [t, T ].

We denote by A[t, T ] the set of all admissible strategies.

Sometimes in the sequel, to shorten the notation, we will suppress the explicit
dependence on t, v, d in (V, D)h,c;t,v,d .

We aim to find the optimal control process (h̄, c̄) ∈ A[t, T ], whether it exists, which
maximizes in (h, c) the utility

E

[
U (V h,c;t,v,d

T ) +
∫ T

0
u(t, ct )dt

]
, (4.9)

where U, u are logarithmic utility functions

U (x) = A log x, u(t, c) = Be−δ(T−t) log c, (4.10)

with A, B, δ ≥ 0 such that A + B > 0.
The choice of the logarithmic utility function, both for the intermediate consumption

as well as for the terminal wealth, has the advantage of offering analytical tractability,
which is however shared by other utility functions, e.g. those of the formU (x) = xγ /γ

for γ < 1. However, beyond being merely an analytically convenient choice, the
logarithmic utility function has also other peculiarities which are not shared by other
utility functions, and which we illustrate in the following three remarks.

Remark 4.4 The natural interpretation of a logarithmic utility of terminal wealth with-
out consumption (i.e. when B = 0) is the growth rate of the portfolio. In the case when
an agent also wants to consume in the time horizon [0, T ], this can be easily incor-
porated into this problem by setting B > 0. Thus, we can say that this is an optimal
capital growth problem (in the sense of optimal growth rate), possibly incorporating
intertemporal consumption.
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628 S. Pagliarani, T. Vargiolu

Remark 4.5 The logarithmic utility function allows naturally to incorporate stochastic
interest rates in the model. In fact, assume that the riskless asset has the dynamics

dBt = rt Btdt

instead of being identically one, with r a stochastic interest rate, and that each Si has
the dynamics given by Eq. (1.1), with the driving process R having the stochastic
differential as in Eq. (3.3) plus rt1 in the drift term. This would again give us the same
problem that we are facing now, but where we maximize the utility of discounted
consumption and terminal wealth. What if instead we wish to maximize the utility
of real consumption and terminal wealth? This could be obtained immediately from
our results. In fact, if one assumes that Vt and ct are the real (i.e. not discounted)
wealth and consumption at time t and define the discounted quantities Ṽt := Vt/Bt

and c̃t := ct/Bt , the problem in the non-discounted quantities can be written as

max
(h,c)∈A[t,T ]

E

[
U (V h,c;t,v,d

T ) +
∫ T

0
u(t, ct )dt

]
(4.11)

= max
(h,c)∈A[t,T ]

E

[
U (Ṽ h,c̃;t,v,d

T ) +
∫ T

0
u(t, c̃t )dt

]

−E

[
U (BT ) +

∫ T

0
u(t, Bt )dt

]
, (4.12)

by the properties of the logarithmic utilities in Equation (4.10), i.e. this is equivalent
to a problem in the discounted quantities minus the constant term in line (4.11). In this
problem, by applying the Itô formula the self-financing condition for the discounted
portfolio becomes

dṼt = Ṽt−〈diag(1 − Dt−)ht−, d R̃t 〉 − c̃tdt, t ∈ [0, T ], (4.13)

where the new driving process R̃ has the stochastic differential d R̃t = dRt −rtdt , with
R̃ being now a regime-switching additive process as in Eq. (3.3). Thus, the optimal
portfolio would be the same for both the problems (i.e. in the real and discounted
wealth), while the optimal consumption of the discounted problem would simply be
the discounted optimal consumption of the problem in the real wealth.

Remark 4.6 By considering a null utility function u(t, c) ≡ 0 for the consumption, i.e.
B = 0 in (4.10), the optimal strategy (h̄t )0≤t≤T that solves the problem (4.9)–(4.10)
is called, when it exists, the growth-optimal strategy, and the related wealth process

V h̄
t is called Growth-Optimal Portfolio (GOP). As already said in the Introduction,

the GOP can be used for example in the benchmark approach Platen (2006) to price
contingent claims even in models where an equivalent martingale measure is absent.
Thus, the maximization of a logarithmic utility function gives as a byproduct a mean
to price contingent claims in very general settings. This will be the topic of Sect. 7.
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For these reasons, from now on in this paper we concentrate on solving the prob-
lem for the logarithmic utility function, while the problem with more general utility
functions is left for future research.

5 Dynamic programming solution

Here, we use dynamic programming to solve the optimal control problem (4.9).
For any (h, c) ∈ A[t, T ], t ∈ [0, T ], v ∈ R

+ and d ∈ {0, 1}n we define the function

Jh,c(t, v, d) := E

[
U (V h,c;t,v,d

T ) +
∫ T

0
u(t, ct )dt

]
(5.1)

Moreover we define the value function J : [0, T ] × R
+ × {0, 1}n → R

+ as

J (t, v, d) := sup
(h,c)∈A[t,T ]

Jh,c(t, v, d). (5.2)

Following the approach in Fleming and Soner (2006), by formal arguments we obtain
that J solves the so-called HJB (Hamilton–Jacobi–Bellman) equation

− Jt (t, v, d) = sup
h∈H, c>0

(Ah,c J (t, v, d) + u(c)) (5.3)

where, for any h ∈ H and c > 0 , Ah,c is the infinitesimal generator of the process
(V, D)h,c, i.e.:

Ah,c J (t, v, d) =
(
〈μ(t, d), hd〉v − c

)
Jv(t, v, d) + 1

2
〈hd , 
(t, d)hd〉v2 Jvv(t, v, d)

+
∫
Xn

(
J
(
t, v(1 + 〈x, hd〉), d + χ(d, x)

)− J (t, v, d)

−〈hd , x〉v Jv(t, v, d)
)
νdt (dx), (5.4)

with


(t, d) = σσ ∗(t, d), (5.5)

and where the function χ : {0, 1}n × Rn → {0, 1}n is defined as

χi (d, x) := (1 − di )1{xi=−1}(x), i = 1, . . . , n. (5.6)

Moreover, by (5.1)–(5.2) we directly obtain the terminal condition

J (T, v, d) = U (v) v ∈ R
+, d ∈ {0, 1}n . (5.7)

The next theorem rigorously connects the optimal control problem (4.9) with the HJB
equation and gives us a useful characterization of the optimal control process (h̄, c̄)
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when it exists. Before stating the verification theorem, we formally define the domain
of the operator Ah,c.

Definition 5.1 We denote with D the set of the functions f ∈ C1,2([0, T ] × R
+ ×

{0, 1}n) such that for any (t, v, d) ∈ [0, T ]×R
+×{0, 1}n and for any (h, c) ∈ A[t, T ]

the so-called Dynkin formula holds, i.e.

E[ f (T, (V, D)
h,c
T )] − E[ f (t, (V, D)

h,c
t )] = E

[∫ T

t
Ahu ,cu f (u, (V, D)h,c

u )du

]
.

(5.8)

We can now state the following verification theorem, which is a particular case of
(Fleming and Soner, 2006, Theorem III.8.1).

Theorem 5.2 Let K ∈ D be a classical solution of (5.3) with terminal condition
(5.7). Then, for any (t, v, d) ∈ [0, T ] × R

+ × {0, 1}n we have
(a) K (t, v, d) ≥ Jh,c(t, v, d) for any admissible control (h, c) ∈ A[t, T ];
(b) if there exists an admissible control (h̄, c̄) ∈ A[t, T ] such that

(h̄s, c̄s) ∈ arg max
(h,c)∈H×R+

(
Ah,cK (s, (V, D)h̄,c̄;t,v,d

s ) + u(s, c)
)

P-a.s. ∀s ∈ [t, T ],
(5.9)

then K (t, v, d) = J h̄,c̄(t, v, d) = J (t, v, d).

Now we use Theorem 5.2 to solve the optimization problem (4.9). Analogously
to Pasin and Vargiolu (2010) it turns out that the optimal control (h̄, c̄) in (5.9) is a
Markov control policy. In particular we are going to find out that

h̄(s) = h̄(s, Ds), c̄(s) = c̄(s)V h̄,c̄
s , (5.10)

where h̄ : [0, T ] × {0, 1}n → H and c̄ : [0, T ] × R
+ → R

+ are deterministic
functions such that

(h̄(t, d), c̄(t, v)) ∈ argmax
(h,c)∈H×R+

(
Ah,cK (t, v, d) + u(t, c)

)
, (5.11)

for any (t, v, d) ∈ [0, T ] × R
+ × {0, 1}n . We are now in the position to characterize

the value function J and the optimal strategy (h̄, c̄). Before stating our main result we
introduce the following

Definition 5.3 For any d ∈ {0, 1}n , let Fd : [0, T ] × H → R be the function

Fd(t, h) := 〈μ(t, d), hd〉 − 1

2
〈hd , 
(t, d)hd〉

+
∫
Xn

log (1 + 〈x, hd〉) − 〈x, hd〉νdt (dx), (5.12)
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where hd is defined as in Definition 4.1.

Theorem 5.4 Let U (v) and u(t, c) be the logarithmic functions defined as in (4.10).
Then:

(a) Equation (5.3) with terminal condition (5.7) has a classical solution K given by

K (t, v, d) =
{(

A + B
δ

(
1 − e−δ(T−t)

))
log v + �d(t) if δ > 0,

(A + B(T − t)) log v + �d(t) if δ = 0,
(5.13)

for any (t, v, d) ∈ [0, T ]×R
+×{0, 1}n, where (�d)d∈{0,1}n is a family of suitable

C1 deterministic functions such that �d(T ) = 0.
(b) K belongs to D.
(c) K = J and an optimal control process (h̄, c̄) is given by

(h̄(t), c̄(t)) :=
(
h̄(t, Dt−), c̄(t)V h̄,c̄

t−
)

, (5.14)

where h̄ : [0, T ] × {0, 1}n → H is a function such that

h̄(t, d) ∈ argmax
h∈H Fd(t, h) (5.15)

with Fd(t, h) as in (5.12),

c̄(t) :=
{

Be−δ(T−t)

A+ B
δ (1−e−δ(T−t))

if δ > 0,
B

A+B(T−t) if δ = 0,
(5.16)

and where V h̄,c̄ is the unique positive solution of

dV h̄,c̄
t

V h̄,c̄
t

= 〈diag(1 − Dt−)h̄(t, Dt−), dRt 〉 − c̄(t)dt, t ∈ [0, T ], (5.17)

The proof of Theorem 5.4 is quite long and technical and is presented in Appendix.
Instead, here we present some remarks.

Remark 5.5 Afunction h̄ such that (5.15) holds exists and for any d ∈ {0, 1}n is unique
in its component h̄i such that di = 0. In fact, Fd in (5.12) does not depend on the i th
components of h if di = 1, and on the other hand, Fd is a strictly concave function
and H is a compact convex subset of Rn . Roughly speaking, the i th component of
the optimal strategy h̄ is not relevant after the bankruptcy of the asset Si , which is
consistent with Eq. (4.6).

Remark 5.6 The most relevant information that the agent here wants to know is how
to find the function h̄ in Eq. (5.15). Unfortunately, there is no analytical solution to
the problem in general, while analytical solutions exist for very specific models (see
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Sect. 6 for some examples). This lack of explicit solutions is typical of models with
jumps. A common way to circumvent this is to use numerical methods to maximize
(5.12). Anotherway is to use the analytical approximation of solving aMerton problem
with the diffusion matrix substituted by the total variance–covariance operator of R,
i.e. the sum of 
(t, d) plus the second moment of the jump process, given by

Ci j (t) :=
∫
Xn

xi x jν
d
t (dx).

This method is justified in Benth and Schmeck (2012) and gives the approximation

h̄t � [
(t, d) + C(t)]−1μ(t)

whose numerical goodness is illustrated in Pasin and Vargiolu (2010).

Remark 5.7 In analogy with (Pasin and Vargiolu, 2010, Remark 3.2), we point out
that the optimal Markov policy h̄ does not depend on the variable v. Thus, the optimal
strategy only depends on t and Dt− through μ(t, Dt−), σ(t, Dt−) and νt (Dt−, dx),
but not on the current level of wealth Vt . The dependence on the risky asset prices
Sit , i = 1, . . . , n, is just when the process Si jumps to zero; otherwise, the optimal
strategy is a completely deterministic function as in Pasin and Vargiolu (2010). In
the time-homogeneous case, i.e. μ(t, d) ≡ μ(d), σ(t, d) ≡ σ(d) and νdt ≡ ν, h̄ is
piecewise constant in time, jumping only at the default times τ i , i = 1, . . . , n.

Remark 5.8 By contrast, for any t ∈ [0, T ], c̄t is a linear function of Vt that only
depends on the parameters A, B, δ of the utility functions U and u. Therefore, the
optimal consumption c̄t does not depend explicitly on default configuration Dt , or on
the model parameters μ(t, d), σ (t, d), νt (d, dx). Furthermore, consistently with the
financial intuition, the optimal consumption c̄t is increasing in B, and constantly equal
to 0 when the utility function u(t, c) for the consumption is constantly null, i.e. B = 0.

6 Examples

In this section, we present several examples of market models with one, two or several
assets subject to default or bankruptcy. In particular, in Sect. 6.1 we present a general
model with three assets, the first representing the stock of a default free firm, and
the others being respectively the bond and the stock of a defaultable firm. In case
of default of the second firm, we allow for the bondholders to recover part of the
bond market value. Sections 6.3 and 6.4 are particular cases of this general example,
where the agent cannot trade either in the vulnerable stock or in the defaultable bond,
respectively. These two cases have already been dealt in the literature in Bielecki and
Jang (2006) and Callegaro (2013), respectively. Section 6.4 presents a market model,
inspired by Backhaus and Frey (2008), Cousin et al. (2011), with several defaultable
bonds that cannot default simultaneously; as a consequence, the optimal portfolio
proportion of each bond depends only on its dynamics and not on that of the other
ones. Instead in Sect. 6.5 we study the same market model, with only two defaultable
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bonds, where we introduce the possibility of a simultaneous default; as a consequence,
the optimal portfolio proportion of each bond prior to any default turns out to depend
also on the dynamics of the other bond.

In the light of Remark 5.8, in the following examples we only focus on the optimal
investment strategy h̄t = h̄(t, Dt ), as the optimal consumption c̄t does not depend on
the choice of the model.

6.1 Diffusion dynamics with default

In this section we present an example of market model with three risky assets, namely
one stock S1 issued by a default-free entity, one bond SP and another stock S2, the
two latter assets being issued by the same defaultable entity. This model generalizes
two models in Bielecki and Jang (2006), Callegaro (2013), which can be obtained by
imposing a null strategy in the defaultable stock or in the defaultable bond, respectively.

The risky assets’ dynamics (1.1)–(3.3) takes now the form

dSit = Sit− dRi
t , i = 1, 2, P

dR1
t = μ1(t, Dt )dt + σ1(t, Dt )dWt ,

dR2
t = μ2(t, Dt )dt + σ2(t, Dt )dWt − (dNt − λ(t)dt),

dRP
t = μP (t, Dt )dt − ξ(1 − Dt−)(dNt − λ(t)dt),

where N is a 1-dimensional Poisson processes with intensity λ, acting on S2 and SP ,
and where (following Bielecki and Jang 2006)

μP (t, Dt ) := ξ(1 − Dt−)λ(t)

(
1

�(t)
− 1

)

In other words, both the stocks S1 and S2 follow a standard Black–Scholes dynamics,
with the only admissible jump of the process (S1, S2, SP ) having amplitude equal
to (0,−S2,−ξ SP ), and causing the default of the bond SP and the bankruptcy of
the stock S2. In this case the stock loses all its value, while the bond loses a fixed
fraction ξ ∈ [0, 1] of its value, thus allowing for a partial recovery. Notice that the
drift of the defaultable bond μP is proportional to the difference between the intensity
λ
�

of N under an equivalent martingale measure and the intensity λ of N under the
real-world probability measure, under which the utility is maximized. In Bielecki and
Jang (2006), the quantity 1

�
is called default event risk premium.

The compensating measure ν0t is now equal to λ(t) > 0 times the Dirac delta
distribution concentrated in {x1 = 0, x2 = −1, x3 = −ξ} ∈ R

3, i.e.

ν0t
({x1 = 0, x2 = −1, x3 = −ξ}) = λ(t),

ν0t

(
R
2\{x1 = 0, x2 = −1, x3 = −ξ}

)
= 0, ∀t ∈ [0, T ].
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Note that, by contrast, the post-default compensating measure ν1 can be actually set
identically equal to 0 without loss of generality, as none of the jumps of the process
R2 (thus also of R3) occurring after the default time τ 2 have any impact on the price
S2t , or on the price S

R
t . Indeed, the former process has already jumped to the absorbing

state 0, whereas the latter is constant because μP (t, 1) ≡ 0, and thus its dynamics is
identically equal to the riskless asset.

Under this particular choice of νdt , d = 0, 1, the subset Ht ⊂ R
2 defined in (4.8)

takes the form

Ht ≡ {(h1, h2, hP ) | h2 + ξhP < 1}

For sake of simplicity we can assume, without losing generality, the convex compact
subset H ⊂ R

3 ofDefinition 4.3(a) expressed in the form H = H1×H2, where H1 and
H2 are convex compact subset of R and of the half-plane {(h2, hP ) | h2 + ξhP < 1},
respectively. Now, Equation (5.12) can be written, in extended form, as

F1(t, h) = μ1(t, 1)h1 − 1

2
‖σ1(t, 1)‖2 h21,

F0(t, h) = 〈μ(t, 0), h〉 − 1

2
〈(h1, h2)
(t, 0), (h1, h2)〉

+λ(t)
(
log (1 − h2 − ξhP ) + h2 + ξhP

)
.

where we denote


(t, 0) = σσ ∗(t, 0) :=
( ‖σ1(t, 0)‖2 〈σ1(t, 0), σ2(t, 0)〉

〈σ1(t, 0), σ2(t, 0)〉 ‖σ1(t, 0)‖2
)

as the diffusion component of the risky bond SP is null.
Now, as F1 is strictly concave in h1, the maximization problem with respect to

h1 over H1 has a unique solution that can be either internal or on the boundary. A
necessary and sufficient condition under which the maximum over H1 is internal is
that the solution of the first-order condition

μ1(t, 1) = ‖σ1(t, 1)‖2 h1,

given by h1(t) = μ1(t,1)
‖σ1(t,1)‖2 , belongs to int(H1). Thus, under this condition, the first

component of h̄(t, 1) in (5.12) is univocally determined by

h̄1(t, 1) = μ1(t, 1)

‖σ1(t, 1)‖2
.

Analogously, assuming the matrix rank
(t, 0) = 2, F0(t, h) is a strictly concave
function and so the maximization problem over H has a unique solution. Moreover,
we have the following
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Proposition 6.1 For any t ∈ [0, T ], the unique maximum of F0(t, h) over H is an
internal point if and only if h∗

1(t) ∈ H1, where h∗
1(t) is the first component of

(h1, h2)(t) := 
−1

(
μ1(t, 0)

μ2(t, 0) − λ(t)
(

1
�(t) − 1

)) (6.1)

and (h∗
2(t), h

∗
P (t)) ∈ H2, where

h∗
P (t) = 1

ξ
(1 − �(t) − h2(t)) (6.2)

Under these assumptions, the unique maximizer of F0(t, h) is

h̄(t, 0) = (
h∗
1(t), h

∗
2(t), h

∗
P (t)

)
.

Proof Being F0(t, h) strictly concave on H with respect to h, the unique maximum
over H is an internal point if and only if it is the solution of the first-order condition

∇h F
0(t, h) = 0. (6.3)

Condition (6.12) is explicitly given by

⎧⎪⎪⎨
⎪⎪⎩

μ1(t, 0) = 
11(t, 0)h1 + 
21(t, 0)h2,

μ2(t, 0) = 
21(t, 0)h1 + 
22(t, 0)h2 + λ(t)
(

1
1−h2−ξhP

− 1
)

,

μP (t, 0) = λ(t)ξ
(

1
1−h2−ξhP

− 1
)

.

(6.4)

(recall that 
i j = 〈σi , σ j 〉). Now, by substituting the third equation into the second,
the first two equations in (6.18) become

{
μ1(t, 0) = 
11(t, 0)h1 + 
21(t, 0)h2,

μ2(t, 0) − λ(t)
(

1
�(t) − 1

)
= 
21(t, 0)h1 + 
22(t, 0)h2,

(6.5)

which results in a modified Merton problem on the stocks, whose solution is given by
Eq. (6.1). Once we have h2, we can easily obtain hP from the third equation of (6.18),
resulting in Eq. (6.17). It is also very easy to assess that h2 + ξhP < 1, so the triple
(h1, h2, hP ) ∈ H . Thus, the conclusion follows. ��
Corollary 6.2 Let (hM

1 (t), hM
2 (t)) := 
−1(t, 0)(μ1(t, 0), μ2(t, 0)) be the Merton

optimal strategy for the undefaultable log-normal dynamics of the risky assets. Then,
by calling ρ := 〈σ1,σ2〉‖σ1‖‖σ2‖ the correlation between S1 and S2, under the assumptions of
the previous proposition we have that

(
h̄1(t)
h̄2(t)

)
=
(
hM
1 (t)

hM
2 (t)

)
+ ξλ(t)( 1

�
− 1)

1 − ρ2

(
ρ

‖σ1‖‖σ2‖
− 1

‖σ2‖2

)
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In particular,

h̄(t, 0) → hM (t) as λ(t) → 0 (6.6)

Proof A direct computation shows that

(
h̄1(t)
h̄2(t)

)
=
(
hM
1 (t)

hM
2 (t)

)
− 
−1

(
0

λ(t)( 1
�

− 1)

)

By inverting 
, the conclusions follow. ��

Remark 6.3 If ρ = 0, i.e. when the default-free asset is independent of the vulnerable
part of the portfolio (bond and stock), then the optimal portfolio in the default-free
asset is exactly equal to the Merton portfolio, as in Bielecki and Jang (2006).

6.2 One standard stock and one defaultable bond

As already said, if we impose the portfolio constraint h2 ≡ 0, i.e. we do not allow our
agent to invest in the vulnerable stock, we obtain exactly the market model treated in
Bielecki and Jang (2006). In this case, the set of all admissible strategies becomes

Ht ≡ {(h1, 0, hP ) | hP < 1/ξ},

and againwe can assumewithout losing generality the convex compact subset H ⊂ R
3

of Definition 4.3(a) expressed in the form H = H1 × {0} × H2, where H1 and H2
are convex compact subset of R and of the half-line (−∞, 1/ξ), respectively. Now,
Eq. (5.12) can be written, in extended form (by omitting the variable h2 ≡ 0), as

F1(t, h) = μ1(t, 1)h1 − 1

2
‖σ1(t, 1)‖2 h21,

F0(t, h) = 〈μ(t, 0), h〉 − 1

2
‖σ1(t, 1)‖2 h21 + λ(t)

(
log (1 − ξhP) + ξhP

)
.

Now, as F1 is again strictly concave in h1, the maximization problem with respect
to h1 over H1 has a unique solution that can be internal or on the boundary of H1,
leading to the exact same conclusion as in the general case in Sect. 6.2. We also notice
that F0(t, h) is a strictly concave function and so the maximization problem over H
has a unique solution.

Proposition 6.4 For any t ∈ [0, T ], the unique maximum of F0(t, h) over H is an
internal point if and only if

h∗
1(t) := μ1(t, 0)

‖σ1(t, 0)‖2 ∈ H1 (6.7)
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and

h∗
P (t) = 1

ξ
(1 − �(t)) ∈ H2. (6.8)

Under these assumptions, the unique maximizer of F0(t, h) is

h̄(t, 0) = (
h∗
1(t), h

∗
2(t), h

∗
P (t)

)
.

Proof Being F0(t, h) strictly concave on (−∞, 1) × R with respect to h, the unique
maximum over H is an internal point if and only if it is the solution of the first-order
condition

∇h F
0(t, h) = 0,

which now reads as {
μ1(t, 0) = 
11(t, 0)h1,

μP (t, 0) = λ(t)ξ
(

1
1−ξhP

− 1
)

.
(6.9)

Thus the conclusion follows easily. ��
Remark 6.5 We obtain the same conclusion as in Bielecki and Jang (2006) (notice
that there the utility function isU (x) = xγ /γ , so mathematically speaking we obtain
the same conclusions in the limiting case γ → 0). In particular, the investment in the
riskless stock is independent of the default possibility of the risky bond. Plus, due to
the log-utility function, the optimal strategy of the risky bond is myopic, i.e. it does
not depend on the residual investment horizon T − t .

6.3 Two stocks, one of which subject to bankruptcy

We now impose the portfolio constraint hP ≡ 0, i.e. we allow our agent to only invest
in the standard stock S1 and in the vulnerable stock S2; thus, we obtain the same
market model treated in Callegaro (2013). In this case, the set of admissible strategies
becomes

Ht ≡ {(h1, h2, 0) | h2 < 1},

and againwe can assumewithout losing generality the convex compact subset H ⊂ R
3

of Definition 4.3(a) expressed in the form H = H1 × H2 × {0}, where H1 and H2
are convex compact subset of R and of the half-line (−∞, 1), respectively. Now,
Eq. (5.12) can be written, in extended form (by omitting the variable hP ≡ 0), as

F1(t, h) = μ1(t, 1)h1 − 1

2
‖σ1(t, 1)‖2 h21,

F0(t, h) = 〈μ(t, 0), h〉 − 1

2
〈(h1, h2)
(t, 0), (h1, h2)〉 + λ(t)

(
log (1 − h2) + h2

)
.
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Now, as F1 is again strictly concave in h1, the maximization problem with respect to
h1 over H1 has a unique solution that can either be internal or on the boundary of H1,
leading to the exact same conclusion as in the general case in Sect. 6.2. We also notice
that if we again assume that rank 
 = 2, then F0(t, h) is a strictly concave function
and so the maximization problem over H has a unique solution.

Proposition 6.6 For any t ∈ [0, T ], the unique maximum of F0(t, h) over H is an
internal point if and only if

�(t) = (det
(t, 0) − 
11(t, 0)μ2(t, 0) + 
12(t, 0)μ1(t, 0))
2

+2λ(t)
11(t, 0) (det
(t, 0) + 
11(t, 0)μ2(t, 0) − 
12(t, 0)μ1(t, 0))

+λ2(t)
2
11(t, 0) ≥ 0, (6.10)

and

h∗
1(t) = μ1(t, 0) − 
12(t, 0)h∗

2(t)


11(t, 0)
(6.11)

h∗
2(t) = det
(t, 0)+
11(t, 0)μ2(t, 0)−
12(t, 0)μ1(t, 0)+
11(t, 0)λ(t)−√

�(t)

2 det
(t, 0)
,

belong to H1 and H2, respectively. Under this condition, the function h̄(t, 0) in (5.12)
is univocally determined by

h̄(t, 0) = (
h∗
1(t), h

∗
2(t)

)
.

Proof Being F0(t, h) strictly concave on (−∞, 1) × R with respect to h, the unique
maximum over H is an internal point if and only if it is the solution of the first-order
condition

∇h F
0(t, h) = 0. (6.12)

Condition (6.12) is explicitly given by

{
μ1(t, 0) = 
11(t, 0)h1 + 
12(t, 0)h2
μ2(t, 0) + λ(t) = 
12(t, 0)h1 + 
22(t, 0)h2 + λ(t)

1−h2

(6.13)

Now, by solving for h1 in the first equation and by substituting it and multiplying for
(1 − h2)σ11(t, 0) in the second equation, (6.13) becomes

{
h1 = μ1(t,0)−
12(t,0)h2


11(t,0)
a(t)h22 + b(t)h2 + c(t) = 0

(6.14)
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where

a(t) = det
(t, 0),

b(t) = −(det
(t, 0) + 
11(t, 0)μ2(t, 0) − 
12(t, 0)μ1(t, 0)) − 
11(t, 0)λ(t),

c(t) = 
11(t, 0)μ2(t, 0) − 
12(t, 0)μ1(t, 0).

Thus, System (6.13) may have two solutions: h∗ = (h∗
1, h

∗
2) as in (6.11), and g∗ =

(g∗
1 , g

∗
2) given by

⎧⎨
⎩ g∗

1(t) = μ1(t,0)−
12(t,0)h22(t)

11(t,0)

g∗
2(t) = det
(t,0)+
11(t,0)μ2(t,0)−
12(t,0)μ1(t,0)+
11(t,0)λ(t)+√

�(t)
2 det
(t,0)

where �(t) is defined as in (6.10). To conclude it is enough to observe that g∗ cannot
belong to H ⊂ R × (−∞, 1). Indeed, let us assume that g∗

2 < 1. Then h∗
2 < g∗

2
implies h∗

2 < 1 and so F0(t, h) has two stationary points on R × (−∞, 1), which is
impossible because it is strictly concave with respect to h. ��
Corollary 6.7 Let hM (t) := 
−1(t, 0)μ(t, 0) be the Merton optimal strategy for the
non-vulnerable log-normal dynamics. Then

h̄(t, 0) → hM (t) as λ(t) → 0 (6.15)

if and only if hM (t) ∈ H. In particular, if

hM
1 (t) = 
22(t, 0)μ1(t, 0) − 
12(t, 0)μ2(t, 0)

det
(t, 0)
< 1,

we can always find a compact H ⊂ (−∞, 1) ×R such that (6.15) holds. In this case,
we have (

h̄1(t)
h̄2(t)

)
=
(
hM
1 (t)

hM
2 (t)

)
+ λ(t)A(t)

(−
12

11

)
+ o(λ(t)) (6.16)

with

A(t) := 1

2 det


(
1 − det
(t, 0) + 
11(t, 0)μ2(t, 0) − 
12(t, 0)μ1(t, 0)

det
(t, 0) − 
11(t, 0)μ2(t, 0) + 
12(t, 0)μ1(t, 0)

)

Proof A direct computation shows that h∗(t) = hM (t) when λ(t) = 0. Then the limit
follows by continuity of h∗(t). For the first-order asymptotics, we have that

√
�(t) = (det
(t, 0) − 
11(t, 0)μ2(t, 0) + 
12(t, 0)μ1(t, 0))

×
(
1+λ(t)
11(t, 0)

det
(t, 0)+
11(t, 0)μ2(t, 0)−
12(t, 0)μ1(t, 0)

(det
(t, 0)−
11(t, 0)μ2(t, 0)+
12(t, 0)μ1(t, 0))2
+o(λ(t))

)
.

Hence Eq. (6.16) follows. ��
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Remark 6.8 In this case, if the two assets are independent, then
12 ≡ 0, and the same
conclusion of the previous sections follows “at first order”; in fact, by Eq. (6.16), one
has that h̄1 = hM

1 + o(λ(t)), i.e. the deviations from Merton’s portfolio of the non-
vulnerable asset are of higher order with respect to λ(t).

6.4 Several defaultable bonds

In this section we present an example of market model with several defaultable bonds,
with dynamics analogous to Sects. 6.1 and 6.2; namely

dSit = Sit− dRi
t , i = 1, . . . , n,

dRi
t = μi (t, Dt−)dt − ξi (1 − Di

t−)(dNi
t − λi (t, Dt−)dt),

where

μi (t, Dt−) := ξi (1 − Di
t−)λi (t, Dt−)

(
1

�i (t)
− 1

)

and where now, the intensities of the Poisson processes Ni (both under the real-world
probability measure and the risk-neutral one) can possibly depend on the default state
Dt− of the other bonds. This model is inspired by Backhaus and Frey (2008) and
Cousin et al. (2011). Precisely, we can distinguish two relevant cases: the case when
simultaneous defaults cannot occur (as in Backhaus and Frey 2008; Cousin et al.
2011), and the case when they can. In the first case we only have information-induced
contagion among bonds, whereas in the second one it is also possible to model direct
contagion.

While in the next example we will focus on the case when simultaneous defaults
can occur, here we focus on the case when they cannot. This is obtained by imposing
that the Ni , i = 1, . . . , n, are independent Poisson processes conditional to the default
state D. The compensating measure νt is then equal to

νt (Dt−, dx) =
n∑

i=1

(1 − Di
t−)λi (t, Dt−)δ−ei (dx)

where ei is the i th coordinate vector in R
n , with 1 in the i th component and 0 in the

other ones.
Under this choice of νt (d, ·), the subset Ht ⊂ R

n defined in (4.8) takes the form

Ht ≡
{
h | hi <

1

ξi
∀i = 1, . . . , n

}
.

Again, for sake of simplicity we can assume the convex compact subset H ⊂ R
n of

Definition 4.3(a) expressed in the form H = ∏n
i=1 Hi , where Hi are convex compact

subsets of the interval (−∞, 1
ξi

). Now, Equation (5.12) can be written as
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Fd(t, h) = 〈μ(t, d), hd〉 +
+

n∑
i=1

(1 − di )λi (t, d)(log(1 − ξi hi (1 − di )) + ξi hi (1 − di )),

for all d ∈ {0, 1}n . Now, as each Fd is strictly concave in all the non-null components
of hd , the maximization problem with respect to these variables over H has a unique
solution that can be internal or on the boundary. In particular, we have the following

Proposition 6.9 For any t ∈ [0, T ] and d ∈ {0, 1}n, a unique maximum of Fd(t, h)

over H is an internal point if and only if

h∗
i (t) = 1

ξi
(1 − �i (t)) ∈ Hi (6.17)

for all i = 1, . . . , n such that di = 0. Under these assumptions, h∗(t) is a maximizer
of Fd(t, h).

Proof Being Fd(t, h) strictly concave on H with respect to the non-null variables of
hd , the unique maximum over H is an internal point if and only if it is the solution of
the first-order condition

Fd
hi (t, h) = 0 ∀i such that di = 0,

which now reads as

ξiλi (t, d)

(
1

�i (t)
− 1

)
= λi (t, d)ξi

(
1

1 − ξi hP
− 1

)
. (6.18)

Thus the conclusion follows easily. ��
Remark 6.10 In this particular example, where there is no direct contagion, it turns
out that the optimal portfolio on the i th bond (if still alive) is uniquely determined by
its coefficients, with no dependence on the coefficients of the other defaultable bonds.

Corollary 6.11 If ξi ≡ ξ and �i ≡ �, then the optimal portfolio for all the default-
able bonds is

h∗
i (t) ≡ 1

ξ
(1 − �(t)).

Remark 6.12 Theassumptions of the corollary above are qualitatively knownas “name
homogeneity” Backhaus and Frey (2008), and hold when default risks of the bonds are
exchangeable, for example when bonds are of the same credit rating and/or of firms
from the same industrial sector. Notice that for this conclusion it is not necessary to
assume that λi ≡ λ.
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6.5 Two defaultable bonds with direct contagion

In this section, we specialize the previous example to n = 2 but add the possibility of
simultaneous default, by modifying the dynamics as

dSit = Sit− dRi
t , i = 1, . . . , 2,

dRi
t = μi (t, Dt−)dt − ξi (1 − Di

t−)(dNi
t − λi (t, Dt−)dt)

−ξi (1 − D1
t−)(1 − D2

t−)(dNt − λ(t)dt),

where N 1, N 2 and N are independent Poisson processes and this time

μi (t, Dt−) := ξi (1 − Di
t−)λi (t, Dt−)

(
1

�i (t)
− 1

)

+ξi (1 − D1
t−)(1 − D2

t−)λ(t, Dt−)

(
1

�(t)
− 1

)
,

and where now the intensities of the Poisson processes Ni (both under the real-world
probability measure and the risk-neutral one) can possibly depend on the default state
Dt− of the other bond, while the Poisson process N , with intensity λ, acts on both the
defaultable bonds when they are still non-defaulted.

The compensating measure νt is now equal to

νt (Dt−, dx) =
n∑

i=1

(1 − Di
t−)λi (t, Dt−)δ−ei (dx)

+(1 − D1
t−)(1 − D2

t−)λ(t, Dt−)δ(−1,−1)(dx)

where again ei , i = 1, 2, is the i th coordinate vector in R
2, and we also have the

possibility of a simultaneous jump to (−1,−1) with intensity λ.
Under this choice of νt (d, ·), the subset Ht ⊂ R

n defined in (4.8) takes the form

Ht ≡
{
h | hi <

1

ξi
∀i = 1, 2, ξ1h1 + ξ2h2 < 1

}
.

Also in this example, for sake of simplicity we can assume the convex compact subset
H ⊂ R

n of Definition 4.3(a) expressed as H = H1 × H2, where Hi are convex
compact subsets of the interval (−∞, 1

ξi
).

Now, Eq. (5.12) can be written, in extended form, as

F (0,0)(t, h) = 〈μ(t, (0, 0)), h〉 +
2∑

i=1

λi (t, (0, 0))(log(1 − ξi hi ) + ξi hi ) (6.19)

+λ(t, (0, 0))(log(1 − ξ1h1 − ξ2h2) + ξ1h1 + ξ2h2),

F (0,1)(t, h) = μ1(t, (0, 1))h1 + λ1(t, (0, 1))(log(1 − ξ1h1) + ξ1h1),

F (1,0)(t, h) = μ2(t, (1, 0))h2 + λ2(t, (1, 0))(log(1 − ξ2h2) + ξ2h2).
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Now, as each Fd is strictly concave in all the non-null components of hd , the maxi-
mization problemwith these variables over H has a unique solution that can be internal
or on the boundary. More in detail, we have the following

Proposition 6.13 For any t ∈ [0, T ], for i = 1, 2, if

h∗
i (t) = 1

ξi
(1 − �i (t)) ∈ Hi

then h∗
i (t) is the optimal portfolio proportion of the i th bond after the other one is

defaulted. For the case d = (0, 0) (i.e. prior to any default), if the unique solution
(h∗

1, h
∗
2) ∈ Ht of the system

λ1

�1
= λ1

1 − ξ1h1
+ λ

1 − ξ1h1 − ξ2h2
, (6.20)

λ2

�2
= λ2

1 − ξ2h2
+ λ

1 − ξ1h1 − ξ2h2
, (6.21)

also belongs to H1 × H2, then it is the optimal pre-default portfolio.

Proof The situationwhen the i th bond is already defaulted is analogous to the previous
example, with exactly the same results.

Let us now pass to the case d = (0, 0). Since in this case Fd(t, h) is strictly concave
on H , the unique maximum over H is an internal point if and only if it is the solution
of the first order condition

Fd
hi (t, h) = 0 ∀i = 1, 2,

corresponding to Eqs. (6.20–6.21). Thus the conclusion follows. ��
Remark 6.14 In this example with a direct contagion, it turns out that the optimal
portfolio in the i th bond prior to any default depends (via a non-linear relation) on
its coefficients and also on the coefficient of the other bond. Thus, the possibility of
simultaneous defaults introduces a (non-linear) dependence among the defaultable
bonds, which is somewhat analogous to the correlation effect arising in diffusion
models.

Note that solving the system (6.20)–(6.20) requires solving a third-order algebraic
equation. When λ tends to 0 we have the following continuity property.

Remark 6.15 Let us denote by
(
h∗,λ
1 (t), h∗,λ

2 (t)
)
the optimal strategy when both the

bonds are still alive, i.e. d = (0, 0). Then we have

lim
λ→0

(
h∗,λ
1 (t), h∗,λ

2 (t)
) = (

h∗,0
1 (t), h∗,0

2 (t)
)
.

Indeed, F (0,0)(h1, h2; λ) in (6.19) is continuous, and thus uniformly continuous on
the compact H1 × H2 × [0, λ̄], for any λ̄ > 0. Thus,
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(
h∗,λ
1 (t), h∗,λ

2 (t)
) = argmax

(h1,h2)∈H1×H2

F (0,0)(h1, h2; λ)

tends to

argmax
(h1,h2)∈H1×H2

F (0,0)(h1, h2; 0) = (
h∗,0
1 (t), h∗,0

2 (t)
)

as λ tends to 0. In particular, for i = 1, 2, by Proposition 6.9 we have

lim
λ→0

h∗,λ
i (t) = 1

ξi
(1 − �i (t))

if 1
ξi

(1 − �i (t)) ∈ Hi .

7 GOP and GOP-denominated prices

As already outlined in Remark 4.6, in this section we study the problem of determining
theGOP: this follows from the previous results by simply letting u(t, c) ≡ 0, i.e. B = 0
in (4.10). In light of Theorem 5.4, this is equivalent to considering the optimization
problem with terminal utility function U (v), with null consumption rate ct ≡ 0.
Furthermore, we will enlarge the set of admissible strategies A[t, T ]. In particular
we drop part (a) of Definition 4.3 and we only assume that ht belongs to Ht defined
as in (4.8). Under this more general assumption, the optimal strategy (h̄t )0≤t≤T that
solves the logarithmic maximization problem (4.9)–(4.10) with A = 1 is called, when

it exists, the growth-optimal strategy. The related wealth process V h̄
t is calledGrowth-

Optimal Portfolio (GOP).
As already said in the Introduction, the GOP has the so-called numéraire property

Christensen and Larsen (2007), in the sense that all the other portfolios measured in
terms of the GOP are supermartingales. The numéraire property can be used for exam-
ple in the benchmark approach Platen (2006) to price contingent claims even inmodels
where an equivalent martingale measure (EMM) is absent. GOP-denominated prices
might however fail to bemartingale and being instead strict supermartingales Becherer
(2001), Bühlmann and Platen (2003), Cvitanić and Karatzas (1992), Kramkov and
Schachermayer (1999). We will now show that in our model the inverse GOP process
is either a martingale or a strict supermartingale depending on whether the growth-
optimal strategy is an internal or a boundary solution with respect to the domain of
the admissible strategies.

Hereafter assume that a growth-optimal strategy h̄ exists, and it is characterized as

h̄(t) = h̄(t, Dt−),

where h̄(t, ·) : {0, 1}n → Ht is a deterministic function such that

h̄(t, d) ∈ argmax
h∈Ht

Fd(t, h), (7.1)
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for any t ∈ [0, T ], with Fd(t, h) as in (5.12). For sake of simplicity, we can always
assume without any loss of generality that ¯hi (t, d) = 0 if di = 1. Then, by the Itô ’s
formula, the dynamics of the inverse GOP process It := 1

V h̄
t

is

dIt
It−

= −
〈
h̄(t, Dt−),∇h F

Dt−(t, h̄(t, Dt−))
〉
dt − h̄(t, Dt−)σ (t, Dt )dWt

+
∫
Xn

(
1

1 + 〈
h̄(t, Dt−), x

〉 − 1

) (
N (Dt−, dt, dx) − νt (Dt−, dx)dt

)
,

Now, observe that

E

⎡
⎣∫ T

0

⎛
⎝∫

Xn

(
1

1+〈h̄(t, Dt−), x
〉−1

)2

νt (Dt−, dx)+∣∣h̄(t, Dt−)σ (t, Dt )
∣∣2
⎞
⎠ dt

⎤
⎦

=
∫ T

0

⎛
⎝ max
d∈{0,1}n

∫
Xn

(
1

1+〈h̄(t, d), x
〉−1

)2

νt (d, dx)+∣∣h̄(t, d)σ (t, d)
∣∣2
⎞
⎠dt<+∞,

From this we get that E[sup0≤t≤T |It |2] < +∞ (see Protter 2004, V.Theorem 67) and
that

−It−h̄(t, Dt−)σ (t, Dt )dWt

+It−
∫
Xn

(
1

1 + 〈
h̄(t, Dt−), x

〉 − 1

) (
N (Dt−, dt, dx) − νt (Dt−, dx)dt

)

is the stochastic differential of a martingale. Therefore, It is a martingale if and only
if

〈
h̄(t, Dt−),∇h F

Dt−(t, h̄(t, Dt−))
〉
= 0, ∀ t ∈ [0, T ].

Of course, by (7.1), h̄(t, d) ∈ int(Ht ) implies∇h Fd(t, h̄(t, d)) = 0, and thus, for It to
be a strict supermartingale the optimal strategy h̄(t, Dt ) has to be a boundary solution.
The latter case is only possible when supp(νdt (dx)) are not compact subsets of Rn ,
and in the next subsection we will provide an example where this fact is evident.

7.1 Strict supermartingale inverse GOP

We consider a market model with only one risky asset, that is n = 1. Therefore, we
can refer to μ(t, 0), σ(t, 0) and ν0(t, dx) as μ(t), σ(t) and ν(t, dx), respectively.
Furthermore, the pre-default growth-optimal policy h̄(t) ≡ h̄(t, 0) is the value that
maximizes over Ht ⊂ R the function
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F(t, h) ≡ F0(t, h) = μ(t)h − 1

2
σ 2(t)h2 +

∫ ∞

−1

(
log (1 + xh) − xh

)
νt (dx).

Now, let us set 0 ≤ mt ≤ 1 and Mt ∈ [0,+∞] such that supp(νt ) ⊆ [−mt , Mt ] for
any t ∈ [0, T ], and consider the following scenarios.

(a) νt ({−mt }) > 0, νt ({Mt }) > 0. According with (4.8) we have Ht = (− 1
Mt

, 1
mt

)

for any t ∈ [0, T ]. In this case the growth-optimal policy exists and is an internal
point. Indeed, the function F(t, h) is concave in h and

lim
h→− 1

Mt

+ F(t, h) = lim
h→ 1

mt

− F(t, h) = −∞.

In this case the inverse GOP It is a martingale.
(b) νt ({−mt }) = 0 < νt ({Mt }). We have Ht = (− 1

Mt
, 1
mt

] and the growth-optimal
policy still exists because F(t, h) is concave in h and

lim
h→− 1

Mt

+ F(t, h) = −∞.

In this case, differently from (a), argmaxh∈Ht F(t, h) might correspond to the
boundary point 1

mt
. A necessary and sufficient condition for this is

lim
h→ 1

mt

− ∂h F(t, h) = μ − σ(t)h +
∫ Mt

−mt

(
x

1 + hx
− x

)
νt (dx) ≥ 0, (7.2)

that of course implies

∫ −mt+ε

−mt

x

1 + x
mt

νt (dx) > −∞.

Therefore, if (7.2) holds the inverse GOP It is a strict supermartingale.
(c) νt ({Mt }) = 0 < νt ({−mt }). In analogy with (b), we have Ht = [− 1

Mt
, 1
mt

) and
the condition

lim
h→− 1

Mt

+ ∂h F(t, h) = μ − σ(t)h +
∫ Mt

−mt

(
x

1 + hx
− x

)
νt (dx) ≤ 0,

for h̄(t) to coincide with boundary point − 1
Mt

.

(d) νt ({−mt }) = νt ({Mt }) = 0. Totally analogous to (b) and (c), with h̄(t) possibly
corresponding to either − 1

Mt
or 1

mt
.

The above example shows that a boundary solution 1/mt (or −1/Mt ) is impossible
when the compensator νt puts mass on the boundary mt (or Mt ) of the respective
support. Indeed, as the proportion invested in the risky asset gets closer to the the
boundary, the log-portfolio value gets arbitrarily close to−∞with positive probability.
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Note that this phenomena is actually independent of mt being or not equal to one, and
so independent of the risky asset being or not defaultable.
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Appendix: Proof of Theorem 5.4

We first need to introduce the following notation.

Definition 8.1 Given d ∈ {0, 1}n , we call the length of d the positive integer defined
as

l(d) := n −
n∑

i=0

di .

Moreover we establish on {0, 1}n the following (partial) order relation:

d ≤ d ′ if di ≥ d ′
i ∀i = 1, . . . , n.

Note that given Dt = d for a certain t ≤ 0, the states d ′ < d are the only states
accessible for D after the time t .

Roughly speaking, the length of d is equal to the number of risky asset that are still
alive. In particular, when every firm has already defaulted we have l(d) = 0, whereas
when every firm did not we have l(d) = n. We also explicitly observe that

d + χ(d, x) ≤ d ∀d ∈ {0, 1}n, x ∈ Xn .

Hence by (5.4), given a state d ∈ {0, 1}n , Ah J (t, x, d) depends only on the states
d ′ ≤ d, i.e. the states whose alive assets are a subset of the alive ones in d; in
other words, Ah,c J (t, x, d) does not depend on the assets whose entities have already
defaulted.

We also need the following

Lemma 8.2 Consider the function

ψ(t, v, c) =
{
Be−δ(T−t) log c − c

A+ B
δ

(
1−e−δ(T−t)

)
v

, δ > 0
B log c − c A+B(T−t)

v
, δ = 0

(8.1)

with A, B ≥ 0, A + B > 0. Then, for any t ∈ [0, T ] and v > 0 we have

c̄(t)v = argmax
c>0

ψ(t, v, c), (8.2)
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where c̄ is defined as in (5.16). Moreover,

max
c>0

ψ(t, v, c) = ψ(t, v, c̄(t)v) = Be−δ(T−t)

(
log

(
Be−δ(T−t)

A + B
δ

(
1 − e−δ(T−t)

)
)

− 1

)

+Be−δ(T−t) log v (8.3)

if δ > 0, whereas

max
c>0

ψ(t, v, c) = ψ(t, v, c̄(t)v) = B

(
log

(
B

A + B(T − t)

)
− 1

)
+ B log v

if δ = 0.

Proof We only prove the case δ > 0. For any t ∈ [0, T ], v > 0 we have

ψc(t, v, c) = Be−δ(T−t)

c
− A + B

δ

(
1 − e−δ(T−t)

)
v

= 0

if and only if c = c̄(t)v. Thus, c̄(t)v is the only stationary point for ψ(t, v, ·), and
since limc→0 ψ(t, v, c) = limc→∞ ψ(t, v, c) = −∞, we obtain (8.2). Eventually,
(8.3) follows from a direct computation. ��

We now prove Theorem 5.4.

Proof of Theorem 5.4 We only prove the theorem for δ > 0, as the case δ = 0 is
totally analogous.

Part (a). By induction on k = l(d). We start proving the statement when k = 0. In
this case we clearly have d = 1 := (1, . . . , 1), i.e. all the entities have defaulted. If
we search for a solution of the kind K (t, v, d) as in (5.13), we clearly obtain

Ah,cK (t, v, 1) = AhK (t, v, 1, . . . , 1) = −c
A + B

δ

(
1 − e−δ(T−t)

)
v

, (8.4)

so that the HJB equation becomes

d

dt
�1(t) = Be−δ(T−t) log v − sup

c>0

(
Be−δ(T−t) log c − c

A + B
δ

(
1 − e−δ(T−t)

)
v

)

= Be−δ(T−t) log v − sup
c>0

ψ(t, v, c), (8.5)

with ψ(t, v, c) as in (8.1). Thus by Lemma 8.2 we have

d

dt
�1(t) = Be−δ(T−t) log v − ψ(t, v, c̄(t)v)

= −Be−δ(T−t)

(
log

(
Be−δ(T−t)

A + B
δ

(
1 − e−δ(T−t)

)
)

− 1

)
(8.6)
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Therefore, we define �1 as the unique solution of (8.6) provided with the terminal
condition �1(T ) = 0, so that K (t, v, 1) solves Eq. (5.3) with the terminal condition
(5.7).

We now assume the statement to be true for any d ′ ∈ {0, 1}n such that l(d ′) ≤ k−1
and prove it to be true for any d such that l(d) = k. We set

K (t, v, d) =
(
A + B

δ

(
1 − e−δ(T−t)

))
log v + �d(t), (8.7)

where �d is a C1 deterministic function such that �d(T ) = 0. Then we have

∂K

∂t
(t, v, d) = d

dt
�d(t) − Be−δ(T−t),

v
∂K

∂v
(t, v, d) = −v2

∂2K

∂v2
(t, v, d) = A + B

δ

(
1 − e−δ(T−t)

)
.

Therefore we obtain

Ah,cK (t, v, d)

A + B
δ

(
1 − e−δ(T−t)

) = 〈μ(t, d), hd〉 − c

v
− 1

2
〈hd
(t, d), hd〉

+
∫
Xn

(
K
(
t, v(1 + 〈x, hd〉), d + χ(d, x)

)− �d(t)

A + B
δ

(
1 − e−δ(T−t)

) − log v − 〈x, hd〉
)

νdt (dx)

[by (5.6)]

= 〈μ(t), hd〉 − c

v
− 1

2
〈hd
(t), hd〉 + I1 + I2,

where

I1 =
∫
Xn\�d

(
K
(
t, v(1 + 〈x, hd〉), d)− �d(t)

A + B
δ

(
1 − e−δ(T−t)

) − log v − 〈x, hd〉
)

νdt (dx),

[by (8.7)]

=
∫
Xn\�d

(
log (1 + 〈x, hd〉) − 〈x, hd〉

)
νdt (dx),

with

�d = Xn
⋂
⎛
⎜⎜⎝ ⋃

1≤i≤n,
di=0

{xi = −1}

⎞
⎟⎟⎠ , (8.8)
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and where

I2 =
∫

�d

(
K
(
t, v(1 + 〈xd , hd〉), d + χ(d, x)

)− �d(t)

A + B
δ

(
1 − e−δ(T−t)

) − log v − 〈xd , hd〉
)

νdt (dx)

(by induction hypothesis)

=
∫

�d

(
�d+χ(d,x)(t) − �d(t)

A + B
δ

(
1 − e−δ(T−t)

) + log (1 + 〈xd , hd〉) − 〈xd , hd〉
)

νdt (dx)

[by (5.6)]

= ϕd(t) − νt
(
�d
)
�d(t)

A + B
δ

(
1 − e−δ(T−t)

) +
∫

�d

(
log (1 + 〈xd , hd〉) − 〈xd , hd〉

)
νdt (dx),

where ϕd is the continuous deterministic function

ϕd(t) =
∑
d ′<d

νdt

(
�d ′)

�d ′
(t),

with

�d ′ = Xn
⋂
⎛
⎜⎜⎜⎝
⋂

1≤i≤n,
d ′
i=0

{xi �= −1}

⎞
⎟⎟⎟⎠
⋂
⎛
⎜⎜⎜⎝
⋂

1≤i≤n,
d ′
i=1

{xi = −1}

⎞
⎟⎟⎟⎠ .

Thus we obtain

Ah,cK (t, v, d) = ϕd(t) − νdt

(
�d
)

�d(t)

+
(
A + B

δ

(
1 − e−δ(T−t)

))(
Fd(t, h) − c

v

)
(8.9)

with Fd as in (5.12), and the HJB equation becomes

d

dt
�d(t) = Be−δ(T−t) log v − sup

h∈H, c>0

(
Ah,cK (t, v, d) + Be−δ(T−t) log c

)

= Be−δ(T−t) log v + νdt

(
�d
)

�d(t) − ϕd(t)

−
(
A + B

δ

(
1 − e−δ(T−t)

))
sup
h∈H

Fd(t, h)

− sup
c>0

(
Be−δ(T−t) log c − c

A + B
δ

(
1 − e−δ(T−t)

)
v

)
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= νdt

(
�d
)

�d(t) − ϕd(t) −
(
A + B

δ

(
1 − e−δ(T−t)

))
sup
h∈H

Fd(t, h)

+Be−δ(T−t) log v − sup
c>0

ψ(t, v, c), (8.10)

with ψ(t, v, c) as in (8.1). Let us observe that argmaxh∈H Fd(t, h) is not empty for
any t ∈ [0, T ] because H is a compact subset of Rn and Fd is continuous, and thus

sup
h∈H

Fd(t, h) = Fd(t, h̄(t, d)), (8.11)

with Fd as in (8.1). Therefore, plugging (8.11)–(8.2) into (8.10) we get

d

dt
�d(t) = νdt

(
�d
)

�d(t) − ϕd(t) −
(
A + B

δ

(
1 − e−δ(T−t)

))
Fd(t, h̄(t, d))

+Be−δ(T−t) log v − ψ(t, v, c̄(t)v)

[by (8.3)]

= νdt

(
�d
)

�d(t) − ϕd(t) −
(
A + B

δ

(
1 − e−δ(T−t)

))
Fd(t, h̄(t, d))

−Be−δ(T−t)

(
log

(
Be−δ(T−t)

A + B
δ

(
1 − e−δ(T−t)

)
)

− 1

)
. (8.12)

Furthermore, note that ϕd(t) and νdt
(
�d
)
are continuous in t by Assumption 3.5.

Thus, setting �d(·) as the unique solution of the ODE (8.12) with terminal condition
�d(T ) = 0, we have that K (t, v, d) solves Eq. (5.3) with terminal condition (5.7),
and Part (a) is proved.

Part (b). To prove K ∈ D it is sufficient to prove that for any t̄ ∈ [0, T ] and
(h, c) ∈ A[t̄, T ],

K (t, (V, D)
h,c;t̄,v,d
t ) −

∫ t

t̄
Ahu ,cu K (u, (V, D)h,c;t̄,v,d

u )du (8.13)

is a martingale. Now, by applying the Itô formula, we obtain

dK (t, (V, D)
h,c
t ) = Aht ,ct K (t, (V, D)

h,c
t )dt + dMt ,

where

dMt = a(t)hDt
t σ(t)dWt +

∫
Rn

(
a(t) log

(
1 + 〈x, hDt−

t− 〉)
+�Dt−+χ(Dt−,x)(t) − �Dt−(t)

)(
N (Dt−, dx, dt) − νt (Dt−, dx)dt

)
,
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and where we have set a(t) := A+ B
δ

(
1 − e−δ(T−t)

)
. Therefore, to prove the theorem

it is sufficient to check that Mt is a martingale. Since

E

[∫ T

t̄
|a(t)hDt

t σ(u)|2dt
]

≤ a2(0)E

[∫ T

t̄
‖ht‖2 ‖σ(t)‖2 dt

]

≤ a2(0) sup
h∈H

‖h‖2
∫ T

t̄
‖σ(t)‖2 du < +∞,

the continuous part is a martingale. We observe now that since h takes values in the
compact set H ⊂ int(∩t∈[t̄,T ]Ht ), there exists a constant δ > 0 such that 1+〈ht , x〉 ≥ δ

νd(dx)-a.s. for any d ∈ {0, 1}n , t ∈ [t̄, T ]. Thus, the function x → log (1 + 〈ht , x〉)
is bounded from below and with linear growth, and so there is a constant C > 0 such
that

| log (1 + 〈ht , x〉)| ≤ C sup
h∈H

‖h‖ ‖x‖ νd(dx)-a.s. (8.14)

for any d ∈ {0, 1}n , t ∈ [t̄, T ]. According now to the notation used in the proof of
part (a), we define

� := �(0,...,0) =
n⋃

i=1

{xi = −1}, (8.15)

and finally, to verify the pure jump stochastic integral to be a martingale, we only need
to check that for any d ∈ {0, 1}n

E

[∫ T

t̄

∫
Rn

∣∣∣a(t) log
(
1 + 〈x, hDt−

t− 〉)+ �Dt−+χ(Dt−,x)(t) − �Dt−(t)
∣∣∣2 νdt (dx)dt

]

[by (5.6) and (8.15)]

=E

[∫ T

t̄

∫
Rn

∣∣∣a(t) log
(
1+〈x, hDt−

t− 〉)+1�(x)
(
�Dt−+χ(Dt−,x)(t)−�Dt−(t)

)∣∣∣2 νdt (dx)dt

]

(by the triangular inequality)

≤ 2a2(0)E

[∫ T

t̄

∫
Rn

∣∣∣log (1 + 〈x, hDt−
t− 〉)∣∣∣2 νdt (dx)dt

]

+2E

[∫ T

t̄

∫
�

∣∣∣�Dt−+χ(Dt−,x)(t) − �Dt−(t)
∣∣∣2 νdt (dx)dt

]

[by (8.14) and Assumption 3.3]

≤ 2a2(0)
∫ T

t̄
C2 sup

h∈H
‖h‖2

∫
Rn

‖x‖2 νdt (dx)+2

(
max

d ′∈{0,1}n
�d ′

(t)

)2

νdt (�)dt<+∞.
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Part (c). By (8.9), (8.11) and Lemma 8.2 we have

(h̄(t, d), c̄(t)v) ∈ arg max
h∈H, c>0

Ah,cK (t, v, d) ∀v ∈ R
+ (8.16)

for any t ∈ [0, T ] and d ∈ {0, 1}n . Therefore, the process (h̄t , c̄t ) defined in (5.14)
satisfies (5.9) and the statement follows by Theorem 5.2. ��
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