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Abstract Coherent distortion risk measures are applied to capture the possible viola-
tion of a restriction in linear optimization problems whose parameters are uncertain.
Each risk constraint induces an uncertainty set of coefficients, which is proved to be
a weighted-mean trimmed region. Thus, given a sample of the coefficients, an uncer-
tainty set is a convex polytope that can be exactly calculated. We construct an efficient
geometrical algorithm to solve stochastic linear programs that have a single distortion
risk constraint. The algorithm is available as an R-package. The algorithm’s asymp-
totic behavior is also investigated, when the sample is i.i.d. from a general probability
distribution. Finally, we present some computational experience.

Keywords Robust optimization - Weighted-mean trimmed regions -
Central regions - Coherent risk measure - Spectral risk measure - Mean-risk portfolio

1 Introduction

Uncertainty in the coefficients of a linear program is often handled by probability
constraints or, more generally, bounds on a risk measure. The random restrictions
are then captured by imposing risk constraints on their violation. Consider the linear
program
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¢x — min st.Ax>b, )

and assume that A is a stochastic m x d matrix and b € R™, ¢ e RY, x € RY. This is
a stochastic linear optimization problem. To handle the stochastic restrictions a joint
risk constraint,

p"(Ax —b) <0, )

may be introduced, where p™ is an m-variate risk measure. For instance, with p™ (Y) =
Prob[Y < 0] — « the restriction (2) becomes

Prob[AX > b] > | —«, 3)

and a usual chance-constrained linear program is obtained. Alternatively, the restric-
tions may be subjected to separate risk constraints,

p'Ajx—b)) <0, j=1...m, )

with A j denoting the j-th row of A. In (4) each restriction is subject to the same
bound that limits the risk of violating the condition. A linear program that minimizes
¢/x subject to one of the restrictions, (2) or (4), is called a risk-constrained stochastic
linear program.

For stochastic linear programs (SLPs) in general and risk-constrained SLPs in par-
ticular, the reader is referred to, e.g., Kall and Mayer (2010). What we call a risk
measure here is mentioned in that book as a quality measure, and useful representa-
tions of the corresponding constraints are given. As most of the literature, Kall and
Mayer (2010) focus on classes of SLPs with chance constraints that lead to convex
programming problems, since these have obvious computational advantages; see also
Prékopa (1995). Our choice of the quality measure, besides its generality, enjoys a
meaningful interpretation and, as it will be seen, enables the use of convex structures
in the problem.

In the case of a single constraint (i = 1) notate

p@x—>b) <0. )

A practically important example of an SLP with a single risk constraint (5) is the

portfolio selection problem.Letry, . .., 4 be the return rates on d assets and notate ¥ =
(71, ..., 7q)". A convex combination of the assets’ returns is sought, ¥'x = Z?:l Fix;

that has maximum expectation under a risk constraint and an additional deterministic
constraint,
max E[F]'’x, s.t p(E'x) <po, xeC, (6)
xeC
where p is a risk measure, pp € R is a given upper bound of risk (a nonnegative
monetary value), and C € R? is a deterministic set that restricts the vector x of portfolio
weights in some way. For example, if short sales are excluded, C is the positive orthant
in R¥. The solution x* is the optimal investment under the given model. We will see
that a solution, if it exists, is, as a rule, finite and unique. In our geometric approach
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such a solution corresponds to the intersection of some line and some convex body
that both contain the point E[r].

Regarding the choice of p, two special cases are well known. First, let p(F'x) =
Prob[i'x < —vg] and pg9 = «. Then the optimization problem (6) says: maximize the
mean return E[F'x] under the restrictions x € C and

V@R, (FxX) < vo.

That is, the value at risk V@R, of the portfolio return must not exceed the bound vy.
Second, let

1 o
p(EX) = —— / Oix(1) dr, )
@ Jo

where Q7 signifies the quantile function of a random variable Z. This means that the
measured risk is the expected shortfall of portfolio return and shall stay below pg.

In practice, a has to be obtained from data. If the solution of the SLP is based on n
observed coefficient vectors al, ..., a" € R?, the SLP is mentioned as an empirical
risk-constrained SLP. In other words, we assume that a follows an empirical distrib-
ution that gives equal mass % to some observed points a', ..., a" € R. Rockafellar
and Uryasev (2000) investigate an empirical stochastic program that arises in portfo-
lio choice when the expected shortfall of a portfolio is minimized. They convert the
objective into a function that is convex in the decision vector X and optimize it by
standard methods. This approach is commonly used in more recent works of these and
other authors on portfolio optimization.

A more complex situation is investigated by Bertsimas and Brown (2009), who
discuss the risk-constrained SLP with arbitrary coherent distortion risk measures,
which also include expected shortfall. These allow for a sound interpretation in terms
of expected utility with distorted probabilities. For the linear restriction an, as it is
called, uncertainty set is constructed, consisting of all coefficients satisfying the risk
constraint. Bertsimas and Brown (2009) discuss the uncertainty set that turns the SLP
into a minimax problem, called robust linear program; however, they provide no
optimal solution of this program there. The uncertainty set is a convex body and, as
will be made precise below in this paper, comes out to equal a so-called weighted-
mean trimmed region. Natarajan et al. (2009), on the reverse, construct similar risk
measures from given polyhedral and conic uncertainty sets. As an extension, Ben-
Tal et al. (2010) propose the so-called ““soft robustness”” model, which, as they show,
can be regarded as an LP with the feasible set defined by some convex risk measure.
Such approaches are also applicable to approximately solving a multi-stage robust
convex optimization problem, where the information about the realization of uncertain
parameters is adjusted on each stage; see Bertsimas and Goyal (2013).

Pflug (2006) has proposed an iterative algorithm to optimize a portfolio by using
distortion functionals; in each step he adds a constraint to the problem and solves it
by the simplex method. Meanwhile, many other authors have recently contributed to
the development of robust linear programs related to risk-constrained optimization
problems: see, e.g., Nemirovski and Shapiro (2006), Ben-Tal et al. (2009) and Chen et
al. (2010). For a review of robust linear programs in portfolio optimization the reader
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is referred to Fabozzi et al. (2010). There are also attempts to solve this problem by
means of robust nonlinear models (see, for instance, Kawas and Thiele (2011)), which,
however, are substantially less investigated in the literature than the linear ones. Other
applications are surveyed in detail in Gabrel et al. (2014).

In this paper we contribute to this discussion in three respects:

1. The uncertainty set of an SLP under a general coherent distortion risk constraint is
shown to be a weighted-mean trimmed region, which provides a useful visual and
computable characterization of the set.

2. An algorithm is constructed that solves the minimax problem over the uncertainty
set, hence the SLP.

3. If the data are i.i.d. from a general probability distribution, the uncertainty set and
the solution of the SLP are shown to be consistent estimators of the uncertainty set
and the SLP solution.

The paper is organized as follows. In Sect. 2 constraints on distortion risk measures
are discussed. They are characterized by uncertainty sets in parameter, which, in turn,
are shown to be weighted-mean trimmed regions (Theorem 1). Based on Theorem 1,
which is a core result, we formulate a robust linear program, which is investigated
in Sect. 3 and by which the SLP with a distortion risk constraint is solved. Section 4
introduces an algorithm for this program and discusses sensitivity issues of its solution.
In Sect. 5 we address the SLP and its solution for generally distributed coefficients and
investigate the limit behavior of our algorithm if based on an independent sample of
coefficients. Section 6 contains first computational results and concludes the article.
The Appendix gathers properties of distortion risk measures, a proof of Theorem 1
and a demonstration (Proposition 5) that the weighted-mean trimmed regions have the
coherency property.

2 Distortion risk constraints and weighted-mean regions
2.1 Distortion risk measures

A large and versatile subclass of risk measures is the class of distortion risk measures,
which have appeared first from ideas in insurance research (Wang et al. 1997). Again,
let Qy denote the quantile function of a random variable Y.

Definition 1 (Distortion risk measure) Letr be an increasing function [0, 1] — [0, 1].
The function p given by

1
o)== [ orar) ®)
0
is a distortion risk measure with weight generating function r.

Distortion risk measures are essentially the same as spectral risk measures (Acerbi
2002). Their properties are considered in detail in the Appendix. Here, we concentrate
on their coherency, as this property is crucial in assessing diversified risks.

A distortion risk measure is coherent if and only if r is concave. For example, with
r(t) =0ift < ¢ and r(t) = 1if t > «, the value at risk V@R, (Y) = —Qy(x)
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is obtained, which is a noncoherent distortion risk measure. A prominent example
of a coherent distortion risk measure is the expected shortfall, which is yielded by
r(t) =t/aif t < o and r(t) = 1 otherwise. This measure is defined as (the negative
of) the conditional expectation of Y under the condition that ¥ does not exceed its
a-quantile, Qy (). Roughly speaking, it is the mean of the « - 100% largest possible
losses. Clearly, for a given «, this measure is more conservative than the value at risk,
because its value cannot be smaller than V@R, (Y). Also observe that, for r(t) = t,
the risk measure (1) becomes the expectation of —Y.

A general distortion risk measure p(Y) can thus be interpreted as the expectation
of —Y with respect to a probability distribution that has been distorted by the function
r. In particular, a concave function r distorts the probabilities of lower outcomes of ¥
in the positive direction (the lower the more) and conversely for higher outcomes (the
higher the less). In recent empirical applications, coherent distortion risk measures
other than expected shortfall have been used by several authors; see, e.g., Adam et al.
(2008) for a comparison of various such measures in portfolio choice.

An equivalent characterization of a distortion risk measure is that it is a law-invariant
and comonotonic risk measure; see Kusuoka (2011). p is comonotonic if

p(Y+Z)=p)+ p(Z) forall Y and Z that are comonotonic ,

i.e., that satisfy (Y (w) — ¥ () (Z(®) — Z(e)) = Oforevery w, @' € Q.If ¥ has an
empirical distributionon y1, ..., y, € R, the definition (8) of a distortion risk measure
specializes to

,O(Y)=—Zqz‘y[i], ©)

i=1

where y[;] are the values ordered from above and g; are nonnegative weights adding
up to 1. (Observe that ¢; = r(y[%]) — r(y[nT_[]).) Then, the distortion risk measure
(9) is coherent if and only if the weights are ordered, i.e.,q € AZ :={qe A" : 0 <
g1 < < qul -

2.2 Weighted-mean regions as uncertainty sets

If p is a coherent distortion risk measure, the uncertainty set{, has a special geometric
structure, which will be explored now to visualize the optimization problem and to
provide the basis for an algorithm. We will demonstrate that I/, equals a so-called
weighted-mean trimmed region (or, equivalently, WM region) of the distribution of a.

Given the probability distribution Fy of a random vector ¥ in R?, WM regions form
anested family of convex compact sets, { Dy (Fy)}ac(o,1], Which are affine equivariant
(thatis Dy (Fay+p) = A Dy (Fy) + b for any regular matrix A and b € RY). By this,
the regions describe the distribution with respect to its location, dispersion and shape.
Weighted-mean trimmed regions have been introduced in Dyckerhoff and Mosler
(2011) for empirical distributions, and in Dyckerhoff and Mosler (2012) for general
ones.
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954 K. Mosler, P. Bazovkin

1

For an empirical distributionona’, ..., a" € R, a weighted-mean trimmed region

is a polytope in R and defined as

n
Dy, (al, ...,a") = conv Z wa,ja”(j) : w permutation of {1, ...,n} ¢t . (10)
i=1
Here, Wy = [Wq.1, ..., Wy ] 18 a vector of ordered weights, i.e., wy € A'é, indexed
by 0 < o < 1 that satisfies the implication: if ¢ < 8, then
k k
Zwa,jgzwﬁ,j, Vk=1,...,n. (a1
j=1 j=1

Any such family of weight vectors {Wy }o<q <1 specifies a particular notion of weighted-
mean trimmed regions. There are many types of weighted-mean trimmed regions. They
contain well-known trimmed regions like the zonoid regions, the expected convex hull
regions and several others. For example,

1

e if j >n— |nal,

na—|no|
no

0 if j <n— |nal,

Wy, j = if j =n— |nal,

0 < a < 1 defines the zonoid regions. However, some popular types of trimmed
regions, such as Mahalanobis or halfspace regions, are no weighted-mean trimmed
regions.

Now, we are ready to formulate the key theoretical result of this section, which
formalizes the relation between coherent distortion risk measures and their uncertainty
sets on one side, and weighted-mean trimmed regions on the other side. This is stated
in the following Theorem 1, which is proved in the Appendix. Also in the Appendix,
the geometrical properties of WM regions leading to such a relation are considered.

1

Theorem 1 If a has an empirical distribution on a*, ...,a" and p is a coherent

distortion risk measure, then it holds that:
xeRY: p@x—b)<0)={xecR?:ax>bvaec Dy, (a',....,a"}. (12)

The reader can see that, loosely speaking, Theorem 1 provides a transition from a well-
interpreted but hardly manageable risk constraint to an equivalent well-manageable
constraint regarding a trimmed region that can be determined by a geometrical algo-
rithm. In fact, note that Dy, (al, ..., a") is ad-dimensional convex polytope, and thus
the convex hull of a finite number of points (its vertices) or, equivalently, a bounded
nonempty intersection of a finite number of closed halfspaces (that contain its facets).
By this the calculation and representation of such a polytope can be done in two ways:
either by its vertices or by its facets. A polytope’s boundary includes a finite number
of faces having different affine dimensions. Recall that a nonempty intersection of
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the boundary with a hyperplane is a facet if it has an affine dimension d — 1, and a
ridge if it has an affine dimension d — 2. It is called an edge if it is a line segment,
and a vertex if it is a single point. In general, each facet of a polytope in R is itself a
polytope of dimension d — 1 and has at least d vertices. With WM regions the number
of a facet’s vertices can vary considerably; it ranges between d and d! (Bazovkin and
Mosler 2012a). That is why in calculating WM regions a representation by facets is
preferable. In the following Sect. 3 we consider the topic in detail.

3 Solving the SLP with distortion risk constraint
3.1 Calculating the uncertainty set

In the previous section we have shown that the uncertainty set{, equals the weighted-
mean trimmed region Dy, for a properly chosen weight vector w,. Bazovkin and
Mosler (2012a) provide an algorithm by which this WM region can be exactly calcu-
lated in any dimension d. The results can be visualized in dimensions two and three;
for examples, see Fig. 1.

It has been already mentioned that the number of vertices of a facet can be as much
as d!. Therefore, the representation of a WM region by its vertices appears to be less
efficient than that by its facets. In the sequel, we will use the facet representation for
solving the SLP.

3.2 The robust linear program

Using the result of Theorem 1, we can write the robust linear program (1) with distor-
tion risk constraint (5) as

ReadyTR: Scatterplot (current)

File Edges Options

Fig. 1 Visualization of WM regions by the R package WMTregions. Left panel facets of a three-dimen
sional region in R3. Right panel vertices of a four-dimensional region projected on a subspace of R3
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¢Xx — min st.a’x>b forallaeld, (13)

where the subscript p has been dropped for convenience. In simple words, we get a
deterministic linear program with a set of constraints whose coefficients are contained
in a set ¢/ that is, according to Theorem 1, a weighted-mean trimmed region. The
restriction in (13) is then rewritten as

Xexzﬂxa, Xa = {x:a'x > b). (14)
acld

Note that X', as an intersection of a finite number of halfspaces, is a convex polyhe-
dron. Therefore, a linear goal function is to be minimized on a convex polyhedron.
Obviously, any optimal solution will lie on the boundary of X'.

3.3 Finding the optimum on the uncertainty set

In constructing an algorithm for the robust linear program, we explore the set X of
feasible solutions and relate it to the uncertainty set ¢/ in the parameter space. It is
shown that the space of solutions x and the space of coefficients a are, in some sense,
dual to each other. The following two lemmas provide the connection between A’ and
U. First, we demonstrate that X is the intersection of those halfspaces whose normals
are extreme points of /.

Lemma 1 It holds that

X=(Vx:ax=b= () (x:ax=b)

aeld acextU

Proof We show that [, ¢ oxzs Xa C Xu forallu € U; then (e exizr Xa C (Nacys Xa-
The opposite inclusion is obvious. Assume u € . Then, as I/ is convex and compact,

u is a convex combination of some points al,.. . al € extU,ie.,u= Zf=1 Azal
with A; > 0 and Zle Ai = 1, and for any X € [),cexizy Xa holds as x € X,; and
a/’x > b for all j; hence, u'x = Zle Aal’x > b, thatis, X € Xy. ]

Lemma 1 says that each facet of the set X' of feasible solutions corresponds to a
vertex of the uncertainty set U/{. Hence, it is sufficient to consider the extreme points
of the uncertainty set.

As a generalization of Lemma 1, we may prove by recursion on k: each k-
dimensional face of the feasible set corresponds to a (d — k)-dimensional face of
the uncertainty set in the solution space. This resembles the dual correspondence
between convex sets and their polars (cf. Rockafellar 1997). However, in contrast to
polars, this correspondence of facets is not reflexive.

From Lemma 1, it is immediately seen how the robust optimization problem con-
trasts with a deterministic problem, where the empirical distribution of a concentrates
at some a’ € U. Observe that the deterministic feasible set X is just a halfspace,
Xpo = {x: x'a¥ > b}. In the general robust case, a halfspace is obtained for each
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robust X

deterministic X

X-Sspace a-space
(Solution space) (Parameter space)

Fig. 2 Deterministic and robust cases: feasible set (left panel), uncertainty set (right panel)

a € extU, and the robust feasible set X is their intersection. The halfspaces are
bounded by hyperplanes with normals equal to a € extl{, and their intercepts are all
the same and equal to b. Consequently, the robust feasible set X" is always included in
the deterministic feasible set X0,

X C X, forany a’ell.

Moreover, the two feasible sets cannot be equal unless each element of ¢/ is a scalar
multiple of a0 with a factor greater than one, / C {a : a = 2% A > 1}. Conse-
quently, the minimum value of the robust stochastic LP cannot be smaller than the
value of an LP with any deterministic parameter a’ chosen from the uncertainty set.
Fig. 2 (left panel) illustrates how a deterministic feasible set in dimension two com-
pares to a general robust one: the line that bounds the halfspace X0 ‘folds’ into a
piecewise linear curve delimiting X'. In turn, Fig. 2 (right panel) demonstrates the
same relation between the uncertainty sets in the parameter space: the deterministic
uncertainty set, which is a singleton a’, ‘enlarges’ into a nondegenerate uncertainty
set containing a’.
Let

Ug={aecR?:a'x>b}, xeR’

Lemma 2 It holds that

Uc (Juxc ) Ux

xeX x€ext X

Moreover, each vertex X € ext X corresponds to a facet of U.

Proof By Lemma I, wehavex €¢ X < a'x > bforalla € U. Now, leta € U,
then for any x € X it holds that a’x > b; hence, a € Uy. Conclude U C ﬂxeX Ux.
Further, it is clear that an extreme point X € ext X" yields a facet of U. O
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Solution space Parameter space

Fig. 3 Duality between spaces

Remark. While U is always compact, X is in general not. Therefore, neither inclusion
holds with equality.

According to Lemma 1, we could now reformulate the robust LP (13), basing it on
the constraints generated by the vertices of U:

¢’Xx — min s.t.a’x > b foralla e extl,

and then apply the ordinary simplex method to it. However, usually WM regions
have a very large number of vertices, because even a single facet can have up to d!
ones. Bazovkin and Mosler (2012a) have shown this number to lie between O(n¢)
and (’)(”2%) depending on the type of the WM region. This obviously makes the basic
straightforward approach almost inapplicable here. On the other side, WM regions can
be efficiently determined by their facets. In our algorithm, we pursue still another way
to find the optimal solution, namely searching it even without explicit construction of
X and taking advantage of the facet representation of /.

To manage this task let us consider the goal function ¢’x. In the solution space
the optimization vector ¢ defines a direction, which can be also determined by a
set of hyperplanes orthogonal to this direction. Clearly, all these hyperplanes are
parallel and their normals are some multiples of ¢. For example, in dimension two
for ¢ = (2.1,1.4) and b = 5, the hyperplanes {x : (2.1,1.4) - x = 5} and {x :
(4.2,2.8)’ - x = 5} belong to the set. Recall that we have fixed the intercept of all
hyperplanes in the solution space at some b, and thus can distinguish them by their
normals only. In the parameter space, each of these hyperplane corresponds to the point
¢ multiplied with a proper scaling factor. Hence, the image of all the hyperplanes in
the parameter space is obtained by moving a point along a straight ray ¢ that starts at
the origin and contains ¢, as shown on Fig. 3.

One of the hyperplanes touches A" at the optimum. All others either intersect the
interior of X or do not intersect it at all. This means that the touching hyperplane
corresponds to a point lying on the surface of U. Therefore, we have to search the
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intersection of I/ with the ray ¢. Then, because of Lemma 2, the intersected facet of
U corresponds to the optimal vertex of X.

Note that finding the intersection of a line and a polyhedron in R? is an impor-
tant problem in computer graphics (cf. Kay and Kajiya 1986). The same principle is
employed for a general dimension d. The uncertainty set {{ is the finite intersection of
halfspaces H;, j = 1...J, each being defined by a hyperplane H; with normal n;
pointing into H; and intercept d;.

Consider some point u on the ray ¢ that is not in /. Compute d—;f for all halfspaces

u/
‘H; that do not include u, i.e., where (u’nj —dj) < 0holds. (In other words, H; is
visible from u.) Find j, at which this value is the largest. Recall that moving a point u
along ¢ is equivalent to multiplying u by some constant. The farthest move is given by

the largest constant. The optimal solution x* of the robust SLP has to satisfy a’x* > b,
which is equivalent to
d:
a’ ( é* x*) >dj,.

Hence, to obtain x*, the normal n j. has to be scaled with the constant di_,
Jx

x*=—n,,. (15)

Besides the regular situation described above, two special cases can arise:

1. There is no facet visible from the origin. This means that no solution is obtained.
2. ¢ does not intersect /. Then the whole procedure is repeated with the opposite
ray —¢. If this still gives no intersection, an infinite solution exists.

Finally, we should point out that not the whole polytope I/ needs to be calculated, but
only that part of it that intersects the ray ¢. In searching for the optimum, not all F
facets need to be checked, but only a subset of the surface where the intersection will
happen. Such a filtration makes the procedure more efficient. Next, we show how to
select this subset.

Let x™* be an optimal solution of the robust SLP. A subset Ue¢r of U will be mentioned
as an efficient parameter set if

— x* remains the solution for ﬂaeueff{x :a’x>b} DX and
—a,d € Uegr, A'x > b= d'x > b, Vx implies a =d.

That is to say, Uer is the minimal subset of U/ containing all facets that can be optimal
for some c.

Proposition 1 U,y is the union of all facets of U for which d; > 0 holds.

In other words, an efficient parameter set Uefr consists of that part of the surface of I/
that is visible from the origin 0. The proof is obvious.

To visualize the efficient parameter set we use the augmented uncertainty set, which
is defined as
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Solution space Parameter space

Fig. 4 Finding the optimal solution on the uncertainty set

{fata=21a" 1> 12" € Uepr}.

It includes all parameters that are dominated by Ue.sr; see the shaded area in the right
panel of Fig. 4.

So far, we have assumed that b > 0. It is easy to show that with b < 0 we have to
construct the intersection of ¢ with the part of the surface of U/ that is invisible from
the origin 0, which is Uefr in this case. In the sense of Proposition 1 , Uer contains all
facets of U with d; < 0. Obviously, Z/{eff is always nonempty in this case, which, in
turn, means that the existence of a solution is guaranteed. However, the solution can
be infinite if ¢ does not intersect deff.

By the same approach, a robust linear program of maximum type can be solved.
Note that

¢’x — max s.t.a'x<b forallaeld, (16)

can be rewritten as
(—=¢)’Xx — min s.t. (—a)’x > —b foralla € U. (17)

Clearly, (17) is equivalent to (13).

4 The algorithm

In this section, the algorithmic procedure for obtaining an optimal solution to (13) is
given in detail.
Input:

— avector ¢ € R? of coefficients of the goal function,

— n observations {al, ...,a"l C R4 of coefficient vectors of the restriction,
— aright-hand side b € R of the restriction,

— adistortion risk measure p (defined either by name or by a weight vector).
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Output:

— the uncertainty set ¢/ of parameters given by
— facets (i.e., normals and intercepts),
— vertices,
— the optimal solution x* of the robust LP and its value ¢/x*.

Steps:

A. Calculate the subset Uegr C U consisting of facets {(nj, d;)}jey.
B. Create a line ¢ passing through the origin 0 and c.
C. Search for a facet Hj, of Uegr that is intersected by ¢:

a. Select a subset Uy C Uesr of facets. This may be either Uyt itself or its part
where the intersection is expected; Use; = {(nj,d;) : j € Jse}. For exam-
ple, we can search for the best solution on a pre-given subset of parameters.
Another possible filtration consists in iterative transitions to facets having bet-
ter criterion values.

b. Take a point u = Ac, A > 0, outside the augmented uncertainty set. Find the
Jx = argmjax{)»j = ul,i—l’lj :Aj > 0}jey,, cy. For the case b < 0, just replace
arg max with arg min.

I. If ¢ does not intersect Uesr, then the solution is infinite. If b > 0, then
repeat C.b. with the opposite ray —g; else stop.

II. Ifinthe case b > 0 the inner part of I{ contains the origin, then no solution
exists; stop.

c. X* = ﬁn j, 1s the optimal solution of the robust LP.

In fact, the line ¢ consists of points that correspond to hyperplanes whose normal
is the vector ¢ in the dual space. One part of ¢ is dominated by points from Uesr, while
the other is not (which results from Proposition 1). The crossing point a* defines the
hyperplane that touches the feasible set at the optimum as its dual.

Moreover, a typical nonnegativity side constraint X > 0 can easily be accounted
for in the algorithm. In considering this, the search for facets has just to be restricted
to those having nonnegative normals.

To solve the portfolio selection problem (6) with the algorithm, we treat the real-
izations of the vector —r of losses rates as {a1 ,...,a"}, and minimize ¢/x with
c= % > a’. This corresponds to transforming the maximizing SLP by (17) and run-
ning the procedure outlined above. Note that both ¢ and I/ contain the point % > al,
thatis, they always intersect, which, in turn, guarantees the existence of a finite solution.
To meet a unit budget constraint, the solution x* is finally scaled down to 2?21 x;‘ =1
Recall that the risk measure is, by definition, scale equivariant.

4.1 Sensitivity and complexity issues

Next, we discuss how the robust SLP and its optimal solution behave when the data
{al, ..., a"} on the coefficients are slightly changed. From (18) it is immediately seen
that the support function /i, of the uncertainty set is continuous in the data a/ as
well as in the weight vector w,,. (Note that the support function kg, is even uniformly
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continuous ina', ..., a" and w,, which is tantamount to saying that the uncertainty

set U is Hausdorff continuous in the data and the risk weights.) Consequently, a slight
perturbation of the data will only slightly change the value of the support function of
U, which is a practically useful result regarding the sensitivity of the uncertainty set
with respect to the data. The same is true for a small change in the weights of the risk
measure.

We conclude that the point a/* where the line through the origin and ¢ cuts I/
depends continuously on the data and the weights. However this is not true for the
optimal solution x*, which may ‘jump’ when the cutting point moves from one facet
of U to a neighboring one.

The theoretical complexity in time of finding the solution is compounded from
the complexity of one transition to the next facet and by the whole number of such
transitions until the sought-for facet is achieved. Bazovkin and Mosler (2012a) have
shown that the transition has a complexity of O(d?n). In turn, in the same paper the
number of facets N (1, d) of a WM region is shown to lie between O(n¢) and O (n*?)
depending on the type of the WM region. Thus, it is easily seen that an average
number of facets in a facets chain of a fixed length is defined by the density of facets
on the region’s surface, &/ N (n, d), and is estimated by a function between O(n) and
O(n?). The overall complexity is then O(d Zp2) up to O(d 213). Notice that the lower
complexity is achieved for zonoid regions, namely when the expected shortfall is used
for the risk measure.

4.2 Ordered sensitivity analysis

Alternative uncertainty sets that are ordered by inclusion can be also compared. From
Lemma 1 it is clear that the respective sets of feasible solutions are then ordered in the
reverse direction; see, e.g., Fig. 5. In particular, we can consider the robust LP for two
alternative distortion risk measures based on weight vectors w,, and wg, respectively,
that satisfy the monotonicity restriction (11). Then the resulting uncertainty sets are
nested, Ug C U,, and so are, conversely, the feasible sets, Xg O A,. This is a use-
ful approach for visualizing the sensitivity of the robust LP against changes in risk
evaluation.

3

Reversed central regions Central regions
for x for a

Fig. 5 Example of the ‘reversed’ central regions in the dimension 2
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5 Robust SLP for generally distributed coefficients

So far, an SLP (1) has been considered where the coefficient vector a follows an
empirical distribution. It has been solved on the basis of n observations {al, ..., a)
In this section the SLP is addressed with a general probability distribution P of a. We
formulate the robust SLP in the general case and demonstrate that the solution of this
SLP can be consistently estimated by random sampling from P.

Consider a distortion risk measure p (8) that measures the risk of a general random
variable Y and has weight generating function r, p(Y) = — fol Qy(t)dr(t). As in
Sect. 2.2, a convex compact I in RY is constructed through its support function Ay,

1
hiy(p) = /O 0pa(D) dr(1).

Now, let a sequence (a"),cy of independent random vectors be given that are
identically distributed with P, and consider the sequence of random uncertainty sets
U, basedon a', ..., a". Dyckerhoff and Mosler (2011) have shown:

Proposition 2 (Dyckerhoff and Mosler 2011) U, converges to U almost surely in the
Hausdorff sense.

The proposition implies that by drawing an independent sample of a and solving the
robust LP based on the observed empirical distribution, a consistent estimate of the
uncertainty set { is obtained. Moreover, the cutting point a/*, where the line through
the origin and ¢ hits the uncertainty set, is consistently estimated by our algorithm.
If an ambiguous solution is possible, in particular for a discretely distributed a, the
algorithm calculates one of the available solutions consistently. In fact, the optimal
solution x* may perform a jump when a/ moves from one facet of I{ to a neighboring
one; however the algorithm for determining x* selects always a unique facet containing
alx,

6 Concluding remarks

A stochastic linear program (SLP) has been investigated, where the coefficients of the
linear restrictions are random. Distortion risk constraints are imposed on the random
restrictions and an equivalent robust SLP is modeled, whose worst-case solution is
searched over an uncertainty set of coefficients. If the risk is measured by a general
coherent distortion risk measure, the uncertainty set of a restriction has been shown to
be a weighted-mean trimmed region. This provides a comprehensive visual and com-
putable characterization of the uncertainty set. An algorithm has been developed that
solves the robust SLP under a single stochastic constraint, given a set of observations. It
is available as an R-package StochaTR (Bazovkin and Mosler 2012b). Moreover, when
the data are generated by an infinite i.i.d. sample, the limit behavior of the solution
was investigated. The algorithm allows the introduction of additional deterministic
constraints, in particular, those regarding nonnegativity.
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Table 1 Running times of StochaTR for different n and d (in seconds)

d\n 1,000 2,000 3,000 4,000 5,000 10,000 15,000 20,000 25,000

3 0.3 1.14 1.76 2.92 3.41 6.18 12.61 15.06 47.54
4 0.66 221 3.47 4.48 4.27 7.68 16.97 20.04

5 1.85 3.09 5.68 9.28 11.03 13.52 27.34 54.86

6 2.08 441 5.62 14.99 18.73 25.07 46.88

7 2.16 6.22 133 25.44 28.56 5233

8 4.18 9.78 20.18 31.82 34.23

9 5.18 14.75 24.11 35.94 61.14

10 6.17 16.97 33.82 42.11 67.06

Table2 Running times of StochaTR for different n and « (in s); in parentheses running times of Rockafellar
and Uryasev (2000)

a\n 1,000 5,000 10,000 15,000 20,000 25,000
0.10 1.1 (<5) 72 (6) 23.7 (20) 46 56.3 (45) 744
0.05 0.5 (<5) 47 (6) 14.0 (12) 20.0 39.8 (40) 532
0.01 0.3 (<5) 2.3 (6) 3.8 (6) 7.9 22.1 (50) 385

Table 1 reports simulated running times (in seconds) of the R-package for the 5 %-
level expected shortfall and different d and n. The data are simulated by mixing the
uniform distribution on a d-dimensional parallelogram with a multivariate Gaussian
distribution. In light of the table, the complexity seems to grow with d and n slower
than O(d*n?).

Besides this, we contrast our new procedure with the seminal approach of Rockafel-
lar and Uryasev (2000), who solve the portfolio problem by optimizing the expected
shortfall with a simplex-based method. In illustrating their method, they simulate three-
dimensional normal returns having specified expectations and covariance matrices. We
have applied our package to likewise simulated data on a 1.73GHz single-core CPU
with at most 1.5 gigabytes of memory available. The computational times are exhibited
in Table 2. For a comparison, some cells also contain a second value that corresponds
to the Rockafellar and Uryasev (2000) procedure and is taken from Table 5 there. Our
algorithm usually needs some dozens of iterations only, which are substantially fewer
than those of the algorithm of Rockafellar and Uryasev (2000). Also, in contrast to the
latter, where the resulting portfolio can vary between (0.42, 0.13, 0.45) forn = 1,000
and (0.64, 0.04, 0.32) for n = 5,000, we get a stable optimal portfolio. Our solution
averages at (0.36, 0.15, 0.49), which has approximately the same V@R and expected
shortfall as that in the compared study but yields a better value of the expected return.
Note that the computational times reported in Rockafellar and Uryasev (2000) do not
differ much from ours.

Finally, our approach turns out to be very flexible. In particular, nonsample informa-
tion can be introduced into the procedure in an interactive way by explicitly changing
and modifying the uncertainty set. More research is needed in extending the algorithm
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to solve SLPs with multiple constraints (2). Also, procedures that allow for a stochastic
right-hand side in the constraints and random coefficients in the goal function are yet
to be explored.

Acknowledgments Pavel Bazovkin was partly supported by a grant from the German Research Founda-
tion (DFG).

Appendix

In this Appendix we first discuss the principal properties of distortion risk measures
and the characterization of a risk bound by an uncertainty set. Then, we describe WM
regions fully by their projections on lines. Based on these notions, next, Theorem 1 is
proved. Finally, the coherency property of WM regions is demonstrated.

Properties of distortion risk measures

Let us consider a probability space (2, F, P) and a set R of random variables (e.g.,
returns of portfolios). A function p : R — R is a monetary risk measure if for
Y, Z € R it holds:

1. Monotonicity: If Y is pointwise larger than Z, Y > Z, then it has less risk, p(¥) <
p(Z).
2. Translation invariance: p(Y +y) = p(Y) —y forall y € R.

A risk measure is law-invariant if it holds additionally:

3. Law-invariance: If Y and Z have the same distribution, Py = Pz, then p(Y) =
p(Z).

A law-invariant risk measure p is coherent if it is, in addition, positive homogeneous
and subadditive,

4. Positive homogeneity: p(AY) = Ap(Y) forall A >0,
5. Subadditivity: p(Y +Z) < p(Y)+ p(Z) forall Y,Z e R.

The last two restrictions imply that diversification is encouraged by the risk measure—
a crucial property in risk management. For the theory of risk measures, see, e.g.,
Follmer and Schied (2004). Loosely speaking, diversification is a natural mechanism
of reducing risk by ‘not putting all the eggs into one basket’.

Note that a distortion risk measure (8) satisfies the above properties 1 to 3, and
hence is a law-invariant risk measure.

A function p : R — R is said to satisfy the Fatou property if for any bounded
sequence converging pointwise to Y, lim inf,,_, .o p(¥;;) > p(Y) holds. With the notion
of coherentrisk measures, we reformulate a fundamental representation result of Huber
(1981):

Proposition 3 p is a coherent risk measure satisfying the Fatou property if and only if
there exists a family Q of probability measures that are dominated by P (i.e., P(S) =
0= Q(S) =0forany S € F and Q € Q) such that forallY € R
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p(Y) = sup Eo(-Y).
0€Q

We say that the family Q generates p. In particular, let (2, A) = (R?, BY) and P
be the probability distribution of a random vector a. Huber’s Theorem implies that for
any coherent risk measure p there exists a family G of P-dominated probabilities on
B9, so that

p@x—b) <0 p@x) <-b
& inf Eg@'x) > b
GeG
& Eg(@'x) > b forall G eG.

Let us denote the unit simplex in R” by A",

n
A":°[qeR" D> =1 =0 Vk}.
k=1

Then, if & has an empirical distribution on n given points in R?, any subset Q of
A" corresponds to a family of P-dominated probabilities and thus defines a coherent
risk measure p. As an immediate consequence of Huber’s theorem, an equivalent
characterization of the risk constraint is obtained (see also Bertsimas and Brown 2009):

Proposition 4 Let p : R — R be a coherent risk measure and let a have an empirical

distribution on a', ..., a" € RY. Then there exists some Q, C A" such that

p(A'x —b) <0 & a'x>b forall

n
acll, = conviaeRd : a=2qiai,(q1,...,qn) € Qp].

i=1

Here, conv(W) denotes the convex closure of a set W. Proposition 4 says that a deter-
ministic restriction a’x > b holding uniformly for all a in the uncertainty set U,, is
equivalent to the risk constraint (5) on the stochastic restriction.

Characterization of WM regions
A WM region (10) is characterized by its projections on lines. Note thateachp € $9~1,
where S9! is the (d — 1)-variate unit sphere, yields a projection of the dataa!, .. ., a”
on the line generated by p and thus induces a permutation 7p of the data,

p/anp(l) < p/anp(2) <...< p/anp(n).
The permutation is not necessarily unique and let H(a!, ..., a") denote the set of

all directions p € S9! that induce a nonunique permutation mp. Recall that the
support function of a closed convex set K is defined as h(p) = sup{p’x : x € K},
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p € S¢~!. Given a convex polytope K, an extreme point of K is the unique solution
of max{p'x : x € K} for some p € gd=1, Dyckerhoff and Mosler (2011) have shown

that the support function fy of Dy, = Dy, (al, ..., a") amounts to
n .
ha(p) = D _wa jpa™?, pesi!. (18)
j=1

It follows that, whenever mp is unique, the polytope Dy, has an extreme point in
direction p, which is given by

n n
D wa = w, el pesTIVHGL . (19
j=1 i=1

Proof of Theorem 1

Now, we are moving to the proof of Theorem 1. From (9) and (19) we can see that,
with ¢; = Wy (i) and y;;; = —p/ a’, the extreme point of the projection of Dy, on
the p-line is obtained by applying a g-distortion risk measure to the projected data
points. Now, setting

Q,o = {q e A" . q= (wa’np—l(l), . ..wa’np—l(n)),p e Sd_l \ H(al, L ,a")]

and having i, = conv{a : a = z:-l: 1 q,-ai ,q € Q,} according to Proposition 4, we
get that all extreme points of Dy, are in U,; hence Dy, € U,. On the other hand, for
every q € Q,, it holds that >°}'_ gia' € Dy, , which implies U, € Dy, . We conclude
that U, = Dy,,.

Thus, using the result from Proposition 4, we have proven the equality between
the distortion risk constraint feasible set and a properly chosen WM region, which
parallels Theorem 4.3 in Bertsimas and Brown (2009) and proves Theorem 1.

Finally, we emphasize a fact that is used for constructing trimmed regions as convex
polytopes: the vertices of a polytope are its extreme points. From the above we know
that the directions p € gd—1 \ H (al,..., a" belong to vertices, while the directions
p e H(a',...,a") belong to parts of the boundary that have affine dimension > 1.

Risk-relevant properties of WM regions
In the context of risk measurement, it is crucial that the WM regions possess two

properties that enable them to generate coherent risk measures: monotonicity and
subadditivity.
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Fig. 6 An illustration of the A
subadditivity property

Proposition 5 (Coherency properties of WM regions)

1. Monotonicity: If z; < yx holds for all k (in the componentwise ordering of RY),
then

Dy, (Y1, -..,¥n) C Dy, (z1,....2,) ®RL | and
Dy, (21, ..., 2;) C Dy, (y1, ..., ¥2) ®RL.

2. Subadditivity:

Dwa(y1 +zi,...,¥0 +2,) C Dwa(y1a ey ¥n) @Dwa(zlw--,zn)-

In this Proposition, the symbol & is the Minkowski addition, A@® B ={a+b :a €
A,b e B} for Aand B C R?. For a proof, see Dyckerhoff and Mosler (2011).

The subadditivity property of WM regions is an immediate extension of the sub-
additivity restriction usually imposed on univariate risk measures. In dimensions two
and more, it has an interpretation as a dilation of one trimmed region by the other. To
understand this better, let us consider the simple example of the Minkowski addition
given in Fig. 6. The figure exhibits a solid triangle with one vertex at the origin and a
dotted-border quadrangle. Now, move the triangle in such a way that its lower left cor-
ner passes all points of the quadrangle. At each point of the quadrangle, we get a copy
of the initial triangle (having dashed border) shifted by the coordinate of the point. The
union of all these triangles gives us the Minkowski sum of the initial two sets, which is
the big heptagon in Fig. 6. Observe that, if the rectangle is moved around the triangle,
the same sum is obtained. The subadditivity states that if, e.g., these two figures are
WM regions Dy, (1, ...,Y¥n) and Dy, (z1, ..., 2,), then Dy, (y1 + 21, ...,¥n +Zy)
is contained in the heptagon.
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