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Abstract As a generalization of fuzzy sets, hesitant fuzzy sets constrain the mem-
bership degree of an element to be a set of possible values between zero and one.
Those sets are considered useful in handling decision problems defined under uncer-
tainties where decision-makers hesitate among several values before expressing their
preferences. Motivated by the idea of traditional ELECTRE methods, the dominance
relations and the opposition relations for hesitant fuzzy sets are introduced in this paper.
In addition, several desirable properties are studied. Then, a novel outranking relation
is developed, based on systematic comparison of assessments given to alternatives for
each criterion. An outranking approach for multi-criteria decision-making problems
with hesitant fuzzy sets, similar to ELECTRE III, is proposed for ranking alternatives.
Finally, an example is given to verify the developed approach and demonstrate its
validity and feasibility.

Keywords Multi-criteria decision-making · Hesitant fuzzy sets · Outranking
relations · Dominance relations

1 Introduction

Since fuzzy set (FS) theory was first proposed by Zadeh (1965), it has been widely
studied, developed and successfully applied in various fields, such as multi-criteria
decision-making (MCDM) (Bellman and Zadeh 1990; Yager 1997), fuzzy logic and
approximate reasoning (Zadeh 1975), pattern recognition (Pedrycz 1990). In real
MCDM problems, the criteria weights and criteria values of alternatives may be inaccu-
rate, uncertain or incomplete due to the fuzziness and uncertainty of decision-making
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problems. Some solutions can be derived from FSs, and especially fuzzy numbers can
provide good solutions to such problems. In FSs, the universal membership degree of
an element is a number, which ranges from 0 to 1 corresponding to the element in a
universe. However, the membership degree in an FS is a single value, which reflects
nothing about the lack of knowledge.

In practice, however, the information of alternatives corresponding to a fuzzy con-
cept may be incomplete, i.e., the sum of the membership and non-membership degrees
of an element in the universe corresponding to the fuzzy concept can be less than one.
The FS theory fails in dealing with the insufficient understanding to the membership
degree, while Atanassov’s intuitionistic fuzzy sets (A-IFSs), an extension of Zadeh’s
FSs which were introduced by Atanassov (1986, 1999, 2000, 1989), successfully
handled the problems by adding a non-membership degree. Therefore, A-IFSs were
expected to be applicable to simulate human decision-making process and activities
that require corresponding expertise and knowledge. MCDM problems with A-IFSs
have received adequate attentions (Chen 2011; Chen and Yang 2012; Paternain et al.
2012; Xu 2011, 2012; Yue 2010; Wei 2010, 2011; Wei and Zhao 2012; Xu and Xia
2011a; Tan and Chen 2010; Akram and Dudek 2013; Zeng and Su 2011; Yu and Xu
2013; Pekala 2012; Mukherjee and Basu 2012; Xia et al. 2012). For example, Chen
(2011) developed a TOPSIS-based non-linear programming methodology to handle
MCDM problems with A-IFSs. Chen and Yang (2012) defined a new class of decision
functions based on the weighted score function and the weighted accuracy function in
the intuitionistic fuzzy setting. Paternain et al. (2012) presented a construction method
for Atanassov’s intuitionistic fuzzy preference relations. Several other methods based
on a series of aggregation operators applied to MCDM problems with A-IFSs were
put forward by Xu (2011), Wei and Zhao (2012), Wei (2010), Xu and Xia (2011a), Tan
and Chen (2010), Zeng and Su (2011). As we know, A-IFSs can deal with fuzzy con-
cepts “neither this nor that”, but the membership and non-membership degrees of an
element gathered are real numbers, respectively. In actual decision-making problems,
however, the degrees in A-IFSs can be a set of real numbers instead of only one.

The purpose for introducing these sets is that determining the membership of an
element into one single set is very difficult. In some circumstances, this difficulty is
caused by a set of possible values. Now, we give an example to illustrate this problem.
In the case where two experts discuss the membership of x into A, one may assign
0.3, and the other assigns 0.5. This situation can arise in an MCDM problem. Hesitant
fuzzy sets (HFSs), another extension of traditional FSs, provide useful reference for
our study of such situations. HFSs were first introduced by Torra (2010), Torra and
Narukawa (2009), and they permit the membership degree of an element to be a set
of multiple possible values between 0 and 1. HFSs are highly useful in handling
the situations where people hesitate in expressing their preferences over objects. Xia
and Xu (2011), Zhu et al. (2012), Wei (2012), Xia et al. (2013) and Zhang (2013)
studied the aggregation operators of HFSs and applied them to MCDM problems.
Farhadinia (2013a) defined a new score function to compare HFEs, which overcame
the counterintuitive problem occurred in the method of Xia and Xu (2011). Verma and
Sharma (2013) defined some new operations of HFSs. Yu et al. (2011) and Chen et al.
(2013a) discussed the correlation coefficients of HFSs, together with their applications
to clustering analysis. Xu and Xia (2011b) discussed the distance measures for HFSs.
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They also (Xu and Xia 2011c) discussed the distance and correlation measures of
hesitant fuzzy information. Based on the measures proposed by Xu and Xia (2011b),
Peng et al. (2013) presented a generalized hesitant fuzzy synergetic weighted distance
(GHFSWD) measure. Liao and Xu (2013) proposed a hesitant fuzzy VIKOR method
based on some new defined hesitant fuzzy measures. Zhang and Wei (2013) presented
both the E-VIKOR method and the TOPSIS method for MCDM problems with hesitant
fuzzy information. Xu and Zhang (2013) developed an approach based on TOPSIS to
deal with hesitant fuzzy MCDM problems with incomplete weights. Wei et al. (2013),
Chen et al. (2013b) and Wei and Zhao (2013) developed some hesitant interval-valued
fuzzy aggregation operators for MCDM problems, especially for the category with the
criterion-related evaluations derived from hesitant interval-valued fuzzy information.
Qian et al. (2013) put forward generalized HFSs and proved Zadeh’s FSs, A-IFSs and
HFSs were special cases of the new fuzzy sets. Farhadinia (2013b) introduced a mutual
transformation of the entropy into the similarity measure for both HFSs and interval-
valued HFSs. Yu and Zhang (2013) applied HFSs to personnel evaluation. However,
some shortcomings of the existing methods for dealing with HFSs have emerged: (1)
different operations of HFSs could produce different results. This leads to the difficulty
puzzling decision-makers; (2) both distance measures and similarity measures are
based on the assumption that both of the hesitant fuzzy elements (HFEs) in HFSs have
the same length. If not, then the shorter one should be extended by adding some values
in it until it has the same length of the longer one. In this case, different extension
methods could produce different results; (3) the existing comparison methods have
some counterintuitive problems to reflect the decision-makers’ preference and they
could lead to a reverse order in case of using different operations.

All of those mentioned methods for solving MCDM problems with HFSs were
in the category named function models. Several other methods were also listed and
put into the category called relation models. Unlike function models, the latter ones
performed their decision-making without a fusion method, but rather adopt outrank-
ing relations or priority functions to optimize, rank and classify alternatives in terms
of priority among criteria. ELECTRE methods and PROMETHREE methods are the
typical ones within that category. The prominent feature of a function model generally
implicates a completely compensability hypothesis. In other words, no matter how
worse an alternative A is, being compared to alternative B on a criterion, it can be
compensated from other criteria, so as to make the overall consequence to be A � B.
So the hypothesis causes the loss of partial information and the failure to reflect the
demand of decision-makers in many situations. That deficiency can be removed using
relation models. Non-compensation or conditional compensation principles are gen-
erally adopted by relation models. It means that if an alternative A is worse than
the alternative B on a criterion and their difference exceeds a certain limitation, then
decision-makers would ignore any case with A � B, disregarding the significance of
difference under any other criteria. Because of being more related to actual situation in
solving decision-making problems, this hypothesis has been extensively appreciated
in recent years. ELECTRE methods (Roy 1991), as representatives of relation models,
are successfully and widely used in various fields due to their practical applicability,
including biological engineering (Hanandeh and El-Zein 2010; Ermatita et al. 2011),
energy sources (Cavallaro 2010; Haurant et al. 2011), environment (Kaya and Kahra-
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man 2011; Achillas et al. 2010), economy (Bojković et al. 2010), value engineering
(Marzouk 2011), medical science (Figueira et al. 2011), communication and trans-
portation (Sawadogo and Anciaux 2011), and location selection problems (Devi and
Yadav 2013; Ozcan et al. 2011). Among all ELECTRE methods, ELECTRE III, which
is designed for ranking problems, has the ability to deal with imprecise, inaccurate
and uncertain evaluations (Roy 1991).

While multiple previous studies about ELECTRE methods still focused on certain
data, our research turns onto uncertain data, as an extension of ELECTRE III. Those
uncertainties are expressed by HFSs. In this paper, an MCDM problem with HFSs
is discussed as a central topic. Considering the importance of traditional ELECTRE
methods playing in the ranking of alternatives, an outranking relation on HFSs with
the properties is proposed. An outranking approach for MCDM problems with HFSs
is proposed as a following-up. The main advantages of the proposed approach over
those hesitant fuzzy operators are that it avoids the problems brought by the operations
and comparison methods of HFSs, as well as it has the feature of non-compensatory
and takes decision-makers’ preferences into consideration, which are represented by
choosing appropriate thresholds towards criteria.

The rest of this paper is organized to ensure the validity of the proposals. The
detailed sequence is described as follows. In Sect. 2.1, we introduce the definitions of
t-norm and t-conorm, and then we briefly review some basic concepts and operations
of HFSs in Sect. 2.2. In Sect. 3, we define an outranking relation on HFSs, and some
desirable properties are also studied in this section. Then, an outranking approach for
MCDM problems with HFSs is developed in Sect. 4. Finally, an illustrative example
is given to show the validity and feasibility of the proposed approach in Sect. 5, and
the conclusions are in Sect. 6.

2 Preliminaries

2.1 t-norm and t-conorm

The t-norm and its dual t-conorm play an important role in the construction of averaging
operators of HFSs (Achillas et al. 2010). Here, we introduce some basic concepts of
them.

Definition 1 (Nguyen and Walker 1997; Klement and Mesiar 2005) A function T :
[0, 1] × [0, 1] → [0, 1] is called t-norm if it satisfies the following conditions:

(1) ∀x ∈ [0, 1], T (1, x) = x;
(2) ∀x, y ∈ [0, 1], T (x, y) = T (y, x);
(3) ∀x, y, z ∈ [0, 1], T (x, T (y, z)) = T (T (x, y), z);
(4) If x ≤ x ′, y ≤ y′, then T (x, y) ≤ T (x ′, y′).

Definition 2 (Nguyen and Walker 1997; Klement and Mesiar 2005) A function S :
[0, 1] × [0, 1] → [0, 1] is called t-conorm if it satisfies the following conditions:

(1) ∀x ∈ [0, 1], S(0, x) = x;
(2) ∀x, y ∈ [0, 1], S(x, y) = S(y, x);
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(3) ∀x, y, z ∈ [0, 1], S(x, S(y, z)) = S(S(x, y), z);
(4) I f x ≤ x ′, y ≤ y′, then S(x, y) ≤ S(x ′, y′).

Definition 3 (Nguyen and Walker 1997; Klement and Mesiar 2005) A t-norm function
T (x, y) is called Archimedean t-norm if it is continuous and T (x, x) < x for all
x ∈ (0, 1). An Archimedean t-norm is called strictly Archimedean t-norm if it is
strictly increasing in each variable for x, y ∈ (0, 1). A t-conorm function S(x, y) is
called Archimedean t-conorm if it is continuous and S(x, x) > x for all x ∈ (0, 1).
An Archimedean t-conorm is called strictly Archimedean t-conorm if it is strictly
increasing in each variable for x, y ∈ (0, 1).

It is well known (Klement and Mesiar 2005) that a strict Archimedean t-norm can be
expressed via its additive generator k as T (x, y) = k−1(k(x) + k(y)), and similarly,
applied to its dual t-conorm S(x, y) = l−1(l(x) + l(y)) with l(t) = k(1 − t). We
observe that an additive generator of a continuous Archimedean t-norm is a strictly
decreasing function k : [0, 1] → [0,∞).

There are some well-known Archimedean t-norms and t-conorms (Beliakov et al.
2007).

(1) Let k(t) = − log t, l(t) = − log(1 − t), k−1(t) = e−t , h−1(t) = 1 − e−t , and
then Algebraic t-conorm and t-norm are obtained : S(x, y) = 1 − (1 − x)(1 −
y), T (x, y) = xy.

(2) Let k(t) = log( 2−t
t ), l(t) = log(

2−(1−t)
1−t ), k−1(t) = 2

et +1 , h−1(t) = 1 − 2
et +1 ,

and then Einstein t-conorm and t-norm are obtained: S(x, y) = x+y
1+xy , T (x, y) =

xy
1+(1−x)(1−y)

.

2.2 Hesitant fuzzy sets

Definition 4 (Torra 2010) Let X be a universal set, and a hesitant fuzzy set (HFS) on
X be in terms of a function that returns a subset of [0,1] when applied to X . It can be
represented as follows:

E = {〈x, hE (x)〉|x ∈ X},

where hE (x) is a set of values within [0, 1], denoting the possible membership degrees
of the element x ∈ X to the set E . hE (x) is a hesitant fuzzy element (HFE) (Xia and
Xu 2011), and H is the set of all HFEs. Noteworthy, if Xcontains only one element,
E is called a hesitant fuzzy number, briefly denoted by E = {hE (x)}. The set of all
hesitate fuzzy numbers is represented as HFNS.

Torra (2010) defined some operations on HFEs, and Xia and Xu (2011) and Xia
(2012) further defined some operations on HFEs and score functions.

Definition 5 (Xia 2012) Let h1, h2, h ∈ HFNS, λ ≥ 0. The four operations are
defined as follows:

(1) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{l−1(l(γ1) + l(γ2))};
(2) λh = ∪γ∈h{l−1(λl(γ ))};
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(3) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{k−1(k(γ1) + k(γ2))};
(4) hλ = ∪γ∈h{k−1(λk(γ ))},
where l(t) = k(1 − t), and k : [0, 1] → [0,∞) is a strictly decreasing function.

Let k(t) = − log t , l(t) = − log(1 − t), and then

(1) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2};
(2) λh = ∪γ∈h{1 − (1 − γ )λ};
(3) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2};
(4) hλ = ∪γ∈h{γ λ}.
All those four operations were once introduced by Xia and Xu (2011).

Let k(t) = log( 2−t
t ), l(t) = log(

2−(1−t)
1−t ), and then

(5) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{ γ1+γ2
1+γ1γ2

};
(6) λh = ∪γ∈h{1 − 2

(
1+γ
1−γ

)λ+1
};

(7) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{ γ1γ2
2−γ1−γ2+γ1γ2

};
(8) hλ = ∪γ∈h{ 2

(
2−γ
γ

)λ+1
}.

Example 1 Let h1 = {0.1, 0.3}, h2 = {0.2, 0.3, 0.5}.
(1) Let k(t) = − log t , l(t) = − log(1 − t), and then h1⊕ = h1 ⊕ h2 = {0.28, 0.37,

0.64, 0.44, 0.51, 0.65}, and h1⊗ = h1 ⊗h2 = {0.02, 0.03, 0.05, 0.06, 0.09, 0.15}.
(2) Let k(t) = log( 2−t

t ), l(t) = log(
2−(1−t)

1−t ), and then

h2⊕ = h1 ⊕ h2 = {0.2941, 0.3884, 0.5714, 0.4717, 0.5505, 0.6957},

and h2⊗ = h1 ⊗ h2 = {0.1163, 0.0184, 0.0345, 0.0385, 0.0604, 0.1111}.
Apparently, h1⊕ �= h2⊕, h1⊗ �= h2⊗. Therefore, the results varied with the application

of different operations.

Definition 6 (Xia and Xu 2011) Let h ∈ H , and s(h) = 1
#h

∑
γ∈h γ be the score

function of h, where #h is the number of elements in h.

For two HFEs h1 and h2,
if s(h1) > s(h2), then h1 > h2;
if s(h1) = s(h2), then h1 = h2.

The impropriety of using the definition in the comparison of two HFEs, is illustrated
in the following example.

Example 2 Based on Example 1, we have s(h1⊕) = 0.4817, s(h2⊕) = 0.4953,
s(h1⊗) = 0.0667, and s(h2⊗) = 0.0458. According to Definition 6, the following are
true: h1⊕ < h2⊕ and h1⊗ > h2⊗. Therefore, arithmetic average operator and geometric
average operator based on different operations could lead to different ranking results.
In addition, the comparison method in Definition 6 can result in the counterintuitive
problem. For example, let h1 = {0.5}, h2 = {0.1, 0.9} and h3 = {0.1, 0.5, 0.9}
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be three HFEs. Clearly, h1 �= h2 �= h3. But by applying Definition 6, we get
s(h1) = s(h2) = s(h3), then h1 = h2 = h3, which is contradictory to our intu-
ition.

To overcome the counterintuitive problem, Farhadinia (2013a) defined a new score
function.

Definition 7 (Farhadinia 2013a) Let h = ∪γ∈h{γ } = {γ j | j = 1, 2, . . . , l(h)} be an
HFE, where l(h) is the number of elements in h. Then, the score function of h is
defined as

S(h) =
∑l(h)

j=1 δ( j)γ j
∑l(h)

j=1 δ( j)
,

where {δ( j)| j = 1, 2, . . . , l(h)} is a positive-valued monotonic increasing sequence
of index j .

In Farhadinia (2013a), the new score function proposed to compare HFEs was
defined, and it performed better than that of Xia and Xu (2011). The new score function
overcame the counterintuitive problem occurred in the method of Xia and Xu (2011).
However, the new score function was defined on the assumption that the values in
HFEs are arranged in an ascending order and if two HFEs do not have the same
length, then the shorter one should be extended by adding the greatest number in it
until both of the HFEs have the same length. In this extension method, the decision-
makers are assumed to be optimistic in decision-making process, so they employed
the maximum. This method did not take into account the case that pessimists prefer
the minimum. When optimists and pessimists are bound in one group, these methods
will no longer be applicable. So this extension method cannot comprehensively reflect
the decision-makers’ risky tendency in making decisions.

Furthermore, Torra and Narukawa (2009) and Torra (2010) proposed an aggregation
principle for HFEs.

Definition 8 (Torra 2010; Torra and Narukawa 2009) Let E = {h1, h2, . . . , hn} be a
set of HFEs, ϑ be a function on E , ϑ : [0, 1]n → [0, 1], and then

ϑE =
⋃

γ∈h1×h2×···×hn

{ϑ(γ )}.

3 Outranking relations on HFSs

In ELECTRE III method, for the j th criterion being considered, the concordance
index and the discordance index are constructed with three associated thresholds:
the preference threshold p j , the indifference threshold q j , and the veto threshold v j .
Among those three thresholds, p j is used to justify the preference in favor of either
of the actions, q j stands for being compatible with indifference between two actions,
and v j is assigned to introduce discordance into the outranking relations. Note that,
in this paper, we only consider the simple case where the thresholds p j , q j and v j

123



1008 J. Q. Wang et al.

are constants under each criterion. This simplification of using constant thresholds
aids the illustration of ELECTRE III method and our approach. Actually, they can be
generalized to functions varying with the value of the criteria g j (a); that is, the case
of variable thresholds p j (g j (a)), q j (g j (a)) and v j (g j (a)) (Roy 1991).

Definition 9 (Roy 1991) Let G be the criteria set G = {g1, . . . , g j , . . . , gm}, B be
the set of alternatives or actions B = {a1, . . . , ai , . . . , an}. Two thresholds under
the criterion g j have been specified to construct the fuzzy concordance index: the
indifference threshold q j and the preference threshold p j (0 ≤ q j ≤ p j ). Let a1 and
a2 be two alternatives, where a1, a2 ∈ B, and then the relations can be defined as
follows.

(1) If g j (a1) − g j (a2) ≥ p j , then a1 is strictly preferred to a2, denoted by P(a1, a2).
(2) If q j < g j (a1) − g j (a2) < p j , then a1 is weakly preferred to a2, denoted by

W (a1, a2).
(3) If

∣
∣g j (a1) − g j (a2)

∣
∣ ≤ q j , then a1 is indifferent to a2, denoted by I (a1, a2).

The concordance index for the single criterion is defined as follows.

(1) If g j (a1) + q j ≥ g j (a2), then c j (a1, a2) = 1.

(2) If g j (a1) + q j < g j (a2) < g j (a1) + p j , then c j (a1, a2) = g j (a1)−g j (a2)+p j
p j −q j

.
(3) If g j (a1) + p j ≤ g j (a2), then c j (a1, a2) = 0.

Definition 10 (Roy 1991) A veto threshold v j (≥ p j ) is introduced based on Defini-
tion 9. Then, the discordance index d(a1, a2) is defined as follows.

(1) If g j (a2) − g j (a1) ≤ p j , then d j (a1, a2) = 0.

(2) If p j < g j (a2) − g j (a1) < v j , then d j (a1, a2) = g j (a2)−g j (a1)−p j
v j −p j

.
(3) If g j (a2) − g j (a1) ≥ v j , then d j (a1, a2) = 1.

It should be mentioned that if there is a criterion for which the alternative a2 performs
better than the alternative a1 by at least the veto threshold even if other criteria favor the
outranking of a2 by a1, then any outranking of a2 by a1 indicated by the concordance
index can be overruled.

Following ELECTRE III, we define the outranking relations, a concordance index
and a discordance index for HFNs.

Definition 11 Let h1, h2 ∈ HFNS, p,q(0 ≤ q ≤ p) be two thresholds, then we define
the concordance index for HFNs as follows:

rp,q(h1, h2) = max
γ1∈h1

min
γ2∈h2

cp,q(γ1, γ2).

In fact, the maxmin operator used in Definition 11 is an extension of the traditional
concordance index by integrating ELECTRE III method and hesitant fuzzy informa-
tion. Especially, if h1 is indifferent to h2, then the concordance index should be equal
to one, which is still in accordance with the traditional concordance index. Therefore,
the concordance index of ELECTRE III combined with HFNs in HFSs makes it more
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suitable for dealing with the uncertain data represented by HFSs, unlike the traditional
ELECTRE III method which always deals with certain data. It is not difficult to find
that if both h1 and h2 are reduced to the single values, rp,q(h1, h2) will turn into a
concordance index which has been introduced in Definition 9.

According to Definition 11, we could easily obtain the following property.

Property 1 Let h1, h2 ∈ HFNS, p and q(0 ≤ q ≤ p) be two thresholds, and then

0 ≤ rp,q(h1, h2) ≤ 1.

Definition 12 The strict dominance relation, the weak dominance relation and the
indifference relation of HFNs can be defined as follows.

(1) If rp,q(h1, h2) − rp,q(h2, h1) = 1 (which is equivalent to rp,q(h2, h1) = 0 and
rp,q(h1, h2) = 1), then h1 strongly dominates h2 (h2 is strongly dominated by
h1), denoted by h1 >S h2.

(2) If rp,q(h1, h2)−rp,q(h2, h1) = 0, then h1 is indifferent to h2, denoted by h1 ∼ h2.
(3) If 0 < rp,q(h1, h2)−rp,q(h2, h1) < 1, then h1 weakly dominates h2 (h2 is weakly

dominated by h1), denoted by h1 >W h2.
(4) If 0 < rp,q(h2, h1)−rp,q(h1, h2) < 1, then h2 weakly dominates h1 (h1 is weakly

dominated by h2), denoted by h2 >W h1.

Example 3 Let p = 0.2, q = 0.1.

(1) If h1 = {0.5, 0.7}, h2 = {0.1, 0.2},then rp,q(h1, h2) − rp,q(h2, h1) = 1. So
h1 >S h2.

(2) Ifh1 = {0.4, 0.5}, h1 = {0.2, 0.6}, then rp,q(h1, h2) − rp,q(h2, h1) = 0. So
h1 ∼ h2.

(3) If h1 = {0.4, 0.5}, h2 = {0.3, 0.35}, then rp,q(h1, h2) − rp,q(h2, h1) = 0.5. So
h1 >W h2.

Property 2 Let h1, h2 ∈ HFNS, p and q(0 ≤ q ≤ p) be two thresholds, and then
h1 >S h2 if and only if min{γ1|γ1 ∈ h1} − max{γ2|γ2 ∈ h2} ≥ p.

Proof (1) Necessity: h1 >S h2 ⇒ min{r |r ∈ h1} − max{r |r ∈ h2} ≥ p.
According to Definition 12, if h1 >S h2, then rp,q(h1, h2) − rp,q(h2, h1) = 1.
Since 0 ≤ rp,q(h1, h2) ≤ 1 and 0 ≤ rp,q(h2, h1) ≤ 1, rp,q(h2, h1) = 0. Then we
get max

γ2∈h2
min
γ1∈h1

cp,q(γ2, γ1) = 0. As we know from Definition 9 that cp,q(γ2, γ1) ∈
[0, 1], so cp,q(γ2, γ1) = 0. Hence, γ1 − γ2 ≥ p, for any γ1 ∈ h1, γ2 ∈ h2.
Therefore, min{γ1|γ1 ∈ h1} − max{γ2|γ2 ∈ h2} ≥ p is certainly validated.

(2) Sufficiency: min{γ1|γ1 ∈ h1} − max{γ2|γ2 ∈ h2} ≥ p ⇒ h1 >S h2.
Because min{γ1|γ1 ∈ h1} − max{γ2|γ2 ∈ h2} ≥ p, we have γ1 − γ2 ≥ p for

any γ1 ∈ h1, γ2 ∈ h2. From Definition 9, cp,q(γ2, γ1) = 0, cp,q(γ1, γ2) = 1, and
then max

γ1∈h1
min
γ2∈h2

cp,q(γ1, γ2) = 1, which indicates rp,q(h1, h2) = 1. Therefore, from

Definition 12, we get h1 >S h2. ��
Property 3 Let h1, h2, h3 ∈ HFNS, and p and q(0 ≤ q ≤ p) be two thresholds. If
h1 >S h2, h2 >S h3, then there is h1 >S h3.

123



1010 J. Q. Wang et al.

Proof According to Property 2, if h1 >S h2, then min{γ1|γ1 ∈ h1} − max{γ2|γ2 ∈
h2} ≥ p.

If h2 >S h3, then min{γ2|γ2 ∈ h2} − max{γ3|γ3 ∈ h3} ≥ p. So

min{γ1|γ1 ∈ h1} − max{γ2|γ2 ∈ h2} ≥ p
min{γ2|γ2 ∈ h2} − max{γ3|γ3 ∈ h3} ≥ p

}

⇒ min{γ1|γ1 ∈ h1} − max{γ3|γ3 ∈ h3} ≥ 2p ≥ p.

Therefore, h1 >S h3. ��
Property 4 Let h1, h2, h ∈ HFNS, and p and q(0 ≤ q ≤ p) be two thresholds.

(1) The strong dominance relations are categorized as:
©1 irreflexivity: ∀h ∈ HFNS, h ≯S h;
©2 asymmetry: ∀h1, h2 ∈ HFNS, h1 >S h2 �⇒ h2 >S h1;
©3 transitivity: ∀h, h1, h2 ∈ HFNS, h >S h1, h1 >S h2 ⇒ h >S h2.

(2) The weak dominance relations are categorized as:
©4 irreflexivity: ∀h ∈ HFNS, h ≯W h;
©5 asymmetry: ∀h1, h2 ∈ HFNS, h1 >W h2 �⇒ h2 >W h1;
©6 non-transitivity: ∃h, h1, h2 ∈ HFNS, such that h >W h1, h1 >W h2 �⇒
h >W h2.

(3) The indifference relations are categorized as:
©7 reflexivity: ∀h ∈ HFNS, h ∼ h;
©8 symmetry: ∀h1, h2 ∈ HFNS, h1 ∼ h2 ⇒ h2 ∼ h1;
©9 non-transitivity: ∃h, h1, h2 ∈ HFNS, such that h ∼ h1, h1 ∼ h2 �⇒ h ∼ h2.

According Definitions 11 and 12, and Properties 2 and 3, it is clear to prove that ©1–©5,
©7 and ©8 hold. Therefore, only ©6 and ©9 need to be proven.

Example 4 We exemplify those false arguments on ©6 and ©9.

(1) Let h = {0.5, 0.6}, h1 = {0.3, 0.4}, h2 = {0.1, 0.2}, p = 0.25, q = 0.15,
and then rp,q(h, h1) − rp,q(h1, h) = 0.5, rp,q(h1, h2) − rp,q(h2, h1) = 0.5,
rp,q(h, h2) − rp,q(h2, h) = 1.So h >W h1, h1 >W h2, but h >S h2.

(2) Let h = {0.2, 0.5}, h1 = {0.3, 0.6}, h2 = {0.4, 0.7}, p = 0.2, q = 0.1, and then
rp,q(h, h1) − rp,q(h1, h) = 1 − 1 = 0, rp,q(h1, h2) − rp,q(h2, h1) = 1 − 1 = 0,
rp,q(h2, h) − rp,q(h, h2) = 1. So h ∼ h1, h1 ∼ h2, but h2 >S h.

Similar to dominance relations, we define the strong opposition relation, the weak
opposition relation and the indifferent opposition relation.

Definition 13 Let h1, h2 ∈ HFNS, p and v(p ≤ v) be two thresholds, and then we
define the discordance index for HFNs as follows:

tp,v(h1, h2) = max
γ1∈h1

min
γ2∈h2

dp,v(γ1, γ2).

Similarly, the maxmin operator used in Definition 13 is an extension of the traditional
discordance index by integrating ELECTRE III method and hesitant fuzzy information.
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Especially, if h1 is indifferent to h2, then the discordance index should be equal to zero,
which is still in accordance with the traditional discordance index. The conclusions are
easy to drawn that when both h1 and h2 are reduced to the single values, tp,v(h1, h2)

turns into a discordance index as introduced in Definition 10.

According to Definition 13, it is easy to get the following property.

Property 5 Let h1, h2 ∈ HFNS, p and v(p ≤ v) be two thresholds, and then

0 ≤ tp,v(h1, h2) ≤ 1.

Definition 14 The strong opposition relation, weak opposition relation and indifferent
opposition relation for HFNs are defined as follows.

(1) If tp,v(h1, h2) = 1, then h1 strongly opposes h2(h2 is strongly opposed by h1),
denoted by h1 >SO h2.

(2) If tp,v(h1, h2) − tp,v(h2, h1) = 0, then h1 is indifferently opposed to h2, denoted
by h1 ∼O h2.

(3) If 0 < tp,v(h1, h2) − tp,v(h2, h1) < 1, then h1 weakly opposes h2 (h2 is weakly
opposed by h1), denoted by h1 >W O h2.

(4) If 0 < tp,v(h2, h1) − tp,v(h1, h2) < 1, then h2 weakly opposes h1 (h1 is weakly
opposed by h2), denoted by h2 >W O h1.

Example 5 Let p = 0.2, v = 0.3.

(1) If h1 = {0.1, 0.2}, h2 = {0.5, 0.7}, then tp,v(h1, h2) = 1. So h1 >SO h2.
(2) If h1 = {0.2, 0.5}, h2 = {0.1, 0.6}, then tp,v(h1, h2) − tp,v(h2, h1) = 0. So

h1 ∼O h2.
(3) If h1 = {0.2, 0.5}, h2 = {0.45, 0.75}, then tp,v(h1, h2) − tp,v(h2, h1) = 0.5. So

h1 >W O h2.
According to Definitions 10, 13 and 14, similar to Properties 2, 3 and 4, the
following properties are true.

Property 6 Let h1, h2 ∈ HFNS, p and v(p < v) be two thresholds, and then h1 >SO

h2, if and only if min{r |r ∈ h2} − max{r |r ∈ h1} ≥ v.

Property 7 Let h1, h2, h3 ∈ HFNS, and p and v(p < v) be two thresholds. If
h1 >SO h2 and h2 >SO h3, then h1 >SO h3.

Property 8 Let h1, h2, h ∈ HFNS, p and v(p < v) be two thresholds, then

(1) The strict opposition relations are categorized into:
©1 irreflexivity: ∀h ∈ HFNS, h ≯SO h;
©2 asymmetry: ∀h1, h2 ∈ HFNS, h1 >SO h2 �⇒ h2 >SO h1;
©3 transitivity: ∀h, h1, h2 ∈ HFNS, h >SO h1, h1 >SO h2 ⇒ h >SO h2.

(2) The weak opposition relations are also categorized into:
©4 irreflexivity: ∀h ∈ HFNS, h ≯W O h;
©5 asymmetry: ∀h1, h2 ∈ HFNS, h1 >W O h2 �⇒ h2 >W O h1;
©6 non-transitivity: ∃h, h1, h2 ∈ HFNS, such that h >W O h1, h1 >W O h2 �⇒
h >W O h2.
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(3) The indifferent opposition relations are categorized into:
©7 reflexivity: ∀h ∈ HFNS, h ∼O h;
©8 symmetry: ∀h1, h2 ∈ HFNS, h1 ∼O h2 ⇒ h2 ∼O h1;
©9 non-transitivity: ∃h, h1, h2 ∈ HFNS, such that h ∼O h1, h1 ∼O h2 �⇒
h ∼O h2.

Example 6 We exemplify the false arguments on ©6 and ©9.

(1) Let h = {0.1, 0.4}, h1 = {0.3, 0.5}, h2 = {0.5, 0.6}, p = 0.15, v = 0.25, and then
tp,v(h, h1) − tp,v(h1, h) = 0.5, tp,v(h1, h2) − tp,v(h2, h1)=0.5, tp,v(h, h2) = 1.
So h1 >W O h2, h >W O h1, h >SO h2.

(2) Let h = {0.1, 0.4}, h1 = {0.2, 0.5}, h2 = {0.3, 0.6}, p = 0.1, v = 0.2, and
then tp,v(h, h1) − tp,v(h1, h)=0, tp,v(h1, h2) − tp,v(h2, h1) = 0, tp,v(h, h2) −
tp,v(h2, h) = 1. So h ∼O h1, h1 ∼O h2, h >SO h2.

4 Outranking approach of MCDM with HFNs

A total number of nalternatives are contained in an MCDM ranking or selection prob-
lem with hesitant fuzzy information. They are denoted by A = {a1, a2, . . . , an}, where
each alternative is assessed by means of m criteria, denoted by C = {c1, c2, . . . , cm}.
ai j is the value of the alternative ai for the criterion c j , represented by HFNs. Decision-
makers are requested to provide their preferences anonymously so as to protect their
privacies to obtain a more reasonable result. The weight of the criterion c j is ω j , where
j = 1, 2, . . . , m,

∑m
j=1 ω j = 1.

Our method is an integration of HFSs and ELECTRE III to solve MCDM problems
mentioned above. We set the thresholds q j , p j and v j (0 ≤ q j ≤ p j ≤ v j ) associate
with the criterion c j .

The set of subscripts that for all criteria meeting the constraint aik >Z ask or
aik >W ask is

O(ai , as) = {k|1 ≤ k ≤ m, aik >Z ask or ask >W aik}
(i = 1, 2, . . . , n; s = 1, 2, . . . , n), (1)

where Z = {S, W, I }. aik >S ask means aik strongly dominates ask . aik >I ask

means aik is indifferent to ask . aik >W ask means aik weekly dominates ask .
Using the weight vector ω associated with criteria, we define the comprehensive

concordance index C(ai , as) as follows:

C(ai , as) =
∑

k∈O(ai ,as )

ωkrpk ,qk (aik, ask). (2)

Here C(ai , as) ranges from 0 to 1, a value of 0 indicates that alternative ai is worse
than alternative as .
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Then, the concordance matrix C can be fabricated as

C =

⎛

⎜
⎜
⎜
⎜
⎝

− c12 c13 · · · c1(n−1) c1n

c21 − c23 · · · c2(n−1) c2n

· · · · · · − · · · · · · · · ·
c(n−1)1 c(n−1)2 c(n−1)3 · · · − c(n−1)n

cn1 cn2 cn3 · · · cn(n−1)

⎞

⎟
⎟
⎟
⎟
⎠

. (3)

The credibility index of outranking relations is defined as follows:

σ(ai , as) =
⎧
⎨

⎩

C(ai , as), If F = φ

C(ai , as)
∏

j∈F

1−tp j ,v j (ai j ,as j )

1−C(ai ,as )
, If F �= φ , (4)

where F = { j : tp j ,v j (ai j , as j ) > C(ai , as)}.
The ranking index of the alternatives is defined as follows:

δ(ai ) =
n∑

s=1

σ(ai , as) −
n∑

s=1

σ(as, ai ). (5)

Under such a correlation, the larger δ(ai ) is, the better the alternative ai is.
It is now feasible to develop a new approach for MCDM problems mentioned above.

Step 1. Determine the thresholds.
The thresholds pk , qk and vk , which are associated with the criterion ck and satisfy
0 ≤ qk ≤ pk ≤ vk , are set by decision-maker(s).
Step 2. Calculate the concordance index to get the concordance matrix.
According to Definitions 9 and 11, rpk ,qk (aik, a jk)(i = 1, 2, . . . , n, j =
1, 2, . . . , n) are calculated for each ck(k = 1, 2, . . . , m), so as the comprehen-
sive concordance index with ωk according to (2). Then, the concordance matrix is
obtained with consistence to (3).
Step 3. Calculate the credibility index.
According to Definitions 10 and 13, the detailed values of tpk ,vk (aik, a jk)(i =
1, 2, . . . , n, j = 1, 2, . . . , n) can be calculated. According to the results of Step 2,
it is necessary to find all the values of k which meet tpk ,vk (aik, a jk) > C(ai , a j ).
Thus, the credibility index of outranking relations is calculated according to (4).
Step 4. Rank all alternatives.
Using ranking index expressed by (5), δ(ai ) is obtained, and the ranking of all
alternatives is thus followed.

5 Illustrative example

In this section, an example is adapted from Wei (2012) for further illustration. The
school of management in a Chinese university is planning to introduce some outstand-
ing teachers from overseas for strengthening academic capability and enhancing their
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Table 1 Hesitant fuzzy
decision matrix

c1 c2 c3 c4

a1 {0.4, 0.5, 0.7} {0.5, 0.8} {0.6, 0.7, 0.9} {0.5, 0.6}
a2 {0.6, 0.7, 0.8} {0.5, 0.6} {0.4, 0.6, 0.7} {0.4, 0.5}
a3 {0.6, 0.8} {0.2, 0.3, 0.5} {0.4, 0.6} {0.5, 0.7}
a4 {0.5, 0.6, 0.7} {0.4, 0.5} {0.8, 0.9} {0.3, 0.4, 0.5}
a5 {0.6, 0.7} {0.5, 0.7} {0.7, 0.8} {0.2, 0.3, 0.4}

teaching quality. The project has attracted great attention over the campus. The univer-
sity’s president, the dean of management school and the human resource officer set up
the panel of decision-makers, responding the major responsibility in the introduction.
They make strict evaluation of five alternatives, denoted by a1, a2, a3, a4, a5, accord-
ing to the following four criteria: morality, research capability, teaching skills and
education backgrounds, denoted by c1, c2, c3, c4 with the weight vector ω =(0.45,
0.25, 0.2, 0.1). The evaluation of these five candidates ai (i = 1, 2, 3, 4, 5) is per-
formed with HFNs by three decision-makers under ck(k = 1, 2, 3, 4). The hesitant
fuzzy decision matrix (ai j )5×4 is constructed and shown in Table 1.

The procedures of obtaining the optimal alternative, using the developed method,
are shown as follows.

Step 1. Determine the thresholds.
For simplicity of calculation, we set qk = q = 0.05, pk = p = 0.25, vk = v = 0.3
for all criteria ck(k = 1,2,3,4).
Step 2. Calculate the concordance matrix.
Then, the values of rpk ,qk (aik, a jk)(i = 1, 2, . . . , n; j = 1, 2, . . . , n) are calcu-
lated for each criterion. The comprehensive concordance index is calculated based
on

C(ai , a j ) =
∑

k∈O(ai ,a j )

ωkrpk ,qk (aik, a jk).

So, the concordance matrix is:

C =

⎛

⎜
⎜
⎜
⎜
⎝

− 0.8875 0.8625 1 1
0.6375 − 0.925 0.85 0.8875
0.55 0.8875 − 0.8 0.6625
0.725 0.825 0.8125 − 0.8125

0.8125 0.8625 0.7875 0.925 −

⎞

⎟
⎟
⎟
⎟
⎠

.

Step 3. Calculate the credibility index.
Calculate tpk ,vk (aik, a jk)(i = 1, 2, . . . , n; j = 1, 2, . . . , n). According to the
results of Step 2, a filter of all the values of k to meet tpk ,vk (aik, a jk) > C(ai , a j )

is needed. The calculation of the credibility index of outranking relations according
to (4) can be obtained as follows.
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Since rp,q(a11, a21) = 0.75, and rp,q(a21, a11) = 1, then rp,q(a21, a11) −
rp,q(a11, a21) = 0.25. So a21 >W a11.
Similarly, we can get rp,q(a12, a22) = 1, rp,q(a13, a23) = 1, and rp,q(a14, a24) =
1. According to the weight vector ω =(0.45,0.25,0.2,0.1) and (1), there is
C(a1, a2) = 0.75 × 0.45 + 1 × 0.25 + 1 × 0.2 + 1 × 0.1 = 0.8875.
And because tp,v(a11, a21) = 0, tp,v(a12, a22) = 0, tp,v(a13, a23) = 0, and
tp,v(a14, a24) = 0, we get F = φ.
From (4), we can get σ(a1, a2) = 0.8875. In a similar way, we can get other values
of σ(ai , a j )(i = 1, 2, . . . , n; j = 1, 2, . . . , n) as follows:
σ(a1, a3)=0.8625, σ (a1, a4)=1, σ (a1, a5)=1, σ (a2, a1)=0.6375, σ (a2, a3)=
0.925, σ (a2, a4) = 0, σ (a2, a5) = 0, σ (a3, a1) = 0, σ (a3, a2) = 0, σ (a3, a4) =
0, σ (a3, a5) = 0, σ (a4, a1) = 0.725, σ (a4, a2) = 0.825, σ (a4, a3) =
0.8125, σ (a4, a5) = 0.8125, σ (a5, a1) = 0, σ (a5, a2) = 0.8625, σ (a5, a3) = 0,

and σ(a5, a4) = 0.925.
Step 4. Rank all alternatives.

Using (5), we calculate the values of δ(ai )(i = 1, 2, 3, 4, 5). They are
δ(a1) = 2.3875, δ(a2) = −1.0125, δ(a3) = −2.6, δ(a4) = 1.25, and δ(a5) =

−0.025. Thus, the ranking of the alternatives are: a1 � a4 � a5 � a2 � a3, and the
most desirable alternative is a1.

The results based on the HFPWA operator and the HFPWG operator which were
presented by Wei (2012) are a5 � a2 � a1 � a4 � a3 and a2 � a5 � a1 � a4 � a3,
respectively. Based on the HFPWA operator of Wei (2012), we apply the Conditions
(5)–(8) in Definition 5 to calculate the example, then the result is a5 � a2 � a1 �
a4 � a3. Although the final results related to the same illustrative example, based on
the HFPWA operator, are the same, we do have provided some other scenarios such
as Examples 1 and 2 to justify that different results could be obtained in case that
different operations are applied.

Farhadinia (2013a) presented a new score function for ranking HFEs and applied
the same HFPWA operator of Wei (2012) to the same illustrative example. The final
result was a5 � a1 � a2 � a4 � a3. These methods were based on the same
operations but not the comparison methods. Although they were based on the same
example, these methods produced different ranking results. So the final result is not
robust through different approaches. As we have mentioned in Examples 1 and 2 that
different operations could produce different ranking results, to avoid such problems
caused by different operations and comparison methods, we have proposed a method
that was not based on any operations or comparison methods.

The previous stated ranking result is different from those obtained from either
Wei’s method or Farhadinia’s method. The reasons were concluded but not limited
to the pairwise comparison that our approach based upon, among the sets of possi-
ble values of the pair of HFNs. It is an extension of the traditional ELECTRE III
method, and has the non-compensatory as its distinguished feature to other MCDM
methods. It indicates that good scores on other criteria may not, in particular, be used
to compensate a very bad score on a criterion. As the results yielded from different
operations and comparison methods vary a lot, it is difficult for decision-makers to
choose the best one. Such difficulty has been illustrated with two methods improved
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by Wei (2012) and Farhadinia (2013a), which are based on the same example and
Examples 1 and 2. The main advantages of the proposed approach over those hesitant
fuzzy operators are not only overcoming the problems caused using operations and
comparison methods, but also the feature of non-compensatory and the consideration
of decision-makers’ preferences, which are represented by choosing the appropriate
thresholds towards the criteria. And it is easy to verify that the proposed approach has
the ability to deal with the case where some values may repeat more than once in an
HFS. Moreover, this integration makes the new method more appropriate for MCDM
problems.

6 Conclusion

The HFS theory is a powerful tool to deal with MCDM problems, when decision-
makers have hesitancy in providing their preferences over objects. Unlike A-IFSs,
HFSs expand the membership degree of an element from the single values to a set
of possible values. In this paper, the theories about HFSs are reviewed at first. Then,
the definition of dominance relation and opposition relation for HFSs is given, as
motivated by the idea of traditional ELECTRE methods. Some properties are then
described in details. Based on the previous definitions of outranking relations, this
paper contains an outranking approach for MCDM problems with HFNs. The promi-
nent advantages of the proposed approach are both the elimination of shortcomings
of regular operations and comparison methods, and the feature of non-compensatory
which distinguished itself from many other MCDM methods. Such approach also
takes decision-makers’ preferences into consideration, being represented by choos-
ing the appropriate thresholds towards the criteria. It can be extended to the case
where some values may repeat more than once in an HFS. This method is useful
when the decision-makers deal with multi-criteria ranking problem with hesitant fuzzy
information.

In this paper, the thresholds p, q and v are considered as constants to each criterion.
In some other scenarios, they can be generalized to the functions varying with the value
of the criteria, or to say, in the case of variable thresholds. The weight vector, in the
paper, is given with certain information, but in some cases, decision-makers could
give the imprecise weight information, especially in the form of HFSs. Assessing the
weights by HFSs is a critical issue which remains to the further research. In addition,
only the case that the membership degree of HFSs is a real number has been studied in
the paper. It is considerable and meaningful to extend them into interval numbers or
other uncertain forms in further research. Moreover, it is also a critical issue that the
evaluations given by some decision-makers are partially or totally concordant. HFSs,
as the rising theory, remain many theoretical problems needed to be solved as soon
as possible, and hence in the future, a more comprehensive and useful method should
be put forward to deal with the more imprecise, inaccurate and uncertain evaluations
given by decision-makers.

Acknowledgments The authors thank the editors and anonymous reviewers for their helpful comments
and suggestions. This work was supported by the National Natural Science Foundation, P.R. China (Nos.
71271218 and 71221061).

123



Multi-criteria outranking approach with hesitant fuzzy sets 1017

References

Achillas C, Vlachokostas C, Moussiopoulos N, Banias G (2010) Decision support system for the optimal
location of electrical and electronic waste treatment plants: a case study in Greece. Waste Manage
30:870–879

Akram M, Dudek WA (2013) Intuitionistic fuzzy hypergraphs with applications. Inf Sci 218:182–193
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96
Atanassov KT (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Syst 33:37–45
Atanassov KT (1999) Intuitionistic fuzzy sets. Springer, Heidelberg
Atanassov KT (2000) Two theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst 110:267–269
Beliakov G, Pradera A, Calvo T (2007) Aggregation functions: a guide for practitioners. Springer, Heidel-

berg
Bellman R, Zadeh LA (1990) Decision making in a fuzzy environment. Manage Sci 17:141–164
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