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Abstract In this paper, we consider the multiple facility location problem with gradual
cover. Gradual cover means that up to a certain distance from the facility a demand
point is fully covered. Beyond another distance the demand point is not covered at
all. Between these two distances the demand point is partially covered. When there
are p facilities, the cover of each demand point can be calculated by a given formula.
One objective in this setting is to find locations for p facilities that maximize the total
cover. In this paper we consider another objective of maximizing the minimum cover
of every demand point. This guarantees that every demand point is covered as much
as possible and there are no demand points with low cover. The model is formulated
and heuristic algorithms are proposed for its solution. We solved a real-life problem
of locating cell phone towers in northern Orange County, California and demonstrated
the solution approach on a set of 40 test problems.

Keywords Facility location · Multiple facilities · Gradual cover

1 Introduction

One of the classic objectives in location modeling is based on the concept of cover. A
demand point is covered by a facility within a certain radius and not covered beyond
that radius. There may be a different weight associated with each demand point. Church
and ReVelle (1974) suggested two cover-based facility location problems: (i) the set
covering problem seeks the minimal number of facilities that cover all demand points,
and (ii) the maximum cover problem seeks the maximization of the covered weight
with a given number of facilities.
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904 T. Drezner and Z. Drezner

Applications to these problems abound including: the location of emergency ser-
vices (such as fire stations, ambulance stations) where travel distance from the facil-
ity to a demand point should not exceed a certain value; covering grassy areas and
plants with sprinkler covering discs of a given radius; the location of retail facil-
ities which have “trading areas” extending for some distance around the facility;
signal-transmission facilities (cell-phone towers, light posts, warning sirens, TV or
radio stations, etc.) where cover is achieved only within a certain distance from the
facility. We refer the reader to Kolen and Tamir (1990) and Current et al. (2002)
for a discussion of cover models in discrete spaces and to Plastria (1995, 2002)
in continuous spaces. Extensions to the classic covering models are summarized in
Berman et al. (2010b).

One extension to classic covering models is gradual cover. Classic covering mod-
els employ a critical distance such that a demand point is covered within this dis-
tance from a facility and not covered as soon as the distance is marginally greater
than the critical distance. The cover function is discontinuous because cover drops
abruptly. To rectify this discontinuity in the covering measure the gradual cover is
suggested. Two critical distances (r ≤ R), are defined. A demand point is fully cov-
ered if the distance to a facility does not exceed r , and is not covered at all if the
distance to a facility exceeds R. For distances between r and R cover declines grad-
ually according to a cover function. The cover function can be linear, step-wise, or
general, but should be a non-increasing function of the distance. Most gradual cover
models seek the maximization of the total covered weight. When a demand point is
partially covered by a calculated proportion, the proportion of the weight is added to
the value of the objective function. Church and Roberts (1984) were first to suggest
gradual cover. They described a discrete model with a (not necessarily decreasing)
step-cover function. Berman and Krass (2002) also discuss the discrete version with
the step-cover function and provide efficient formulations and heuristic approaches.
The discrete model with a general non-increasing cover function was analyzed in
Berman et al. (2003b). The planar version with a linear cover function was analyzed
in Drezner et al. (2004) and its stochastic version in Drezner et al. (2010). Karasakal
and Karasakal (2004) investigated the gradual cover model and termed it partial cover.
Eiselt and Marianov (2009) investigated gradual cover in the context of the set covering
problem.

Berman and Krass (2002) suggested that the cover by several facility is determined
by the closest facility. Drezner and Wesolowsky (1997) and Drezner and Drezner
(2008) suggested that partial cover is interpreted as probability and thus the combined
cover, when the probabilities are independent, is calculated based on this assumption.

Maximizing the minimum cover of demand points is irrelevant in classic cover
models because a demand point is considered either covered or not, and therefore,
the minimum cover proportion is either 0 or 1. In the set covering model (Church
and ReVelle 1974), the minimum cover is full cover. However, in the gradual cover
setting we wish to provide at least some cover to every demand point and wish the
minimum total cover to be as high as possible (Eiselt and Marianov 2009). This is
similar to the idea of the p-center objective (Kariv and Hakimi 1979; Chen and Chen
2009) where the objective is to provide the farthest customer with the best possible
service.
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The maximin gradual cover location problem 905

In this paper we investigate the maximization of the minimum cover across demand
points in the context of gradual cover in discrete space. A set of demand points and a
set of potential locations for the facilities are given. A demand point may be partially
covered by several facilities. This means that we would like to provide the least covered
demand point with as much cover as possible. A similar objective is discussed in
Drezner and Wesolowsky (1997) where the location of signal detectors is sought.
The probability of detection depends on the distance and once the location of the
detectors is known, the probability of detection of an event occurring at any demand
point can be calculated. The objective is to maximize the minimum probability of
detection (cover) of events at all demand points. This objective can be classified as
an equity objective. For a discussion of equity models, see Mulligan (1991), Erkut
(1993), Marsh and Schilling (1994), Eiselt and Laporte (1995), Drezner and Drezner
(2007), and Drezner et al. (2009).

2 The maximin gradual cover location model

The maximin gradual cover location model can be either a discrete model when the set
of potential locations for the facilities is finite, or continuous meaning that facilities
can be located anywhere in the plane. Most of the analysis is pertinent for both cases.
We concentrate on the discrete model and design solution algorithms for discrete
problems.

2.1 Notation

Let:

N be the set of demand points of cardinality n
S be the set of potential locations
s be the cardinality of S
p be the number of facilities to be located
di j be the distance between demand point i ∈ N and potential location

j ∈ S
0 ≤ φi j ≤ 1 be the proportion of cover of demand point i ∈ N by a facility located

at potential location j ∈ S at distance di j

0 ≤ φi ≤ 1 be the calculated combined proportion of cover by all p facilities
r be the maximum distance for full cover. φi j = 1 when di j ≤ r
R be the minimum distance for no cover. φi j = 0 when di j ≥ R
θ be an association factor 0 ≤ θ ≤ 1 depicting the correlation between

proportions of cover.

2.2 Background

φi j is the proportion of cover of demand point i ∈ N by a facility located at potential
location j ∈ S. φi j = 0 for di j ≥ R and φi j = 1 for di j ≤ r . 0 < φi j < 1
is a well defined monotonically non-increasing cover function for r < di j < R.
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Therefore, when di j is known, φi j is well defined. A reasonable assumption is a
linear decline in cover for r ≤ di j ≤ R (Drezner et al. 2004; Berman et al. 2003b)
leading to a continuous cover function. Therefore, we no longer use the distances
di j because they can be converted to proportions of cover φi j . Marianov and Eiselt
(2012) considered the location of multiple television transmitters that may be both
cooperating and interfering.

As discussed in Berman et al. (2010a), the assumption that the coverage is deter-
mined solely by the closest facility may not always be appropriate. In many cases
(including light, sound, and microwave signals), the signal emitted by the source dis-
sipates proportionally to the square of the travel distance (distance decay) and the
signal received at a demand point is the sum of the signals from all sources. There
exists a distance r such that the demand point is “surely” covered within this distance
and a distance R for which the signal is so weak that the probability of coverage does
not increase.

It is important to note that the model can be applied to a large variety of cover
options as long as φi j is a well-defined function of the distance di j . For instance, the
distances R and r can be different for each demand point, can be different for each
potential location, or can be different as Ri j and ri j for each pair of demand point
i ∈ N and a potential location j ∈ S. For example, cell phone towers’ cover may well
depend on the landscape, hills, valleys, obstruction by buildings, etc. that may lead to
different R and r for each pair of a demand point and a potential location.

Suppose that p facilities are located at some potential locations (more than one
facility may be located at the same location, which is termed “co-location”). One way
to interpret the proportion of cover φi j is to view it as probability of cover. By this
interpretation, the total cover is φi = 1 − ∏p

j=1

(
1 − φi j

)
if the probabilities of cover

are based on independent events (see, for example, Drezner and Wesolowsky 1997;
Berman et al. 2003a; Drezner and Drezner 2008). However, assuming independence
between events is not always realistic. For example, consider the case where facilities
are identical transmission towers and demand is generated by cell phones. The qual-
ity of service might well depend on the cell phone used. Cell phones may differ in
their model, technology, condition of the battery etc. leading to a positive correlation
between cover of demand points.

It can be shown that when the correlation coefficients between events approach 1,
then in the limit the total cover is max1≤ j≤p

{
φi j

}
. It is obvious for two events and

it follows for any number of events by mathematical induction. This is equivalent to
assuming that cover is achieved by the closest facility, while cover by all other facilities
is ignored. It is easy to show that 1−∏p

j=1

(
1 − φi j

) ≥ max1≤ j≤p
{
φi j

}
. These are the

two extreme probabilities and thus a convex combination of these two extreme values
can be used to model the whole spectrum of dependency. An association coefficient
0 ≤ θ ≤ 1, that is similar but not identical to a correlation coefficient, is selected. We
define the accumulated cover of demand point i , φi , for a given θ as:

φi = θ max
1≤ j≤p

{
φi j

} + (1 − θ)

⎡

⎣1 −
p∏

j=1

(
1 − φi j

)
⎤

⎦ . (1)
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The maximin gradual cover location problem 907

Observe that θ = 0 leads to the independent events assumption (correlation coef-
ficient of 0) and θ = 1 is equivalent to a correlation coefficient of 1. This estimate of
the accumulated cover is also applied in Berman et al. (2014).

2.3 The multivariate normal case

It is reasonable to assume that the individual probabilities are generated by a normal
distribution. Consider the same example of transmission towers and cell phones. A cell
phone requires a signal threshold to be connected. Since there are many factors that
determine the signal received by a cell phone (one important factor is the distance),
the distribution of the signal can be assumed normal by the central limit theorem, and
thus the probability of connection is the probability of exceeding that threshold. Let
d be the distance between demand point i and facility j . In recent papers on gradual
cover (for example Drezner et al. 2004; Berman et al. 2003b), there are two distances
r < R such that there is full coverage (φi j = 1) if d ≤ r , no coverage (φi j = 0) if
d ≥ R and cover declines linearly for r ≤ d ≤ R. The probability of no coverage
(1 − φi j ) resembles a cumulative normal probability and can be approximated by it
very well by setting r = μ − 3σ and R = μ + 3σ . For d ≤ r, φi j ≈ 1 and for
d ≥ R, φi j ≈ 0. This leads to μ = r+R

2 and σ = R−r
6 . For d = μ, φi j = 1

2 for
both. Note that in Drezner et al. (2010), the coverage function resembles a cumulative
normal curve even more because it is assumed that r and R are random variables. See
Fig. 1 where the cover curve of Drezner et al. (2010) is compared with the cumulative
normal distribution with 2.66σ on each side of the mean.

If the probabilities are a result of a normal distribution, i.e. φi j = Pr(Z ≥ h j ),
correlated probabilities are a result of a multivariate normal distribution. Suppose that
m ≤ p facilities are partially covering demand point i . If there is at least one facility
for which di j ≤ r , the probability of coverage is 1 regardless of the locations of the
other facilities. Otherwise, di j ≥ R for p − m facilities and the probability of cover is
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Fig. 1 Stochastic cover compared with cumulative normal cover
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not affected by these facilities. For a multivariate normal distribution with a correlation
matrix R (Drezner 1992; Johnson and Kotz 1972):

Pr (Z1 ≤ h1, Z2 ≤ h2, . . . , Zm ≤ hm) = 1
√

(2π)m |R|

h1∫

−∞
. . .

hm∫

−∞
e− 1

2 zT R
−1

zdzm . . . dz1

(2)

where |R| is the determinant of R.
We derive the expression for the probability φi , when the correlation coefficient

between all events is the same, by a multivariate normal distribution based on a cor-
relation matrix R with equal off-diagonal values.

2.3.1 Equal off-diagonal correlations

For the multivariate normal distribution, when the correlation matrix R has equal off-
diagonal correlations ρ ≥ 0, by Johnson and Kotz (1972), p.48 the m-dimensional
integral (2) can be reduced to a one-dimensional integral:

Pr (Z1 ≤ h1, Z2 ≤ h2, . . . , Zm ≤ hm) = 1√
2π

∞∫

−∞

m∏

j=1

�

(
h j − z

√
ρ√

1 − ρ

)

e− z2
2 dz

(3)

where �(·) is the cumulative standardized normal probability. The integral (3) is
calculated using Gaussian quadrature formulas based on Hermite polynomials with
20 integration points (Abramowitz and Stegun 1972, Table 25.10 pp. 924).

Consider a particular demand point i . The probability that demand point i is covered
by facility j is φi j . We derive the probability φi that demand point i is covered by at
least one facility. The probability of non-coverage of demand point i by facility j is
1 − φi j . Let

Pr(Z j ≤ h j ) = �(h j ) = 1 − φi j . (4)

Then, the probability calculated in (3) is the probability of non-coverage of demand
point i by all facilities. From (4), we get

h j = �−1 (
1 − φi j

)
(5)

and the probability φi of coverage by at least one facility is:

φi = 1 − 1√
2π

∞∫

−∞

m∏

j=1

�

(
�−1

(
1 − φi j

) − z
√

ρ√
1 − ρ

)

e− z2
2 dz. (6)
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The maximin gradual cover location problem 909

2.3.2 Evaluating the relationship between ρ and θ

Suppose we can estimate the value of ρ. What value of θ should be used in (1)?
The relationship between ρ and θ can be explicitly derived in the case of orthant
probabilities of the multivariate normal distribution, i.e. φi1 = φi2 = . . . = φim = 0.5
(Steck (1962)). For m = 2 (Drezner and Wesolowsky 1990) the orthant probability
is 1

4 + arcsin ρ
2π

and thus φi = 3
4 − arcsin ρ

2π
leading to θ = 2

π
arcsin ρ. For m = 3, by

equation (2.8) in Steck (1962), the orthant probability is 1
8 + 3 arcsin ρ

4π
leading to the

same relationship θ = 2
π

arcsin ρ. For higher dimensions only approximations exist
(Steck 1962). We therefore evaluated the relationship between ρ and θ for a wide
range of φi j by simulation.

We calculated the value of θ for multivariate normal distributions with equal off-
diagonal correlations ρ = 0.1, . . . , 0.9 and m = 2, . . . , 10 (81 cases) by randomly
generating 0.1 ≤ φi j ≤ 0.9 10,000,000 times for each case. The value of h j for each
φi j was calculated by (5). The probability φi was then calculated by (6). The value of
θ was then calculated by explicitly solving (1). The average and the standard error of
the resulting 10,000,000 values of θ were calculated for every case. The averages are
reported in Table 1 and depicted in Fig. 2. The standard errors of the results are quite
small. All 81 standard errors round down to 0.0000. It took about 14 h of computer time
to calculate these 810 million θs which is one million calculations of θ per minute.

Note that if the location problem is based on m facilities, if for at least one facility
φi j = 1 then, φi = 1 and θ is undefined (i.e, any value of θ yields the same φi = 1).
If several φi j = 0, then such facilities can be removed and the actual m is smaller.
Therefore, the only “relevant” cases are 0 < φi j < 1.

Multiple regression, with no intercept, yields

θ = ρ[1.392202 − 0.365589ρ − m(0.140458 − 0.135549ρ)]. (7)

For this regression: R2 = 0.9999 and the significance-F = 5.2 × 10−152. A value of
θ can be selected by this formula for each demand point once ρ and the number of
partially covering facilities m are known.

Table 1 Average values of θ

m ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

2 0.1097 0.2177 0.3243 0.4295 0.5330 0.6347 0.7339 0.8294 0.9194

3 0.1001 0.2002 0.3004 0.4010 0.5019 0.6033 0.7049 0.8061 0.9057

4 0.0855 0.1750 0.2679 0.3641 0.4634 0.5659 0.6714 0.7797 0.8901

5 0.0693 0.1471 0.2322 0.3240 0.4219 0.5259 0.6358 0.7518 0.8735

6 0.0540 0.1204 0.1977 0.2848 0.3811 0.4863 0.6004 0.7238 0.8567

7 0.0409 0.0969 0.1666 0.2489 0.3432 0.4490 0.5667 0.6968 0.8402

8 0.0304 0.0772 0.1397 0.2171 0.3089 0.4149 0.5354 0.6713 0.8243

9 0.0223 0.0612 0.1171 0.1897 0.2787 0.3842 0.5067 0.6476 0.8091

10 0.0162 0.0484 0.0983 0.1662 0.2522 0.3568 0.4807 0.6257 0.7947
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Fig. 2 Values of θ as a function of m from ρ = 0.1 (bottom) to ρ = 0.9

2.4 The objective function

Let K ⊂ S of cardinality p be the set of selected locations for the facilities. Each
location may be selected more than once. Define f (K ) for a given θ :

f (K ) = min
i∈N

⎧
⎨

⎩
φi = θ max

j∈K

{
φi j

} + (1 − θ)

⎡

⎣1 −
∏

j∈K

(
1 − φi j

)
⎤

⎦

⎫
⎬

⎭
(8)

Note that the value of θ may be different for different demand points without altering
the analysis or the solution algorithms. However, for simplicity, we assume the same
θ for all demand points.

The objective for a given p is to find the best set K ⊂ S of cardinality p that
maximizes f (K ) which is the minimum cover proportion φi (Eq. (1)) for all i ∈ N
for a given K :

F(p) = max
K⊂S,|K |=p

{ f (K )}. (9)

2.5 Co-location

In classic cover models there is no advantage in locating more than one facility at the
same location. If a demand point is covered by one facility, it will be covered by two
facilities located at the same location, and if a demand point is not covered, then it
will not be covered if a second facility is located at the same location. However, in
gradual cover models, it is possible that locating a second facility at the same location
is optimal. For example, consider two facilities, two potential locations, and several
demand points. Suppose that cover of every demand point by a facility located at
one potential location is zero, and cover by a facility located at the second potential
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location is 0.5. If we locate a facility at each potential location, the combined cover is
0.5 for each demand point because the other facility does not contribute to the cover.
The objective function for this solution is 0.5. When both facilities are located at the
second location, then by (1), φi = 0.5θ + 0.75(1 − θ) = 0.75 − 0.25θ > 0.5 for
θ < 1. Therefore, co-location of facilities should be allowed. Note that for θ = 1
co-location cannot be the only optimal solution. This is similar to the classic cover
models. Cover is determined by the closest facility and all other facilities are ignored.
Therefore, there is no advantage in locating more than one facility at the same location.

3 Properties

We construct conditions for which the solution to problem (9) is known and thus there
is no need to apply a solution algorithm to find it.

Lemma 1 If there exists a subset K ⊂ S of cardinality p such that for all i ∈ N,
there exists j ∈ K such that di j ≤ r (i.e., φi j = 1), then F(p) = 1 is the optimal
solution to (9) and K is an optimal subset.

Proof For this particular subset K , both max j∈K {φi j } = 1 for all i ∈ N and 1 −∏
j∈K

(
1 − φi j

) = 1 for all i ∈ N and thus f (K ) = 1. Therefore, F(p) ≥ 1 because
F(p) is the maximum value of f (K ) for all K ⊂ S. Since F(p) ≤ 1 by definition,
F(p) = 1 is the optimal solution and K is an optimal subset. 	


The following Lemma proves that Lemma 1 is both necessary and sufficient.

Lemma 2 If the solution to (9) is F(p) = 1, then there exists a subset K ⊂ S of
cardinality p such that for all i ∈ N, there exists j ∈ K such that di j ≤ r .

Proof Since F(p) = maxK⊂S{ f (K )}, there exists a subset K ⊂ S such that f (K ) =
1. For this K , min j∈K {di j } ≤ r for all i ∈ N which means that for all i ∈ N there
exists j ∈ K such that di j ≤ r . 	

Lemma 3 If for every set K ⊂ S of cardinality p, there exists i ∈ N such that di j ≥ R
(i.e. φi j = 0) for all j ∈ K , then F(p) = 0 is the optimal solution to (9) and any
K ⊂ S serves as a solution.

Proof Consider any K ⊂ S of cardinality p. For this K there exists i ∈ N such
that φi j = 0 for all j ∈ K . Therefore, for this i both max j∈K {φi j } = 0 and 1 −∏

j∈K

(
1 − φi j

) = 0 yielding φi = 0 and thus f (K ) = 0. Consequently F(p) = 0 is
the optimal solution because f (K ) = 0 for every K ⊂ S. 	


The following Lemma proves that Lemma 3 is both necessary and sufficient.

Lemma 4 If F(p) = 0 is the optimal solution to (9), then for every set K ⊂ S of
cardinality p there exists i ∈ N such that di j ≥ R for all j ∈ K .

Proof Since F(p) = 0, f (K ) = 0 for all K ⊂ S of cardinality p. Therefore, for
every K ⊂ S there exists i ∈ N such that min j∈K {di j } ≥ R and thus di j ≥ R for all
j ∈ K . 	
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Lemma 5 If F(φ0) = 0 for a given φ0, then F(p) = 0 for any p ≤ φ0. If F(φ1) = 1
for a given φ1, then F(p) = 1 for any p ≥ φ1.

Proof If F(φ0) = 0, then by Lemma 4 for every set K ⊂ S of cardinality φ0 there
exists i ∈ N such that di j ≥ R for all j ∈ K . When p ≤ φ0 for every set K ′ ⊂ S of
cardinality p there exists a subset K ⊃ K ′ of cardinality φ0 that satisfies this property
and thus F(p) = 0 by Lemma 3. If F(φ1) = 1, then by Lemma 2 there exists a subset
K ⊂ S of cardinality φ1 such that for all i ∈ N , there exists j ∈ K such that di j ≤ r .
For p ≥ φ1 any subset K ′ constructed by adding demand points to K satisfies this
condition and thus F(p) = 1 by Lemma 1. 	


By Lemma 5 the following are well defined:

pmin = max{p | F(p) = 0}.
pmax = min{p | F(p) = 1}.

By Lemma 5 when p ≤ pmin the optimal solution to (9) is F(p) = 0, and when
p ≥ pmax then the optimal solution is F(p) = 1. When pmin < p < pmax, 0 <

F(p) < 1. Consequently, the only “interesting” problems are for pmin < p < pmax.
We note that it is possible, but not likely, that pmin + 1 = pmax and there is no p for
which pmin < p < pmax. In such cases either F(p) = 0 or F(p) = 1 for every p.

We now show how to establish the values pmin, pmax by either solving a p-center
problem, or a maximal covering problem, or a set covering problem.

3.1 Finding pmin and pmax

In this section we use the definitions in Sect. 2.1. In addition we define:

R′ be max{di j | di j < R}. Note that by definition if di j > R′, then di j ≥ R.
R(p) be the optimal solution (radius) to the p-center problem with p facilities
C p(t) be the maximum cover (weights equal to 1 and p facilities) with a covering

distance t
p(t) be the minimum number of facilities covering all demand points within a

distance t

The following Theorem provides a relationship between the maximin gradual cover
model and the p-center model (Kariv and Hakimi 1979; Chen and Chen 2009).

Theorem 1 If R(p) ≤ r , then the solution to (9) is F(p) = 1. If R(p) ≥ R, then the
solution to (9) is F(p) = 0. When solving p-center problems: pmin is the largest p
such that R(p) ≥ R and pmax is the smallest p such that R(p) ≤ r .

Proof When R(p) ≤ r , at the solution set K to the p-center problem, maxi∈N

min j∈K {di j } ≤ r . Therefore, for every i ∈ N there exists j ∈ K such that di j ≤ r
thus φi j = 1 yielding φi = 1. Consequently, f (K ) = 1 and therefore F(p) = 1.
When R(p) ≥ R, by the optimality of R(p), for every set K ⊂ S of cardinality p:
there exists i ∈ N such that min j∈K

{
di j

} ≥ R(p) ≥ R. For this i , φi j = 0 for all
j ∈ K yielding φi = 0. By Lemma 3 F(p) = 0. 	
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The following Theorem provides a relationship between the maximin gradual cover
model and maximal cover problems (Church and ReVelle 1974).

Theorem 2 If C p(r) = n, then the solution to (9) is F(p) = 1. If C p(R′) < n, then
the solution to (9) is F(p) = 0. When solving the maximum cover problem: pmin is
the largest p such that C p(R′) < n and pmax is the smallest p such that C p(r) = n.

Proof When C p(r) = n, at the solution set K to the maximal cover problem, all
demand points are covered. Therefore, for each i ∈ N there exists j ∈ K such
that di j ≤ r thus φi j = 1. By Lemma 1 F(p) = 1 is the optimal solution. When
C p(R′) < n, for every set K ⊂ S of cardinality p there exists a demand point i ∈ N
which is not covered. Otherwise, there exists K ⊂ S for which all demand points are
covered and C p(R′) = n. Therefore, there exists i ∈ N such that min j∈K

{
di j

}
> R′.

For this i , for all j ∈ K φi j = 0. By Lemma 3 F(p) = 0. 	

The following Theorem provides a relationship between the maximin gradual cover

model and set covering problems (Church and ReVelle 1974).

Theorem 3 If p(r) ≤ p, then the solution to (9) is F(p) = 1. If p(R′) > p, then the
solution to (9) is F(p) = 0. When solving the set covering problems: pmin = p(R′)−1
and pmax = p(r).

Proof When p(r) ≤ p, at the solution set K all demand points are covered. Therefore,
for each i ∈ N there exists j ∈ K such that di j ≤ r thus φi j = 1. By Lemma 1
F(p) = 1 is the optimal solution. When p(R′) > p, for every set K ⊂ S of cardinality
p there exists a demand point i ∈ N which is not covered by a distance of R′.
Otherwise, there exists K ⊂ S for which all demand points are covered and p(R′) ≤ p.
Therefore, there exists i ∈ N such that min j∈K

{
di j

}
> R′ ≥ R. For this i , φi j = 0

for all j ∈ K . By Lemma 3 F(p) = 0. 	


4 Solution by heuristic algorithms

We devised an ascent and a tabu search algorithm that performed well. Other meta-
heuristic algorithms such as simulated annealing (Berman et al. 2009) and genetic
algorithms (Alp et al. 2003) that were proposed for the solution of similar problems
could be devised as well. We show the effectiveness of metaheuristics for solving
this problem by testing these two approaches (ascent and tabu search). In preparation
for any of the heuristic search algorithms, the distance matrix {di j } between demand
points and potential locations is calculated and the distances are replaced by φi j .

4.1 The ascent approach

The ascent algorithm is straightforward. Let K be a selected set of p potential locations
(with repetition). Since co-location of facilities is allowed, the search neighborhood
consists of removing one of the p selected potential locations and entering one of the
other s − 1 potential locations. We show in sect. 4.3 how to execute it in an efficient
way.
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4.2 Tabu search

Tabu search (Glover 1977, 1986; Glover and Laguna 1997) proceeds from the terminal
solution of the ascent algorithm by allowing downward moves hoping to obtain a better
solution in subsequent iterations. A tabu list of forbidden moves is maintained. Tabu
moves stay in the tabu list for tabu tenure iterations. To avoid cycling, the forbidden
moves are the reverse of recent moves. Similar to the ascent algorithm, the changes
in the value of the objective function in the neighborhood are evaluated. If there is
at least one move leading to a solution better than the best found solution, the best
of such moves is executed and the tabu list emptied. If none of the moves leads to a
solution better than the best found solution, the best permissible move (disregarding
moves in the tabu list), whether improving or not, is executed. The process continues
for a pre-specified number of iterations.

Each move involves removing a potential location in j ∈ K and substituting it with a
potential location k = j . The tabu list consists of potential locations recently removed
from K so they are not allowed to re-enter K . If a location is present more than once
in K it is entered into the tabu list and if the same location is removed again from K
because another facility is located at the same location, the tabu list is not increased but
the point of entry into the tabu list is the last one. A convenient way to operationalize
the tabu list is to record, for every potential location, the last iteration number at which
it was removed from K . At the beginning all recorded numbers are large negative
numbers. A potential location is in the tabu list if the difference between the current
iteration number and the recorded number is less than or equal to the tabu tenure. This
is especially convenient when the tabu tenure is a random variable that changes every
iteration. An exchange between two potential locations is permissible if the potential
location entering K is not in the tabu list. The maximum possible number of entries
in the tabu list is s − 1. Following extensive experiments we used for the tabu tenure
a randomly generated value between 5 and 95. The tabu tenure is randomly generated
each iteration. A wide range for the tabu tenure was shown to yield good results in
Drezner and Marcoulides (2009). The tabu search algorithm is summarized as follows:

1. A tenure vector consisting of an entry for each potential location is maintained.
2. The resulting set K of the ascent algorithm is selected as a starting solution for the

tabu search and as the best found solution. The number of iterations for the tabu
search is set to I T = 10, 000 and iter = 0.

3. Every potential location in the tenure vector is assigned a large negative number.
4. Set iter = iter + 1. If iter = I T stop with the best found solution as the tabu

solution.
5. Otherwise, the tabu tenure, T , is randomly selected in the range [5, 95].
6. All moves (one node to be removed, iout ∈ K , and one node to be added, iin = iout)

are evaluated and the value of the objective function is calculated for each.
7. If a move yields a solution better than the best found one, continue to evaluate all

the moves and perform the best improving move. Update the best found solution
and go to Step 3.

8. If no move yields a solution better than the best found solution, select the move
which yields the best value of the objective function (whether improving or not)
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as long as the difference between the current iteration and the entry of iin in the
tenure vector exceeds T .

9. The current iteration number is entered into entry iout of the selected move in the
tenure vector. Go to step 4.

4.3 Efficient calculations

Calculating the value of the objective function for a given set K requires O(np) time.
Therefore, calculating the p(s−1) values of the objective function in the neighborhood
requires O(nsp2) time. We can streamline the calculation and reduce the complexity by
a factor of p. This can be implemented for both the ascent and tabu search approaches.
We maintain two vectors V ′ and V ′′ of length n such that for every i ∈ N : v′

i =
max j∈K {φi j } and v′′

i = ∏
j∈K (1 − φi j ). Potential locations j ∈ K are checked in

order for removal. For each such potential location, the two vectors are recalculated
and saved in different vectors V

′
, V

′′
retaining the original V ′, V ′′. It takes an O(1)

effort to recalculate each element in V
′
and V

′′
, for an effort of O(n). When a potential

location k = j is added to K , it takes O(1) to recalculate each element of V
′

and
V

′′
and therefore it takes O(n) to calculate the value of the objective function. The

phase of removing potential locations takes a total of O(np) time, and the phase of
adding potential locations takes a total of O(nsp) time which is the complexity of one
iteration, a saving by a factor of p.

4.4 Fine tuning the heuristics

A major problem with these heuristics (especially for a small value of p which is
close to pmin) is that a large majority of feasible solutions have an objective function
of 0 and all neighborhood members of such solutions have an objective function of
zero as well. The ascent algorithm will stop at such solutions prematurely and tabu
search is not likely to get a positive solution. In order to overcome this difficulty we
took the following steps, each improving the performance (especially of tabu search)
significantly.

1. Since there are many ties for the best improvement, we employed the tie breaker
suggested in Drezner (2010). This means that during the scanning of all solutions
in the neighborhood, if a solution in the neighborhood ties the best found solution
so far during the scan, then it replaces the selected solution with a probability of 1

k
if it is the kth tying solution. The first encountered best solution is always selected.
A tying second solution replaces the first one with a probability of 50 %, and so
on. The kth found tying solution replaces a previously selected solution with a
probability of 1

k . If eventually there are T tying solutions, each solution is selected
with a probability of 1

T . This approach simplifies the selection process because we
do not need to save all tying solutions prior to the selection.

2. We enter a random component to the probabilities φi j , when φi j = 0 (i.e. di j ≥ R),
φi j is assigned −10−11u(di j − R) where u is a random number in [0, 1]. This has
three effects: (i) it creates a hierarchy among solutions with zero probability, and
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(ii) solutions whose excess of R is smaller (i.e. closer to a positive probability) get
preference in the selection, and (iii) preference is given to solutions with fewer
demand points with di j ≥ R.

4.5 A combined approach

Suppose we solve the set covering problem and find pmin = p(R′) + 1 (Theorem 3)
and its associated solution of potential locations. If p > pmin (otherwise we know that
the solution is F(p) = 0), then we can select as a starting solution the set covering
solution plus randomly adding p − pmin potential locations. We can then apply the
ascent algorithm or the tabu search. In addition, one can find pmax by solving another
set covering problem and finding p(r) just in case we can avoid solving this problem
heuristically because we know that the optimal solution is F(p) = 1. Note that the
set covering problem needs to be solved only once even when the heuristic approach
is repeated many times.

5 Computational experiments

The solution algorithms were programmed in Fortran using double precision arith-
metic. The programs were compiled by the Intel 11.1 Fortran Compiler and run, with
no parallel processing, on a desktop with the Intel 870/i7 2.93GHz CPU Quad proces-
sor, with 8GB memory. Only one thread was used.

5.1 Case study: cell phone towers in North Orange County, California

We investigated covering Northern Orange County, California with cell phone towers.
Since cover of a tower depends on the strength of its signal we considered a generic
tower with r = 2 miles and R = 4 miles with a linear decline in cover for r ≤ di j ≤ R.
The 2000 census data for Orange County, California are given in Drezner (2004) and
were also used in Drezner and Drezner (2007) and Berman et al. (2010a). There are
577 census tracts in the County. We selected the northernmost 131 census tracts, all
with a y-coordinate of at least 30 miles, to be covered. The objective is to maximize the
minimum cover of each census tract with p towers located at the center of the census
tract defining it. This means that n = s = 131. We also investigated the sensitivity of
the result to the value of θ by using θ = 0.0, 0.2, . . . , 1.0. Tabu search was replicated
10 times for each instance. Starting solutions were randomly generated and 10,000
iterations were used in the tabu search.

First, we established pmin and pmax by solving the set covering problem for r and
R′, using Theorem 3. We found that pmin = 4 and pmax = 13. We therefore ran the
tabu search for p = 5, 6, . . . , 12. Incidentally, the range for p for all 577 census tracts
that cover all of Orange County, was 18 ≤ p ≤ 52. We decided not to present the
results for all Orange County because it will necessitate a large volume of information.
The results for Northern Orange County are depicted in Table 2. As expected, cover
decreases with an increase in θ . Run times ranged from 1 to 2.5 s for one run of tabu
search.
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Table 2 Minimum cover for the
case study

† Number of times that the
reported minimum was found

Towers θ Minimum † Towers θ Minimum †

5 0.0 0.36752 10 9 0.0 0.93417 10

5 0.2 0.35966 10 9 0.2 0.90110 10

5 0.4 0.31680 10 9 0.4 0.88723 10

5 0.6 0.30147 10 9 0.6 0.85426 10

5 0.8 0.30147 10 9 0.8 0.82257 10

5 1.0 0.30147 5 9 1.0 0.79066 10

6 0.0 0.57429 10 10 0.0 0.96674 10

6 0.2 0.56789 10 10 0.2 0.93987 10

6 0.4 0.54696 10 10 0.4 0.91952 10

6 0.6 0.50084 10 10 0.6 0.89965 10

6 0.8 0.47728 10 10 0.8 0.87963 10

6 1.0 0.43077 6 10 1.0 0.85983 10

7 0.0 0.72606 10 11 0.0 0.99611 10

7 0.2 0.70029 10 11 0.2 0.97208 10

7 0.4 0.67768 10 11 0.4 0.94765 10

7 0.6 0.64907 10 11 0.6 0.93078 10

7 0.8 0.63366 10 11 0.8 0.91030 9

7 1.0 0.61346 9 11 1.0 0.88982 10

8 0.0 0.84566 10 12 0.0 0.99954 10

8 0.2 0.84026 10 12 0.2 0.99850 10

8 0.4 0.79519 10 12 0.4 0.99763 10

8 0.6 0.77050 10 12 0.6 0.99676 10

8 0.8 0.74518 10 12 0.8 0.99589 10

8 1.0 0.69616 10 12 1.0 0.99501 10

Fig. 3 Case study results for locating eight facilities

The configurations for locating eight facilities by the two extreme values of θ = 0, 1
are depicted in Fig. 3. The two configurations are spatially very similar. The θ = 1
locations are generally closer to the periphery of the area. When applying θ = 1, each

123



918 T. Drezner and Z. Drezner

Table 3 Characteristics of the test problems

n pa pmin pmax BKb n pa pmin pmax BKb

100 5 48 84 0.318667 500 5 5 167 0.496000

100 10 43 79 0.433333 500 10 8 185 0.429890

100 10 42 85 0.366667 500 50 6 181 0.379237

100 20 44 87 0.333333 500 100 5 173 0.440000

100 33 39 71 0.545778 500 167 8 183 0.433333

200 5 31 129 0.188889 600 5 3 173 0.565956

200 10 33 137 0.200000 600 10 2 165 0.544853

200 20 38 140 0.266667 600 60 3 164 0.627230

200 40 37 127 0.300000 600 120 3 168 0.500708

200 67 23 119 0.309376 600 200 4 171 0.494000

300 5 19 157 0.233333 700 5 1 153 0.821701

300 10 23 159 0.264000 700 10 2 158 0.738933

300 30 23 166 0.264000 700 70 1 153 0.760125

300 60 26 161 0.225778 700 140 2 152 0.676049

300 100 17 163 0.200000 800 5 0 135 0.817718

400 5 11 163 0.344889 800 10 1 167 0.792397

400 10 8 175 0.305778 800 80 1 162 0.778025

400 40 15 186 0.286222 900 5 1 129 0.890950

400 80 10 168 0.374667 900 10 1 132 0.906340

400 133 13 173 0.300000 900 90 0 145 0.860408
a Original value of p in the Beasley (1990) files
b Best known result for p = pmin + 11

demand point is covered only by the closest facility and thus the minimum cover for
the demand points on the periphery requires facilities closer to them. Note also that
the minimum cover (see Table 2) increases from 70 % for θ = 1 to 85 % for θ = 0.

5.2 Results for test problems

The 40 Beasley (1990) problems designed for testing p-median problems were selected
as test problems. When a distance between two nodes in the file appears more than
once, the last distance is used. We used θ = 0.2, r = 10, and R = 40 with linear
decline between r and R. Both demand points and potential locations are nodes of the
network. We first calculated pmin and pmax for each network by solving set covering
problems and applying Theorem 3. The optimal solution is strictly between 0 and 1
only for problems with pmin < p < pmax. These values are given in Table 3. As can be
seen from the table, many problems are defined with the number of facilities outside
this range. In fact these are artificially constructed networks and we could not determine
values of r and R for which the original p for the 40 Beasley (1990) problems is in
that range. Therefore, rather than using the original value of p we used p = pmin +11.

In Table 4, we report the results of the combined approach (see Sect. 4.5) fol-
lowed by Ascent (C-Asc.), followed by tabu (C-Tabu), and running tabu search from a
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randomly selected starting solution. Both versions of tabu search were run for 10,000
iterations. For each of the three approaches, we report the number of times (out of
30,000 replications for C-Asc. and out of 100 for the two versions of tabu) that the
best known solution was found, and total run time in minutes for all runs.

C-Asc. found the best known solution at least once in only 22 problems out of 40,
both versions of Tabu found it at least once for all 40 problems. C-Asc. found the best
known solution in 5.3 % of the runs, C-Tabu found it in 75.9 % of the runs, while the
regular tabu search found it in 67.9 % of the runs. Run times were comparable. C-
Tabu performed best with the regular tabu second best. The ascent algorithm starting
at a random solution performed very poorly so we opted not to report its results. The
combined approach provided better results for both ascent and tabu.

6 Conclusions

We formulated and solved the multiple facilities gradual cover problem, maximizing
the minimum cover across all demand points. We attempt to provide the best possible
cover to the least-covered demand point. This is similar to the p-center objective where
we attempt to minimize the farthest distance to all demand points and thus the least
serviced demand point is served in the best possible way. Such an objective can be
classified as an equity objective.

We solved the discrete version of the problem, i.e., there exists a finite set of potential
locations for the facilities. The best solution approach suggested in this paper is a
combination of set covering algorithm and tabu search. As future research we propose
to investigate this problem when the potential locations for the facilities are anywhere
in the plane.
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