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Abstract Certain regulated industries are monitored by inspections that ensure adher-
ence (compliance) to regulations. These inspections can often be with very short notice
and can focus on particular aspects of the business. Failing such inspections can bring
great losses to a company; thus, evaluating the risks of failure against various inspection
strategies can help it ensure a robust operation. In this paper, we investigate a game-
theoretic setup of a production planning problem under uncertainty in which a company
is exposed to the risk of failing authoritative inspections due to non-compliance with
enforced regulations. In the proposed decision model, the inspection agency is consid-
ered an adversary to the company whose production sites are subject to inspections.
The outcome of an inspection is uncertain and is modeled as a Bernoulli-distributed
random variable whose parameter is the mean of non-compliance probabilities of
products produced at the inspected site and, therefore, is a function of production
decisions. If a site fails an inspection, then all its products are deemed adulterated and
cannot be used, jeopardizing the reliability of the company in satisfying customers’
demand. In the proposed framework, we address two sources of uncertainty facing
the company. First, through the adversarial setting, we address the uncertainty arising
from the inspection process as the company does not know a priori which sites the
agency will choose to inspect. Second, we address data uncertainty via robust opti-
mization. We model products’ non-compliance probabilities as uncertain parameters
belonging to polyhedral uncertainty sets and maximize the worst-case expected profit
over these sets. We derive tractable and compact formulations in the form of a mixed
integer program that can be solved efficiently via readily available standard software.
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Furthermore, we give theoretical insights into the structure of optimal solutions and
worst-case uncertainties. The proposed approach offers the flexibility of matching
solutions to the level of conservatism of the decision maker via two intuitive parame-
ters: the anticipated number of sites to be inspected, and the number of products at
each site that are anticipated to be at their worst-case non-compliance level. Varying
these parameters when solving for the optimal products allocation provides different
risk-return tradeoffs and thus selecting them is an essential part of decision mak-
ers’ strategy. We believe that the robust approach holds much potential in enhancing
reliability in production planning and other similar frameworks in which the proba-
bility of random events depends on decision variables and in which the uncertainty of
parameters is prevalent and difficult to handle.

Keywords Robust optimization · Reliability · Risk management · Compliance risk ·
Production planning · Adversarial games

1 Introduction

One of the main objectives of production or manufacturing planning (Silver et al. 1998,
Graves 2002) is satisfying customer requirements in the most effective, efficient, and
reliable way. Typically, the achievement of these objectives, utilizing various modeling
and planning techniques, is hindered by the presence of many sources of uncertainty. A
recent exhaustive literature survey of models for production planning under uncertainty
is given in Mula et al. (2006). This survey reveals that most models focus mainly on
tackling demand uncertainty, which shows the need for the development of new models
to address additional types of uncertainty.

In recent years, companies from various sectors are perpetually faced with addi-
tional sources of uncertainty and risk stemming from the increasing regulations
enforced by governmental authorities to protect consumers’ best interest. For instance,
current Good Manufacturing Practices (cGMPs) are enforced on pharmaceutical com-
panies by the Food and Drug Administration (FDA) (2013). Another example is
the Federal Communications Commission (FCC) rules that must be adhered to by
companies in the Information, Technology, and Communication sector. The non-
conformance with regulations can potentially cause the loss of revenues, market share,
or customers’ trust, or can cause personal or criminal liabilities. Thus, companies try to
achieve maximum compliance. Most companies implement a risk management system
to deal with most of their risks, including non-compliance (Abrams et al. 2007; Beroggi
and Wallace 1994; McNeil et al. 2005; Liebenbergm and Hoyt 2003). In 2008, the
use of “governance, risk, and compliance” software, systems, and services (Frigo and
Anderson 2009; Bamberger 2010), was estimated at $52.1 billion (Rasmussen 2008).

In this paper, we investigate a production planning adversarial decision model that
addresses non-compliance risks. We consider a game-theoretic setup in which an
authoritative inspection agency is modeled as an adversary to a company whose pro-
duction sites are subject to inspections. If a site fails inspection, all products produced
at that site are deemed adulterated and cannot be used to satisfy customers’ demand.
Typically the agency’s inspection strategy is unknown to the company. The agency has
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limited inspection budget and full information about the company’s revenues. We take
a worst-case perspective and assume that the agency utilizes the information it has in
an attempt to minimize the total revenue of the company. Of course, in reality, this is
not the case, but from a game-theoretic point of view, it is acceptable to assume an
adversary to be prepared for the worst case. Furthermore, the stakes of the company in
this game are high; if sites fail inspections, the reliability of the company in satisfying
customers’ demand is heavily jeopardized. Thus, the strategy of the company is to
choose a production plan that is best in the worst-case. We assume that the agency
inspects only a subset of production sites, due to its limited budget, and for the same
reason selects only a sample of products to inspect at each site. The outcome of a
site inspection is uncertain and depends directly on the products produced. We model
it as a Bernoulli-distributed random variable whose parameter, the probability of a
site failing an inspection, is taken to be the mean of non-compliance probabilities of
products produced at that site. What constitutes non-compliance varies depending on
the type of business the company is in. For example, a product may be non-compliant
to safety regulations and can cause a site to fail inspection if it exceeds a certain reg-
ulated threshold of production safety hazards. Using the mean to model probabilities
of failure is based on the premise that the regulatory agency does not have enough
information a priori about compliance levels, or the company’s internal operations, so
it will take a neutral attitude towards which products to inspect at each site. Informa-
tion about non-compliance levels of each product is provided by the company based
on historical data and is generally uncertain, either because of limited availability of
data or the difficulty in estimating their values.

The main contribution of this paper is to provide a general adversarial framework
to deal with non-compliance risk in production planning to achieve more robustness
in demand satisfaction and revenue generation. We tackle two sources of uncertainty
facing the company. The first is the uncertainty arising from the inspection process, as
the company does not know a priori which sites the agency will choose to inspect. The
second is data uncertainty, which we address via robust optimization techniques. We
develop a robust mixed integer program (MIP) that maximizes the worst-case expected
revenue of a company and in addition addresses the uncertainty of model parameters,
the compliance hazards of the products. With the use of duality theory, we are able
to transform the initial bi-level adversarial problem into a single maximization one
that can be solved with state-of-the-art commercial solvers. The proposed approach
offers the flexibility of matching solutions to the level of conservatism of the decision
maker via two intuitive parameters, the anticipated number of sites to be inspected,
and the number of products at each site that are anticipated to be at their worst-
case non-compliance level. Varying these parameters when solving for the optimal
products allocation provides different risk-return tradeoffs and thus selecting them is
an essential part of the decision makers strategy. We believe that the robust approach
holds much potential in enhancing reliability in production planning and other similar
frameworks in which the probability of random events depend on decision variables
and in which the uncertainty of parameters is prevalent and difficult to handle.

The rest of the paper is organized as follows: in Sect. 2, we provide a literature
review highlighting existing related approaches. In Sect. 3, we formally state the
problem under investigation and provide a bi-level adversarial formulation. In Sect.
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4, we give an exact compact reformulation of the bi-level problem and analyze the
structure of its optimal solution. In Sect. 5, we extend the proposed model to address
parameter uncertainty and provide insights into the optimal robust allocation and
worst-case deviations of the uncertain parameters. We provide a numerical evaluation
of the proposed approach in Sect. 6. We then conclude in Sect. 7.

2 Related literature

A literature review has indicated that there is very little work done in developing mod-
els, tools, and techniques to deal with non-compliance risks, and most efforts are recent.
Muller and Supatgiat (2007) proposed a quantitative risk-based optimization model
that dynamically provides the optimal set of feasible measures for achieving a certain
level of compliance. Elisseeff et al. (2010) use causal networks based on a mixture
of data and expert-driven modeling to quantify the exposure of a company to non-
compliance risk and apply the approach to pharmaceutical manufacturing processes
and IT systems availability. Pratsini and Dean (2005) apply statistical approaches to
measure non-compliance risks from historical data and feed the resulting risk indices
into an optimization model that minimizes the risk exposure and related costs of a
company and maximizes its revenues.

The novelty of the approach proposed in this paper is twofold. First, as mentioned
above, we develop a new decision model that simultaneously addresses two sources of
uncertainty facing companies in regulated industries: one source of uncertainty stems
from the random inspections conducted by authoritative agencies and the other source
is from data (due to its limited availability or the inherent difficulty in estimating
relevant metrics utilizing it). Second, the proposed framework combines the use of
game-theory (in particular, an adversarial setup, which as we show is closely related
to robust optimization), stochastic programming (using utility expectation and a two-
stage formulation based on the game-theoretic setup, which can be cast as a single
stage problem by utilizing the adversarial aspect of the game), and robust optimization
(to deal with data uncertainty). Combining these different methodologies has proven
to be unique and useful in aiding companies optimize their decisions in the face of
noncompliance risks. In Takriti and Ahmed (2004), investigate “robust optimization”
in the context of two-stage planning systems; however, “robust optimization” in their
investigation refers to the model of Mulvey et al. (1995) and not to the methodology
in Bental et al. (2009), which is the one we adopt. In McLay et al. (2012), investigate
the application of robust optimization to a level-k game theory model for adversar-
ial risk analysis, in which level-k game theory is a practical method for modeling
bounded rationality and robust optimization is an alternative way to model the actions
of conservative players facing uncertainties that are possible to bound but difficult to
represent using probability theory.

Game theory (Nisan et al. 2007) and adversarial modeling are considered as an
attractive framework for strategic and stochastic decision making and have been exten-
sively used in a plethora of applications (such as, security Tambe 2011 and resource
allocation Sacks and Harel 2006) mainly because games are a simple representation
of reality and because adversarial setups are useful for risk analysis. Given the nature
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of the application studied in this paper (in particular, the inspection process), we have
found that the use of a game-theoretic setup with an aggressive adversary (worst-case
adversary) is beneficial in terms of enhancing the reliability of a production company
in satisfying demand and in terms of providing guarantees on profits. As we will show
in the numerical experiments, using a game-theoretic adversarial model outperforms
a model that does not consider a game-theoretic setup, +++i.e. it only maximizes the
expected profit without taking into consideration the random process of sites inspec-
tion.

As mentioned in the previous section, input parameters to the proposed adversarial
optimization model are estimated using historical data and are generally uncertain,
either due to limited availability of data or due to estimation errors. To deal with
data and parameter uncertainties, we apply robust optimization techniques (Bental
et al. 2009), which are generally known for their appealing tractability characteristic
compared with stochastic programming or stochastic dynamic programming mod-
els, which are computationally intensive and suffer from the curse of dimensionality.
Sahinidis (2004) provides a short overview and gives a lot of pointers to the existing
theory that has been developed to deal with uncertainties in optimization problems;
in particular, he references a few papers that utilize both stochastic programming and
stochastic dynamic programming in production planning.

Robust optimization, in which one optimizes against worst-case possible realiza-
tions of data, dates back to the early 1970s when Soyster (1973) introduced a linear
optimization model with solutions that are feasible for all data belonging to a convex
set. His model was deemed too conservative and it was not until the 1990s that robust
optimization emerged again when El Ghaoui et al. (1997, 1998), and independently
Ben-Tal and Nemirovski (1999, 2000), derived robust counterparts for a number of
convex optimization problems using ellipsoidal uncertainty sets. In this paper, we use
a budgeted polyhedral uncertainty sets, an approach developed by Bertsimas and Sim
(2004), in which a single intuitive parameter, referred to as the budget of uncertainty,
limits the number of uncertain variables that can jointly reach their worst-case value
and thus reflects different levels of risk-averseness or conservatism of the decision
maker. In the numerical experiments we will show the benefits of addressing data
uncertainty and compare a robust optimization formulation against a stochastic pro-
gramming formulation. We observe that a deterministic model under-performs against
the proposed robust model. We also observe that the robust optimization formulation
outperforms the stochastic programming one in terms of CPU time and obtained solu-
tions. However, in the stochastic programming formulation, we are only able to solve,
in a reasonable amount of time, an instance that considers up to a 100 scenarios of
input parameters.

3 Problem setup

In this section, we describe the problem at hand in details and give a bi-level for-
mulation that captures the adversarial aspect of the problem. The resulting bi-level
formulation has a non-convex LP-formulation; therefore, we provide a convex refor-
mulation in Lemma (1).
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As mentioned above, we study a production planning problem under uncertainty. In
the setup we consider, a production company is perpetually faced with large amounts of
uncertainty and risks stemming from regulations enforced by governmental authorities
to ensure the quality of products and the protection of consumers. Enforcement of
regulations is generally established via regularly conducted inspections of production
sites. Failing inspections due to non-compliance can potentially cause the loss of
revenues, the loss of market share, or create personal or criminal liabilities. More
importantly, it can also jeopardize the reliability of a company to satisfy demand.
Therefore, it is important for companies to measure and manage their exposure to non-
compliance risks. The model we will treat in this work aims at finding a suitable strategy
reflecting a risk-return tradeoff that matches a company’s degree of risk-aversion.

We investigate a game-theoretic setup where the inspection agency is considered
an adversary to the company whose production sites are subject to inspections. The
decision structure of our problem follows the simple adversarial model proposed in
Laumanns et al. (2010). In particular, we also consider a bi-level formulation based
on a staged game-theoretic structure in which production decisions are made by the
company, followed by the adversary’s actions, and then the outcome of those inspec-
tions and their effects on the revenue of inspected sites are reflected. The outcome of
an inspection is modeled as a Bernoulli-distributed random variable whose parameter
is the mean of non-compliance probabilities. In contrast to Laumanns et al. (2010),
which pessimistically assumed that always the highest risk product is inspected, we
here let the inspection take a random sample. This is a better match to industry prac-
tice and also avoids the low sensitivity of the former model with respect to adding
or removing products other than the riskiest one. Based on this new nominal compli-
ance risk model, our goal is to provide theoretical insights and detailed analysis of the
benefits gained when adopting such a game-theoretic bi-level formulation. Since (Lau-
manns et al. 2010) is only an extended abstract, it did not include theoretical analysis.
Furthermore, we provide a framework that handles uncertainty in the estimated non-
compliance probabilities of the products, which was not addressed in Laumanns et al.
(2010) at all.

We start our analysis with the bi-level formulation of our problem. The notation
used for the problem data and decision variables is summarized in Table 1. The main

Table 1 Problem data and decision variables used throughout the paper.

S : number of production sites
P : number of products

K : number of inspected sites where K ≤ S

r p : revenue of product p ∈ P = {1, . . . , P}
gps : gross profit of product p ∈ P when produced at site s ∈ S = {1, . . . , S} as a percentage of its

revenue reflecting the operating costs of site s
h̃ ps : uncertain non-compliance probability of product p ∈ P when produced at site s ∈ S
x ps : binary decision variable that indicates whether product p ∈ P is produced at site s ∈ S (x ps = 1)

or not (x ps = 0)
f ps : auxiliary decision variable to model the site failure probability for each site s ∈ S
ws : binary variable indicating whether site s ∈ S is inspected (ws = 1) or not (ws = 0)
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objective of the company is to maintain its reliability in demand satisfaction that
is jeopardized by the consequences of non-compliance. Each of its products has a
site-specific compliance-level and production costs, but generates the same revenue
regardless where it is produced. Moreover, each product is only allowed to be produced
at a single production site. Given that the inspection agency has limited budget, it will
only inspect K sites, where K ≤ S. As mentioned above, the inspection strategy of the
agency is unknown, but in the worst case it will pick those sites with highest expected
revenues. Thus, the strategy of the company is to allocate products to sites in such a
way that will minimize the probability of failing inspections and maximize its expected
revenue in the worst-case. The following bi-level formulation achieves this goal:

max
x, f

min
w∈W

S∑

s=1

P∑

p=1

(gps x ps − ws r p f ps)

s.t. (1 − x ps) + f ps ≥
P∑

q=1

h̃qs xqs(∑P
l=1 xls

) , ∀ p ∈ P, s ∈ S,

P∑

p=1

x ps ≥ 1, ∀ s ∈ S,

S∑

s=1

x ps ≤ 1, ∀ p ∈ P,

0 ≤ f ps ≤ x ps, ∀ p ∈ P, s ∈ S,

x ps ∈ {0, 1}, ∀ p ∈ P, s ∈ S, (1)

In this model, W =
{
ws ∈ {0, 1}, ∀ s ∈ S | ∑S

s=1 ws ≤ K
}

is the feasible set of

the inner minimization problem defined over the binary decision variables ws that
indicate which of the K ≤ S sites will be inspected. In practice, there are a number
of production-related constraints on the decision variables x ps , but we neglect them
here for ease of notation since they are deterministic and can be added to Problem (1)
above without changing the structural results.

The objective function in (1) is the company’s total profit minus its expected losses
from failing inspections. As mentioned above, the probability of a site s failing
an inspection, denoted f ps , is given by the arithmetic mean of its products’ non-
compliance probabilities and depends on allocation decisions x ps through the con-
straints

(1 − x ps) + f ps ≥
P∑

q=1

h̃qs xqs(∑P
l=1 xls

) , ∀ p ∈ P, s ∈ S. (2)

In other words, the inspection works by picking one product at random, and if this
product fails to meet the required standard (which for a particular product p at site s
happens with probability h ps), then the revenue of all products produced at s is lost. The
variable f ps will, therefore, represent the probability that a randomly chosen product
fails inspection and will be taken as the site failure probability of s. The right-hand side
of these constraints is guaranteed to be always defined via the constraints

∑P
l=1 xls ≥ 1
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for all s ∈ S, which in turn guarantee that all sites are used for production. The
constraints

∑S
l=1 xls ≤ 1 for all p ∈ P are used to satisfy the requirement that each

product is allocated to only one production site. Note that the objective function in (1) is
bi-linear. Also note that the LP-relaxation of the inner minimization problem inws has a
convex feasible set, but not the LP-relaxation of the outer maximization one, due to the
non-convexity of the first set of constraints given in (2). The following lemma provides
a convex reformulation of the LP-relaxation of the outer maximization problem:

Lemma 1 (Convex bi-level formulation) Introducing the auxiliary variables Aps and
Bps for all p ∈ P and s ∈ S, a convex reformulation of the LP-relaxation of (1) is
given as follows:

max
x, f

min
w∈W

S∑

s=1

P∑

p=1

(gps x ps − ws r p f ps)

s.t. (1 − x ps) + f ps ≥
P∑

q=1

h̃qs Aqs, ∀ p ∈ P, s ∈ S,

(1 − x ps) + Aps ≥ Bqs ∀ p, q ∈ P, s ∈ S,

0 ≤ Aps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

Bps ≥ 1, ∀ s ∈ S,

0 ≤ Bps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

x ps ≥ 1, ∀ s ∈ S,

S∑

s=1

x ps ≤ 1, ∀ p ∈ P,

0 ≤ f ps ≤ x ps, ∀ p ∈ P, s ∈ S,

x ps ∈ {0, 1}, ∀ p ∈ P, s ∈ S. (3)

Proof Let us consider the LP-relaxation of problem (1), i.e. all integer variables are
relaxed to be continuous. We first note that for given values of ws for all s ∈ S, the
objective function of problem (1) is linear and minimizing in f ps . Thus, at optimality,
for all products allocated at site s (i.e., ∀ p ∈ P : x ps = 1), the constraints (1 −
x ps) + f ps ≥ ∑P

q=1
h̃qs xqs(∑P

l=1 xls

) will be tight and the corresponding values of f ps will

be equal. We introduce the variables Aqs ≥ 0 ∀ q ∈ P, s ∈ S to replace xqs(∑P
l=1 xls

) in

the right-hand side and add the constraints

0 ≤ Aps ≤ x ps, ∀ p ∈ P, s ∈ S,

(1 − x ps) + Aps ≥ Bs, ∀ p ∈ P, s ∈ S,

Bs ≥ 1(∑P
p=1 x ps

) , ∀ s ∈ S, (4)
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where Bs, s ∈ S, are auxiliary variables utilized in this intermediate step. Again,
note that the second and third set of constraints in (4) above will be tight at optimality
because the objective function in (1) is linear and minimizing in f ps, ∀ p ∈ P, s ∈ S.
We still have the non-convex constraints Bs ≥ 1(∑P

p=1 x ps

) , ∀ s ∈ S. We rewrite them

as
∑P

p=1 x ps Bs ≥ 1, ∀ s ∈ S and introduce the variables Bps ≥ 0, ∀ p ∈ P, s ∈ S,
along with the following constraints, to replace x ps Bs :

0 ≤ Bps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

Bps ≥ 1, ∀ s ∈ S. (5)

Finally, we change the right-hand side of the second set of constraints in (4) above
and add the corresponding constraints

(1 − x ps) + Aps ≥ Bqs ∀ p, q ∈ P, s ∈ S. (6)

With this, we have the linear mixed-integer outer maximization problem in (3). Note
that for fixed values of x ps, ∀ p it is a linear program whose objective is linear and
minimizing in f ps for all p ∈ P, s ∈ S and its optimal solution is one of the extreme
points of the polyhedron defining the feasible set. Therefore, for all p ∈ P with
x ps = 1, the second set of constraints in (5) and the constraints in (6) will be tight at
optimality, thus setting Aps = Bps = 1(∑P

l=1 xls

) for all s ∈ S, p ∈ P where x ps = 1.

��
Remark Another way to convexify problem the LP-relaxation of (1) is to instead
use the triple indexed variable Alqs ≥ 0, ∀ l, q, ∈ P, s, ∈ S to replace

xqs(∑P
l=1 xls

) in the right-hand side of the non-convex constraints (1 − x ps) + f ps ≥
∑P

q=1
h̃qs xqs(∑P

l=1 xls

) , ∀ p ∈ P, s ∈ S, and add the following set of constraints:

(1 − x ps) + f ps ≥
P∑

q=1

h̃qs Alqs, ∀ l, p ∈ P, s ∈ S

(1 − xqs) +
P∑

l=1

Alqs ≥ 1, ∀ q ∈ P, s ∈ S,

0 ≤ Alqs ≤ xqs, ∀ l, q ∈ P, s ∈ S,

Alqs ≤ xls, ∀ l, q ∈ P, s ∈ S.

We have found that the reformulation proposed in Lemma 1 has a better performance
in terms of computational time, which might be due to it having stronger LP relaxations.
Therefore, we focus on it and use it thereafter.
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4 Exact tractable formulation

One way to solve the bi-level problem in (3) is to use a naive approach, i.e., to iterate
until convergence between solving the inner minimization problem for fixed values
of x ps and solving the maximization problem for fixed values of ws . Fixed values are
obtained from the solution of the maximization and the minimization, respectively, in
the previous iteration step. There are several drawbacks with this approach, the main of
which is the lack of tractability. Thus, it can be computationally demanding, especially
if a good starting feasible solution, of either the maximization or the minimization
problems, was not available.

This section will detail how we derive a compact tractable formulation by trans-
forming (3) into a single maximization problem. We build upon fundamental result
linking total unimodularity and integer linear programming to show that the LP relax-
ation of the adversary’s decision problem in w ∈ W has a binary solution and then
use strong duality theory to obtain its dual.

Theorem 2 (Compact Tractable Formulation)

(i) For fixed values of f ps , the solution of the LP-relaxation of the minimization in
ws, s ∈ S is the optimal solution of the original binary minimization problem.

(ii) Utilizing (i), an exact tractable formulation of (3) is given by

max
x, f,τ,θ

P∑

p=1

S∑

s=1

(
gps x ps − τs

) − K θ

s.t.
P∑

p=1

rp f ps − θ − τs ≤ 0, ∀ s ∈ S,

(1 − x ps) + f ps ≥
P∑

q=1

h̃qs Aqs, ∀ p ∈ P, s ∈ S,

(1 − x ps) + Aps ≥ Bqs ∀ p, q ∈ P, s ∈ S,

0 ≤ Aps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

Bps ≥ 1, ∀ s ∈ S,

0 ≤ Bps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

x ps ≥ 1, ∀ s ∈ S,

S∑

s=1

x ps ≤ 1, ∀ p ∈ P,

0 ≤ f ps ≤ x ps, ∀ p ∈ P, s ∈ S,

τs ≥ 0, ∀ s ∈ S, θ ≥ 0,

x ps ∈ {0, 1}, ∀ p ∈ P, s ∈ S. (7)

Proof (i) The constraints’ coefficient matrix, denoted C , of the LP-relaxation of the
minimization problem in (3) is totally unimodular. If we partition the set consisting
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of the rows in C into two disjoint sets, C1 and C2, where C1 is a unity vector (the
row of coefficients of the constraint

∑S
s=1 ws ≤ K ) and C2 is an identity matrix

(its rows are the coefficients of the set of constraints: ws ≤ 1, ∀ s ∈ S), it can be
seen that C satisfies the following sufficient conditions for total-unimodularity : (1)
every column in C contains at most two non-zero entries (in fact, exactly two), (2)
every entry in C is either 0, or 1 and (3) the two non-zero entries of each column
of C have the same sign; the row of one is in C1 and the other is in C2. In addi-
tion to C being totally unimodular, the right-hand side vector of the LP-relaxation
constraints is integral. Thus, based on a fundamental result that links total unimod-
ularity and integer linear programming (Schrijver 1986), each vertex of the polyhe-
dron representing the feasible region of the LP-relaxation is an integer vector. This
means that the LP-relaxation of the minimization problem in (3) has a binary optimal
solution.

(ii) Utilizing the fact in part (i), we are able to invoke strong duality on the LP-
relaxation to reformulate the minimization problem in (3) into a maximization one.
We introduce the Lagrangian variables τs, ρs ∀ s ∈ S and θ and obtain the Lagrangian
function

L (w, τ, ρ, θ) =−
S∑

s=1

P∑

p=1

ws r p f ps +
S∑

s=1

(τs(ws −1) − ρs ws)+θ

(
S∑

s=1

ws −K

)
.

From the first-order conditions of the Lagrangian in ws , we have

P∑

p=1

rp f ps − θ − τs + ρs = 0, ∀ s ∈ S, (8)

and accordingly, the minimization problem in (3) can be replaced by

max
θ,τ

−
S∑

s=1

τs − K θ

s.t.
P∑

p=1

rp f ps − θ − τs ≤ 0, ∀ s ∈ S,

τs ≥ 0, ∀ s ∈ S, θ ≥ 0. (9)

��
Theorem 3 (Structure of the optimal solution)

(i) Let F∗
s , τ ∗

s and θ∗ denote the optimal value of
∑P

p=1 rp f ps, τs and θ , respectively,
in (7) above. If the F∗

s , s ∈ S were ranked in decreasing order of their value, i.e.,
F∗

1 ≥ · · · ≥ F∗
S , then for θ∗ ≥ 0 we have the following bounds:

θ∗ ≤ F∗
s , ∀ s ∈ {1, . . . , K },

θ∗ ≥ F∗
s , ∀ s ∈ {K + 1, . . . , S}, (10)
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where K is the number of inspected sites. Furthermore, θ∗ can take any value in
its range F∗

K ≥ θ∗ ≥ F∗
K+1 rendering an equivalent optimal objective in (7) given

by

S∑

s=1

gps x∗
ps −

∑

s|F∗
s >F∗

K+1

F∗
s (11)

where x∗
ps is the optimal value of x ps .

(ii) At optimality, we have θ∗ = F∗
K and τ ∗

K = 0. Additionally, if all F∗
s , s ∈ S, have

unique values, i.e., F∗
1 > · · · > F∗

S , or sufficiently, F∗
K has a unique value, then

there are K − 1 non-zero τ ∗
s values.

Proof (i) To show that θ∗ has the bounds in (10), we utilize the following comple-
mentary slackness conditions:

θ

(
S∑

s=1

ws − K

)
= 0, (12)

τs (ws − 1) = 0, ∀ s ∈ S, (13)

ρs ws = 0, ∀ s ∈ S. (14)

We also utilize Theorem 2, in which we have shown that, at optimality, ws will be
integer for all s ∈ S, either 0 or 1. Let w∗

s and ρ∗
s denote the optimal values of ws and

ρs for all s ∈ S. From conditions (13) and (14), we have:

– if w∗
s = 0 then τ ∗

s = 0 and ρ∗
s ≥ 0,

– if w∗
s = 1 then ρ∗

s = 0 and τ ∗
s ≥ 0.

By applying the first-order conditions (8), we have θ∗ = F∗
s + ρ∗

s and ρ∗
s ≥ 0 for all

s ∈ S where w∗
s = 0, from which we obtain theta∗ ≥ F∗

s for all s where w∗
s = 0.

Similarly, we have θ∗ = F∗
s − τ ∗

s and τ ∗
s ≥ 0 for all s where w∗

s = 1 and thus obtain
θ∗ ≤ F∗

s for all s where w∗
s = 1. If F∗

s have unique values for all s ∈ S, only one ρ∗
s

for all s with w∗
s = 0 or one τ ∗

s for all s with w∗
s = 1, can be equal to zero, because θ∗

can only take a single unique value. Now, if θ∗ > 0, then the condition in (12) ensures
that

∑S
s=1 w∗

s = K , and since w∗
s is binary for all s ∈ S, it immediately follows that

K of the w∗
s values are equal to 1 and S − K equal to 0. Thus, by assuming that the

F∗
s , s ∈ S are ranked in decreasing order of their value, we directly obtain the bounds

in (10). Notice that θ∗ can be equal to any value in the range F∗
K ≥ θ∗ ≥ F∗

K+1,
leading to an equivalent optimal objective value in (7):

S∑

s=1

gps x∗
ps −

∑

s|F∗
s >F∗

K+1

(
F∗

s − θ∗) − K θ∗
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=
S∑

s=1

gps x∗
ps −

∑

s|F∗
s >F∗

K+1

F∗
s + K θ∗ − K θ∗

=
S∑

s=1

gps x∗
ps −

∑

s|F∗
s >F∗

K+1

F∗
s

where x∗
ps denotes the optimal value of x ps , and τ ∗

s = F∗
s − θ∗ ∀ s | F∗

s > F∗
K+1 (or

equivalently w∗
s = 1) , and τ ∗

s = 0, ∀ s |F∗
s ≤ F∗

K+1 (or equivalently w∗
s = 0) .

(ii) We established in (iii) above that θ∗ can take any value in the range F∗
K ≥ θ∗ ≥

F∗
K+1 leading to the same optimal objective. However, since the objective is mini-

mizing in τs , and we have τ ∗
s = max{F∗

s − θ∗, 0}, ∀ s ∈ S, the optimization model
in (7) will set θ∗ to its upper bound, F∗

K . It immediately follows that τ ∗
K = 0. Now,

if F∗
s , ∀ s ∈ S, have unique values, or sufficiently, F∗

K is unique, then only one
τ ∗

s , ∀ s | w∗
s = 1, is equal to zero, τ ∗

K , and the rest (K − 1) will be non-zero (recall
that τ ∗

s ≥ 0, ∀ s | w∗
s = 1, and τ ∗

s = 0, ∀ s | w∗
s = 0, and that K of w∗

s , ∀ s ∈ S are
equal to 1 and S − K equal to 0). ��

Remark Theorem 3 shows that, at optimality, only the K highest F∗
s appear in the

objective function [see (11)], where F∗
s is the optimal value of

∑P
p=1 rp f ps . Let

SK ⊆ S denote the set of sites s ∈ S associated with these K highest F∗
s . Once

this set is identified during the optimization process by the solver, the variables f ps

associated with the rest of the sites (i.e. f ps ∀ s ∈ S\SK ) are not minimized any
further but in effect are implicitly subject to the additional constraints:

P∑

p=1

rp f ps ≤ F∗
K , ∀s ∈ S\SK (15)

as a result, the focus of the solution algorithm shifts from minimizing f ps ∀ s ∈ S\SK

to just satisfying the implicit constraints in (15). As K increases, obtained solutions
become more robust against the actions of the adversarial agency; however, they also
become more conservative and computationally demanding. Thus, the company has to
decide on a reasonable value for K as part of its strategic plan in this game-theoretical
setting.

5 Robust production planning model

In this section, we utilize robust optimization techniques, to deal with the uncer-
tainty of parameters in model (7). We start by describing the uncertainty model based
on the approach proposed by Bertsimas and Sim (2004). We then provide a robust
mixed-integer linear program (MILP) for our production planning model under non-
compliance risks, our main result.
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5.1 Uncertainty model

We now start describing our uncertainty model to be utilized for the treatment of data
uncertainty in our production planning model (7). We focus on uncertainties in non-
compliance probabilities h̃ ps , which ultimately affect the probabilities of sites failing
inspections fqs through the constraints

(1 − xqs) + fqs ≥
P∑

p=1

h̃ ps Aps, ∀ q ∈ P, s ∈ S. (16)

If non-compliance probabilities take different values than the nominal ones estimated
by the company and used in solving (7), obtained solutions may become sub-optimal,
particularly in the lower tail of the revenue distribution. Hence, mistakes in the esti-
mation of the failure hazards would incur a higher risk of losing revenue.

In general, the estimation of failure probabilities is a central task in reliability
analysis of engineering systems (Billinton and Allan 1992). Billinton and Allan (1996)
point out that reasonable and acceptable data are not always easy to obtain and often
subject to a considerable degree of uncertainty. We, therefore, attempt to account for
this kind of uncertainty explicitly in our decision model by treating the estimated failure
or non-compliance probabilities as intervals instead of point estimates and then adopt
a robust optimization approach. We model non-compliance probabilities as uncertain
parameters belonging to bounded symmetrical intervals, h̃ ps ∈ [h̄ ps − ĥ ps, h̄ ps +
ĥ ps], ∀ p ∈ P, s ∈ S, where h̄ ps is the nominal value given by the company with
an estimation error of ±ĥ ps . Let z̃ ps be a random variable in [−1, 1] that obeys an
unknown symmetric distribution; the uncertain non-compliance probability h̃ ps can
then be represented as

h̃ ps = h̄ ps + ĥ ps z̃ ps, ∀ p ∈ P, s ∈ S. (17)

Robust optimization aims at providing solutions that are “reasonably” immune
against worst-case possible realizations of data. This aligns with the company’s objec-
tive to be protected against downside risk without being overly conservative, because
the latter can lead to missing gain opportunities or even incurring additional costs.
From a modeling perspective, to achieve a trade-off between risk and return, we intro-
duce a parameter �s for each s ∈ S, which is referred to in the literature as the budget
of uncertainty and limits the number of uncertain parameters allowed to reach their
worst-case value through the additional constraints

P∑

p=1

∣∣z̃ ps
∣∣ ≤ �s, ∀ s ∈ S. (18)

Notice that we allow a budget of uncertainty �s for each production site s ∈ S, as
the uncertainty present in products’ non-compliance probabilities might be different
at each site.
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We now replace the right-hand sides of the constraints in (16) for each q ∈ P and
s ∈ S with the maximization problem

max
z̃

P∑

p=1

(
h̄ ps + ĥ ps z̃ ps

)
Aps

s.t.
P∑

p=1

∣∣z̃ ps
∣∣ ≤ �s, (19)

∣∣z̃ ps
∣∣ ≤ 1, ∀ p ∈ P.

If �s = 0, then all uncertain parameters h̃ ps in (17) reduce to their respective point
estimate at their nominal value h̄ ps . On the other hand, if �s = P , then z̃ ps can
take any value within their bounds [−1, 1], and all values h̃ ps can deviate from their
nominal value. When �s is selected to be between 0 and P , only some of the uncertain
parameters are allowed to deviate from their nominal values. This gives the company
full control over the degree of conservatism of each of the constraints in (16) by
adjusting the value of �s to a desired level of robustness against constraint violation.

In the following theorem, we make an observation with regards to the worst-case
uncertainty that enables us to transform Problem (19) into a convex linear maximiza-
tion problem over a polyhedral bounded set. Moreover, for a given site s ∈ S, we
describe the effect of the choice of �s on the size of the uncertainty set in relation to
the number of products allocated at that site (

∑P
p=1 x ps) .

Theorem 4 (Worst-Case Uncertainties and The Effect of �s)

(i) In the worst case, non-compliance probabilities are never less than their nominal
values, i.e., at optimality, z̃ ps is non-negative for all p ∈ P and s ∈ S. Fur-
thermore, for all s ∈ S, (19) is equivalent to the following linear maximization
problem in z ps:

max
z

P∑

p=1

(
h̄ ps + ĥ ps z ps

)
Aps

s.t.
P∑

p=1

z ps ≤ �s, (20)

0 ≤ z ps ≤ 1, ∀ p ∈ P.

(ii) Let Js = ∑P
p=1 x ps . The optimal solution of the maximization problem (20) is

the same for all values of �s ≥ Js , and the constraint
∑P

p=1 z ps ≤ �s will has
an effect on the optimal value only if �s < Js .

(iii) Let Hs = {ĥ ps | p ∈ P and x ps = 1}. If the elements in Hs were ranked in
decreasing order of their value, i.e., ĥ1s ≥ · · · ≥ ĥ Js s , then, for �s ≤ Js , the
optimization problem (20) will set the uncertain parameters associated with the
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�s� highest ĥ.s ∈ Hs to 1, and the one associated with (
�s� + 1)-th largest
ĥ.s ∈ Hs to (�s − 
�s�), i.e., z js = 1, ∀ j |ĥ js ∈ Hs, j = 1..
�s�, and zqs =
(�s − 
�s�) | ĥqs ∈ Hs, q = 
�s� + 1.

Proof (i) For a given site s ∈ S, the coefficients of z̃ ps, ∀ p ∈ P, in the objective
of (19) are non-negative, i.e., both ĥ ps , Aps ≥ 0, ∀ p ∈ P . For fixed values of
Aps ≥ 0, ∀ p ∈ P , the objective function is linear and maximized for the largest
values of its arguments, z̃ ps, ∀ p ∈ P . Therefore, we are able to introduce the
variables z ps ∈ [0, 1] to replace the absolute value of z̃ ps in (19). This is intuitive,
because in the worst-case, we expect probabilities of non-compliance to be higher
than their nominal values, pushing the probability of a site failing an inspection
to take on a higher value as well.

(ii) From Lemma 1, by construction, we have Aps = xqs(∑P
l=1 xls

) , ∀ p ∈ P, s ∈ S.

Thus, if x ps = 0 then Aps = 0 as well. As mentioned in (i) above, for fixed values
of x ps, ∀ p ∈ P , and accordingly Aps, ∀ p ∈ P , the maximization problem in
(20) is a linear program. Furthermore, the sum in the objective function will have
exactly Js non-zero elements (the number of non-zero Aps). Therefore, only Js of
the variables z ps (those that are associated with Aps > 0) can have an effect on the
optimal solution of (20). Moreover, when �s ≥ Js , the constraint

∑P
p=1 z ps ≤ �s

becomes redundant and is not necessarily tight at optimality.
(iii) It immediately follows from (ii) above and the fact that (20) is a linear optimization

problem in z ps . In part (ii), we showed that �s should to be strictly less than Js

to have an effect on the optimal objective; thus we focus on the range �s ≤
Js . Now, since the objective function in (20) is linear and maximized over a
polyhedron, the optimal solution will be achieved at one of the corner points
of the feasible set. In particular, if �s is integer, then the optimal corner point
satisfies that z ps ∈ {0, 1}, ∀ p ∈ P , because the constraints’ coefficient matrix
is totally unimodular and the right-hand side vector is integral (i.e. we have an
integral polyhedron) (Schrijver 1986). However, if �s is not integer, then the
optimal corner point of the feasible set satisfies that 
�s� of z ps are equal to 1,
only one z ps is fractional ∈ (0, 1), and the rest of z ps is 0. If we define a set
Hs = {ĥ ps | p ∈ P and x ps = 1} and assume that its elements were ranked in
decreasing order of their value, then we immediately obtain the statement in (iii).

��
Utilizing Theorem 4, Problem (7) becomes:

max
x, f,τ,θ

P∑

p=1

S∑

s=1

(
gps x ps − τs

) − K θ

s.t.
P∑

p=1

rp f ps − θ − τs ≤ 0, ∀ s ∈ S,

(1 − x ps) + f ps ≥ max
z·s∈Zs

P∑

q=1

(
h̄qs + ĥqs zqs

)
Aqs, ∀ p ∈ P, s ∈ S,
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(1 − x ps) + Aps ≥ Bqs ∀ p, q ∈ P, s ∈ S,

0 ≤ Aps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

Bps ≥ 1, ∀ s ∈ S,

0 ≤ Bps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

x ps ≥ 1, ∀ s ∈ S,

S∑

s=1

x ps ≤ 1, ∀ p ∈ P,

0 ≤ f ps ≤ x ps, ∀ p ∈ P, s ∈ S,

τs ≥ 0, ∀ s ∈ S, θ ≥ 0,

x ps ∈ {0, 1}, ∀ p ∈ P, s ∈ S. (21)

In this model, z·s means the vector (z1s, z2s, . . . , zPs)
T and Zs := {z·s ∈ [0, 1]P |∑P

p=1 z ps ≤ �s}. We note that (21) is a mixed-integer non-linear program due to the
nonlinearity of its feasible set. In the following section we invoke strong duality on
Problem (20) to obtain a linear reformulation.

5.2 Mixed integer linear formulation for production planning under non-compliance
risks

Hereunder, we focus on deriving a linear formulation of the model in (21). We then
give some insights into the effects of the choice of �s on the structure of the optimal
solution.

Theorem 5 (Robust Mixed Integer Linear Program) An equivalent linear formulation
of Problem (21) is given by

max
x, f,τ,θ

P∑

p=1

S∑

s=1

(
gps x ps − τs

) − K θ

s.t.
P∑

p=1

rp f ps − θ − τs ≤ 0, ∀ s ∈ S,

(1 − x ps) + f ps ≥
P∑

q=1

h̄qs Aqs + �s αs +
P∑

q=1

ξqs, ∀ p ∈ P, s ∈ S,

αs + ξps − ĥ ps Aps ≥ 0, ∀ p ∈ P, s ∈ S,

(1 − x ps) + Aps ≥ Bqs ∀ p, q ∈ P, s ∈ S,

0 ≤ Aps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

Bps ≥ 1, ∀ s ∈ S,
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0 ≤ Bps ≤ x ps, ∀ p ∈ P, s ∈ S,

P∑

p=1

x ps ≥ 1, ∀ s ∈ S,

S∑

s=1

x ps ≤ 1, ∀ p ∈ P,

0 ≤ f ps ≤ x ps, ∀ p ∈ P, s ∈ S,

τs ≥ 0, ∀ s ∈ S, θ ≥ 0,

ξps ≥ 0, ∀ p ∈ P, s ∈ S, αs ≥ 0, ∀ s ∈ S,

x ps ∈ {0, 1}, ∀ p ∈ P, s ∈ S. (22)

Proof For fixed values of Aps ≥ 0, ∀ p ∈ P , Problem (20) is a linear maximization
problem ∀ s ∈ S, and we thus utilize strong duality to obtain its dual. The Lagrangian
function, ∀ s ∈ S, is given by

Ls (z, α, ξ, π) =
P∑

p=1

(
h̄ ps + ĥ ps z ps

)
Aps

+αs

⎛

⎝�s −
P∑

p=1

z ps

⎞

⎠+
P∑

p=1

ξps
(
1−z ps

)+
P∑

p=1

πps z ps . (23)

We set the gradient of the Lagrangian with respect to z ps to zero and accordingly
obtain the following formulation, which is equivalent to (20):

min
α,ξ

P∑

p=1

h̄ ps Aps + �s αs +
P∑

p=1

ξps

s.t.αs + ξps − ĥ ps Aps ≥ 0, ∀ p ∈ P,

αs ≥ 0, ξps ≥ 0, ∀ p ∈ P. (24)

Substituting to the optimization model in (21), we obtain the equivalent (22). ��

Remark Note that Problems (9) and (24) are structurally identical and that the para-
meters K and � play the same role, known in the literature as budget-of-uncertainty.
This shows that the proposed game-theoretic formulation is a robust one and that the
feasible region of the adversary’s decisions, W , is some sort of an uncertainty set. As
both K and � increase, the size of the respective uncertainty sets increase as well, and
through these two parameters the decision maker can adjust his level of conservatism
(risk aversion), if the decision maker is more conservative, he sets K and � to a larger
value, and vice versa.

The following theorem analyzes the effect of the choice of �s on the optimal solution
of Problem (22).

123



Enhancing reliability in production planning under non-compliance risks 853

Theorem 6 (Effect of �s on the Structure of the Optimal Solution)

(i) Let α∗
s , ξ∗

ps , and A∗
ps denote the optimal value of αs, ξps , and Aps , respec-

tively. If �s = 0, ∀ s ∈ S, then Problem (22) reduces to the nominal prob-
lem without uncertainty. In particular, ξ∗

ps = 0, ∀ p ∈ P, s ∈ S, and

α∗
s ≥ max

p
{ĥ ps A∗

ps}, ∀ s ∈ S.

(ii) Let J ∗
s = ∑P

p=1 x∗
ps , where x∗

ps is the optimal value of x ps . If ĥ ps A∗
ps, ∀ p ∈ P

were ranked in decreasing order of their value, i.e., ĥ1s A∗
1s ≥ · ≥ ĥ Ps A∗

Ps , then
for �s ≤ J ∗

s , we have the following bounds on α∗
s :

α∗
s ≤ ĥ ps A∗

ps, ∀ p ∈ {1, . . . , 
�s�},
α∗

s ≥ ĥ ps A∗
ps, ∀ p ∈ {(
�s� + 1) , . . . , P}. (25)

At optimality, if �s is integer, then α∗
s = ĥ
�s�s A∗
�s�s, ∀ s ∈ S, and accordingly,

ξ∗
ps =

(
ĥ ps A∗

ps − α∗
s

)
> 0, ∀ p ∈ {1, . . . , (
�s� − 1)}, and ξ∗

ps = 0, ∀ p ∈
{
�s�, . . . , P}. If �s is not integer, then α∗

s = ĥ(
�s�+1) s A∗
(
�s�+1) s, ∀ s ∈ S,

ξ∗
ps =

(
ĥ ps A∗

ps − α∗
s

)
> 0, ∀ p ∈ {1, . . . , 
�s�}, and ξ∗

ps = 0, ∀ p ∈
{
�s�, . . . , P}.

(iii) If �s > J ∗
s then α∗

s = 0 and ξ∗
ps = ĥ ps A∗

ps .

Proof (i) We utilize the following complementary slackness conditions, obtained
from invoking strong duality on Problem (20):

αs

⎛

⎝�s −
P∑

p=1

z ps

⎞

⎠ = 0, ∀ s ∈ S, (26)

ξps
(
1 − z ps

) = 0, ∀ p ∈ P, s ∈ S, (27)

πps z ps = 0, ∀ p ∈ P, s ∈ S, (28)

If �s = 0, ∀ s ∈ S, then , z ps = 0, ∀ p ∈ P, s ∈ S. Accordingly, from (27),
we have ξ∗

ps = 0, ∀ p ∈ P, s ∈ S. Thus, at optimality, the objective in (24)

reduces to
∑P

p=1 h̄ ps A∗
ps and α∗

s ≥ max
p

{ĥ ps A∗
ps}, ∀ s ∈ S.

(ii) From the first-order conditions of the Lagrangian (23), along with (27) and (28)
above, we obtain the bounds α∗

s ≤ ĥ ps A∗
ps, ∀ p ∈ P | z ps = 1 and α∗

s ≥
ĥ ps A∗

ps, ∀ p ∈ P | z ps < 1. Moreover, ξ∗
ps = ĥ ps A∗

ps −α∗
s , ∀ p ∈ P | z ps = 1

and ξ∗
ps = 0, ∀ p ∈ P | z ps < 1. In Theorem 4, we showed that if �s ≤ J ∗

s , then

�s� of the variables z ps, ∀ p ∈ P is equal to 1 at optimality. Thus, if we rank
ĥ ps A∗

ps, ∀ p ∈ P in decreasing order of their value, we immediately yield the
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bounds in (25). Note that, if �s is integer, then α∗
s can take any value in its range

rendering an equivalent optimal objective:

P∑

p=1

h̄ ps A∗
ps + (�s − 
�s�) α∗

s +
∑

p∈{1,...,
�s�}
ĥ ps A∗

ps (29)

however, when �s is integer, α∗
s = ĥ�s s A∗

�s s, ∀ s ∈ S, because Problem (24),
∀ s ∈ S, is also minimized with respect to ξps , which is decreasing in αs . If
�s is not integer, then α∗

s is at its lower bound so that (29) is minimized, i.e.,
α∗

s = ĥ(
�s�+1) s A∗
(
�s�+1) s, ∀ s ∈ S . We obtain ξ∗

ps accordingly.

(iii) The objective in (24) is minimizing in ξps , thus at optimality, ξ∗
ps =

max{ĥ ps A∗
ps − α∗

s , 0}. Now, if the constraint
∑P

p=1 z ps ≤ �s in Problem
(20) is not tight at optimality, then we are done, because (26) will ensure that
α∗

s = 0, and accordingly, ξ∗
ps = ĥ ps A∗

ps . Now, assume that the constraint is
tight at optimality, in which case α∗

s ≥ 0. Again, if α∗
s = 0, then we are done.

However, if α∗
s is strictly greater than 0, then from the first-order conditions,

πps > 0, ∀ p | A∗
ps = 0, because ξps ≥ 0. From (28), if πps > 0, ∀ p | A∗

ps = 0,
then z ps = 0, ∀ p | A∗

ps = 0. As was shown earlier in the proof of Theorem 4,
we have P − J ∗

s of the variables A∗
ps, ∀ p ∈ P equal to 0, and accordingly, only

J ∗
s of z ps, ∀ p ∈ P can be non-zero at optimality. If �s > J ∗

s , then we have a
contradiction, because the constraint cannot be tight as assumed, even if all of
z ps, ∀ p that can be non-zero are at their upper bound. It immediately follows
that α∗

s = 0, if �s > J ∗
s . ��

Remark As was mentioned in the remark under Theorem 3, after the set SK is
identified, the focus of the solution algorithm shifts from minimizing the variables
f ps ∀ s ∈ S\SK to satisfying the implicit constraints in (15) (i.e. the focus shifts to
maintaining feasibility). Note that this may result in suboptimal solutions to the robust
problem in (24) and consequently may create a duality gap between it and the original
problem (20). However, it will not affect the optimal solution of the overall problem in
(22). In effect, this is creating a link between the choice of K and the robust problem
(24) (some sort of a switch); as K increases, the computational complexity of the
overall model increases, because the robust problems associated with sites s ∈ SK

must be solved to optimality, rather than just maintaining feasibility.

In the Sect. 6, we provide numerical experiments that show the superior performance
of the proposed robust approach to the one that does not take into account parameter
uncertainty, the nominal model in (7).

5.3 A stochastic programming formulation

As an alternative to the robust optimization model derived and analyzed above, we
now give an alternative stochastic programming model to address the uncertainty of
the product hazards. We consider a standard two-stage SP formulation, in which the
second stage problem approximates the expected profit by the average over a finite
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number of 	 scenarios for the uncertain h̃sp values, for a given production plan x and
the worst-case inspection set.

max
1

|	|
|	|∑

ω=1

P∑

p=1

S∑

s=1

(
gps x ps − τ (ω)

s

)
− K θ(ω)

s.t.
P∑

p=1

rp f (ω)
ps − θ(ω) − τ (ω)

s ≤ 0, ∀ s ∈ S ∀ω ∈ 	

(1 − x ps) + f (ω)
ps ≥

P∑

q=1

h(ω)
qs A(ω)

qs ∀ p ∈ P, s ∈ S, ∀ω ∈ 	

(1 − x ps) + A(ω)
ps ≥ B(ω)

qs ∀ p, q ∈ P, s ∈ S,∀ω ∈ 	

0 ≤ A(ω)
ps ≤ x ps ∀ p ∈ P, s ∈ S, ∀ω ∈ 	

P∑

p=1

B(ω)
ps ≥ 1 ∀ s ∈ S,∀ω ∈ 	

0 ≤ B(ω)
ps ≤ x ps ∀ p ∈ P, s ∈ S, ∀ω ∈ 	

P∑

p=1

x ps ≥ 1 ∀ s ∈ S
∑S

s=1 x ps ≤ 1 ∀ p ∈ P
0 ≤ f (ω)

ps ≤ x ps ∀ p ∈ P, s ∈ S, ∀ω ∈ 	

τ(ω)
s ≥ 0 ∀ s ∈ S

θ(ω) ≥ 0 ∀ω ∈ 	

x ps ∈ {0, 1} ∀ p ∈ P, s ∈ S,

(30)

The second stage, scenario-dependent decision variables in the model are x , f (ω),
A(ω), B(ω), τ (ω), ρ(ω), and θ(ω). Thus, as typical for a SP formulation, the model
size (number of decision variables and constraints) increases linearly with |	| and
thus will be practically solvalbe only for relatively small sample sizes. Facing a high
dimensionality of the uncertainty set (we have P · S variables h̃sp), it is not clear
whether a small number of scenarios will give sufficient information for the model to
generate a production plan that performs well across the entire uncertainty range. We
will investigate this question in our numerical experiments as well.

6 Numerical experiments

The purpose of this section was to analyze the performance of the proposed model
and to show its effectiveness in enhancing the reliability of production decisions. We
measure performance in terms of both percentiles and the cumulative distribution
function of the expected profit distribution (we use profits as an indicator of demand
satisfaction).

The experimental setting is based on a real analysis for the regulatory compliance
risk of a pharmaceutical manufacturing company. The data used were synthetically
generated based on the relative values of the real case. We consider a company that
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Table 2 Data used for our
numerical results: r is a vector
of products’ total revenues and
rc is a matrix with each element
representing the portion of a
product’s total revenue realized
as profit when produced at a
given site; thus when
multiplying this fraction by a
product’s total revenue, we
obtain gross profit gps
(gps = rcps ∗ r p)

This is a simple way to reflect
sites’ operational costs

r p, ∀p rcps ,∀p, s

p s: 1 2 3 4

1 71.1589 0.9466 0.9348 0.6666 0.8319

2 185.3181 0.8593 0.6188 0.9348 0.5957

3 47.1845 0.6984 0.5621 0.9062 0.5392

4 111.9709 0.9216 0.9891 0.8417 0.8904

5 40.2281 0.6718 0.9610 0.8070 0.6782

6 88.1081 0.5351 0.8517 0.5859 0.9955

7 244.1092 0.7516 0.7662 0.8273 0.7935

8 272.3016 0.5677 0.6455 0.9102 0.8603

9 117.1661 0.6562 0.9340 0.8986 0.7882

10 80.3403 0.5116 0.6271 0.6810 0.6081

11 30.5651 0.6126 0.6232 0.8471 0.6981

12 249.7585 0.9066 0.6707 0.7151 0.8760

13 149.1870 0.8433 0.5393 0.7815 0.7052

14 155.3539 0.7522 0.5038 0.9069 0.5193

15 83.6740 0.6659 0.9358 0.5539 0.9667

has to allocate 15 products to 4 production sites; thus P = 15 and S = 4. Tables 2
and 3 display the data.

In our numerical study, we investigate

1. the effectiveness of using an adversarial game-theoretic setup for modeling the ran-
dom process of sites’ inspection. We compare the proposed adversarial model with
a model, hereafter referred to as Model-1, that does not consider a game-theoretic
setup and only maximizes the expected profit without taking into consideration
uncertainties stemming from the inspection process. This model is obtained by
setting the parameter K in (22) to zero. Note that the purpose here is to show
the need for addressing uncertainties arising from the random inspection process
rather than comparing the use of game-theory against other tools to treat these
uncertainties.

2. the effectiveness of using robust optimization techniques to deal with data uncer-
tainty.

– We first compare the proposed robust model against a deterministic model,
hereafter referred to as Model-2, which considers a game-theoretic setup,
but does not address parameters uncertainty; in particular, it does not take
into account estimation errors of products’ non-compliance probabilities. This
model is obtained by setting the parameter � in (22) to zero.

– We then compare the proposed robust model against one, hereafter referred
to as Model-3, that addresses data uncertainty via stochastic programming
instead of robust optimization. Model-3 is the stochastic program detailed in
(30).

3. the effect of varying the number of anticipated inspections K and the sizes of
uncertainty sets �s, ∀ s ∈ S on optimal product allocations.
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Table 3 Data used for numerical experiments: h̄ is a matrix with each element representing the nominal
value of the probability of a product failing an inspection at a given site and ĥ is the positive deviation
from h̄

h̄ ps , ∀p, s ĥ ps ,∀p, s

p: s:1 2 3 4 s: 1 2 3 4

1 0.1575 0.2364 0.083799 0.048251 0.18445 0.043826 0.2901 0.003536

2 0.14636 0.09084 0.24859 0.20501 0.1583 0.26644 0.21219 0.13393

3 0.26761 0.18024 0.065602 0.23806 0.038946 0.23585 0.13381 0.019157

4 0.15208 0.089311 0.046554 0.27362 0.13368 0.28238 0.0031133 0.14143

5 0.10373 0.26131 0.039178 0.27002 0.2043 0.010937 0.060616 0.17539

6 0.029109 0.25384 0.21929 0.072078 0.0066715 0.089696 0.10579 0.13933

7 0.10499 0.097106 0.21915 0.085648 0.024605 0.29295 0.25974 0.092036

8 0.11666 0.11771 0.090524 0.027321 0.2171 0.065933 0.17273 0.13886

9 0.1178 0.16677 0.067441 0.21779 0.094243 0.056633 0.15961 0.24915

10 0.035387 0.26233 0.28474 0.22173 0.24077 0.034896 0.057889 0.16365

11 0.021891 0.13556 0.21956 0.18363 0.19045 0.024871 0.24825 0.17467

12 0.27111 0.14168 0.22908 0.025856 0.26965 0.28011 0.14847 0.015754

13 0.10305 0.18296 0.10624 0.2836 0.21351 0.090005 0.21548 0.19741

14 0.22135 0.10724 0.15642 0.20973 0.22032 0.092228 0.016854 0.17457

15 0.038456 0.13778 0.28978 0.15462 0.13721 0.1422 0.068448 0.25797

Note that in our numerical experiments, we consider asymmetric bounds around nominal estimations, i.e.
h̄ ∈ [0, h̄ + ĥ]

6.1 Numerical experiments setup

We solve the robust optimization problem in (22) for different values of K and
�s, ∀ s ∈ S and obtain the optimal products allocation. We use the same value of �s

for all sites s ∈ S; thus, for convenience, we denote it as � throughout this section.
We also solve the stochastic program in (30) for different values of K and |	| (where
|	| is the cardinality of the set of scenarios 	). Using the optimal allocation, we
then run simulations with 10,000 scenarios, varying products non-compliance levels
h ps, ∀ p,∈ P, s ∈ S by sampling them from their respective support [0, h̄ ps + ĥ ps],
and then calculate the total expected profit of the company.

6.2 Comparison against Model-1

Figure 1 exhibits the performance of the adversarial approach against Model-1 (K = 0)
through the corresponding empirical cumulative distribution functions (CDFs) of the
expected profit, assuming that the agency inspects half of the sites. The CDFs are
obtained for optimal allocations of model (22) with K=0:S (i.e. by varying the number
of sites that the company is anticipating will be inspected) and with � = 2.

We observe that the game-theoretic setup has the effect of shifting the expected
profit distribution to the right, and as a result, albeit indirectly, it provides higher
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Fig. 1 Empirical CDF showing the performance of our robust model (22) for different values of K and
with � = 2, when the agency inspects half of the sites

guarantees regarding the reliability of production decisions (product allocation)
in the face of the random inspection process. Additionally, the probability of a
worst-case realization of expected profit is much lower for the proposed adver-
sarial approach than for Model-1. These observations indicate that (1) address-
ing uncertainties arising from the random process of inspections is beneficial
and (2) using an adversarial game-theoretic setup to do so seems to be an
effective tool.

6.3 Comparison against Model-2

Figure 2 shows the percentage difference between our proposed model (22) and Model-
2 (� = 0) for the 5th, 50th, and 95th percentiles of the expected profit distribution. We
note that the results for � = 5 : 15 are identical to those of � = 4 and thus are omitted
here. We observe that addressing uncertainty in the estimation of failure probability
is beneficial. We also observe that the performance of the robust approach proposed
here relies on the choice of parameter �. By choosing “reasonable” values for �, the
decision maker is protected against risks arising from data uncertainty in the order of
the size of uncertainty ranges (i.e. ranges for failure probabilities, which are generally
in the order of 1–2 %). A value of � = 2 is shown to be a good choice for the results
in Fig. 2.

We can draw similar conclusions from Fig. 3, which shows the percentage difference
between our model and Model-2 for the 99 %-VaR and 99 %-CVaR (Value-at-Risk and
Conditional Value-at-Risk, respectively), but additionally, we observe that the robust
approach (22) generally provides more pronounced gains in the left tail of the expected
profit distribution, which shows that the model focuses on improving bad outcomes.
Notice that, as mentioned above, in both figures we only show results for up to � = 4,
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Fig. 2 Percentage difference, between our proposed model (22) for � = 0 : 4 and Model-2 (� = 0), of
the 5th, 50th, and 95th percentiles of the expected profit distribution, with K = 2

0 1 2 3 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Γ

P
er

ce
nt

ag
e 

di
ffe

re
nc

e 
(%

)

 

 

99% VaR
99% CVaR

Fig. 3 Percentage difference, between our proposed model (22) for � = 0 : 4 and Model-2 (� = 0), of
the 99 %-VaR and 99 %-CVaR of the expected profit distribution, with K = 2

because for � = 5 : 15, results are identical to those of � = 4. This is in support of
Part (i i) of Theorem 4.

In Fig. 4 we show empirical CDFs of expected profits for optimal allocations
obtained by varying the value of � in (22), which again shows that a choice of � = 2
provides the highest benefit to the decision maker.

Addressing uncertainty in the estimation of failure probabilities via robust opti-
mization techniques has the same effect as that of the adversarial setup, in that it
also shifts the expected profit distribution to the right, providing higher guarantees on
future profits and on the reliability of production decisions. Notice that the choice of
� critically affects the performance of the proposed approach.
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Fig. 4 Empirical CDF showing the performance of our robust model (22) for different values of � and
with K = 2

Table 4 A comparison in
solution times between our
proposed robust model in (22)
and the stochastic programming
model in (30) when using 10,
25, 50, 75, and 100 scenarios

Model Solution time (s) Optimality gap (%)

Robust model 4.37 0

SP - |	| = 10 81.57 0

SP - |	| = 25 788.53 0

SP - |	| = 50 2, 054.18 0

SP - |	| = 75 3, 852.24 0

SP - |	| = 100 1, 1971.57 0

6.4 Comparison against Model-3

We contrast results from our robust model in (22) with that of Model-3 [the stochastic
program in (30)]. We obtain optimal allocations from Model-3 using different number
of scenarios |	| ∈ {10, 25, 50, 75, 100}. For each instance of Model-3, with a fixed
number of scenarios, we run the model several times (5 runs) by randomly sampling
the scenario set for each run.

In Table 4, we compare the solution time of our approach against that of the stochas-
tic program (Model-3) with different number of scenarios. We see that for Model-3,
the solution time grows exponentially with the number of scenarios considered, which
is one of the known disadvantages of stochastic programming formulations (the curse
of dimensionality).

In Fig. 5, we show the percentage differences, between our robust model and
Model-3 (with different number of scenarios and multiple runs), for the 5th,
50th, and 95th percentiles of the expected profit distribution. We observe that
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Fig. 5 Percentage difference, between our proposed model (22) with � = 2 and Model-3 [the stochastic
program in (30)], of the 5th, 50th, and 95th percentiles of the expected profit distribution, with K = 2. Note
that for Model-3 we use different number of scenarios |	| (the x axis), and for each instance of Model-3 with
a fixed number of scenarios, we run the model several times (5 runs) by randomly sampling the scenario
set for each run

our model outperforms all instances of Model-3. We also observe that the per-
formance of Model-3 is sensitive to the set of scenarios used. For example,
we see that for one of the runs of Model-3 with 25 randomly sampled sce-
narios, Model-3 performs the best (the smallest percentage difference against
our model) across all other runs with the same or different number of scenar-
ios.

In Figs. 6 and 7, we again report performance in terms of the 5th, 50th, and 95th
percentiles of the expected profit distribution, but now contrast the performance of our
model against the mean (in Fig. 6) and median (in Fig. 7) performance of Model-3
across the 5 runs of each instance with different number of scenarios. We observe,
from Fig. 7, that the median performance of Model-3 is identical across all instances
and, from Fig. 6, that the instance with 25 scenarios has the best mean performance
against our model.

From the above, we notice that Model-3 is more sensitive to the choice (qual-
ity) of scenarios than to the number of scenarios used. This may suggest that
the stochastic programming formulation (30) can be used with a small number of
“hand-picked” scenarios that not only reflects the level of risk-aversion of the deci-
sion maker but also that leads to product allocations with better performance over
the robust model in (22). However, “hand-picking” scenarios is generally not an
easy task, and in our model, it is also not obvious how to do so, due to the fact
that the probability of a site failing an inspection in a given scenario ω ( f ω

ps in
(30)) is a function of production decisions. Therefore, choosing a scenario for the
matrix h will require some consideration of possible product allocation and also
some consideration of how multiple scenarios will jointly affect optimal alloca-
tion.

123



862 B. Kawas et al.

10 25 50 75 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of Scenarios

P
er

ce
nt

ag
e 

di
ffe

re
nc

e 
(%

)

 

 

5%
50%
95%

Fig. 6 Percentage difference, between our proposed model (22) with � = 2 and Model-3 [the stochastic
program in (30)], of the 5th, 50th, and 95th percentiles of the expected profit distribution, with K = 2. Note
that for Model-3 we use different number of scenarios |	| (the x axis), and for each instance of Model-3
with a fixed number of scenarios, we compare against the mean performance over 5 runs (where for each
run we randomly sample the scenario set)

6.5 Numerical experiments summary

Results show that the robust adversarial approach shifts the tail distribution, and in
some cases the whole distribution, of expected profit to the right, providing higher
guarantees for achieving certain amounts of profit and for potentially maintain-
ing the reliability of demand satisfaction. Results also show that it is beneficial
to address both sources of uncertainty, the one arising from the random inspec-
tion of sites and the other from input data. Moreover, using robust optimization to
treat data uncertainty seems to be a more effective than using stochastic program-
ming.

7 Conclusions and managerial implications

The main contribution of this work is providing a general adversarial framework that
addresses non-compliance risks in production planning and that enhances the relia-
bility of devised production plans. We give a robust MIP that maximizes the expected
worst-case profit of a company and that addresses the uncertainty in model parameters.
With the use of duality theory, we are able to transform a proposed bi-level adver-
sarial problem into a robust and compact formulation that can be efficiently solved
via readily available standard software. Furthermore, we give theoretical insights
into the structure of optimal solutions and worst-case uncertainties. The proposed
approach offers the flexibility of matching solutions to the level of conservatism of
the decision maker in two intuitive parameters, the anticipated number of sites to be
inspected, and the number of products at each site that are anticipated to be at their
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Fig. 7 Percentage difference, between our proposed model (22) with � = 2 and Model-3 [the stochastic
program in (30)], of the 5th, 50th, and 95th percentiles of the expected profit distribution, with K = 2. Note
that for Model-3 we use different number of scenarios |	| (the x axis), and for each instance of Model-3
with a fixed number of scenarios, we compare against the median performance over 5 runs (where for each
run we randomly sample the scenario set)

worst-case non-compliance level. Varying these parameters when solving for the
optimal products allocation provides different risk-return tradeoffs and thus choos-
ing them is an essential part of decision makers’ strategy. We give some insights
into how to select these parameters. We also provide an empirical evidence that
exhibits the superior performance of the devised model. We believe that the robust
approach holds much potential in enhancing reliability in production planning and
other similar frameworks in which the probability of random events depend on deci-
sion variables and in which the uncertainty of parameters is prevalent and difficult to
handle.

Managerial implications of our model are twofold. First, the model enables com-
panies in regulated industries to improve their business or manufacturing practices
and to align them with imposed regulations which ultimately serves the purpose
of these regulations. For example, in the pharmaceutical industry, companies must
align their production plans with the FDA’s “current Good Manufacturing Prac-
tices”, not only to avoid the large negative impact of non-compliance, but also to
continue keeping customer’s trust, safety, and satisfaction. Second, the framework
proposed can aid in companies’ strategic planning. Back to the pharmaceutical exam-
ple above, when companies want to introduce a new product they may need to obtain
the FDA’s approval regarding the location or even the circumstances surrounding
the introduction of this new product. In this case, our model can serve as a strate-
gic tool in planning ahead to identify the safest locations for producing the new
product.
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