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Abstract We propose an interactive method for decision making under uncertainty,
where uncertainty is related to the lack of understanding about consequences of actions.
Such situations are typical, for example, in design problems, where a decision maker
has to make a decision about a design at a certain moment of time even though the
actual consequences of this decision can be possibly seen only many years later. To
overcome the difficulty of predicting future events when no probabilities of events are
available, our method utilizes groupings of objectives or scenarios to capture different
types of future events. Each scenario is modeled as a multiobjective optimization prob-
lem to represent different and conflicting objectives associated with the scenarios. We
utilize the interactive classification-based multiobjective optimization method NIM-
BUS for assessing the relative optimality of the current solution in different scenarios.
This information can be utilized when considering the next step of the overall solution
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process. Decision making is performed by giving special attention to individual sce-
narios. We demonstrate our method with an example in portfolio optimization.

Keywords Multiple objective programming · Interactive methods · Scenarios ·
Uncertainty handling · Pareto optimality · Classification of objectives

1 Introduction

In multiple criteria decision making (MCDM), uncertainty can appear in many differ-
ent forms. For instance, the decision maker (DM) can be uncertain about preferences,
the underlying model can be inaccurate, or there may be imperfect knowledge con-
cerning consequences of actions, etc. In this paper, we focus on the latter type of
uncertainties that require the DM to make a decision at a specific point in time with
imperfect knowledge of the future. In practice, this can mean, for instance, that the
DM must decide about the current design of a system that operates under uncertainty
related to future changes of the system’s working environment or types of future tasks
to be performed so that the overall system’s performance is best.

A variety of MCDM methods has been designed to take uncertainty into account
(see e.g., Stewart 2005), but most of them require a formal way of incorporating
uncertainty into the model. Unfortunately, in practice there are plenty of situations
in which uncertainty is very difficult or even impossible to be characterized in a
formal way. More specifically, there is no data or knowledge available about the
probability of events or the possibility and necessity of events, and in such cases
MCDM methods based on probability theory or possibility theory may turn out to
be impractical. However, even though our understanding about the future is in many
cases rather limited, it is still possible to use intuition and utilize approaches such as
scenario planning to build a framework in which decision making can be supported.

In scenario planning, the effects of different actions are systematically considered
under a few different scenarios representing possible future states of the world. The
motivation of combining MCDM and scenario planning is that MCDM can enrich
the evaluation process in scenario planning while scenario planning can provide a
deeper understanding of the uncertainties present in MCDM (Stewart 2005). Scenario
planning approaches have already some history in the MCDM literature, for instance,
in the form of so-called multistage approaches (see e.g., Klein et al. 1990). However,
typically these early methods have not been motivated by using scenario planning
ideology but through stochastic programming.

In recent years, new ways to apply scenario planning within MCDM have been
presented. One approach is to regard instances of the possible combinations of initial
objectives and scenarios as metaobjectives in the sense of the metacriteria defined in
Stewart et al. (2013), following on from earlier work in Goodwin and Wright (2001).
In this approach, it is recognized that good performance on each objective under each
scenario is a desired aim of the decision maker. It may be necessary to trade off perfor-
mances for the same objective under different scenarios against each other; or to trade-
off performances for different objectives under the same scenario against each other.
In fact more complicated trade-offs could be considered, although these may be more
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difficult for the decision maker to express directly. In principle, the complete decision
problem may then be viewed as a higher dimensionality multiobjective problem, to
which any multiobjective optimization method may be applied (by treating all meta-
objectives as decision objectives). In view of the dimensionality of the resultant prob-
lem, however, the methods proposed in this paper allow performance of metaobjectives
to be evaluated across subsets of these, for example, to explicitly analyze scenario-wise
performance of actions with respect to different objectives, or vice versa.

In Urli and Nadeau (2004), this kind of an approach is used in a visual interactive
multiobjective optimization method based on improving one objective at a time so that
the extent of improvement is decided by studying the consequential impacts on the
other objectives. The solution process continues by considering a new objective until a
satisfactory compromise solution is found. In Durbach and Stewart (2003), an approach
based on a model consisting of one scenario-specific goal programming problem in
each scenario is presented. This is followed by an aggregation of scenario-wise results
into an overall result. However, one has to still decide how to aggregate the results
obtained with different scenarios to get a robust solution that does not only consider
the worst-case performance of the actions (Pomerol 2001). Yet one related approach is
given in Oliveira and Antunes (2009), in which scenarios are dealt with in the spirit of
the best/worst case approach with interval coefficients in a linear optimization model.
In Gutiérrez et al. (2004), a single objective dynamic lot size problem is considered
under different scenarios yielding a multiobjective optimization problem.

Scenario planning with a collection of metaobjectives for each scenario can be
viewed as a multiobjective optimization problem with a large number of objectives that
had been decomposed into smaller-sized scenario-specific multiobjective problems. In
Engau and Wiecek (2007, 2008), coordination methods have been proposed to find a
preferred solution for the original large-scale problem by only solving the smaller-sized
subproblems, while integrating both the DM’s preferences and trade-off information
obtained from a sensitivity analysis. The basic approach is to solve a sequence of
subproblems, each concerned with a single scenario, so that each new decision may
impair objective function values already attained in the prior scenarios, but only to
a pre-specified tolerance. The tolerances are set by the DM allowing for a preferred
trade-off to be sought among the different scenarios. The solution process stops once
the DM is satisfied with the function values in all scenarios, and the final solution
is guaranteed to be weakly Pareto optimal to the overall problem. In Wiecek et al.
(2009), the notion of multiscenario multiobjective optimization has been formalized
for engineering design problems in which scenarios represented design disciplines,
operating conditions of a product being designed, markets, types of users, etc. The
design problem for each scenario is modeled as a multiobjective optimization problem
while the designer’s preferences can change among the scenarios.

In this paper, based on the very preliminary ideas presented in Eskelinen et al.
(2010), we propose an interactive method for solving optimization problems with mul-
tiple scenarios and multiple objectives in each scenario. Similar to Engau and Wiecek
(2008), the method utilizes the scenario-wise optimal solutions to support producing a
final decision that is acceptable for all scenarios. However, in our method, the solution
process focuses all the time on improving the current overall solution to perform well
in all the scenarios, whereas the scenario-wise solutions are used to show the relative
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performance of the overall solution in different scenarios. Another major difference
to Engau and Wiecek (2008) is that the method proposed is built on the interactive
NIMBUS method (Miettinen 1999; Miettinen and Mäkelä 2006), which provides a
classification-based elicitation of preference information from the DM. In view of the
new features, the method significantly facilitates computations and offers strong deci-
sion making support. The benefits include guaranteed Pareto optimality of the solutions
(instead of only weak optimality) and the availability of a well-established compu-
tational platform and decision support methodology provided by the IND-NIMBUS
software (IND-NIMBUS, http://ind-nimbus.it.jyu.fi/; Miettinen 2006).

In practice, the method provides the DM with information about suboptimality
(or lack of optimality) of decisions in different scenarios. At each stage, the DM
is presented with the current overall solution of the decision problem involving all
multiple objectives as well as the solutions of the smaller problems consisting of
metaobjectives associated with a scenario. The former is used to demonstrate the
current optimal solution, whereas the latter shows the suboptimality of the current
solution in different scenarios. The suboptimality information can be used to support,
for instance, the consideration of which objective values should still be improved
and which objective values are allowed to be relaxed. In this way, we can provide a
valuable contribution to support understanding of the relative strengths and weaknesses
of different solutions, options or alternatives in various scenarios.

It should be emphasized that we do use the term “scenario” in the broad sense of
scenario planning, i.e., to describe a possible future state of the world with an aim
to aid facilitating a “strategic conversation”. We are aware that some literature uses
the term with a narrower technical focus as representative realizations of a random
variable. Nevertheless, the broader “strategic conversation” sense does better reflect
the thinking behind our method, and for this reason we will retain the term “scenario”
in this broader sense in our description of the method proposed.

Besides scenario planning, the method is applicable to virtually any multiobjective
optimization problem where groupings of objectives are relevant. That is, we can
consider problems with meaningful decompositions of objectives into any number
of possibly overlapping sets. For that reason, we formulate our method in terms of
abstract subsets of objectives instead of scenarios and metaobjectives. For example,
in group decision making, the objectives of each DM can form a subset so that each
subproblem only considers the objectives of a single DM.

The rest of this paper is structured as follows: In Sect. 2, we formulate the mul-
tiobjective optimization problem with subsets of objectives and introduce the main
elements of the NIMBUS method that are integral for our method. We introduce our
grouping-based interactive method in Sect. 3 and demonstrate it with a portfolio opti-
mization example in Sect. 4. Finally, after a discussion on various application areas in
Sect. 5 we draw conclusions in Sect. 6.

2 Problem formulation and basics of NIMBUS

We consider a multiobjective optimization problem, referred to in the following as a
decision problem,
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minimize f(x) = [ f1(x), . . . , fk(x)]
subject to x ∈ X, (1)

where fi : X → R with 1 ≤ i ≤ k, k ≥ 2, are objective functions and X ⊂ R
n is a

nonempty feasible set and R
n is a Euclidean vector space. A vector x ∈ X is called a

decision (vector), and its image z = f(x) an objective vector consisting of objective
(function) values. The image set Z = f(X) is called an attainable set.

An objective vector z̄ ∈ Z is said to be Pareto optimal if there does not exist another
objective vector z ∈ Z such that zi ≤ z̄i for all i = 1, . . . , k and z �= z̄. Furthermore,
an objective vector z̄ ∈ Z is said to be weakly Pareto optimal if there does not exist
an objective vector z ∈ Z such that zi < z̄i for all i = 1, . . . , k. Clearly, every Pareto
optimal objective vector is also weakly Pareto optimal. A decision x ∈ X is said to be
(weakly) Pareto optimal if f(x) is (weakly) Pareto optimal.

The components of an ideal objective vector z� are obtained by minimizing each of
the objective functions subject to the feasible set. It gives information about the best
individually attainable objective function values. The worst objective function values
in the set of Pareto optimal solutions can be approximated to form a nadir objective
vector (for further details, see Deb et al. 2010; Miettinen 1999).

In addition to problem (1), we consider a collection of S subproblems involving
groupings of the original objective functions indexed by s ∈ {1, 2, . . . , S}. The sub-
problems, each involving ks objectives, have the form

minimize fs(x) = [
f s
1 (x), . . . , f s

ks
(x)

]

subject to x ∈ X, (2)

where 2 ≤ ks < k and each objective function f s
j , 1 ≤ j ≤ ks , corresponds to one

objective function fi , 1 ≤ i ≤ k, of problem (1). Given problem (1), the subproblems
of the form (2) are conveniently represented either by the functions fs or by subsets
Ks of the index set K = {1, 2, . . . , k}. In other words, we can write f s

j = fs( j) with
{s(1), . . . , s(ks)} = Ks ⊆ K . We have ∪Ks = K .

The purpose of solving the subproblems is to allow the DM to evaluate the per-
formance of a decision in different contexts. In a scenario planning problem, the
decomposition of metaobjectives into scenarios could be reflected in the decomposi-
tion of the set K into subsets Ks . The subsets Ks may also overlap, that is, an objective
function fi of problem (1) may appear in one or more of the subproblems. Pareto opti-
mal decisions of problems (1) and (2) are related in the following way (Engau and
Wiecek 2008).

Proposition 1 If a decision x ∈ X is Pareto optimal to (2), then x is weakly Pareto
optimal to (1).

In general, the converse does not hold, that is, a Pareto optimal decision to (1)
may not be even weakly Pareto optimal to (2). This discrepancy allows the sub-
optimality of a decision with respect to a given subset of objectives to be quanti-
fied: given a subproblem or grouping s and a Pareto optimal decision of (1), one
can find out by solving (2) what the corresponding objective vector would be in
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the case that only the objective functions in fs were considered. Thus, solving the
subproblems provides valuable information to the DM about the structure of prob-
lem (1) and the amount by which different subsets of the objectives conflict with each
other.

To solve problems (1) and (2), we employ elements of the interactive classification-
based multiobjective optimization method NIMBUS (Miettinen 1999; Miettinen and
Mäkelä 2000, 2006) that has successfully been applied in various design (Hakanen
et al. 2011; Laukkanen et al. 2010), control (Miettinen 2007) and planning prob-
lems (Ruotsalainen et al. 2010) (see e.g., IND-NIMBUS, http://ind-nimbus.it.jyu.fi/;
Miettinen et al. 2008 for further references). In NIMBUS, the DM can direct the
interactive solution process by specifying preferences as a classification of objective
functions indicating how the objective values in the current Pareto optimal objective
vector f(xc) should change to get a more preferred objective vector. The DM may
classify the objective functions into up to five different classes:

I < for those to be improved (i.e., decreased),
I � for those to be improved till some desired aspiration level ẑi ,
I = for those to be maintained at their current level,
I � for those that may be impaired till an upper bound εi and
I ♦ for those that are temporarily allowed to change freely.

Here, each of the objective functions is assigned to one of the classes and because
of Pareto optimality, some objectives must be allowed to impair in order to enable
improvement in others. If aspiration levels or upper bounds are used, the DM is asked
to provide them.

In the NIMBUS method, new Pareto optimal solutions are generated by solving
a scalarized problem which includes preference information given by the DM in the
form of a classification. In our method, we use the scalarized problem of the so-called
synchronous NIMBUS method (Miettinen and Mäkelä 2006), which has the form

minimize max
i∈I <

j∈I �

{
wi

(
fi (x) − z�

i

)
, w j

(
f j (x) − ẑ j

)} + ρ

k∑

i=1

wi fi (x)

subject to fi (x) ≤ fi (xc) for all i ∈ I < ∪ I � ∪ I =,

fi (x) ≤ εi for all i ∈ I �,

x ∈ X,

(3)

where xc is the current decision, z� is the ideal objective vector, ẑi are the aspiration
levels for the objective functions in I �, εi are the upper bounds for impairing the
objective functions in I �, ρ > 0 is a relatively small scalar bounding trade-offs, and
coefficients wi (1 ≤ i ≤ k) are constants used for scaling the objectives (e.g., based
on estimated ranges, i.e., nadir minus ideal values of the objectives so that wi times
the range equals 1 for each i).

By comparing the objective values before and after the classification, the DM can
see how attainable the desired changes were. For further details of NIMBUS, its
other elements, an algorithm and proofs related to the Pareto optimality of solutions
generated, see Miettinen and Mäkelä (2006).
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When solving problems (1) and (2), it is not necessary to apply the NIMBUS method
separately to each of the subproblems (2). Instead, it suffices to solve problem (1)
repeatedly, because irrelevant objectives can be allowed to change freely with an
appropriate classification. Therefore, our method can be readily deployed on top of
an existing software implementation of the NIMBUS method, IND-NIMBUS (IND-
NIMBUS, http://ind-nimbus.it.jyu.fi/; Miettinen 2006). Moreover, the augmentation
term in (3) ensures that the obtained solutions are (properly) Pareto optimal to both
(1) and (2) (see, e.g., Miettinen 1999). In what follows, we describe our method for
grouping-based problems and details of how it uses the scalarized problem (3) to solve
problems (1) and (2).

3 Method for grouping-based multiobjective optimization with NIMBUS

Our method is structured as an interactive multiobjective optimization method with
iterating optimization and decision stages. Pareto optimal solutions to (1) are generated
in the optimization stage using the NIMBUS scalarization (3) and evaluated in the
decision stage subject to groupings, i.e., subproblems. This means that additional
information is provided to the DM about Pareto optimality of the solution considered
with respect to the subproblems. We assume that the computational cost of solving
the decision problem (1) is not much higher than the cost of solving a subproblem
(2) due to the same feasible set as we are using a scalarization-based multiobjective
optimization method (generating one Pareto optimal solution at a time based on the
preferences of the DM). We therefore perform the optimization stage for the decision
problem containing all the objectives to get an overall solution. However, we expect
the cognitive load to be high for the DM when assessing these Pareto optimal solutions
with respect to the individual groupings and therefore perform the decision stage in a
grouping-wise manner.

Our interactive method for grouping-based multiobjective optimization utilizes the
basic idea of the NIMBUS method, that is, the classification of objectives. With the help
of classification, the DM can direct the solution process towards the most preferred
solution. By solving (3) with each grouping to be minimized at a time, we get to see
grouping or scenario-wise Pareto optimal objective vectors and can assess the relative
optimality of a solution with respect to each grouping separately. This information can
help the DM in directing the solution process in the consideration of what objective
values should still be improved and what objective values can be allowed to impair.
In other words, the aim is to support gaining understanding of the relative strengths
and weaknesses of different solutions in various groupings.

The algorithm of our grouping-based interactive method is the following (the steps
where the actions of the DM are expected are indicated in italics):

1. Set all objectives in I <.
2. Generate a Pareto optimal solution xc for (1) by solving the NIMBUS scalarized

problem (3) with the current classification.
3. For each grouping s, set its objectives in I < and the other objectives in I ♦ and

solve (3). Denote the solution by xs for each grouping.
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4. Present to the DM the current objective vector f(xc) = [ f1(xc), . . . , fk(xc)].
Furthermore, for each grouping (i.e., for each s), present to the DM some or all of
the following:
(a) grouping-wise objective values fs(xc) and information whether fs(xc) is Pareto

optimal in the grouping s and/or
(b) Pareto optimal objective vector of the grouping s, that is, fs(xs) and/or
(c) visualization or some other means to support comparison (e.g. distance) of

corresponding objective function values in fs(xc) and fs(xs).
5. Ask the DM whether he/she is satisfied with the current solution xc? If yes, then

stop with xc as the final solution. Otherwise, continue.
6. Ask the DM to classify the objectives into (up to) the five classes and return to

step 2.

Let us point out that thanks to the fact that solutions generated by NIMBUS are
Pareto optimal, we know that the overall solutions and the grouping-wise solutions
generated by the method proposed are Pareto optimal. For the sake of clarity, we have
presented the algorithm in a general form, but the steps of it do not have to be followed
faithfully. For example, in steps 3 and step 4, not every grouping has to be considered,
but only those ones that the DM is interested in (at that iteration). Thus, the DM can
focus on different aspects of the problem in consecutive iterations.

In step 4, various visualizations or other means can be used according to the desires
of the DM to support comparison and analysis. For example, visual clues can be used
in the user interface to draw attention to those groupings where the current solution
violates some prescribed limits, either absolute or relative to a corresponding Pareto
optimal objective vector. Overall, the user interface plays an important role in what
comes to both the cognitive load and the effectiveness of the method.

With a large number of objectives, classification should be allowed as per objective
grouping to make the classification phase more manageable (instead of forcing the
DM to classify every objective). However, if the objective groupings overlap, then it is
possible that the classifications made for two groupings are in conflict with each other
for some objective. Then, the DM must resolve the conflict to be able to represent the
resulting classification in a concise and intuitive way.

In Fig. 1, we give an example of how comparison of solutions can be implemented.
For each of the four objectives, a horizontal bar graph (big bar) is used to represent the
range (based on the components of the ideal and the nadir objective vectors) and the
current value of the objective (the bar between the end points). To be more specific,
in each big bar the left and the right edges correspond to the components of the ideal

Fig. 1 Graphical representation
of the ideal, current and nadir
values for each objective (big
bar) and with respect to its
grouping (small bar)
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and the nadir objective vectors of (1), respectively, and the right edge of the darker bar
corresponds to the current value of the objective. To represent the range and the current
value of the objective with respect to its grouping, a half-height bar is drawn on top of
the big bar. The latter bar is always enclosed in the former because the components of
the ideal objective vector are equal, and the components of the nadir objective vector
within a grouping are always lower than or equal to the nadir objective value with
respect to all the objectives.

Another way to visualize the solution process by using absolute values of the objec-
tives is presented in the example in the following section. This may be a more intuitive
approach, especially in cases where different objectives have commensurate units.

In NIMBUS, the DM can also generate new Pareto optimal solutions as intermediate
ones between any two Pareto optimal solutions available. This option can be offered
to the DM also in our method as an alternative to classification in step 6 whenever the
DM so desires.

4 Example

We have proposed a general-purpose method, which has not been tailored for any
specific application domain. In this section, we demonstrate our method with a sim-
ulated example problem. The example is not drawn from a specific case study, but
represents a class of frequently encountered problems as both illustration and test of
our method. The example is built up around the well-known Markowitz portfolio opti-
mization problem (Markowitz 1952) whose aim is to determine the asset allocation in
a portfolio so that the portfolio’s expected return is maximized while the risk related
to the expected return (variance) is minimized. (Even though modern portfolio theory
does not consider variance as a suitable risk measure, we consider this well-known
problem since our objective is simply to demonstrate how the method proposed can
be applied). We extend this problem by introducing a third objective to maximize the
amount of dividends obtained through the portfolio.

Let n be the number of assets and xi be the amount of funds invested in asset i, i =
1, . . . , n. In this example, for purposes of illustration we postulate three scenarios (i.e.,
S = 3) which are taken into account while considering the performance of a portfolio,
and the same three objectives are considered in each of these scenarios (i.e. ks = 3 for
all s = 1, . . . , 3). Thus, the total number of objective functions is nine, i.e., K = 9.
Corresponding to (1) and (2), the optimal portfolio is found by solving the following
single period multiobjective portfolio optimization problem (see, e.g., Ehrgott et al.
2004; Steuer et al. 2005 for similar kinds of formulations):

min f s
1 (x) = xT���sx

max f s
2 (x) = r̄T

s x
max f s

3 (x) = dT
s x

s.t.
n∑

i=1

xi = 1, xi ≥ 0,

s = 1, . . . , 3.

(4)
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The overall solution is obtained by solving problem (4) simultaneously for all s =
1, . . . , 3, and each scenario-wise solution by solving (4) separately for each s =
1, . . . , 3. The decision vector x ∈ R

n reflects how the funds
∑n

i=1 xi are distributed
over n assets. The vector r̄s and the n × n matrix �s represent the expected value and
a covariance matrix, respectively, related to the underlying random variable vector rs ,
which reflects the returns related to n assets in scenario s. The expected value and
the variance of a random variable rT x are denoted by r̄T x and xT���sx, respectively
(as described in Markowitz 1952). The vector ds determines the relative amount of
dividend paid in cash for each asset i = 1, . . . , n in scenario s. We assume that there
is a dividend policy related to each asset so that the amount of dividend related to
an asset is not going hand in hand with the price of the asset (see, e.g., Ross et al.
2006). Furthermore, like in Markowitz (1952), we assume that the underlying problem
is to be solved when we have already somehow obtained (e.g., through modelling or
historical data etc.) the necessary data related to each scenario s.

As said, we consider three different scenarios that are based on the occurrence of
events A and B. At a certain moment during a single period investment plan either A
or B occurs once or not at all and the events exclude each other. When either of these
events occurs, it can be predicted how it will affect some particular asset returns. In
other words, in each case we are able to produce scenario related data ���s, r̄s and ds .
However, we are able to do only very subjective speculation whether either of these
events occurs or not (no reliable past experience, statistical data, or probabilities are
available). Regardless of these events we have to fix the portfolio at the moment and
the decision cannot be postponed. In what follows, scenarios 1, 2 and 3 refer to the
cases (not A and not B), (A and not B) and (not A and B), respectively. With three basic
objectives and three scenarios we end up with nine objectives (i.e., metaobjectives)
in formulation (1). We have chosen altogether n = 24 assets to be considered in our
example.

In what follows, we demonstrate a possible course of the solution process by
using the method proposed. The values used in the example are derived directly
from the objective function values obtained by solving problem (4). However, these
values have been transformed to make them more readable. That is, the perfor-
mance of a portfolio in scenario s is presented by values cs

1 = 100 · √
f s
1 , cs

2 =
100 · f s

2 and cs
3 = 10 · f s

3 which are the standard deviation (as percentages) for
the rate of return, the expected rate of return (as percentages) and a dividend index,
respectively.

Since the portfolio optimization model assumes that the rate of return as a random
variable is normally distributed in the risk evaluation, we can use as a guideline the
normal distribution property that with a probability 98 % the transformed rate of return
will have values in range cs

2 ± 3 · cs
1 (of course, the lower bound is here the interesting

one). Furthermore, the dividend index cs
3 reflects the relative (with respect to the

assets considered) amount of dividend paid for an asset. We also emphasize that there
is no direct risk related to the amount of dividends, and therefore they can be used to
compensate potentially low rate of return values.

Next, we apply our grouping-based interactive method to this example with
an aim to build up a robust portfolio which performs relatively well under
all three scenarios.
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Fig. 2 The initial overall solution of the example and the Pareto optimal objective vectors (POOVs) of
different scenarios. The scenario-wise POOVs are shown partially, i.e., on each objective vector, only the
three objective values related to the corresponding scenario are shown

Iteration round 1

The solution process starts by making the NIMBUS classification I < = {c1
1, . . . , c3

3}
in step 1 of the first iteration round, i.e., by setting all nine objective functions to be
minimized. In step 2, we calculate an overall Pareto optimal solution for the whole
problem by solving the NIMBUS scalarized problem (3) and in step 3, a Pareto optimal
solution is calculated for each scenario (i.e. grouping) by optimizing the performance
of the objectives of this scenario only. For example, the scenario-wise solution for
scenario 1 is obtained by solving problem (3) with the classification I < = {c1

1, c1
2, c1

3}
and I ♦ = {c2

1, c2
2, c2

3, c3
1, c3

2, c3
3}. The resulting overall solution is shown with black,

and the scenario-wise Pareto optimal solutions with white and different tones of gray
in Fig. 2 (step 4). One should note that on each scenario-wise Pareto optimal solution,
only the objective values ci

1, . . . , ci
3 related to this particular scenario i are shown,

as these indicate the reference level for the optimal performance in this scenario.
In this respect, the objective values of each solution in the other scenarios are not
that interesting and, thus, they are not shown to make the figure more readable. For
example, on the scenario-wise Pareto optimal objective vector for scenario 1 (white
bars in Fig. 2), only the first three objective values related to scenario 1 are shown, but
the objective values related to scenarios 2 and 3 are not shown.

By showing the scenario-wise optimal solutions in the same figure with the overall
solution, one can see at a glance how good the overall solution is relative to scenario-
wise Pareto optimal solutions that would be obtained by only considering one scenario
at a time. This helps the DM in focusing the solution process to improving the most
promising objectives. For example, it is useless to try to improve a poor overall perfor-
mance in some scenario at the expense of other scenarios, if the scenario-wise Pareto
optimal solution in this scenario is also poor.
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Fig. 3 The overall solution and the Pareto optimal objective vectors (POOVs) of different scenarios after
the first classification round

Let us assume that our primary objective is to obtain a good performance in sce-
nario 1, but the performance in the case of the other scenarios is not as important.
This may be because the other scenarios are regarded less likely, although there may
also be other reasons (of politics or public image, for example) which may stress
the importance of certain scenarios even when not necessarily more likely than other
scenarios. As can be seen from Fig. 2, the current overall solution is already rela-
tively good in scenario 1 compared to a scenario-wise optimal solution in this sce-
nario. However, we are not yet fully happy with this solution, and we want to test
whether the rate of return and dividend index in this scenario (c1

2 and c1
3, respec-

tively) could still be improved. Thus, in step 5 of our algorithm we decide to continue.
To compensate these improvements, we allow the standard deviation in scenarios
1 (c1

1) and 3 (c3
1) to slightly increase. In step 6, we include these statements into

our model by making a classification I < = {c1
2, c1

3}, I = = {c2
1, c2

2, c2
3, c3

2, c3
3} and

I � = {c1
1, c3

1} with ε1
1 = 4.0 and ε3

1 = 3.0, and proceed to step 2 of the next iteration
round.

Iteration round 2

As a result, we get a new Pareto optimal overall solution and the corresponding
scenario-wise solutions (Fig. 3). The rate of return in scenario 1 (c1

2) has now improved
from 7.3 to 10.0, but it is still smaller than in the corresponding Pareto optimal scenario-
wise solution (which has also improved, as we allowed c1

1 to deteriorate). Nevertheless,
we think that the objective values in scenario 1 are now on a satisfactory level and,
thus, we decide to focus next on improving the performance of the other scenarios. We
notice that both in scenarios 2 and 3, the rate of return (c2

2 and c3
2, respectively) is quite

far from the scenario-wise Pareto optimal solution. We are not satisfied with this, but
want to improve these objectives. To compensate this, we allow the dividend indices
of scenarios 2 and 3 (c2

3 and c3
3, respectively) to change freely, as we do not consider
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Fig. 4 The overall solution and the Pareto optimal objective vectors (POOVs) of different scenarios after
the second classification round. We are now satisfied with this solution and stop the solution process here

the amount of dividend that important, if either of these scenarios was realized. Thus,
we make a classification I < = {c2

2, c3
2}, I = = {c1

1, c1
2, c1

3, c2
1, c3

1} and I ♦ = {c2
3, c3

3},
and proceed to step 2 of the next iteration round.

Iteration Round 3

As a result, we get again a new Pareto optimal overall solution and corresponding
scenario-wise solutions (Fig. 4). Now, the rate of return in scenarios 2 and 3 (c2

2
and c3

2, respectively) has improved somewhat compared to the previous round at the
expense of the dividend index c3

3, which was allowed to change freely. We also allowed
the dividend index c3

2 to change freely, but its performance has, in fact, improved in
this round. The worst relative performance compared to the optimal scenario-wise
performance seems to be now obtained in scenario 3, but we consider this to be on a
satisfactory level. Thus, we stop here (step 5) by saying that the last portfolio seems
to give robust performance especially in scenario 1, but also in scenarios 2 and 3.
Naturally, it is assumed that this interpretation is related to the knowledge about the
events A and B so that we are able to evaluate what the tolerable performance is
under each scenario. One should also note that even though the final solution can
be considered to be robust with respect to the scenarios considered, it is not Pareto
optimal to any single scenario.

In this example, we used a visualization that actually presents all the alternative
information options (a)–(c) in step 4 of the algorithm. Although the information about
Pareto optimality is not explicitly indicated, the DM can easily see if the objective
values of the current overall solution coincidence with the scenario-wise solutions.
Nevertheless, to further augment the visual illustration, the same information can also
be presented in a numerical form. For example, Table 1 shows the course of the solution
process about how we ended up with this solution.
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Table 1 Transformed objective function values for the overall solutions obtained in the example

min
(c1

1)
max
(c1

2)
max
(c1

3)
min
(c2

1)
max
(c2

2)
max
(c2

3)
min
(c3

1)
max
(c3

2)
max
(c3

3)

Round 1 2.7 7.3 5.9 7.2 13.5 4.8 1.8 5.2 4.8

Round 2 4.0 10.0 6.1 7.2 13.5 4.8 2.7 5.2 4.8

Round 3 4.0 10.0 6.1 7.2 14.2 5.5 2.7 6.3 3.5

5 Discussion

In general, the aim of scenario planning is to provide a robust performance in all the dif-
ferent scenarios. In this respect, our NIMBUS based method provides a convenient way
to include scenarios in multiobjective modeling, as its classification-based approach
is an intuitive way to deal with groupings of objectives based on their performance in
different scenarios. The ease of use of the classification approach is also likely to help
comprehending the relative performance of the objectives as well as the course of the
solution process.

In the example, we used absolute objective values with suitable scaling factors to
fit them on the same chart. Another way is to scale each objective, for example, to a
relative 0–1 scale, which might be a more suitable approach in some cases. However,
in our example, we had the same unit in the objectives standard deviation and the
expected rate of return and, thus, the meaning of the unit would have blurred if some
relative scaling was used.

One should also note that the visualization style shown in Figs. 2–4 is not the only
possible way to illustrate the current solution. The aim of the applied method is to pro-
vide the DM with enough information needed to understand the overall performance
of the current solution, but not to overload the DM with an excessive amount of infor-
mation. Naturally, any other means to visualize multiobjective problems could also
be applied here to provide further information. For example, Figs. 2–4 show only one
possible scenario-wise Pareto optimal solution, but figures of the Pareto optimal sets
in each scenario could also be illustrative. In practice, this would, however, only work
with few objectives, but in case of more than three objectives, some advanced means to
support the visualization would be needed (see e.g. Lotov and Miettinen 2008; Miet-
tinen 2013). Yet, another way to make the method proposed more profound is to also
present the metaobjective-wise optimal solutions (that would indicate the best possi-
ble level of each single metaobjective) along with the scenario-wise optimal solutions.
One should, however, always consider also the possible cons of the applied visualiza-
tion, as too much information of various forms might even complicate understanding
the situation rather than clarify it.

5.1 Application areas of the method proposed

The method proposed is expected to be especially suitable for such multiobjective
optimization problems, where scenario planning has already been successfully applied.
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The origins of scenario planning are in supporting strategic planning in organizational
and managerial decision making (see e.g., Maack 2001; Schoemaker 1995), which
often are also multiobjective problems and, thus, potential application areas of the
method proposed, too.

In recent years, scenario planning has also been found useful in environmental
management. In this area, scenarios can deal with, for example, the impacts of climate
change for which both the possible impacts and the related uncertainties are of great
extent (see e.g., Duinker and Greig 2007), or with the impacts of such uncertainties
that cannot be explicitly considered in underlying models due to the complexity of
corresponding ecosystems (Bennett et al. 2003). An example of the possible practical
use of the method proposed in environmental management is the planning of protec-
tive actions for flood management, which include, for example, land area planning and
terracing. These are typically cases where the flooding normally stays within reason-
able limits, but we should also be prepared for such flooding scenarios that become
realized, for example, only once in 50 years. Then, our method can be used to con-
sider the extent of the protective actions so that normally they would not become too
expensive but in scenarios of severe flooding, a reasonable level of protection would
still be obtained.

Another environmental example is the water management on an area of agriculture
eutrophicating the underneath water system. The eutrophication could be reduced
for example, by allocating protective zones between the fields and water areas or
by building wetland areas that filter nutrients. However, there can be considerable
uncertainties in the future related to, for example, the extent of agriculture on that
area and the annual amount of raining due to the climate change. Both these are
clearly scenario type uncertainties, under which the water management actions can be
considered so that in each scenario the water quality would be on a satisfactory level,
but without setting too strict restrictions on the agriculture.

In industry, scenario planning is well-suited, for example, in process and control
design (Pajula and Ritala 2006; Suh and Lee 2001). Our method can be used to consider
optimization problems having uncertainty, for example, in a future market situation.
In these problems, the method can be applied both in cases where scenarios are used
to represent alternative future events and in cases where scenarios represent future
events that can all happen in time. The latter may come into question, for example, in
an optimal design problem in which the scenarios correspond to various anticipated
use cases or operating conditions that must be accounted for in the design.

5.2 Other possible uses of the method proposed

The initial motivation of the method proposed is to support the use of scenarios in
multiobjective optimization, but we have formulated the problem so that the method
can be applied to any case where groupings of objectives are relevant. For example,
another natural situation for using groupings is group decision making, where the
objectives of each decision maker form one grouping. Then, the method proposed
shows the relative goodness of the current solution in terms of the Pareto optimal
solution for each individual decision maker.
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When applying the method proposed to group decision making, several deci-
sion makers may share the same objectives. The method proposed allows using
single objectives in multiple groupings when calculating the grouping-wise optimal
solutions.

6 Conclusions

We have introduced an interactive method for solving optimization problems involving
multiple scenarios (or groupings) and multiple objectives in each scenario. This enables
the decision maker to focus on a single scenario at a time and find a solution which is
preferred for all scenarios.

The new grouping-based interactive method is based on the interactive
classification-based NIMBUS method. NIMBUS provides an intuitive framework for
combining multiobjective optimization with scenario planning, as its classification-
based approach allows an easy way to deal with groupings of objectives based on their
performance in different scenarios. The scenario-wise information is used to support
understanding the relative goodness of the overall solution in each scenario, but all
the time the solution process itself focuses on finding a better overall solution that is
satisfactory in all the scenarios. Applying the NIMBUS method also guarantees the
Pareto optimality of the solutions generated. Because of the existence of the IND-
NIMBUS implementation of NIMBUS, our new method is ready to be applied once
a user interface module for grouping-based classification and visualization is made.

We have demonstrated our method with an example in portfolio optimization with
three objectives and three scenarios. The example showed that with the method pro-
posed (and suitable means to visualize it), the cognitive load on understanding and
solving the problem can be decreased.
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