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Abstract In this work, we study a liner shipping operational problem which
considers how to dynamically determine the vessel speed and refueling decisions,
for a single vessel in one service route. Our model is a multi-stage dynamic model,
where the stochastic nature of the bunker prices is represented by a scenario tree struc-
ture. Also, we explicitly incorporate the uncertainty of bunker consumption rates into
our model. As the model is a large-scale mixed integer programming model, we adopt
a modified rolling horizon method to tackle the problem. Numerical results show that
our framework provides a lower overall cost and more reliable schedule compared
with the stationary model of a related work.

Keywords Liner shipping · Vessel speed · Bunker prices ·
Bunker consumption rate · Scenario tree generation · Rolling horizon

1 Introduction

In recent years the trend of increasing bunker prices has threatened the liner shipping
companies’ accounting bottom line. To survive, companies need to identify ways to
reduce the operating costs. For example, when the oil prices hit $145 a barrel in
2008, Maersk, the world’s biggest liner shipping company, spearheaded the strategy
of slow steaming. Now over 200 shipping companies have reduced their vessel speeds,
especially in those long-haul loops like Asia to Europe and North America. Empirical
estimation has shown that when the vessel speed is reduced by 20 %, it could reduce
the fuel consumption by 50 % (Ronen 1982). Although ship liners have to add one
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Fig. 1 Fluctuation of bunker fuel (380 CST) prices at major bunkering ports and world crude oil prices
(2002–2009) (Data source Bloomberg 2009 and http://www.test.org/doe/)

or two more vessels in certain routes to keep a weekly service, which results in an
immediate increase of the capital cost as well as the administration and labor costs,
the savings from fuel cost has the potential to outweigh those cost increases (Ronen
2011). Besides, the environmental benefits of less greenhouse gas emission from slow
steaming are also significant. Maersk (2010) announced that on average they had
successfully reduced the carbon dioxide emission by 14 % per vessel during 2008.

Besides increasing rapidly, bunker prices also manifest high volatility. It is a well-
observed phenomenon that the crude oil prices fluctuate significantly on a daily basis.
As a by-product of the crude oil, bunker prices fluctuate no lesser in the spot market.
Figure 1 shows the monthly fluctuation of the bunker prices (380 CST grade) at several
major ports and that of the crude oil prices from September 2002 to September 2009.
Based on this figure, we can roughly say that there is a high correlation of the bunker
prices and the crude oil prices and most of the time, the bunker prices are even more
volatile than the crude oil prices. Last but not least, bunker prices at different ports
around the world usually have significant differences. For example, on September 3,
2008, bunker fuel prices (380 CST) in Singapore were 677.5 US$/ton. On the same
day, bunker prices in Rotterdam were 619 US$/ton and 650 US$/ton in Houston.

The characteristic of the liner shipping is that it usually has a fixed number of port-
calls in a cyclical route with a published schedule. While slow steaming would be the
general trend when bunker prices are high, high fluctuation and regional differences
of the bunker prices complicate the situation because simply reducing the vessel speed
may miss out the opportunity of reaching the next port when bunker prices there are
low. Thus, in this work, we study how to dynamically determine the vessel speed
from the current port to the next one and how much fuel to bunker in the current port
with all the bunker prices and bunker consumption information available so far. This
is an operational problem when, on the planning level, fleet deployment, scheduling
and routing have been decided. Also due to the service nature of the liner shipping,
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interaction between ships of the same service route and interaction between different
service routes, if no transhipment is considered, is very low. Therefore, our study only
need to consider a single vessel in one service route only because of the operational
independence of ships and routes.

Most of the previous related works did not tackle the uncertain nature of this prob-
lem sufficiently. Ronen (1982) studied the trade off between the fuel savings from slow
steaming and the loss of revenue from the extension of voyage. It approximated the
daily bunker consumption as a third power of the ship speed and derived the optimal
speed for ships under different operating scenarios, namely, income generating leg,
positioning leg and mixed leg. Perakis and Papadakis (1987) studied the cost mini-
mization problem that a fixed amount of cargo needs to be delivered within a specific
period of time between one loading port and one unloading port by a fleet of ships
under fixed contract prices. Total fleet operating costs were minimized by choosing the
optimal full load and ballast vessel speeds. It modeled the all-purpose fuel (fuel that
includes propulsion fuel and all that used during ship operation) rate as a quadratic
function of the power of a vessel, which in return was expressed in a power func-
tion of the ship speed. In a subsequent study, Perakis and Papadakis (1987) extended
the problem with multiple loading and unloading ports. Notteboom and Vernimmen
(2009) studied how liner shipping, facing high bunker fuel prices, had adapted their
liner service schedules. In this study, the authors provided real-world data about the
relationship between the fuel consumption per day and the ship speed for different
size of container ships. From the data shown, we can see that the fuel consumption
rate against speed for different sizes of ships is actually different although the authors
did not look into the details of this issue. Ronen (2011) investigated into the trade off
between slow steaming and adding additional vessels in a container route. The objec-
tive was to minimize the annual operating cost of the route by deciding the optimal
vessel speed and number of ships to deploy.

Yao et al. (2012) studied a problem similar in nature with ours, but in their study,
the focus was put on the planning level problem, thus no uncertainty was addressed.
On the relationship between the bunker consumption rate and the ship speed, they
separated its analysis by the different sizes of ships. In addition, instead of assuming
a single third-power relationship, they added a constant coefficient in the regression
model, which they proved to be non-trivial by numerical experiments. In all of those
above studies, bunker prices were either assumed to be constant or not explicitly
considered.

Oh and Karimi (2010) presented a mixed-integer liner programming model that
optimized the operation of a multiparcel tanker under uncertain bunker prices. How-
ever, only a small number of independent price scenarios were generated before solving
the model. Therefore, it was a stationary model in essence. For two types of vessel,
“liners” and “trampers”, Besbes and Savin (2009) constructed a dynamic profit maxi-
mization problem and derived the optimal refueling policies. In the liner scenario, the
problem reduced to a refueling cost minimization problem subject to random bunker
fuel prices and limited vessel fuel capacity. However, vessel sailing speed was given
in the problem formulation and bunker consumption uncertainty was not considered.
They modeled the bunker prices as a sum of three parts: spot crude oil prices with
a global price adjustment factor, local supply correction factor for the bunker prices
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and geographical adjustments due to some other factors. The spot crude oil prices
were forecasted using a AR(1) mean-reverting process and the local supply correction
factor is described as a two states Markovian process.

To the best knowledge of authors, there is no published result that considers the
bunker consumption uncertainty. However, wind force and direction, sea condition,
engine efficiency and other factors could influence the bunker consumption in a sig-
nificant basis. Only by considering the randomness of the consumption rate at any
speed could we capture the real-world scenarios more precisely and provide more
reliable operational level recommendations for liner shipping practitioners. Therefore,
our work is the first attempt to tackle the speed determination and refueling decision
simultaneously with the consideration of bunker prices and bunker fuel consumption
rate uncertainties.

We will formulate our problem as a multi-stage dynamic model, where the bunker
price uncertainty is represented by a scenario tree structure. As the model is a very
large-scale mixed integer programming model, we adopt a modified rolling horizon
method to tackle the problem.

The rest of the paper is organized as follows: in the following section, we will
give a general description of our problem. The modeling for the uncertain bunker
prices and daily consumption rate will be discussed. In Sects. 3 and 4, we present our
dynamic model and modified rolling horizon solving approach. Two case studies will
be conducted in Sect. 5. Finally, the conclusion and future research would be presented
in Sect. 6.

2 Problem description

In this paper, we consider the operational level decision making for a single liner ship
in one cyclical route (start from one port, travel through all other ports at least once and
go back to the original port) with fixed number of port calls and time windows. Time
window states the ship arrival and departure times at each port. Two uncertain factors
considered in our work are the bunker fuel prices and the bunker fuel consumption
rate. A more detailed discussion on how to capture the randomness of these two parts
would be given later in this section.

Two key decisions to be made are where and how much to bunker. In the real prac-
tice, prior to the arrival of the next port, ship owners would ask the bunker suppliers
for quotations, based on which, bunkering decision is made. Once determined, the
quotations will rarely change until the ship reaches the port. Therefore, we can conve-
niently assume that bunkering only happen when a ship reaches one port. Bunkering
decision depends on the bunker prices at each port which are usually different across
those ports due to local supply–demand factors. The evolution of the bunker prices at
each port can be modeled as a discrete-time Markovian process which describes all the
possible states and transition matrix between those states. Without loss of generality,
we assume that port calls are on a weekly basis and hence we only need to describe
the bunker prices evolution on a weekly basis. While this is a drawback of our work,
rolling horizon approach can help to mitigate this problem. This is so because we can
always update the bunker price scenario tree based on timely real world situations.
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Aside from bunkering, another important decision is the ship speed between each
leg, which has been commonly assumed to be constant during each leg. How to reach
each one port within the scheduled arriving time and save bunker consumption as much
as possible through slow steaming is a question faced by most of the practitioners.
Traditionally, ships are designed to sail at high speed. Speed that utilizes lower than
40 % of engine load is considered to be damaging to engines according to the rec-
ommendation of ship manufacturers. However, a recent experiment done by Maersk
(2010), on its own fleet of 110 ships, showed that it is possible for vessels to slow
down if necessary.

In our problem, the objective is to minimize the total operational cost in one service
loop. The costs considered here are the bunker cost and inventory holding cost. Bunker
cost mainly consists of two parts, fixed bunkering cost incurred each time a bunkering
takes place and variable cost that depends on the bunkering amount and bunker prices at
the time being. Inventory holding cost can be interpreted as a combination of the capital
committed in the bunker purchase which could otherwise generate profits through
some investment activities and a loss of revenue due to less capacity to carry revenue-
generating cargo. As a simplification, we assume that the inventory carrying cost per
metric ton (pmt) is constant. Because our study horizon is one service loop which is
finite, inevitably, there would be bunker fuel left in the ship fuel tank at the end of
voyage. For this amount of bunker fuel left, we deduct it from the total cost based on
the bunker prices at the time being.

2.1 Model for bunker prices

To model the evolution of the bunker prices, we use the percentage changes in each leg
of the voyage, but the difficulty is that the percentage change can take any continuous
value within a reasonable range. Incorporating a random variable with continuous
distribution into an optimization model would make solving the model extremely
hard, if not impossible.

Therefore, we discretize the bunker price percentage changes and assume they fol-
low a Markovian process, which means current bunker prices only depend on previous
period price percentage changes. At first, we determine an interval within which the
bunker price percentage changes between two subsequent periods can take place and
then we divide this interval into several smaller sub-intervals. Transition matrix depict-
ing the transition among those sub-intervals is constructed. In the end, one discrete
point value is chosen to represent each sub-interval. We can either choose the mean
of the sub-interval or generate it by random sampling.

For example, if we denote Pi
t and θ i

t as the bunker prices and bunker price percentage
changes at port i and time period t , and Pi

0 as the baseline bunker prices at port i and
time 0, then bunker prices at each port and time period t are based on baseline bunker
prices as well as all the percentage changes during previous periods. For example,
Pi

1 = Pi
0 × θ i

1 and Pi
k = Pi

k−1 × θ i
k . As mentioned, in our work, we approximate

the port-by-port bunker price change evolution by the weekly bunker price change
evolution.
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Table 1 Analysis of daily bunker consumption rate

Vessel size (TEU) K1 K2 CV for different speed intervals

0–1,000 0.004476 6.17 Speed interval 12.5–13.5 13.5–14.5 14.5–15.5

Coefficient of variation 0.34 0.39 0.3

1,000–2,000 0.004595 16.42 Speed interval 12.5–13.5 13.5–14.5 14.5–15.5

Coefficient of variation 0.21 0.24 0.21

2,000–3,000 0.004501 29.28 Speed interval 12.5–13.5 13.5–14.5 14.5–15.5

Coefficient of variation 0.13 0.15 0.10

3,000–4,000 0.006754 37.23 Speed interval 17.5–18.5 18.5–19.5 19.5–20.5

Coefficient of variation 0.09 0.09 0.075

4,000–5,000 0.006732 55.84 Speed interval 18.5–19.5 19.5–20.5 20.5–21.5

Coefficient of Variation 0.068 0.08 0.08

2.2 Model for bunker consumption rate

In Yao et al. (2012), they assumed that the daily bunker consumption rate could be
expressed as F = k1 · V 3 + k2, within which k1 and k2 are two constants and they
can be different for different vessel sizes, and V is the ship speed (knot). Due to the
reasons we mentioned earlier, a noise term is added to depict the uncertainty of bunker
consumption. This means

F = k1 · V 3 + k2 + ε(V )

Based on the data we obtained from a real liner company, we found that the noise
ε is a function of the ship speed and the noise term follows a normal distribution with
zero mean and constant coefficient of variation under different ship speeds. Table 1
below shows the results of our analysis.

We have grouped the original data according to the different speed intervals. Notice
we have different intervals for different sizes of ships. This is simply because larger
ships usually sail under a greater speed. However, this would not be an issue here
because for ships of each size category, Table 1 shows that the coefficient of varia-
tion is approximately constant. This means that the standard deviation of the bunker
consumption within a specific period of time is proportional to the mean consump-
tion. Taking into account that wind and sea current are two of the main factors
for the bunker consumption uncertainty and the fact that their influence increases
with ship speed would not surprise us with such a conclusion. Also, for different
sizes of ships, we state that the coefficient of variation actually decreases with ship
size. The intuitive explanation is that bigger ships are usually equipped with more
powerful engines, and thus wind and sea current impose relatively less influence on
them.

In our dynamic model, we will use chance constraints to control the probability
of a ship running out of bunker before reaching the next port to be less than one
value.
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3 Modeling

As discussed, we model the evolution of the bunker prices by a Markovian process.
In the financial engineering area, researchers use scenario tree models to formulate

their problems in which the returns of financial products possess stochastic nature.
Mulvey et al. (1997) reviewed the application of multi-stage stochastic optimization
on asset/liability management. When it came to the tradeoff between realism and com-
putational tractability, they listed several essential characteristics that a mathematical
model for investment problem should possess to render useful application. One pos-
sible way that they claimed to be effective in covering all of those characteristics was
a scenario tree model. Considering the similar nature of those financial products with
bunker prices, here we use the scenario tree to model the randomness of bunker prices.

Bunker price uncertainty in the future times is modeled by a discrete stochastic
process ξ that is defined on a probability space of (Ω,F ,P) with

ξ = {ξt := θ i
t }t∈T .

θ i
t denotes the bunker prices percentage change at time period t and port i . To

make our multi-stage stochastic optimization problems computationally tractable, fol-
lowing assumptions on the property of (Ω,F ,P) are made: first, Ω is finite and
Ω = {ws}s∈S with S = {1, . . . ,S };F is the power set of Ω;P({w}) = ps

with s ∈ S . Second, {Ft }t∈T is the filtration induced by ξ with Ft ⊆ F as the
σ -algebra generated by ξ t . At the beginning of every service loop, the most recent
bunker price changes are known. This means ξ1 is deterministic and F1 = {∅,Ω}. For
the future bunker price changes, we only know the discrete probability distribution.
Bunkering and speed decisions at any stage do not depend on future realization of
bunker price changes, but on the probability specification (Ω,F ,P). This is a non-
anticipative constraint commonly used in many multi-stage stochastic optimization
problems. When it comes to the end of the studying horizon, all the random infor-
mation is realized and Ft = F . A series of realizations (ξ s

1, . . . , ξ
s
T ) over the entire

study horizon consist of a scenario. All the scenarios are combined into a scenario tree
representation. Figure 2 above shows an example of a scenario tree.

3.1 Assumptions

Now, we summarize all the assumptions made in our paper:

1. We consider one ship in one service route with time windows. Port time (time one
ship spends on entering, unloading and loading cargo, idling and exiting) at each
port is deterministic and known.

2. Bunkering and ship speed decisions are made when ship reaches one port.
3. Relationship between the ship speed and the bunker consumption is established in

Sect. 2.2.
4. Bunker prices at different ports are not necessarily the same. In addition, bunker

price changes follow a discrete-time Markovian process.
5. Bunkering cost includes the fixed cost which is constant over time by assump-

tion and the variable cost. Bunker inventory cost pmt is assumed to be constant
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Fig. 2 A simple example of scenario tree

and independent of bunker prices. Bunker left at the end of one service loop is
refunded.

3.2 Notations

Following notations are used to express our dynamic stochastic problem:

Parameters

S total number of price scenarios;
Π s the probability that price scenario s happens;

n number of port of calls;
di, j distance between port i and port j (nautical miles);

t total cycle time (h);
ti port time (time one ship spends on entering, unloading and loading cargo, idling

and exiting) at port i (h);
ei earliest arrival time at port i ;
li latest arrival time at port i ;

Ci bunker fuel consumption when the ship is at port i ;
w bunker fuel capacity for a single ship;

vmin minimum ship sailing speed (nautical miles/h);
vmax maximum ship sailing speed (nautical miles/h);

Ps
i bunker price for port i under scenario s;
f fixed bunkering cost;
γ coefficient to control the service level;
h inventory holding cost pmt for bunker;
η coefficient of variation for daily bunker consumption rate

Decision variables

V s
i, j ship speed between port i and j under scenario s;
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Rs
i bunker fuel-up-to level for the ship at port i under scenario s;

Bs
i bunkering decision variable. =1 if bunkering at port i under scenario s; =0,

otherwise;

Dependent variables

I s
i bunker fuel inventory when the ship reaches port i under price scenario s;

F
s
i, j mean of daily bunker consumption rate for a ship travels from port i to j under

price scenario s;
δs

i,i+1 standard deviation of bunker fuel consumption between port i and i + 1 under
price scenario s;

Ds
i Standard deviation of ship bunker inventory when ship reaches port i under

price scenario s;
As

i ship arrival time at port i under scenario s;

3.3 Mathematical model

The major difference between our model and the one in Yao et al. (2012) is that ours
can provide dynamic decision making. We included two uncertainties, which render
our model more realistic, but make the solving extremely difficult. We will discuss the
solving issues in the next section. There are some other minor modeling differences.
For example, as our focus is on the operational level, we study the optimization problem
for a finite horizon, while the model in Yao et al. (2012) is an infinite horizon problem.
Compared with their model, we also add one variable which is the fixed bunkering
cost and delete the maximum bunkering times constraint in their model. We believe
that in this way our model better conforms to the reality.

We present a mathematical model to describe our problem.

min
S∑

s=1

Π s ·
(

n∑

i=1

[(Rs
i − I s

i )Ps
i + f · Bs

i + (Rs
i − Cs

i ) · h] − I s
n+1 · Ps

n+1

)

I s
1 = 0, Ds

1 = 0 ∀s ∈ S (1)

I s
i = Rs

i−1−Cs
i−1 − F

s
i−1,i · di−1,i/24 · V s

i−1,i ∀s ∈ S, i ∈ 2, 3, . . . , n + 1 (2)

Rs
i − I s

i ≤ Bs
i · w ∀s ∈ S, i ∈ 1, 2, . . . , n (3)

Rs
i ≤ w ∀s ∈ S, i ∈ 1, 2, . . . , n (4)

δs
i−1,i + (1 − Bs

i−1) · Ds
i−1 = Ds

i ∀s ∈ S, i ∈ 2, 3, . . . , n + 1 (5)

F
s
i,i+1 = k1(V s

i,i+1)
3 + k2 ∀s ∈ S, i ∈ 1, 2, . . . , n (6)

δs
i−1,i = η × F

s
i−1,i · di−1,i/24 · V s

i−1,i ∀s ∈ S, i ∈ 2, 3, . . . , n + 1 (7)

I s
i ≥ γ × Ds

i ∀s ∈ S, i ∈ 2, 3, . . . , n + 1 (8)

vmin ≤ V s
i,i+1 ≤ vmax ∀s ∈ S, i ∈ 1, 2, . . . , n (9)

As
i + ti + di,i+1/V s

i,i+1 = As
i+1 ∀ ∈ S, i ∈ 1, 2, . . . , n (10)

ei ≤ As
i ≤ li ∀s ∈ S, i ∈ 1, 2, . . . , n (11)

As
n+1 = t ∀s ∈ S (12)
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Bs
i = 0 or 1 ∀s ∈ S, i ∈ 1, 2, . . . , n (13)

V s
i,i+1 = V s′

i,i+1 ∀(s, s′) ∈ S identical past to i ∈ 1, 2, . . . , n (14)

Rs
i = Rs′

i ∀(s, s′) ∈ S identical past to i ∈ 1, 2, . . . , n (15)

Bs
i = Bs′

i ∀(s, s′) ∈ S identical past to i ∈ 1, 2, . . . , n (16)

Fn,n+1 = Fn,1, dn,n+1 = dn,1, V s
n,n+1 = V s

n,1 ∀s ∈ S (17)

The objective function is to minimize the expected total cost, which includes the fixed
and variable bunkering cost and inventory holding cost. Bunker inventory left at the end
of one service loop or beginning of a new loop is dealt as if we can sell it in the market
at the prices of that time being. Constraint (1) sets the initial ship bunker inventory
and standard deviation of it at zero. Constraint (2) is a flow conservation constraint.
Constraint (3) and (4) ensure that the maximum bunkering amount and bunker-up-
to level is less than the fuel tank capacity. Constraint (5) states that if the ship is
bunkered at the previous port, then standard deviation of the ship bunker inventory at
current port is equal to the standard deviation of bunker consumption from previous
port to the current port. Otherwise, the standard deviation of ship bunker inventory at
previous port should also be added. This is because, as discussed, standard deviation
of bunker consumption is proportional to the total bunker consumption. Constraint (6)
and (7) express the mean daily consumption rate at a certain speed and stand deviation
of bunker consumption between ports i and i + 1. Constraint (8) is the deterministic
equivalent for chance constraint P{I s

i ≥ Ds
i } ≥ γ ∗, which ensures that the probability

of bunker inventory being greater than a certain amount is greater than a pre-specified
value. Constraint (9) is simply to limit the ship speed within a reasonable range, while
Constraints (10)–(12) are about time window constraints. Constraint (13) is a binary
constraint. Constraints (14)–(16) are non-anticipative constraints which ensure that
scenarios that share the same history up to port i should take the same action.

4 Solution method

There are two potential challenges in solving our problem. The first one is the non-
linearity constraints related to the ship speed. We deal with this by following the method
used in Yao et al. (2012), which applied a piece wise linear function to approximate
the non-linear terms.

Another challenge is that when a scenario tree procedure is used to model the sto-
chastic parameters in a multi-stage stochastic problem, solving the problem is usually
difficult because of the large problem size. For example, in a case where there are 15
ports and for each period (ship reaches a new port) there are four price scenarios, the
total number of scenarios in a scenario tree construction would be 416 (because the
ship needs to sail back to the first port after visiting all other ports).

Mulvey et al. (1997) reviewed several different solution algorithms for multi-period
stochastic problem with discrete-time decisions. Their focus was on medium size of
problems: problems with 1,000–3,000 scenarios and nonlinear objective functions.
Direct solvers like OBI, MINOS, GRG, CPLEX, LOQO, etc., and decomposition algo-
rithms like L-shaped proposal, progressive hedging algorithm and diagonal quadratic
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approximation were mentioned. Another possible way is to look at how to trim down
the tree size. Growe-Kuska et al. (2003) proposed scenario reduction algorithms which
select a subset of the initial scenarios and assign new probability to the remaining ones.
Also the tree construction algorithms help to reduce the number of nodes through
modifying the tree structure and bundling similar scenarios. Other interesting works
in scenario reduction are Dupačová et al. (2003), Heitsch and Römisch (2003) and
Heitsch and Römisch (2009). As scenario reduction approach is both theoretically and
practically appealing, we implement it in our problem and compare it with our solving
approach. For a detailed discussion, please refer to our “Appendix 2”.

In this work, however, because the problem size could be extremely large when the
number of ports involved becomes large, all those direct solvers are not able to solve
the problem. Also considering our problem nature, instead of trying decomposition
algorithms or scenario reduction algorithms, we propose to use a slightly different
method of generating scenario tree and combine it with a modified rolling horizon
approach to solve a liner shipping operational level problem. The rationale behind this
combination is first, bunker price forecasting which covers a long period of time, if not
impossible, suffers greatly in terms of forecasting quality. Instead of making one-time
forecast only at the very beginning for the whole horizon, constantly updating the fore-
cast and resolving the optimization problem are beneficial; second, this successfully
circumvents the trouble of solving a large-scale stochastic optimization problem.

4.1 A modified rolling horizon solving scheme

The essence of the standard rolling horizon planning scheme is that a problem with the
study horizon shorter than the original one (to reduce the problem size) is solved and the
first period decision is implemented. With newly available information, the problem is
updated and resolved. Still the decision is only acted on for the imminent period. This
process goes on and on until the end of the study horizon. For example, Baker (1977)
implemented the standard rolling horizon approach in a production planning problem
and numerical results in his work showed that rolling horizon approach produced
results that were well within 10 % of optimality and if the model construction was
well tailored for specific circumstance, the optimality gap could be further reduced
within 1 %. In addition, he mentioned two key reasons (“uncertain information about
the future” and “limited information about the future”) that legitimized the use of
finite-horizon model for the purpose of decision making in infinite-horizon system.

In our case, we will use a non-standard rolling horizon approach. Unlike the standard
one which solves a problem with a shorter horizon than the original problem, our non-
standard approach still solves the problem with the whole study horizon. However, we
assign a higher level of fidelity for the nearer periods than the later ones by modifying
the way we generate the scenario tree. For the first few number of periods (could be 1, 2
or any number of periods depending on the problem), all the price change alternatives
are generated as shown in Fig. 2, while a relatively small number of realizations
(also problem specific) are randomly generated for all the remaining periods till the
end. Therefore, an example of our modified version of scenario tree would look like
Fig. 3, in which scenarios for periods after i + 2 are randomly generated for each
parent node. The validity of this non-standard variant is due to our problem nature
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Fig. 3 Scenario tree with randomly generated siblings

and the diminishing tail-end effect. We will further show the suitability of using this
non-standard solving horizon approach through our first numerical example.

The modified rolling horizon solving procedure tailored for our problem is given
below:

1. When the ship reaches the port i(i = 1, 2 . . . , n), generate the price scenario
tree which looks ahead ni

1 periods and randomly generate ni
2 scenarios for all the

remaining periods and each parent node. The choices of ni
1 and ni

2 are problem
specific.

2. Solve the dynamic optimization problem and get the optimal bunkering and speed
decisions for the ship at port i .

3. When the ship reaches the port i + 1, generate the price scenario tree again based
on newly available information.

4. Repeat steps 2 and 3 until the ship reaches the destination port.

5 Case study

Here, we implement our model in two real-world service routes, Malaysia Service
(MAS) and Asia-Europe Express (AEX), offered by a real liner. The MAS route
consists of three port-of-calls; therefore, direct solving of the whole dynamic problem
is possible and we will use this example to illustrate the effectiveness of our modified
rolling horizon solving approach by testing its optimality gap. AEX route has 15 port-
of-calls. We use the modified rolling horizon approach to solve it and compare the
results provided by the stationary model in Yao et al. (2012).

However, we have modified their model to make a fair comparison. The main
modification is about the ending bunker inventory. In their stationary model, because
it is an infinite horizon problem, bunker inventory at the end of one service loop is
the starting inventory of the next loop. However, in our comparison, we only consider
one service loop; thus the ending bunker inventory in the stationary model will be
refunded as in our dynamic model. Also, we have removed the maximum bunkering
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Table 2 Weekly bunker price
change alternatives: historical
case

Scenario Value (%) Probability Value

C1 −5.7 P(C1) 0.25

C2 −0.75 P(C2) 0.25

C3 1.5 P(C3) 0.25

C4 6.5 P(C4) 0.25

Table 3 Transition matrix of
the weekly bunker price
changes: historical case

Scenario C1 (%) C2 (%) C3 (%) C4 (%)

C1 29 22 20 29

C2 24 28 23 25

C3 20 24 32 24

C4 27 23 25 25

times constrain in the stationary model and redesigned the bunker cost to include fixed
bunkering cost instead. Modified version of the stationary model will be presented in
the “Appendix 1”.

We run all our numerical studies with CPLEX-11.2 on a 3 GHz Dual Core PC with
4 GB of RAM. Stationary model in Yao et al. (2012) can be solved by CPLEX in
seconds.

5.1 Parameter setting for bunker price changes

Our model has no problem accommodating the case where every port has a different
parameter setting for their bunker price scenario trees; in our numerical study here,
for ease of illustration, we assume that the bunker price percentage changes for all the
ports at each period will be the same .

One of the most commonly used methods in generating scenarios for continuous
distribution function is the Discretization technique. For a general introduction and
application of this method, please refer to Kotsiantis and Kanellopoulos (2006) and
Dougherty et al. (1995). For example, based on the bunker prices in Singapore from
August 7, 2002 to September 3, 2009, we discretize the weekly bunker price changes
into four intervals with equal probability and Table 2 below lists the mean values of each
interval. Since we model the evolution of bunker prices as an one-stage Markovian
process, we also derive the conditional transition matrix among those intervals in
Table 3. However, problems associated with the Discretization method in deriving
bunker price percentage change scenarios based on historical data are that periods of
highly volatile prices would be evened out by mild ones and it assumes that history
will repeat. Our numerical experiments show that under this setting of bunker price
percentage changes, dynamic model only has marginal benefits than the stationary
model. Considering our work is more relevant in times when bunker prices are highly
fluctuating (September 2008, for example, IFO380 averaged slightly over $600 pmt in
Singapore, however, it dropped to average $410 in October), we construct three cases
of weekly bunker price percentage changes as shown in Tables 4, 5, 6, 7, 8 and 9,
which are more volatile.
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Table 4 Weekly bunker price
change alternatives: Case 1

Scenario Value (%) Probability Value (%)

C1 −10 P(C1) 0.25

C2 −5.0 P(C2) 0.25

C3 5.0 P(C3) 0.25

C4 10 P(C4) 0.25

Table 5 Transition matrix of
the weekly bunker price
changes: Case 1

Scenario C1 (%) C2 (%) C3 (%) C4 (%)

C1 40 30 20 10

C2 30 40 20 10

C3 10 20 40 30

C4 10 20 30 40

Table 6 Weekly bunker price
change alternatives: Case 2

Scenario Value (%) Probability Value

C1 −15.0 P(C1) 0.25

C2 −7.50 P(C2) 0.25

C3 7.50 P(C3) 0.25

C4 15.0 P(C4) 0.25

Table 7 Transition matrix of
the weekly bunker price
changes: Case 2

Scenario C1 (%) C2 (%) C3 (%) C4 (%)

C1 40 30 20 10

C2 30 40 20 10

C3 10 20 40 30

C4 10 20 30 40

Table 8 Weekly bunker price
change alternatives: Case 3

Scenario Value (%) Probability Value

C1 −20.0 P(C1) 0.25

C2 −10.0 P(C2) 0.25

C3 10.0 P(C3) 0.25

C4 20.0 P(C4) 0.25

Table 9 Transition matrix of
the weekly bunker price
changes: Case 3

Scenario C1 (%) C2 (%) C3 (%) C4 (%)

C1 40 30 20 10

C2 30 40 20 10

C3 10 20 40 30

C4 10 20 30 40
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Table 10 Parameters for MAS
service

Parameter Value

Number of port of calls 3

Service frequency Weekly

Ship size 3,000 TEU

Total cycle time 168 h

Ship speed interval 8–15 knots

Mean bunker consumption rate F = 0.006743V 3 + 37.23

Fixed bunkering cost pmt 1,000

Inventory holding cost pmt 50

Coefficient of variation of
bunker consumption rate

0.09

5.2 MAS service route

5.2.1 Parameter setting

Parameters for the MAS route is provided in Table 10:

5.2.2 Numerical results

With 3 ports, there are altogether 256 scenarios, so we can solve the whole dynamic
problem with CPLEX. One scenario means a series of price percentage change realiza-
tions from the start till the end of the route. For example, if bunker prices increase θi %
(i = 1, 2, 3) when the ship reaches port i (θi can be less than 0 which means it is actu-
ally a decrease of prices), and in the end when the ship sails back to port 1, bunker prices
increase by another θ0 %. Hence, we denote this scenario as [θ1 %, θ2 %, θ3 %, θ0 %].

We obtain the speed and refueling decisions given by the stationary model, direct
solving of the dynamic model and dynamic model solved by the modified rolling hori-
zon approach, respectively, under all three cases of bunker price percentage changes.
Comparison of the results from direct solving of the dynamic model and dynamic
model solved by the modified rolling horizon approach is to test the effectiveness of
the modified rolling horizon approach. For the modified rolling horizon approach, we
look ahead one period for which we generate all four possible alternatives and for the
remaining three periods (it is not two because, as mentioned, the ship needs to sail
back to the first port), three bunker price change realizations are generated for each
parent node. All those three bunker price change realizations belong to the same parent
node should share the same decision. For the modified rolling horizon approach, it is
based on which specific scenario happens to solve the problem. All 256 scenarios will
be solved by our modified rolling horizon approach.

Under Case 1 of the bunker price changes setting, the optimal expected average
cost of those 256 scenarios solved by the stationary model is $123,637, the optimal
expected average cost solved by the direct solving of the dynamic model is $117,194
and the optimal expected average cost solved by the modified rolling horizon approach
is $118,779. The failure rate in these three models is controlled at the same level
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Table 11 Comparison between
the modified rolling horizon
approach and direct dynamic
solving approach

Methods Case 1 Case 2 Case 3

D $117,194 $113,422 $95,580

R $118,779 $116,637 $100,502
R−D

R (%) 1.3 2.8 4.9

Table 12 Comparison between
the modified rolling horizon
approach and the solving of
stationary model

Methods Case 1 Case 2 Case 3

R $118,779 $116,637 $100,502
S $123,637 $122,739 $118,878
S−R

S (%) 3.9 5.0 15.5

by setting the service level coefficients. We see that the optimality gap between the
rolling horizon approach and the direct dynamic solving is only about 1.3 %. In terms
of performance, direct solving of dynamic model is better than the dynamic model
solved by the modified rolling horizon approach, which is better than the stationary
approach. The cost saving of using the modified rolling horizon approach compared
with the stationary model is 3.9 %.

Under Case 2 of the bunker price changes setting, the optimal expected average
cost of those 256 scenarios solved by the stationary model is $122,739, the optimal
expected average cost solved by the direct solving of the dynamic model is $113,422
and the optimal expected average cost solved by the modified rolling horizon approach
is $116,637. The failure rate in these three models is controlled at the same level by
setting the service level coefficients. The optimality gap between the modified rolling
horizon approach and the direct dynamic solving is only about 2.8 %. The cost saving
of using the modified rolling horizon approach compared with the stationary model is
5.0 %.

Under Case 3 of the bunker price changes setting, the optimal expected average
cost of those 256 scenarios solved by the stationary model is $118,878, the optimal
expected average cost solved by the direct solving of the dynamic model is $95,580,
and the optimal expected average cost solved by the modified rolling horizon approach
is $100,502. The failure rate in these three models is controlled at the same level by
setting the service level coefficients. The optimality gap between the modified rolling
horizon approach and the direct dynamic solving is only about 4.9 %. The cost saving
of using the modified rolling horizon approach compared with the stationary model is
15.5 %.

Tables 11 and 12 summarize the results so far for three different solving methods
under three different cases of bunker price percentage changes. R denotes the modified
rolling horizon solving approach, D denotes the direct dynamic solving approach and
S denotes the solving of stationary model.

The above results show that the modified rolling horizon approach performs quite
well compared with the direct solving of the dynamic model, though the optimality gap
tends to be bigger when bunker prices become more volatile. Also, as price fluctuations
increase, the cost saving of using the dynamic model, either solved directly or by the
modified rolling horizon approach, increases as well.

123



Dynamic speed and bunkering decision for liner shipping 471

Table 13 Comparison of the direct solving of dynamic model and the modified rolling horizon approach

Scenarios Speed: Bunkering amount: Optimal cost
Port 1–Port 2–Port 3 Port 1–Port 2–Port 3

1, [−10 %, −20 %,−10 %, 10 %] R:8.75–7.17–7.83 R:48.89–39.36–87.99 R:74,800

D:8.75–7.17–7.83 D:48.89–39.36–87.99 D:74,800

2, [−20 %, 10 %, −10 %,−20 %] R:8.75–6.09–8.59 R:48.89–46.27–80.81 R:76,854

D:8.75–6.88–8.00 D:48.89–40.98–86.24 D:76,139

3, [−20 %, 10 %, 10 %, 20 %] R:8.75–7.17–7.83 R:48.89–46.27–1992.2 R: 46,729

D:8.75–6.88–8.00 D:48.89–40.98–1993.0 D:46,762

4, [−10 %, 20 %,−20 %, 10 %] R:8.75–5.78–8.90 R:48.89–48.80–78.38 R:91,564

D:8.75–6.69–8.13 D:48.89–134.38–0 D:103,841

5, [10 %, 20 %, −20 %, 10 %] R:8.75–5.78–8.91 R:48.89–1992.9–0 R:705,837

D:8.75–6.69–8.13 D:48.89–134.35–0 D:124,408

6, [10 %, 20 %, 20 %,−10 %] R:8.75–6.69–8.13 R:48.89–1992.9–47.8 R:294,238

D:8.75–6.69–8.13 D:48.89–134.35–1990.58 D:474,717

Next we look into details of the optimal speed and refueling decisions given by the
modified rolling horizon approach and the direct solving of the dynamic model. We
take Case 3 setting of the bunker price percentage changes for example. Table 13 lists
numerical results from both solving approaches under some illustrative scenarios. For
some scenarios, our experiments show that the dynamic approach and the modified
rolling horizon approach give the same or similar optimal solutions, scenarios 1–3
in Table 13, for example. We also find that, for both approaches, if there is a bunker
prices increase when the ship reaches the port 2, it will bunker more. The bigger the
increase, the more it bunkers. We can see this from the comparison between scenario
1 with scenario 2 for example. There is a 10 % prices increase in stage 2 at scenario 2
and −20 % decrease in scenario 1. Bunkering amount of the modified rolling horizon
approach at port 2 in scenario 2 is 46.27 and it is 39.39 in scenario 1. Bunkering amount
of the direct solving approach at port 2 in scenario 2 is 40.98 and it is 39.36 in scenario
1. Comparison between scenario 3 with scenario 4 shows the same conclusion. This
is because there are altogether only three ports in one service loop. Port 2 is relatively
more significant in the overall planning for the whole loop. When it spots a increase
of bunker prices, it tends to bunker more in port 2.

One more finding is that when scenarios [10 %, 20 %, x %, x %], [20 %, 10 %, x %,

x %] or [20 %, 20 %, x %, x %] (x denotes either −20,−20, 10 or 20) happen, the
modified rolling horizon approach will bunker up to the maximum capacity at port
2 while the direct solving approach never does this. This means the modified rolling
horizon approach tends to be myopic compared with the direct solving approach
because if in later stages, bunker prices actually decrease, then the modified rolling
horizon approach results in much higher cost than the direct solving, as shown in
scenario 5. However, if in later stages, bunker prices actually increase, as shown in
scenario 6, the modified rolling horizon approach will outperform the direct solving
approach (when all scenarios are considered, and on the expected average sense, the
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Table 14 Weekly bunker price
change alternatives: Case 4

Scenario Value (%) Probability Value

C1 0 P(C1) 0.25

C2 0 P(C2) 0.25

C3 0 P(C3) 0.25

C4 0 P(C4) 0.25

Table 15 Transition matrix of
the weekly bunker price
changes: Case 4

Scenario C1 (%) C2 (%) C3 (%) C4 (%)

C1 40 30 20 10

C2 30 40 20 10

C3 10 20 40 30

C4 10 20 30 40

direct dynamic solving will still be better). In this sense, we can also say that direct
solving approach is conservative compared with the modified rolling horizon approach.

Overall, we can say that the modified rolling horizon approach provides a quite good
solving scheme for our dynamic programming problem. With this example in mind,
we could have the confidence to implement our rolling horizon approach in a larger
problem where direct solving of the dynamic model is practically impossible due to
the computer memory restraint or extremely long solving time. Another example we
are going to show belongs to this category.

5.3 AEX service route

AEX service route consists of 15 ports which means there are altogether 416 scenarios
and the parameter setting is given below. It is the same with that in Yao et al. (2012) for
the purpose of fair comparison. In this example, we are going to solve the problem using
the modified rolling horizon approach and then compare the results with the stationary
model. Besides the three cases of bunker price percentage changes just given, we want
to see another special case 0 of bunker prices uncertainty as represented by Tables 14
and 15. We set all four bunker price percentage changes to be 0. The purpose is to test
the benefit of introducing bunker consumption uncertainty by controlling the bunker
prices to be constant. In addition, we will study the effect of ship size difference on
the overall operational decisions.

5.3.1 Parameter setting

Parameters for the AEX route are provided below in Table 16:

5.3.2 Comparison between the dynamic model solved by the modified rolling horizon
approach and the stationary model

Failure rate in both models is controlled to be 0.01. In the modified rolling horizon
method of this example, we look ahead 3 periods for which we fully generate all the
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Table 16 Parameters for AEX
service

Parameter Value

Number of port of calls 15

Service frequency Weekly

Ship size 6,000 TEU

Total cycle time 1,512 h

Ship speed interval 14–24 knots

Mean bunker consumption rate F = 0.007297V 3 + 71.4

Fixed bunkering cost pmt 1,000

Inventory holding cost pmt 50

Coefficient of variation of
bunker consumption rate

0.07

Table 17 Comparison between the modified rolling horizon approach and the solving of stationary model

Methods Case 0 Case 1 Case 2 Case 3

R $3.51 × 106 $3.66 × 106 $3.79 × 106 $3.82 × 106

S $3.68 × 106 $3.84 × 106 $4.07 × 106 $4.30 × 106

R−S
S (%) 4.6 4.9 7.4 12.6

alternatives and for the remaining 13 periods, 8 price realizations are generated. In our
comparison, 40 price scenarios have been generated.

Under Case 1 of the bunker price changes setting, average cost for the dynamic
model solved by the modified rolling horizon approach is $3.66 × 106 and average
cost for the stationary model is $3.84 × 106 which is about 4.9 % of cost saving.
Under Case 2 of the bunker price changes setting, average cost for the dynamic model
solved by the modified rolling horizon approach is $3.79 × 106 and average cost for
the stationary model is $4.07×106 which is about 7.4 % of cost saving. Under Case 3
of the bunker price changes setting, average cost for the dynamic model solved by the
modified rolling horizon approach is $3.82 × 106 and average cost for the stationary
model is $4.30 × 106 which is about 12.6 % of cost saving.

From Case 1 to Case 3, as the bunker prices become more volatile, the cost saving
of the dynamic model solved by modified rolling horizon approach compared with
the stationary model increases from 4.9 to 12.6 %. Considering the huge amount
of operational costs for a liner shipping company, this means a significant total cost
reduction. Also this result does not surprise us because dynamic model should become
more superior to stationary model when prices are more fluctuating.

Under Case 0 of the bunker price changes setting, the cost saving is 4.6 %. This is the
cost saving by introducing bunker consumption uncertainty solely. Therefore, we can
see, under Case 1 of bunker price changes setting, the benefit of introducing stochastic
bunker prices is only about 0.3 %. However, under Cases 2 and 3, this increases to
(7.4 − 4.6) = 2.8 % and (12.6 − 4.6) = 8.0 %. This finding conforms with our
intuition that the more volatile the bunker prices, the more benefits of considering the
stochastic bunker prices.

Table 17 summarizes the results so far for AEX service example.
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Bunker inventory holding cost per ton in our problem is assumed to be constant and
independent of the bunker prices. Thus we want to see how sensitive the result is to
this parameter. In this AEX route example, bunker prices of all the ports at the initial
stage are set around $460 pmt with minimum $456 and maximum $471. Our previous
results are based on bunker inventory holding cost being $50 pmt. In our subsequent
analysis, we want to see what will happen if we vary this parameter.

Take Case 1 of the bunker price changes setting for example, our numerical results
show that when bunker inventory cost is $100 pmt, dynamic model solved by the
modified rolling horizon approach has 8.56 % of cost saving to the stationary model,
compared with 4.9 % if bunker inventory cost is $50 pmt. When inventory cost is
$150 pmt, this cost saving increases to 13.4 %. Or if we set inventory cost to be $25 pmt,
the cost saving is 3.48 %. This means generally when bunker inventory cost pmt
increases, the dynamic model becomes even more superior to the stationary approach.

In addition, we can expect that the benefit of introducing bunker consumption uncer-
tainty (Case 0 of the bunker price changes setting) increases with bunker inventory
holding cost. If we set the bunker inventory holding cost to be $25 pmt, the cost saving
is 2.56 %. If it is $100 pmt, the cost saving is 8.53 %, and if it is $150 pmt, the cost
saving increases to 11.2 %.

Therefore, the benefits of introducing these two uncertainties increase with the
volatility of the bunker prices and the bunker inventory holding cost.

5.3.3 Effect of the ship size difference on the overall operational planning

In the end, we want to discuss the effect of using a different size of ship. For instance,
what if the 3,000 TEU ship is used here in this AEX route. All other parameters for
the AEX service route remain the same, except for these related to the ship size. Based
on the bunker price scenarios generated in previous analysis under Case 1 setting of
the percentage changes, and under $50 pmt of the bunker inventory holding cost, the
average cost for the dynamic model solved by the modified rolling horizon approach
is $2.65 × 106 and the average cost for the stationary model is $2.82 × 106 which
is about 6.0 % of cost saving (4.9 % for a 5,000-TEU ship). The average costs are
lower compared with the case when a 5,000-TEU ship is used, because we can see
from the bunker consumption rates in Tables 10 and 16 that smaller ships burn less
bunker sailing under the same speed and distance. Also the dynamic model performs
even better than the stationary model when one smaller ship is used. This is largely
due to the fact that smaller ships have a higher coefficient of variation of the bunker
consumption rate. However, we notice that the average cost (dynamic model solved by
the modified rolling horizon approach) per TEU for the 3,000-TEU ship is 8.84 × 102

and that for the 5,000-TEU ship is 7.32 × 102. This means, cost per TEU wise, bigger
ships are more efficient.

Next, we want to see the effect of ship size difference on the bunkering and refu-
eling decisions. In the stationary model, we find that the bunkering ports selec-
tion and bunkering amount will be different. However, speed choice is the same
because there are no bunker prices and consumption uncertainties. In the dynamic
model solved by the modified rolling horizon approach, both bunkering and speed
decisions can differ when different sizes of ships are deployed. For example, under
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Fig. 4 Optimal speed decisions given by the modified rolling horizon approach 1

18

19

20

21

22

23

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5000 TEU 3000 TEU

Port

Speed (knot)

Fig. 5 Optimal speed decisions given by the modified rolling horizon approach 2

scenario [5 %, 10 %, 10 %,−5 %,−10 %, 10 %, 5 %, 5 %, 5 %, 10 %, 10 %,−5 %,

−5 %,−5 %,−5 %,−10 %] (randomly selected one), the modified rolling horizon
approach suggests to bunker at port 12 when a 5,000-TEU ship is used, and not to
bunker there if it is a 3,000-TEU ship. Bunkering amount at every port are significantly
different too. As for the ship speed, Fig. 4 shows that during some legs, different sailing
speeds are suggested for these two sizes of ships, although the difference is not very sig-
nificant. However, under some scenarios, the difference can be larger as shown in Fig. 5
under scenario [−5 %,−5 %,−5 %,−5 %,−5 %,−5 %,−10 %,−5 %,−10 %,

−5 %,−5 %,−5 %,−5 %,−5 %,−5 %,−5 %].
To conclude, we think ship size differences impose significant effect on the overall

operational planning for the liner shipping companies.
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6 Conclusion and future research

In this work, we study the problem of dynamic bunkering port selection and ship speed
determination for a single vessel in one service route. While previous deterministic
works focus more on the planning level of this problem, we aim at providing oper-
ational decision support by incorporating two major random factors into our model.
Namely, the ship bunker consumption rate and the bunker prices at each port. Based
on the bunker consumption model in Yao et al. (2012), we further established that
the noise of daily bunker consumption follows a normal distribution with zero mean
and constant coefficient of variation. For the stochastic nature of the bunker prices,
we have modeled it through the scenario tree which is widely used in financial engi-
neering area to depict the randomness of the financial product returns. While solving
a whole large dynamic problem is computational challenging, we proposed a solving
method that could help to significantly reduce the computer memory requirement and
solving time. This method is a combination of scenario tree generation scheme and a
non-standard rolling horizon approach. Another advantage about this solving method
is that as much new information as possible is used and previous forecasting errors
could be easily corrected during the whole study horizon. Our numerical examples
based on real-world data have shown that the dynamic model improves significantly
in terms of overall cost and service level (or failure rate) compared with the stationary
model. With the reasonable solving time, we think our model could be implemented
by liner shipping companies to give operational level decision support to lower the
overall operation cost and provide more reliable service.

Some possible future research directions are first, we have noticed that though the
number of scenarios would be very huge with just a few number of ports, many of them
share the same optimal decision. This is a phenomenon determined by our problem
nature. In our problem, time window determines the ship speed range during each leg,
which determines the bunker consumption. In the end, how much bunker consumed
determines how much needs to be bunkered. Also, a change of optimal decision in our
problem usually means a change of bunkering ports. However, a change of bunkering
ports would not happen unless bunker prices at one port become significantly attractive
considering the bunker inventory holding cost. Therefore, the optimal decision is not
very sensitive to the bunker price changes and we could look for ways to group those
scenarios which give the same, or close, optimal solution. Second, in our current work,
there is no policy. The bunkering decision and speed selection could always change
along with external factors. As a future research, we want to propose a (s, S) policy
like that in the inventory management problem. When the ship bunker inventory drops
below s, we bunker fuel up to the level of S. Careful readers will find our problem
has a lot of similarities with inventory management problem. Bunker inventory is
equivalent to product inventory, and bunker consumption is equivalent to product
demand, running out of fuel before finishing a voyage leg is equivalent to an inventory
being out of stock. Also, for the bunker fuel consumption, instead of using chance
constraints, we could also use the sample average approximation method to model the
uncertainty of bunker consumption. Last but not least, soft time windows associated
with penalty cost and inventory holding cost depending on bunker price could be
introduced into our model to render it more realistic.
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Appendix 1: Modified version of the stationary model

Notations

Following notations are used to express model 1:

Parameters

n number of port of calls;
di, j distance between port i and port j (nautical miles);

Parameters

t total cycle time (h);
ti port time (time one ship spends on entering, unloading and loading cargo,

idling and exiting) at port i (h);
ei earliest arrival time at port i ;
li latest arrival time at port i ;

Ci bunker fuel consumption when the ship is at port i;
w bunker fuel capacity for a single ship;

vmin minimum ship sailing speed (nautical miles/h);
vmax maximum ship sailing speed (nautical miles/h);

k1, k2 bunker fuel consumption coefficients;
Pi bunker price for port i ;
f fixed bunkering cost;
h inventory holding cost pmt for bunker;
γ coefficient to control the service level;

Decision variables

Vi, j ship speed between port i and j ;
Si bunker fuel-up-to level for the ship at port i ;
Bi bunkering decision variable. = 1 if bunkering at port i; = 0, otherwise;

Dependent variables

Ii bunker fuel inventory when the ship reaches port i ;

Dependent variables

Fi, j daily bunker consumption rate for a ship travels from port i to j ;
Ai ship arrival time at port i ;

Model

min
n∑

i=1

[(Si − Ii )Pi + f · Bi + (Si − Ci ) · h] − P1 · In+1

123



478 X. Sheng et al.

I1 = 0; (18)

Ii = Ri−1 − ai−1 − Fi−1,i · di−1,i/24 · Vi−1,i i ∈ 2, 3, . . . , n + 1 (19)

Ri − Ii ≤ Bi · w i ∈ 1, 2, . . . , n (20)

Ri ≤ w i ∈ 1, 2, . . . , n (21)

Ii ≥ γ · w i ∈ 1, 2, . . . , n (22)

Fi,i+1 = k1(Vi,i+1)
3 + k2 i ∈ 1, 2, . . . , n (23)

vmin ≤ Vi,i+1 ≤ vmax i ∈ 1, 2, . . . , n (24)

Ai + ti + di,i+1/Vi,i+1 = Ai+1 i ∈ 1, 2, . . . , n (25)

ei ≤ Ai ≤ li i ∈ 1, 2, . . . , n (26)

An+1 = t (27)

Bi = 0 or 1 i ∈ 1, 2, . . . , n (28)

Fn,n+1 = Fn,1, dn,n+1 = dn,1, Vn,n+1 = Vn,1 (29)

The objective function is to minimize the expected total cost, which includes the fixed
and variable bunkering cost and inventory holding cost. Bunker left at the end of the
service loop is refunded. Constraint (18) sets the initial inventory to be 0. Constraint
(19) is a flow conservation constraint. Constraints (20) and (21) ensure that the maxi-
mum bunkering amount and bunker-up-to level are less than the bunker fuel capacity.
Constraint (22) controls the minimum bunker inventory to be a fixed percentage of the
total bunker capacity. Constraint (23) expresses the daily consumption rate at a certain
speed between port i and i +1. Constraint (24) is simply to limit the ship speed within
a reasonable range, while constraint (25) to (27) are about time window constraints.
Constraint (28) is a binary constraint.

Appendix 2: Comparison between the scenario reduction approach
with the modified rolling horizon approach

We applied the fast forward selection algorithm in [1] to reduce the bunker price
scenario tree size in our first case study, MAX service route, and compared the results
with that of our modified rolling horizon approach. As mentioned, the size of the MAX
service route allows us to solve the whole dynamic model by CPLEX directly, so we
can easily derive the optimality gap of the scenario reduction method and our modified
rolling horizon approach, respectively.

Table 18 shows the optimality gap of the scenario reduction method under different
parameter settings. There are altogether 256 price scenarios initially and we still look
at 3 different cases of bunker price fluctuation.“Number of scenarios” means the total
number of scenarios retained after reduction and these percentage numbers in the
table denote the optimality gap between the scenario reduction method and the direct
solving of the dynamic model.

Table 19 shows the optimality gap of our modified rolling horizon approach under
three different cases of bunker price percentage change. Table 20 is a comparison of
the solving time between these two methods under case 1.
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Table 18 Optimality gap of the scenario reduction method

Number of scenarios 10 30 60 90 100 200

Case 1 32.31% 29.29% 17.70% 10.19% 2.56% <0.1%

Case 2 93.17% 32.91% 26.55% 18.40% 13.15% <0.1%

Case 3 91.41% 53.81% 29.97% 17.52% 13.20% <0.1%

Table 19 Optimality gap of the modified rolling horizon approach

Methods Case 1 Case 2 Case 3

D $117,194 $113,422 $95,580

R $118,779 $116,637 $100,502
R−D

R 1.3% 2.8% 4.9%

Table 20 Solving time comparison of these two methods

Methods/Scenarios 60 100 200

Reduction 35s 65s 139s

Rolling horizon 5.6s 5.6s 5.6s

Comparing the results in Tables 18, 19 and 20, we can see that the modified rolling
horizon approach is a good approach to be used for our problem. Under all three cases,
the modified rolling horizon approach is better than the scenario reduction method
when the scenario reduction method retains less than 100 scenarios. Moreover, the
solving time for the modified rolling horizon approach remains unchanged while the
solving time for the scenario reduction method increases considerably with the number
of scenarios. And under all these 3 cases, the optimality gap of our modified rolling
horizon approach is under 5%, which is encouraging.

When it comes to our second case study where there are a total of 416 price scenarios,
the implementation of the scenario reduction method becomes even harder. As CPLEX
can only solve the problem with less than 500 price scenarios, this means only 5 out
of 414 scenarios is retained. Not only will the scenario reduction algorithm take a long
time to reduce the scenarios, but the optimality gap of the reduced tree might be big
based on our study of the small size problem.

In summary, we feel that the scenario reduction technique might not work well in our
problem. However, having said so, we still feel that there is a potential in this method
to be applied to this type of the problem, but this will need an in-depth research work.
As for our proposed method, it can be viewed as a special type of scenario reduction
technique in the sense that all the branches in the near future are enumerated, but the
branches far away from the decision point are not enumerated fully and so we have
a reduction in scenarios. Moreover, by forcing it to solve at every decision point, we
are able to obtain decisions using the most updated information.
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