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Abstract Ibrahim et al. (Int Trans Oper Res 16:361–369, 2009) presented and ana-
lyzed two integer programming formulations for the elementary shortest-path problem
(ESPP), which is known to be NP-hard if the underlying digraph contains negative
cycles. In fact, the authors showed that a formulation based on multi-commodity flows
possesses a significantly stronger LP relaxation than a formulation based on arc flow
variables. Since the ESPP is essentially an integer problem, the contribution of our
paper lies in extending this research by comparing the formulations with regard to
the computation time and memory requirements required for their integer solution.
Moreover, we assess the quality of the lower bounds provided by an integer relaxation
of the multi-commodity flow formulation.

Keywords Elementary shortest-path problem · Negative cycles ·
Mixed-integer programming

1 Introduction

The elementary shortest-path problem (ESPP) is to determine a shortest path between
two vertices of a graph so that each vertex of the graph is visited at most once. For
graphs without negative cycles, strongly polynomial algorithms for solving the ESPP
exist (Ahuja et al. 1993). By contrast, the computation of shortest elementary paths in
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graphs with negative cycles is NP-hard (ib.). Ibrahim et al. (2009) have studied two
integer programming formulations for the ESPP and have compared these with regard
to the strength of the respective linear relaxations. The contribution of the present
paper is to compare the integer versions of the formulations with regard to the compu-
tation time and memory requirements, and to assess the quality of the lower bounds
provided by an integer relaxation of the second formulation. Our research is motivated
by the fact that (resource-constrained) ESPPs in graphs with negative cycles appear as
subproblems in column-generation solution approaches for vehicle-routing problems
(VRPs) (Toth and Vigo 2002; Golden et al. 2008).

The traditional method for solving these subproblems (elementary shortest-path
problems with resource constraints, ESPPRC) is a labelling algorithm based on
dynamic programming (DP) (Irnich and Desaulniers 2005). However, there are vari-
ants of VRPs where such labelling algorithms do not work well or cannot be applied
at all (Desaulniers et al. 1998; Crainic et al. 2009; Drexl 2012). In particular, the
absence of any resource constraint as in the ESPP renders traditional DP-based solu-
tion approaches impossible. The first author of the present paper has developed a
generic DP code for ESPPRC for the Boost Graph library (Boost 2012). In order to
experiment with this code for solving ESPP, we added an artificial resource such that
the number of visited vertices is counted and bounded by the number of vertices in
the graph. However, this is a very loose resource constraint that cannot prevent the
corresponding DP from enumerating all subsets of vertices. Such a straightforward DP
algorithm is able to solve instances defined on complete graphs containing not more
than 20 vertices, but for larger instances, such as those in the computational experi-
ments presented in Sect. 3, computation times were prohibitive. In addition, we used
a bidirectional version (Righini and Salani 2006) of the ESPPRC labelling algorithm.
With this implementation, slightly larger instances can be solved, but still all instances
used in the present paper remain unsolved, even when allowing computation times of
several hours. There are ways to improve or accelerate a DP algorithm (state-space
relaxation, Boland et al. 2006; scaling, Fukasawa et al. 2006; bounding, Baldacci
et al. 2012). However, considerable research is needed to obtain conclusive and defi-
nite results for tackling the ESPP with DP. Using more sophisticated DP techniques is
beyond the scope of the present study, which focuses on the comparison of two MIP
formulations for the ESPP that allow a direct use of general-purpose MIP solvers.

The ESPP has similarities with two other single-vehicle routing problems. First, the
ESPP is a generalization of a variant of the travelling salesman problem (TSP) with
profits. In the TSP with profits, the task is to find a subtour that minimizes travel costs
(depending on the arcs traversed) and maximizes profit (depending on the vertices
visited). Feillet et al. (2005) classify these problems into three main classes, where
either one objective becomes a constraint or both objectives are combined into one
(minimize travel cost minus profit). The latter case means the definition of positive
and negative arc costs in a particular way, less general than allowed in the ESPP. The
survey paper (Feillet et al. 2005) reviews heuristic as well as exact solution approaches,
where the latter are based on corresponding TSP approaches using assignment and
1-tree relaxations. Second, the prize-collecting rural postman problem (PRPP) is the
problem of finding a most profitable subtour (closed path) in an undirected graph,
where arbitrary costs and profits can be associated with an edge (Aráoz et al. 2009).
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In contrast to the ESPP, the subtour might visit a vertex more than once. Moreover,
the overall profit of a PRPP subtour is computed differently, because the profit of an
edge can only be collected once (by serving the edge), but costs result from every
unproductive traversal (deadheading). Aráoz et al. (2009) apply branch-and-cut for
the exact solution of the PRPP.

The rest of our paper is structured as follows. Section 2 introduces notation and the
different MIP models for which detailed computational experiments are presented in
Sect. 3. Final conclusions are given in Sect. 4.

2 Mathematical models

We assume a directed graph D = (V, A) with vertex set V and arc set A. Without loss
of generality, D is assumed to contain neither loops nor parallel arcs, so that an arc from
a vertex i ∈ V to a vertex j ∈ V can unequivocally be referred to as (i, j) ∈ A with
cost ci j ∈ Q. A path from s to t in D (an s-t-path) is a sequence p = i1, i2, . . . , in−1, in

with i1 = s, in = t , ik ∈ V for k = 1, . . . , n, and (ik, ik+1) ∈ A for k = 1, . . . , n − 1.
The cost c(p) of such a path p is

∑n−1
k=1 cik ik+1 . D may contain negative cycles, that

is, paths p with i1 = in and c(p) < 0. A path is elementary if it fulfils ik �= il for all
1 ≤ k < l ≤ n.

A (weak) component of D is a digraph D′ = (V ′, A′) with V ′ ⊆ V , A′ = {(i, j) ∈
A : i, j ∈ V ′} and the property that for any two vertices i, j ∈ V ′, there is a sequence
i1, i2, . . . , in of vertices in V ′ with i = i1, j = in , and either (ik, ik+1) ∈ A or
(ik+1, ik) ∈ A or both for all 1 ≤ k < n.

In the following, we use the standard notation for the forward star δ+(S) := {(i, j) ∈
A : i ∈ S �� j}, the backward star δ−(S) := {( j, i) ∈ A : i ∈ S �� j}, and the inner
arcs A(S) := {(i, j) ∈ A : i, j ∈ S} for all S ⊆ V . For simplicity, we define the short-
cuts δ+(i) := δ+({i}) and δ−(i) := δ−({i}). Without loss of generality, we assume
that δ−(s) = δ+(t) = ∅. Finally, for any subset B ⊆ A and any vector w ∈ Q|B|, we
define w(B) := ∑

(i, j)∈B wi j .
We seek a shortest elementary path from a specified start vertex s ∈ V to a specified

target vertex t ∈ V . (When negative cycles are present, no shortest non-elementary
path exists.)

2.1 A classical formulation

The first formulation for the ESPP considered here uses only one type of variable, xi j ,
indicating whether or not arc (i, j) ∈ A is traversed
(cf. Ibrahim et al. 2009; Jepsen et al. 2008):

minimize
∑

(i, j)∈A

ci j xi j (1a)

subject to

x(δ+(i)) − x(δ−(i)) =
⎧
⎨

⎩

1, i = s
−1, i = t
0, i ∈ V \{s, t}

(1b)
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x(δ+(S)) − x(δ+(i)) ≥ 0 ∀ i ∈ S � V, |S| ≥ 2 (1c)

xi j ∈ {0, 1} ∀ (i, j) ∈ A (1d)

The objective function, (1a), is the sum of the costs of the arcs in the path. Con-
straints (1b) ensure flow conservation, and constraints (1c), of which there are expo-
nentially many (their number is exponential in the number of vertices of the graph),
are the subtour-elimination constraints (SECs), that is, they exclude cycles and thus
ensure elementarity of the solution paths.

Compared to the formulation given by Ibrahim et al. (2009), the following modifi-
cation is made on formulation (1): Ibrahim et al. (2009) use constraints

x(A(S)) ≤ |S| − 1 ∀ S ⊆ V, |S| ≥ 2, (2)

to eliminate subtours. Instead, we use constraints (1c), since we did not have an efficient
procedure for separating constraints (2). Moreover, (1c) are stronger than (2), because
x(A(S)) = x(A(S)) − x(δ+(S)) + x(δ+(S)) ≤ x(A(S)) − x(δ+(i)) + x(δ+(S)) =
x(A(S\{i}))+ x(δ+(S\{i})) = ∑

j∈S\{i} x(δ+( j)) ≤ |S|−1, where both inequalities
result from (1c) using x(δ+( j)) ≤ x(δ+(V \{t})) = 1.

2.2 A formulation based on multi-commodity flows

The second formulation studied by Ibrahim et al. (2009) uses three types of variable: As
before, xi j indicates whether or not arc (i, j) ∈ A is traversed. Moreover, yi indicates,
for all i ∈ V , whether or not vertex i is visited. Finally, variables zk

i j ≥ 0 measure the
flow, through arc (i, j) ∈ A, from the source vertex s to a vertex k ∈ V \{s}. Defining
commodities K := V \{s, t}, the model can be stated as follows:

minimize
∑

(i, j)∈A

ci j xi j (3a)

subject to

zk
i j ≤ xi j ∀ k ∈ K , (i, j) ∈ A, i �= k, s �= j �= t (3b)

zk(δ+(s)) = yk ∀ k ∈ K (3c)

zk(δ+(i)) − zk(δ−(i)) = 0 ∀ k ∈ K , i ∈ V \{s, k, t} (3d)

zk(δ−(k)) = yk ∀ k ∈ K (3e)

x(δ+(i)) = yi ∀ i ∈ V \{t} (3f)

x(δ−(i)) = yi ∀ i ∈ V \{s} (3g)

x(δ+(s)) = 1 (3h)

x(δ−(t)) = 1 (3i)

xi j ∈ {0, 1} ∀ (i, j) ∈ A (3j)

yi ∈ {0, 1} ∀ i ∈ V (3k)

zk
i j ≥ 0 ∀ k ∈ K , (i, j) ∈ A, i �= k, s �= j �= t (3l)
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The objective function, (3a), is identical to the one for model (1). In any feasible
solution to (3), constraints (3b) ensure that constraints (3c)–(3e) provide flow con-
servation in the z variables for all visited vertices. This means that (3c)–(3e) ensure
that there is a path from s to each visited vertex, including t . Constraints (3f) and
(3g) ensure that each visited vertex i other than s and t is reached and left exactly
once; in other words, that there is exactly one arc entering i and one arc leaving i .
Constraints (3h) and (3i) require that the source vertex s be left and that the sink
vertex t be reached exactly once. Now, since each visited vertex other than s and t is
reached and left exactly once, all these vertices must lie on the unique s-t-path, and,
moreover, this path must be elementary. A subtour containing a vertex i that lies on a
path from s to t is impossible, since this would imply that i is reached more than once.
An isolated subtour not connected to s is impossible, since there is a path from s to
each visited vertex. In this way, the elimination of subtours is ensured by the interplay
of all constraints.

Compared to the formulation given by Ibrahim et al. (2009), the following mod-
ifications are made on formulation (3): Ibrahim et al. (2009) introduce zk

i j variables
for all k ∈ V \{s} and (i, j) ∈ A; they formulate constraints (3b) for all k ∈ V \{s}
and (i, j) ∈ A, constraints (3c) and (3e) for all k ∈ V \{s}, and constraints (3d) for
all k ∈ V \{s} and i ∈ V \{s, k}. Moreover, they formulate constraints (3f) also for
i = s and constraints (3g) also for i = t . Thus, formulation (3) uses fewer variables
and constraints, which is possible since δ−(s) = δ+(t) = ∅ is assumed.

2.3 T -family relaxations

Ibrahim et al. (2009) study also a third formulation, called T -family relaxation. Such
a relaxation results from (3) by replacing k ∈ K by k ∈ T with T being a subset of K .
Of particular interest is the case where T = ∅. In this case, there are no z variables,
and constraints (3b)–(3e) vanish.

Note that, if the set T is a proper subset of K , subtours may occur in the optimal
solution to the LP relaxation as well as in the optimal integer solution.

2.4 Structural properties of the formulations

The subtour-elimination constraints are necessary in both formulations; they are non-
redundant inequalities for the formulation, that is, disregarding the SECs may lead
to false solutions. The difference between formulations (1) on the one hand and (3)
on the other is that the former has an exponential number (O(2|V |)) of constraints
overall. This is due to the exponential number of subtour-elimination constraints (1c),
which must be separated dynamically for larger instances if an exact solution is to
be computed. By contrast, the number of variables and constraints in the latter for-
mulation is O(|V ||A|) and allows their explicit specification. (Nevertheless, for larger
instances, it is recommendable to also dynamically separate constraints (3b)–(3e)).
On the downside, the number of variables and variable types is larger in the latter
formulation. The effects of these structural properties on the computational behaviour
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Table 1 Test instances

Class name Type No. No. No. Arc cost Arc cost
instances vertices arcs range type

R_sparse_25 Random 20 26 300 [−10; +10] Integer

R_sparse_50 Random 20 51 1,225 [−10; +10] Integer

R_sparse_100 Random 20 101 4,950 [−10; +10] Integer

R_dense_25 Random 30 26 553 [−1,000.0;+1,000.0] Double

R_dense_50 Random 30 51 2,353 [−1,000.0;+1,000.0] Double

R_dense_100 Random 30 101 9,703 [−1,000.0;+1,000.0] Double

P_first_25 Pricing 30 28 651 [−108;−9.48 · 107] Double

P_penultimate_25 Pricing 30 28 651 [−107;+30,000] Double

P_last_25 Pricing 30 28 651 [−30,000;+30,000] Double

P_first_50 Pricing 30 53 2,551 [−108;−9.48 · 107] Double

P_penultimate_50 Pricing 30 53 2,551 [−107;+30,000] Double

P_last_50 Pricing 30 53 2, 551 [−30,000;+30,000] Double

P_first_100 Pricing 30 103 10,101 [−108;−9.48 · 107] Double

P_penultimate_100 Pricing 30 103 10,101 [−107;+30,000] Double

P_last_100 Pricing 30 103 10,101 [−30,000;+30,000] Double

of the formulations are unclear and must be tested empirically. This was done in our
computational experiments, which are described next.

3 Computational experiments

Ibrahim et al. (2009) used random test instances small enough to allow explicit specifi-
cation of all constraints in both formulations. We decided to create larger instances that
require the separation of SECs for the classical formulation. Moreover, we extracted
pricing subproblems from a heuristic column-generation algorithm for the asymmetric
m-salesmen TSP (cf. Gutin and Punnen 2002, Chapter 1) to see how these compare
with purely random instances. The pricing problem in such an algorithm is an ESPP
on a graph with negative cycles, due to the dual prices of the master-problem con-
straints. To be precise, Table 1 specifies the 15 classes of the 420 test instances that
were generated. For the random instances, the arc cost values were created from a
uniform distribution within the indicated ranges. For the pricing-problem instances,
for each underlying m-salesmen TSP instance, the first, penultimate, and last pricing
problems created by the column-generation algorithm were used. The very negative
values for the ‘first’ and ‘penultimate’ instances are due to Big-M values for artificial
variables. All instances contain at least one negative cycle.

For formulation (3), the following three approaches were examined: (i) solve with
all SECs added ex ante; (ii) solve with SECs as lazy constraints. This means that all
SECs are added ex ante to a pool. Initially, the model consists only of constraints (3f)–
(3l). The LP relaxation is solved, and when an integer feasible solution is found,
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the lazy constraints are checked for violation. Any violated lazy constraints are then
added, and the LP relaxation of the model is re-optimized. (iii) Solve with dynamic
separation of SECs.

To dynamically separate the subtour-elimination constraints of formulations (1)
and (3), that is, constraints (1c) and (3b)–(3e), respectively, a two-stage approach is
used. First, the support graph is checked for isolated components not connected to s
and t . For formulation (1), for one vertex of each isolated component found, an SEC
is added. For formulation (3), for one vertex i of each isolated component found, the
corresponding set of SECs for k = i is added. Second, if the support graph consists
of only one component, a maximum i-t-flow/minimum i-t-cut problem is solved for
each vertex i ∈ V \{t}, using the xi j values as arc capacities. A maximum flow of less
than the absolute outflow from i , that is, less than x(δ+(i)), indicates a violated SEC.
In model (1), S is then the set of vertices that are on the same side of the i-t-cut as i . For
one such i , an SEC is added in formulation (1); in formulation (3), the corresponding
set of SECs for k = i is added. Basically, it is sufficient to check for violated SECs
whenever a feasible integer solution to the current formulation containing only a part
of all SECs is found. However, it turned out useful to also add violated SECs after
solving the LP relaxation at each node of the branch-and-bound tree.

To solve the test instances, the formulations described above were implemented in
C++, using IBM Ilog Cplex Concert Technology, version 12.2. The standard Cplex
cuts were automatically added. Where SECs were dynamically separated, the isolated
components were identified with a union-find data structure as described by Wayne
(2008). The max-flow problems were solved using a code written by Skorobohatyj
(1999). All computations were performed in single-thread mode on a PC with an Intel
Core i7-2600 CPU, 3.40 GHz, and 16 GB main memory running Windows 7 64-bit.
A time limit of 1,200 s of CPU time for each instance was set.

The computational results are indicated in detail in Tables 2, 3, 4 and summarized
in Table 5. The columns in the tables have the following meaning:

Instance class: class of test instance as described in Table 1
Solution approach: formulation and solution approach used
No. variables: number of variables in the respective formulation
No. constraints: number of constraints in the respective formulation without dynam-

ically added SECs, that is, for solution of formulation (3) with all SECs added ex ante,
overall number of constraints including (3b)–(3e)

% optimal: percentage of instances solved to optimality; for the exact approaches,
an instance is only counted if optimization is terminated before the time limit is reached

B & B nodes: number of nodes in the branch-and-bound tree
No. separated SECs: number of SECs that were separated dynamically, or, for the

approach with a static lazy constraint pool, were identified as violated and moved from
the pool to the formulation

CPU time: overall CPU time in seconds. For instances that could not be optimally
solved within the time limit, a computation time of 1,200 s was recorded.

For the rightmost three columns, ‘(min./avg./max.)’ means the minimum, average,
and maximum values, respectively.

The computational experiments yielded the following essential results:
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– The classical formulation (1) clearly outperforms the multi-commodity flow (MCF)
formulation (3). Comparing (1) instance by instance with the respective best exact
solution approach for (3) shows that:
– (1) uses less computation time than (3) for 94 % of all 420 test instances and is

faster by at least a factor of 10 for 66 % of all 280 instances with 50 or more
vertices.

– (1) is more than 1 s slower than (3) for only one instance (4.91 s).
– (1) yields an optimal solution within the time limit for 98 % of all instances,

compared to 74 % for (3).
– (3) solves no instance to optimality that (1) does not also solve optimally.
– (1) separates fewer SECs than (3) for more than 94 % of all 420 test instances,

although the overall number of SECs in the former formulation is much larger
than in the latter.

– For the MCF formulation (3), dynamic separation of SECs is by far better than add-
ing all SECs ex ante. Using a lazy constraint pool for the SECs is still worse. This
is demonstrated by the fact that with dynamic separation, 74 % of all test instances
are solved to optimality, compared to 65 and 60 % with ex ante adding of SECs and
a static lazy constraint pool, respectively. Moreover, dynamic separation is faster
than the other two approaches for 72 % of all instances, and uses 25 and 53 % less
overall computation time respectively.

– The T -family relaxation with T = ∅ yields very bad lower bounds. On average
over all instances solved to optimality, the objective function values obtained with
the T -family relaxation are 197 % below those of the optimal solutions.

– It is easy to see that the solutions obtained with the T -family relaxation with T = ∅
consist of an elementary s-t-path and zero or more cycles not connected to s and
t . Removing all such isolated components yields a feasible solution, and, hence, an
upper bound for the ESPP. The upper bounds obtained by this procedure, however,
are also very bad, on average more than 70 % above the optimal solution values.

– A correlation analysis between formulations (1) and (3) with dynamic separation
of SECs regarding the CPU time and the number of separated SECs showed only
rather weak positive correlations between the formulations. The values of the sam-
ple correlation coefficient r were 0.703 and 0.718, respectively. This means that if
an instance is relatively difficult to solve with one formulation, this instance tends
to be difficult to solve with the other formulation as well, although the relationship
is not very pronounced.

– The instances generated from pricing problems are significantly more difficult than
the random instances. On average, a pricing-problem instance required 30 % more
computation time and the separation of 530 % more SECs compared to a random
instance. No significant difference exists between the computation times needed
and the number of SECs separated for the instances generated from the first, pen-
ultimate, and last pricing problems.

– With respect to memory requirements, it can be seen that the MCF models, besides
containing much more variables, also require storing an enormous number of con-
straints (either directly or as lazy constraints). Moreover, the number of violated
lazy constraints in the MCF models is orders of magnitude larger than the num-
ber of violated SECs in the classical formulation. Finally, the number of created
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branch-and-bound nodes is higher on average for the classical formulation, but this is
because for the larger pricing instances, the MCF formulation reaches the time limit
before being able to perform branching. For instance classes where most instances
are solved to optimality by both formulations, the sizes of the branch-and-bound
trees are comparable. In conclusion, this means that, also as far as memory require-
ments are concerned, the classical formulation is better than the MCF formulation.

4 Conclusion

The central result of the computational study described in this paper is that, unfor-
tunately, the results obtained by Ibrahim et al. (2009) for the LP relaxations of the
presented formulations do not carry over to the MIP solution. The classical formula-
tion with only arc variables and exponentially many SECs is by far superior to the MCF
formulation. Even more, standard DP approaches are not at all competitive because
of the absence of any resource constraints that are needed to limit the state space.
Therefore, the classical IP formulation is the only method of choice among those that
apply general-purpose solvers. If it comes to solving ESPPs as column-generation
subproblems, the classical IP formulation is able to handle small and medium-sized
instances. For solving large-scale problems, no MIP or DP method at hand performs
convincingly, and one might consider solving a proper relaxation of the ESPP, e.g.,
forbidding k-cycles (Irnich and Villeneuve 2006) or allowing ng-routes (Baldacci et al.
2012). Elementarity of paths can finally be restored in the branch-and-bound process.

A challenging direction for future research would be a thorough polyhedral study of
both MIP formulations. For the classical formulation, strong valid inequalities might
speed up computation times and make the solution of large-scale instances possible.
For the MCF formulation, however, we consider it unlikely that valid inequalities can
be found that are separable and strong enough to change the results in favour of the
latter and close the huge performance gap to the classical formulation.
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