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Abstract This paper addresses the simultaneous lot-sizing and scheduling of sev-
eral products in multi-stage flow line production systems consisting of heterogeneous
parallel production lines per stage. The limited capacity of the production lines may be
further reduced by sequence dependent setup times. Deterministic, dynamic demand of
standard products has to be met without backlogging with the objective of minimizing
sequence dependent setup, holding and production costs as well as costs for external
purchase, overtime, and standby. Different mixed-integer programming (MIP) model
formulations are proposed and tested using a standard MIP-solver. Furthermore, con-
struction heuristics like LP-and-Fix and Relax-and-Fix are designed and applied. The
solution quality and computational performance of these approaches are examined in
several test scenarios.

Keywords Simultaneous lot-sizing and scheduling · Multi-level, multi-item flow
production

1 Introduction

In the last decade more and more companies have introduced advanced planning sys-
tems (APS) to extend their planning capabilities. But still many planners, especially
from the consumer goods industry, complain about insufficient support by those sys-
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34 F. Seeanner, H. Meyr

tems. Missing scalability of solution procedures as well as unrealistic models are
supposed to be the reason for this.

In the consumer goods industry, there is typically a large number of final items to
be produced. This is usually done in a two- or three-stage flow line production system
like make&pack (sometimes, e.g., with an additional refinement process in between).
On each stage of the system, several production lines offer—at least partially—the
same services and thus can be used alternatively. These lines can be considered as
single planning units that are highly utilized, in general. For this reason they represent
potential bottlenecks.

Since production orders are not available on time, production is made-to-stock.
And because sales are usually lost, if consumer goods are not directly available to
the customer, deterministic dynamic demand forecasts are to be met without backlog-
ging. The final items can be assigned to a few setup families. Changeovers between
items of the same family incur low setup costs as well as low setup times and thus
can be disregarded. By contrast, high setup costs and setup times may result from
changeovers between two items of different setup families. Hence, decisions have
to be made not only about the sizes of the production lots and the assignment of
these lots to production lines, but also about the line-specific sequences of the lots.
Since in many cases only one of these production stages represents a stationary bot-
tleneck, the problem is usually decomposed by stages and solved consecutively. But
this approach fails if—because of line- and product-specific production speeds and
time-varying demand—the bottleneck shifts dynamically between the stages. In that
case a simultaneous consideration of multiple production stages is needed.

This paper addresses mixed-integer-programming (MIP) models for the simulta-
neous lot-sizing and scheduling of multi-stage production systems.1 According to
the used time structure, those models can be roughly grouped into small time bucket
(STB) models with microperiods and big time bucket (BTB) models with macroperi-
ods. STB-models use a priori defined microperiods of short length and allow at most
one setup in each period. Therefore, two important advantages arise. First, STB-mod-
els automatically determine the sequence of the lots due to the natural order of the
periods and the assumption of at most one setup. Second, lead times of at least a single
period, which have to be postulated in MIP-models to ensure that enough pre-products
are available for the next stage, are consequently short. But there are also two main
drawbacks. For sake of simplicity, the setup time is usually limited to the length of a
microperiod. Thus the length of a microperiod has to be chosen carefully. If it is too
short, large setup times cannot be modeled and a high number of microperiods results,
which increases the complexity of and the redundancy within the model. But a longer
length represents the real world problem only roughly and causes a loss of modeling
detail.

These shortcomings are avoided by BTB-models which only use a small number
of quite long macroperiods, thus usually not limiting the length of a setup. In general,
several production lots are allowed in a single macroperiod. Typically, there are two

1 In contrast, and mainly designed for job shops, there are also hierarchical solution procedures based on
an integrated lot-sizing and scheduling model. These approaches, as proposed e.g., by Dauzère-Péres and
Lasserre (1994), are not in the focus of this article.
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ways to determine the sequence of the production lots in BTB-models. Either those
macroperiods consist again of microperiods where the length of a microperiod is not
a priori fixed, but represents a decision variable (thus leading to a higher degree of
freedom). Or additional “Traveling Salesman Problem (TSP)”-constraints are needed
where the TSP cuts eliminate invalid subtours from the solution space. Unfortunately
however, as a consequence of the long macroperiods, in both cases unrealistically high
lead times result.

Even though a couple of STB- and BTB-models already exist in the literature, they
all suffer from the lacks outlined above. However, Meyr (2004) tried to combine the
advantages of both model types by using a common time structure for all production
lines and stages. This time structure allows to benefit from short lead times as pre-
items can be available for their successors in the same (micro)period they are produced.
Meyr (2004) presented the General Lot-sizing and Scheduling Problem for Multiple
production Stages (GLSPMS). The author tested different model variants for their
suitability in terms of modeling detail and practical relevance. But further modeling
aspects like runtime performance were not studied. The “best” variant found is char-
acterized as follows: it considers multiple products with given deterministic dynamic
demand, several production stages with parallel (heterogeneous) production lines per
stage, limited capacity and sequence dependent setup times. Backlogging and lost
sales are not allowed. However, in order to ensure feasible solutions for every demand
constellation, external purchase (instead of own production) and overtime are possi-
ble. During production breaks, the setup state can be conserved—possibly incurring
standby costs, which depend on the length of the break. Thus, the overall objective
is to minimize inventory holding costs, sequence dependent setup costs, production
costs, as well as costs for external purchasing, overtime, and standby.

In this paper we present some improvements of this “best” variant and also exam-
ine the runtime performance of this improved variant. Furthermore, it will be tested
whether the runtime can be reduced by adapting extended reformulations and intro-
ducing valid inequalities, that have proven successful for other types of lot-sizing and
scheduling problems. Additionally, construction heuristics based on these different
formulations are compared.

Unfortunately, the underlying paper (Meyr 2004) has only been published in
German language and thus is quite unknown to the international Operations Research
community. Therefore, after a brief overview of existing literature on multi-stage
simultaneous lot-sizing and scheduling in Sect. 2, the above mentioned “best” variant
of the GLSPMS with the new improvements and its basic idea will be described com-
prehensively in Sect. 3. The different reformulations and the heuristics are presented
in Sect. 4. The corresponding computational results can be found in Sect. 5.

2 Literature review

As already mentioned the focus of this section is on multi-stage lot-sizing and sched-
uling models. More comprehensive literature reviews are given by Buschkühl et al.
(2010), Drexl and Kimms (1997), Karimi et al. (2003), Quadt and Kuhn (2008) as
well as Zhu and Wilhelm (2005).
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In the following only a few selected single-level models are presented in order to
demonstrate the development in the past. Besides, these single-level models will also
help to explain the differences between microperiod- and macroperiod-based time
structures, as the multi-stage models can be distinguished by these structures as well.
Accordingly, we differentiate between STB- and BTB-models in the following.

The Discrete Lot-sizing and Scheduling Problem (DLSP) presented by Fleischmann
(1990) is deemed to be one of the first single level STB-models. It actually allows the
production of only a single item per microperiod. Furthermore, this item is either
produced over the whole period or not at all (all-or-nothing assumption). Since this
assumption is quite restrictive it is relaxed in the Capacitated Setup Lot-sizing Problem
(CSLP) by Karmarkar and Schrage (1985) and Salomon et al. (1991). The modeling
detail is further improved by the Proportional Lot-sizing and Scheduling Problem
(PLSP) proposed by Drexl and Haase (1995). This model now admits two different
lots per microperiod separated by a single setup.

Based on the PLSP, Haase (1994) and Kimms (1996) present multi-stage STB-
models. The different production stages are synchronized via the inventory balancing
constraints and lead times of at least one microperiod are necessary. Furthermore,
setup times are disregarded. Stadtler (2011) proposes a variant of the PLSP, which
allows “zero lead times” (i.e., pre-items are also available in the same microperiod
they are produced) and sequence independent setups. He solves a real-world prob-
lem of the pharmaceutical industry with a multi-level bill of materials, but only one
production stage/line. Stadtler and Sahling (2011) introduce a further PLSP based
formulation with zero lead times—now for multiple stages and lines, but also with
sequence independent setups. Moreover, they present a solution procedure based on
Relax&Fix and Fix&Optimize for solving the new model. Another multi-level STB-
model is suggested by Persson et al. (2004), who solve a real-world problem with
two production stages occurring in oil industry. They also disregard sequence depen-
dent setup times and define small time buckets, which only allow a single mode of
operation per each processing unit. They propose a tabu search heuristic to solve this
problem.

In general, setup times present a critical issue for the STB-models with respect to
the length of a microperiod. If setup times (or minimal lot-sizes) exceed the a priori
defined length, quite complex formulations are necessary as proposed by Kallrath
(1999) and Suerie (2005a,b, 2006) using additional time-indexed variables. On the
contrary, if the length of a microperiod is chosen too long a loss of modeling detail
and thus inefficient capacity utilization might result.

In BTB-models this setup time problem does not arise because macroperiods are of
sufficient size. The Capacitated Lot-sizing Problem with Sequence Dependent Setup
Costs (CLSD) by Haase (1996) is a single-level BTB-model that determines the setup
sequence with the help of TSP-constraints. Other examples for single-stage BTB-
models are the General Lot-sizing and Scheduling Problem with sequence dependent
Setup Times (GLSPST) and its extension for parallel lines (GLSPPL) introduced by
Meyr (2000, 2002). In both models macroperiods consist of an a priori defined number
and sequence of microperiods whose length is a decision variable. In contrast to the
CLSD, which only regards sequence dependent setup costs, GLSPST and GLSPPL
allow for sequence dependent setup times as well.
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Multi-stage simultaneous lot-sizing and scheduling 37

Grünert (1998) presents a multi-level BTB-model with single production lines on
each stage. The model respects setup times as well as setup costs. It also applies
the inventory balancing constraints to synchronize the production stages. The setup
sequence is determined with the help of TSP-constraints. However, in order to guar-
antee feasible plans significant lead times of one macroperiod are needed. A similar
approach is proposed by Sahling (2010), who extends the CLSD for multiple stages
and parallel production lines. This problem is solved with the Fix-and-Optimize heu-
ristic—also known as “Exchange heuristic”. Sikora et al. (1996) solve a lot-sizing and
scheduling problem with even five production stages and a serial product structure.
Unfortunately, they do not present a mathematical formulation.

Amongst other models, a multi-level formulation with macro- and microperiods
is presented by Fandel and Stammen-Hegener (2006) who try to calculate inventory
holding costs more accurately. This attempt leads to a non-linear model formulation.
Ferreira et al. (2009) consider a production planning problem with two stages that is
motivated by the soft drinks industry. They present a relaxation approach and several
heuristic strategies of the Relax-and-Fix type. Toledo et al. (2009) solve the same
planning problem, however, with the help of a genetic algorithm. Araujo et al. (2007)
extend the GLSPST for a second production stage and backlogging in order to solve
a two-stage planning problem of a foundry. They develop a Relax-and-Fix heuristic,
which uses standard branch-and-cut and different local search methods to tackle the
resulting sub-problems. Transchel et al. (2011) also introduce a model based on the
GLSP which is fitted to the two-stage production structure of a company in the process
industry. This model and two different reformulations are analyzed in terms of compu-
tational runtime and integrality gap. A further approach is presented by Mohammadi
et al. (2009). They consider a multi-level flowshop production where all machines are
arranged serially. Mohammadi et al. propose synchronization constraints that prevent
the production of an item on a certain machine unless it has been finished on the
predecessor machine. For this purpose “shadow products” (idle time) are introduced.

Meyr (2004) introduces a GLSPPL-based model with a common time structure for
all production lines on all production stages that allows for short lead times despite the
realistically long setup times. Furthermore, in this paper different extensions of the
base model are discussed and illustrated using two (very small) examples. He makes
the point that “setup splitting” and “quantity splitting” are essential to get reason-
able solutions with this model. Lang (2009, Chap. 7.2) presents an extension of Meyr
(2004) (by a “state-task-network”), which also allows product substitution. In the next
section, the basic ideas of Meyr (2004) and the new improvements are explained in
detail to give the reader a better understanding.

3 The General Lot-sizing and Scheduling Problem for Multiple production
Stages

The General Lot-sizing and Scheduling Problem for Multiple production Stages
(GLSPMS) is based on microperiods allowing the production of just one single item in
each microperiod. Furthermore, it uses a common time structure that will be presented
next.
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Fig. 1 Possible structure of a microperiod

Fig. 2 Example for the common time structure

3.1 Basic idea

The idea of the common time structure is that each period s starts at the same point in
time ws for all production lines and production stages. Only the starting times of a few
a priori selected periods are fixed in advance. The time span between two consecutive
fixed periods can now be interpreted as (the length of) a macroperiod. That fixing
allows us to model capacity,2 demand, and holding costs based on macroperiods. The
remaining non-fixed periods are called “free” periods because their starting times can
be determined as decision variables of the model. As a consequence, the time span
between two consecutive periods, at least one of them being free, is also a decision
variable. It constitutes a microperiod of variable length.

Each microperiod can include setup, production, and standby activities, i.e., the
length of a microperiod can contain shares of setup time, production time, and idle
time. In order to achieve a higher capacity utilization with a smaller number of mic-
roperiods, Meyr uses “quantity splitting” and “setup splitting”. Setup splitting is quite
common in the literature (Drexl and Haase 1995; Haase 1994). It means that a certain
part of a predefined setup time is executed at the beginning of the current period and
that the remaining part is executed at the end of the directly preceding period. Anal-
ogously, quantity splitting means that the output of a part of the production time can
serve as input on another production line in the same period (lead time =0), whereas
the output of the remaining part can at the earliest be used by a successor line in the
following period (lead time ≥1). Accordingly, as shown in Fig. 1, each microperiod
may consist of six different time spans: a setup time fraction at the beginning of the mi-
croperiod, idle time before production, production being available in the same period,
production being available in the subsequent period, idle time after production, and a
setup time fraction at the end of the period.

Figure 2 shows a possible solution of this approach where the entire time structure
can be illustrated. For instance, in Fig. 2, the starting times w1 and w5 of periods s = 1
and s = 5 are fixed. Accordingly, the length and thus capacity K1 of the first macrope-

2 Here capacity means available working time.
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(a) (b) (c) (d)

Fig. 3 Tighter plans with setup and quantity splitting

riod equals the difference of w5 and w1. The starting times w2, w3, and w4 are a result
of the optimization process. Thus, the lengths of all four microperiods belonging to
the macroperiod can (almost) freely be chosen. However, their sum has to equal the
length of the macroperiod. On line l = 2, the setup time of the first changeover is split
so that a fraction belongs to microperiod s = 1 and the rest to s = 2. Moreover, on
the same line in microperiod s = 3, the production quantity of item 5 is split. The
first part is directly moved to the next stage, whereas the second part is available in
the subsequent microperiod at the earliest (causing work-in-process (WIP) stock).

In order to further clarify the impact of setup and quantity splitting, Fig. 3 shows
once more the mentioned enhancements. If splitting were not allowed, the result might
look like Fig. 3a, where the complete changeover has to be executed within micrope-
riod s and the production of the required pre-product i must finish on time. However,
Fig. 3b–d demonstrate the improvements. In Fig. 3b, setup splitting is allowed; thus,
part of the changeover can be postponed to microperiod s + 1 and idle time can be
reduced. Quantity splitting makes it possible to keep on producing item i even if it
is not needed in the same microperiod on the next stage (3c). Simultaneous setup
and quantity splitting further condenses the schedule, thus leading to an even higher
utilization and a more realistic model of the real world problem (3d).

Note that this common time structure allows that line synchronization can be
achieved by the inventory balances per microperiod (see Eq. (4) in Sect. 3.2). Hence
the significant “macroperiod lead times” of multi-stage BTB models can be elimi-
nated. On the contrary, the time structure and the setup time splitting also allow for
setup times, which can reach the length of two—already quite long—macroperiods (if
the ending and starting time fractions of two subsequent microperiods consume both
macroperiods’ overall capacity). In addition, this time structure makes it possible to
model working time calendars or non-operation periods for maintenance purposes as
well.

3.2 Model formulation

In the following, we consider (physical) products i, j = 1, . . . , J where j = 1, . . . , E
represent final items and j = E + 1, . . . , J the corresponding pre-products.3 Each
product can be clearly assigned to a certain stage of the bill of materials (BOM) by

3 Thus, the items are sorted according to their low level code in the bill of materials.
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the BOM coefficients p ji , denoting the quantity of predecessor item j necessary to
produce one unit of successor item i . Furthermore, these items have to be scheduled
on production lines l = 1, . . . , L over a finite planning horizon. Note that the assign-
ment of production lines to production stages will only indirectly be captured by the
production coefficients al j , denoting the production time needed to produce one unit
of item j on line l (al j = 0 if j cannot be produced on l).

Setup costs sli j and times stli j express the costs and time for changing from a
product i to another product j on line l. By introducing a fictitious product 0, we are
able to model a sort of “neutral” setup state, i.e., shutting down a line for costs sli0,
remaining idle, and starting up a line for cost sl0 j again. In this case, the setup state
gets lost during the idle periods (without production). Note that a conservation of the
last setup state during idle periods, as it was assumed in Figs. 1 and 2, can also be
represented for physical products j > 0. This can be interpreted as holding line l in
a standby mode for producing the same product again—thus incurring no additional
setup costs, but possibly time-dependent standby costs bl .

Common BTB-models work with a planning horizon T consisting of non-overlap-
ping macroperiods t = 1, . . . , T . Capacity Kt , demand dmacro

j t and inventory holding
costs hmacro

j t are defined per macroperiod t . According to Sect. 3.1, the same planning
horizon is now additionally subdivided into S microperiods s = 1, . . . , S with variable
length, whose starting times are expressed by the decision variables ws . The starting
times of some of these periods, described by the set �, are fixed in advance. This is,
for example, the case for microperiods, which mark the beginning (or end) of a macro-
period, but can also be used to set fixed downtimes of machines, e.g., during holidays
or for maintenance. We introduce an artificial macroperiod t = T + 1, an artificial
microperiod s = S + 1, and let ft be the first microperiod of macroperiod t . Then the
capacity Kt of a “real” macroperiod t = 1, . . . , T can be expressed by the difference
ws′′ − ws′ of the fixed starting times of two subsequent “first” microperiods s′ = ft

and s′′ = ft+1. Analogously, demand dmacro
j t has to be fulfilled until the end of the last

microperiod of macroperiod t , which corresponds to ft+1 − 1. For ease of notation,
in the following � denotes the set of all of these “last” microperiods. Accordingly,
demand d js is set to zero for all s /∈ � and to d j, ft+1−1 = dmacro

j t , otherwise. In the
same way the holding costs h js can be defined on basis of macroperiods.

Furthermore, for each time interval shown in Fig. 1, decision variables have to be
introduced. Accordingly, xb

ls denotes the setup time fraction at the beginning of micro-
period s on line l. Analogously, xe

ls is defined as the setup time fraction at the end of
microperiod s. The production time is computed by al j · xl js where xl js describes the
quantity of item j produced on line l in microperiod s. Following the quantity split-
ting idea, xl js will further be subdivided into x̂l js and �xl js , whose production times
are the third and fourth element of Fig. 1. Finally, the idle times xb

ls and xe
ls represent

the remaining usage (or better non-usage) of line l in microperiod s before and after
the production, respectively (shutdown time for j = 0 and standby time for j > 0).

For instance, in Fig. 2, the microperiod s = 2 starts with idle time xb
12 > 0 on line

l = 1 and in microperiod s = 1 there is idle time xe
21 > 0 after production on line

l = 2. On the same line l = 2 item j = 5 is produced over the entire microperiod
s = 3. However, this production quantity x253 is split into x̂253 and �x253 since the
quantity �x253 is not needed before microperiod s = 4. Besides, a splitting of the setup
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Multi-stage simultaneous lot-sizing and scheduling 41

time occurs on line l = 2 in microperiods s = 1 and s = 2. Therefore, xe
21 > 0 and

xb
22 > 0.

According to the introductory remarks above, we use the following notation for the
model:

Indices
i, j, v = 1, . . . , J products, whereas =0 means neutral
k, l = 1, . . . , L production lines (multi-stage and/or parallel)
t = 1, . . . , T macroperiods (e.g., weeks, months)

= T + 1 artificial macroperiod
s = 1, . . . , S microperiods

= S + 1 artificial microperiod
Index sets
N j Set of all direct and indirect successors of product j
N I

j ⊆ N j Set of all immediate successors of product j
Il Set of products that can be produced on production line l
D Set of all (k, i, l, j)-tuples consisting of line-product combinations

(k, i) and (l, j) where product j is a direct successor of i
( j ∈ N I

i ) and j is producible on line l (al j > 0) and i on k (aki > 0)
� Set of all microperiods with fixed starting times
� Set of all last microperiods of macroperiods
�l Set of all microperiods in which production on line l is not allowed
Data
al j Capacity consumption (time) needed to produce

one unit of product j on line l
ml j Minimum lot-size of product j (units) if produced on line l
ml0 Minimum time line l has to remain shut down
h js Holding costs of product j (per unit and per macroperiod

t with s = ft+1 − 1)
cl j Production costs of product j (per unit) on line l
bl Standby costs on line l
yl j0 Equals 1, if line l is set up for product j at the

beginning of planning (0 otherwise)
sli j Setup costs of a changeover from product i to

product j on line l
stli j Setup time of a changeover from product i to product

j on production line l
d js Demand for product j in microperiod s (units)
I j0 Initial inventory of product j at the beginning of planning (units)
ws Starting time of fixed period s ∈ �

p ji Number of units of product j required to produce one unit
of the direct or indirect successor i

I max Maximum stock level (units)
W max

l j Maximum WIP-stock level after production
on line l (units)
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e j Purchasing costs (per unit) of product j
emax

j Maximum number of units of product
j that can be externally purchased

g Overtime costs
gmax Maximum overtime
Variables
ws ≥ 0 Starting time of microperiod s
I js ≥ 0 Inventory of product j at the end of microperiod s (units)
xb

ls ≥ 0 Fractional setup time for changeover at the
beginning of period s on line l

xe
ls ≥ 0 Fractional setup time for changeover at the

end of period s on line l
xl js ≥ 0 Total quantity of product j produced in microperiod

s on line l (units)
x̂l js ≥ 0 Share of xl js that can be used by

successors in the same microperiod s (units)
�xl js ≥ 0 Share of xl js that can as WIP-stock

first be used by successors in the following
microperiod s + 1 (units)

xb
ls ≥ 0 Standby time on line l in microperiod

s before production
xe

ls ≥ 0 Standby time on line l in microperiod s
after production

o js ≥ 0 Externally purchased quantity of product
j in microperiod s (units)

rs ≥ 0 Overtime used in microperiod s
yl js ∈ {0, 1} Setup state: yl js = 1, if line l is

set up for product j in microperiod s (0 otherwise)
zli js ≥ 0 Takes on 1, if a changeover from product

i to product j takes place on line l
during microperiod s (0 otherwise)

Objective function

min
∑

s∈�, j �=0

h js I js +
∑

l,i, j,s

sli j zli js +
∑

l, j,s

cl j xl js

+
∑

l,s

bl(xb
ls + xe

ls) +
∑

j �=0,s

e j o js +
∑

s

g · rs +
∑

l,s∈�, j �=0

h js �xl js (1)

subject to

ws = ws ∀s ∈ � (2)

x̂l js + �xl js = xl js ∀l, j �= 0, s (3)

I js = I j,s−1 +
∑

l

x̂l js +
∑

l

�xl j,s−1 + o js − d js −
∑

l

∑

i∈N I
j

p ji xlis∀ j �= 0, s(4)
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I js ≤ I max ∀ j �= 0, s (5)

�xl js ≤ Wmax
l j ∀l, j, s (6)

I j S = I j0 ∀ j �= 0 (7)

xb
l1 =

∑

i, j

stli j zli j1 ∀l (8)

xe
l,s−1 + xb

ls =
∑

i, j

stli j zli js ∀l, s ≥ 2 (9)

xb
ls + xb

ls +
∑

j

al j xl js + xe
ls + xe

ls = (ws+1 − ws) + rs ∀l, s (10)

al j xl js ≤ wS+1 yl js ∀l, j, s (11)

xl js ≥ ml j (yl js − yl j,s−1) ∀l, j, s (12)
∑

j

yl js = 1 ∀l, s (13)

yl js = 0 ∀l, j /∈ Il , s (14)

yli,s−1 + yl js − 1 ≤ zli js ∀l, i, j, s (15)
∑

i, j

zli js = 1 ∀l, s (16)

∑

j �=0

xl js = 0 ∀l, s ∈ �l (17)

o js ≤ emax
j ∀ j �= 0, s (18)

rs ≤ gmax ∀s ∈ � (19)

rs = 0 ∀s /∈ � (20)

xb
ls + xb

ls ≥ xb
ks + xb

ks − wS+1(2 − yl js − ykis) ∀s, (k, i, l, j) ∈ D (21)

aki x̂kis + xe
ks + xe

ks ≥ xe
ls + xe

ls − wS+1(2 − ykis − yl js)∀s, (k, i, l, j) ∈ D
(22)

The objective is to minimize the sum of holding costs of the lot-sizing stock,
sequence-dependent setup costs, and production costs, as well as costs for standby,
external purchase, overtime, and holding of WIP-stock (1). With the help of (2), the
starting times of all microperiods in � (including the macroperiods) are fixed. The
quantity split is allowed by (3), which divides the production quantity xl js into a part
x̂l js that is directly available in the same period s and into �xl js that is first available in
the next microperiod s + 1.

The inventory balancing constraints (4) ensure that primary as well as secondary
demand is met without backlogging. More precisely, the inventory of a certain product
j at the end of microperiod s equals the inventory of the same product at the end of the
preceding microperiod plus the total inflow on stock minus the total outflow from stock
during period s. The inflow on stock is composed by the total production of j during
s, the WIP-stock of j that has been built up in s − 1, and the externally purchased
quantities. Note that this WIP-stock has a lead time of a single, usually quite short
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microperiod and thus allows a more realistic modeling than commonly used BTB-
models, as already mentioned in Sects. 1 and 2. The outflow is the primary demand
of j in s and the secondary demand generated by direct successors i that are also pro-
duced in s. Constraints (5) restrict the overall inventory of each product if necessary,
whereas the line-specific WIP-stock can be limited by (6). Furthermore, constraints
(7) prevent zero “end-of-horizon” inventories, which may have a negative impact on
later periods beyond the planning horizon (Stadtler 2000). Note that a maximum stock
level for each product is necessary, if for instance the goods are perishable. A further
realistic assumption might be to limit the cumulative inventory for all products. This
can be easily achieved by constraints built analogously. The same is true for the WIP
stock.

Constraints (8) and (9) ensure that the required setup time stli j of a changeover from
i to j is actually used and thus make the setup split possible. These two groups of
constraints are improved as compared to Meyr (2004). First, a changeover at the begin-
ning of microperiod s = 1 is now allowed. Second, the setup time fractions xb

ls, xe
ls

are only considered in an aggregate manner (sum over i, j) compared to the original
formulation, thus reducing the number of variables. This is possible without a loss of
details, since the synchronization constraints have also changed as described later on.
According to the time structure outlined above, constraints (10) build up a microperiod
s, which consists of setup time fractions, idle and production time. The length of this
microperiod equals the time interval ws+1 −ws between the two subsequent micrope-
riods s and s + 1, which can be prolonged if overtime rs is used. Since the starting
times of some microperiods are fixed by (2), all-in-all limited production capacity can
be respected.

Because of (11) production can only take place if the line is set up accordingly.
For this “setup forcing constraint”, the right-hand side needs a coefficient of sufficient
size. This coefficient, sometimes also denoted as “big M”, has to be chosen carefully
as it should not limit the production unnecessarily, but also should not be unnecessarily
big. Thus the fixed end of the planning horizon wS+1 has been proposed.

Constraints (12) enforce a minimum lot-size and are needed because setup costs
(or times) do not always satisfy the triangular inequality sliv + slv j ≥ sli j .

Equation (13) enforce that a line can only be set up for exactly one product per mi-
croperiod. Since not all products can be produced on every line, (14) forbid irrelevant
combinations. (15) link the setup state indicators y with the changeover indicators z.
Together with the objective function (1) they ensure that zli js is only set to 1 if line
l was set up for i in s − 1 and for j in s. Correspondingly, zli js can be defined as
continuous variables. Note that since a setup for the same product j in two consecutive
microperiods s − 1 and s is possible and since sl j j = stl j j = 0 holds for all l and
j , the corresponding variables zl j js directly allow a setup carryover. That means, in
contrast to other formulations like the Capacitated Lot-Sizing Problem with Linked lot
sizes (CLSPL) (Haase 1994; Suerie and Stadtler 2003), no additional variables for a
setup carryover are necessary. Moreover, when an idle period s without any production
activities occurs on a line l (

∑

j>0 xl js = 0), it is up to the model to decide whether

• the setup state should be conserved for the last product j produced on this line
(yl j,s−1 = 1) without incurring any setup costs or times (zl j js = zl j j,s+1 = 1),
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• a changeover to another product i > 0, i �= j should be executed (zl j js =
zl ji,s+1 = 1), or

• the setup state should get lost (by changing to the fictitious product j = 0) because
the production line should be shut down after period s − 1 and started up again at
the beginning of period s + 1 (zl j0s = zl0i,s+1 = 1).

Note that most models for simultaneous lot-sizing and scheduling only allow mod-
eling either a conservation or a loss of the setup state after idle periods, but not both.
To get a tighter formulation, (16) are added (but not necessarily needed).

With respect to e.g., working calendars or pre-determined maintenance activities
(17) allow production to be prohibited on certain lines in certain microperiods. Con-
straints (18), (19), and (20) impose limits on external purchasing and overtime, respec-
tively. Note that only the capacity of fixed microperiods can be extended by overtime.

Finally, the multi-stage production enforces the additional synchronization con-
straints (21) and (22) to guarantee feasible plans. These constraints are new and make
the major difference to Meyr (2004). When considering a predecessor line k producing
a predecessor product i and a successor line l producing a (direct) successor product j ,
both equations ensure that the production of j must neither start before production of
product i starts nor end before the (relevant) production of product i (which is needed
in the same period) ends. Of course, a necessary prerequisite is that both products
can be produced on the respective lines at all, i.e., that aki > 0 and al j > 0. This
is expressed by the index set D, which contains all tuples (k, i, l, j) that fulfill these
conditions.

As illustrated in Fig. 4 constraints (21) force setup and idle time before production
on successor line l to be at least as long as setup and idle time before production on
line k. Constraints (22) assure that setup and idle time after production on line l are
at most as long as the time needed on line k for producing the parts which are first
available in the next microperiod, standby and setup at the end of the current micrope-
riod. However, these conditions only make sense if pre-product i is actually produced
on k and successor j on l. Accordingly, both types of constraints are only “active”, if
products i and j are set up on lines k and l, respectively. Since (21) and (22) prevent
an incorrect timing for each predecessor-successor relation and since the inventory
balancing constraints (4) ensure aggregate material availability, the resulting produc-
tion schedules appear fairly realistic even for parallel (predecessor and/or successor)
lines.

Fig. 4 Production of successor product j on line l must neither start nor end before predecessor product i
on line k in every microperiod s.
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4 Solution approaches

The purpose of Meyr (2004) and the above section was to propose a model formula-
tion that represents multi-stage production systems of consumer goods industries as
aggregately as possible, yet as accurately as necessary from a real-world problem’s
point of view. However, they have not provided an analysis of the solution perfor-
mance. Of course, it does not seem to be realistic to solve GLSPMS instances of
practical size to optimality by using standard MIP solvers as the feasibility problem
for the GLSPMS is already NP-complete for ml j > 0 and the special case of a single
production line/stage with emax

j = gmax = 0 (Fleischmann and Meyr 1997). Note
that by using the model relaxation (increasing overtime gmax and external purchase
emax

j so that they are not restrictive any more) a first solution can be constructed quite
easily. Thus the complexity of finding a feasible solution is reduced, yet the problem
of finding an optimal solution becomes even more difficult because the solution space
increases.

Modern solution heuristics like relax-and-fix use MIP solvers for subproblems when
trying to find (“construct”) first feasible solutions that may be improved afterwards
by a neighborhood search, for example. Thus it seems worth checking whether refor-
mulation techniques can strengthen the above model formulation of the GLSPMS and
improve the solution performance of standard MIP solvers. Therefore, in Sect. 4.1
some well-known reformulation techniques, which have been proven successful to
tighten other dynamic lot-sizing problems, are adapted to the GLSPMS. For demon-
stration purposes some (rather simple) construction heuristics are proposed in Sect. 4.2
to allow for a comprehensive testing of the reformulations and their potential applica-
tion when using the MIP-solver Xpress MP (Sect. 5).

4.1 Reformulations

We consider some reformulation techniques which are based on variable redefinitions.
We refer to them as “extended formulations” in the following (Pochet and Wolsey 2006,
p. 191). Furthermore, with the help of valid inequalities (Sect. 4.1.2) the solution space
can be additionally reduced, also resulting in tighter model formulations.

4.1.1 Extended formulations

Jans and Degraeve (2007) assert that typically three kinds of reformulations are used
for dynamic lot-sizing problems. A common way is the variable redefinition presented
by Eppen and Martin (1987). They regard production quantities as proportion of accu-
mulated demands. The resulting formulation equals a shortest route (SR) problem.

Another approach is based on the idea that an item/period combination can be inter-
preted as a “facility location” (see Krarup and Bilde 1997; Rosling 1986). The opening
of such a facility/plant causes fixed costs, which is similar to setting up a machine for
production. Furthermore, the demands of subsequent periods can be interpreted as
the demand of customers and thus transportation costs equal inventory holding costs.
Hence, it represents a simple plant location (SPL) problem.
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The multicommodity-flow formulation proposed by Pochet and Wolsey (1994) is
quite similar to SPL. Now, the variables represent the production of an item that is
used for the demand of a certain final item in a certain period.

As Jans and Degraeve (2007) state these three formulations produce the same lower
bound for the single level capacitated lot-sizing problem and can be transformed to
each other, respectively. Moreover, Denizel et al. (2008) have proven that SPL and SR
give the same LP bound for the CLSP with setup times. Since the same observation is
made by Stadtler for the multi-level CLSP (Stadtler 1996), we only concentrate on the
SPL formulation presented by Stadtler as one representative. Because its extension to
quantity splitting and external purchasing is not straightforward, we summarize it in
the following.

For that purpose the net demand dn
jτ of product j in microperiod τ , which describes

the actual quantities to produce, has to be initialized first. It is calculated recursively
by dn

jτ := Dn
jτ − Dn

j,τ−1 for all τ = 1, . . . , S, where Dn
jτ := max{0;∑τ

σ=1(d jσ +
∑

i∈N I
j

p ji dn
iσ )− I j0} represents the cumulated (primary and secondary) net demand

of product j until microperiod τ . Note that Dn
j0 := 0, dn

iτ := 0 for all i ∈ N I
j with

j = 1, . . . , E being final items, and that due to (7) an ending inventory I j S has to
be built up, which increases the original primary demand d j S of the last microperiod
S by I j0 (thus leading to a re-definition of d j S according to d j S := d j S + I j0). The
further notation and the adapted constraints are as follows:

Indices
σ, τ, θ = 1, . . . , S microperiods

Data
dn

jτ Net demand of product j in microperiod τ

Variables
ql jsτ ≥ 0 Fraction of dn

jτ which is produced on line l during microperiod s(≤ τ)

q̂l jsτ ≥ 0 Share of ql jsτ that can be used by successors in the same microperiod s
�ql jsτ ≥ 0 Share of ql jsτ that can (as WIP-stock) first be used by successors in the

following microperiod s + 1 so that (23) and (24) hold
qext

jsτ ≥ 0 Fraction of dn
jτ which is externally purchased in microperiod s

Adapted constraints

ql jsτ = q̂l jsτ + �ql jsτ ∀l, j, s, τ (23)

�ql jττ = 0 ∀l, j, τ (24)

xl js =
S

∑

τ=s

dn
jτ ql jsτ ∀l, j, s (25)

ql jsτ ≤ yl js ∀l, j, s, τ ≥ s (26)

∑

l

τ
∑

s=1

ql jsτ +
τ

∑

s=1

qext
jsτ +

∑

i∈N j

p ji

τ
∑

s=1

qext
isτ

dn
iτ

dn
jτ

= 1 ∀ j, τ : dn
jτ > 0 (27)

123



48 F. Seeanner, H. Meyr

I j0 +
∑

l

σ
∑

s=1

S
∑

τ=s

(q̂l jsτ + �ql j,s−1,τ )d
n
jτ +

σ
∑

s=1

S
∑

τ=s

qext
jsτ dn

jτ

≥
σ

∑

τ=1

d jτ +
∑

l,i∈N I
j

σ
∑

s=1

S
∑

τ=s

p ji d
n
iτ qlisτ ∀ j > E, σ (28)

The basic idea is that the variables ql jsτ describe the fraction of the total (primary
and secondary) net demand dn

jτ of item j in period τ , which has been produced in
microperiod s(≤ τ) on line l. Correspondingly, the fraction of the WIP stock for the
same microperiod needs to be zero (24). So each xl js of the model presented in Sect. 3.2
has to be replaced by (25). Additionally, the linking constraints (11) are replaced by
(26). Note that the “big M” is set to 1 in this case.

Since production quantities now contain the information how long they are stored,
we do neither need the inventory variables I js nor the inventory balancing constraints
(4) any longer. Holding costs can be directly calculated using the ql jsτ as it is, for exam-
ple, shown in Stadtler (1996). Fractions qext

jsτ for external purchasing also need two
time indices s and τ because it might be necessary to buy and assemble a pre-product
earlier than its corresponding final item is needed. Thus costs for external purchas-
ing and constraints (18) have to be adapted analogously. Accordingly, the objective
function (33) can be found in Appendix A.

Even though the inventory variables can be dropped, we still have to ensure that
primary demands are fulfilled and pre-products are produced on time. Therefore, con-
straints (27) enforce that the net demand fractions of a product j sum up to 100 %. Here
of course production quantities have to be considered, but external purchasing must
not be forgotten either. This does not only concern the purchased quantities of product
j itself. Purchasing direct or indirect successor products of j also reduces secondary
demand for j . Thus those have also to be taken into account. However, we can restrict
ourselves to products and periods with a positive net demand. Additionally, constraints
(28) replace I js ≥ 0. They guarantee that cumulated supply of pre-products equals
or exceeds their cumulated demand for each microperiod σ , i.e., initial inventory plus
the total production or external purchase for net demand up to σ is not lower than
the—up to the same period—total original gross demand and secondary net demand,
which has been induced by production.

It is interesting to note that the one-period lead time of the variables �q has to be
taken into account (�ql j0τ = 0 for all l, j, τ if I j0 also includes the WIP-inventory)
when calculating the overall production quantity of pre-product j that is available to
fulfill demand of microperiod τ on the left-hand side of (28). Due to (27), the SPL
formulation does not allow any final stocks. This is the reason why the final stocks (7)
of the original formulation had to be included in the net demand calculation. Thus con-
straints (7) can be dropped now without loss of generality. In addition, note that (5)
have to be adapted analogously to (28) replacing I js ≥ 0, and that variables ql jsτ

could be eliminated by replacing them with (23) in the respective constraints. We only
introduced them to improve readability.

The above-mentioned formulations refer to the “inventory holding” and “produc-
tion” variables. In contrast, Karmarkar and Schrage (1985) propose to reformulate the
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“setup” variables. By introducing the flow conservation constraints (29) for change-
over variables zli js ∈ {0, 1} and substituting yl js by

∑

i zli js they eliminate constraints
(15) and replace the setup state indicators y in the remaining constraints:

∑

i

zli j,s−1 =
∑

i

zl j is ∀l, j, s > 0 (29)

Since the SPL and the flow conservation reformulations can, but need not to be
applied in combination, four different types of formulations are considered in the
remainder of this paper: original (O), i.e., the base model without SPL and flow con-
servation presented in Sect. 3.2, flow conservation (F), simple plant location (S), and
its combination (SF).

4.1.2 Valid inequalities

Besides, a formulation can be tightened by additional valid inequalities. One class
of those valid inequalities is proposed by Pochet and Wolsey (2006, p. 218). They
represent a subset of the known (l,S)-inequalities (see Barany et al. 1984). If there is
no setup for an item for several periods (s +1, . . . , τ ), the stock in period s must equal
or exceed the corresponding cumulative demand in these periods. For the GLSPMS
it means that also the WIP stock in microperiod s and the purchased quantity of mic-
roperiods s + 1, . . . , τ have to be taken into account. The corresponding constraints
(30) can be added to the original formulation (O) and flow conservation formulation
(F), but only for the final items ( j = 1, . . . , E) with primary demand.

I js +
∑

l

�xl js +
τ

∑

σ=s+1

o jσ ≥
τ

∑

σ=s+1

d jσ ·
⎛

⎝1 −
∑

l,i

σ
∑

ϑ=s+1

zli jϑ

⎞

⎠

∀ j ≤ E, s < S, τ > s : d jτ > 0 (30)

Note that these inequalities can be adapted and limited to (inventories at the end of)
macroperiods t because positive demand can only occur during the last microperiod
of a macroperiod, i.e., d js = 0 for s /∈ � (see Sect. 3.2).

In contrast, since the SPL formulation is based on echelon stocks (Clark and Scarf
1960), which represent the system-wide stocks of an item (on hand or already built in
successor items), in the SPL-based formulations the (l,S)-inequalities can be applied
for all products. Accordingly, constraints (31) enforce that if there is no setup, all frac-
tions that are produced or externally purchased [directly or already built in externally
purchased successor items, cp. (27)] must sum up to 1.
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s
∑

ϑ=1

τ
∑

σ=s+1:dn
jσ >0

⎛

⎝

∑

l

ql jϑσ + qext
jϑσ +

∑

i∈N j

p ji
dn

iσ

dn
jσ

qext
iϑσ

⎞

⎠

≥
τ

∑

σ=s+1

⎛

⎝1 −
∑

l,i

σ
∑

ϑ=s+1

zli jϑ

⎞

⎠ ∀ j, s < S, τ > s : dn
jτ > 0 (31)

Moreover, as mentioned above lot-sizing models usually need a setup forcing con-
straint like (11). Often a good choice of the “big M” increases notably the lower bound
of the LP relaxation and thus reduces computational runtime. Since this value repre-
sents an upper bound for the production quantity, a widespread approach is to define
M as the minimum of accumulated remaining demand and available capacity in the
current period divided by the production coefficient. Note that new index sets St are
introduced, which contain all microperiods belonging to a macroperiod t :

xl js ≤ min

{

Kt

al j
,

S
∑

σ=s

dn
jσ

}

·
∑

i

zli js ∀l, j, t, s ∈ St. (32)

In the remainder of this paper (K) denotes the stock-inequalities (30) for the for-
mulations (O) and (F) and the echelon stock inequalities (31) for the formulations (S)
and (SF), respectively. Furthermore, (M) denotes the valid inequalities (32) for the
big-M variant.

4.2 Construction heuristics

In Sect. 4.1 different formulations are presented that can improve the LP lower bound
of the GLSPMS. When used within a standard MIP solver they might give solutions
that are nearly integral and allow finding optimal solutions substantially faster than
using the original formulation of Sect. 3.2. But if the exact optimization still proves to
be too slow, heuristics are needed to find good feasible solutions in a reasonable time
(Pochet and Wolsey 2006, p. 108).

The simplest heuristic approach—that will also serve as a benchmark in the com-
putational tests of Sect. 5—is to run the standard MIP solver for a fixed amount of
time and to take the best solution found so far. This approach will be called “Truncated
MIP” (TM) in the following. For our tests we will limit the runtime to 300 s.

The idea of the second heuristic is to fix those binary variables that are already inte-
gral in the solution of the LP relaxation. Afterwards the remaining MIP is tried to be
solved (Pochet and Wolsey 2006, p. 108). If only a few variables of this “LP-and-Fix”
(LF) heuristic get fixed in the first step, the computation times of the remaining MIP
can still become crucial. Thus, runtime is limited to 300 s as well.

The “Relax-and-Fix” (RF) heuristic partitions the binary variables into several sub-
sets. For each subset an MIP will be solved, where only those variables which belong
to this corresponding subset are restricted to binary values. All others are relaxed.
These MIPs are solved sequentially, i.e., after an MIP is solved, its binary variables
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are fixed and the next subset is considered (Pochet and Wolsey 2006, p. 109). To build
the subsets of variables we divide the planning horizon into time windows. Each time
window consists of a macroperiod and its corresponding microperiods. The time win-
dows are rolled from macroperiod 1 to the end of the planning horizon. In order to
be able to compare all heuristics in a fair way, the total runtime for the Relax-and-Fix
must also not exceed 300 s. Thus, each subproblem, which needs to be solved, must
not exceed 300/T s where T is the number of macroperiods.

5 Computational tests

As shown by Meyr (2004) and sketched in Sect. 3 the GLSPMS appears to be appro-
priate to model practical lot-sizing and scheduling problems of multi-stage flow shop
production in consumer goods industries with a sufficient level of detail. Nevertheless,
it has to be tested how the GLSPMS behaves from a computational point of view—
when either solved exactly by a standard MIP solver or heuristically by one of the
MIP-based solution approaches presented.

For this purpose several test scenarios were created, which are described in the
next Sect. 5.1. All formulations and heuristic approaches have been implemented and
tested with Xpress MP of Fair Isaac. Accordingly, Xpress Optimizer Version 20.00.22
was used as a standard MIP-solver. The test instances, which will be described in the
following, were run on a single core (2 threads) of a Dell Precision T1500 with an
Intel Core i7-860 (2.8 GHz) processor, 8 GB RAM, and the Windows Server 2008
64bit operating system.

5.1 Base scenarios

We manually created three base scenarios with a divergent, general, and serial product
structure. They are motivated by practical problems and represent realistic situations.
Even though the dimensions may differ from reality, the data allow for comparing
different formulations and solution approaches. In the following the structure of these
scenarios is illustrated. The complete data can be found in Appendix B.

5.1.1 Serial product structure (SER)

The first scenario is a three-level serial production of juices. There are two final items,
a six-pack of apple juice ( j = 1) and a six-pack of cherry juice ( j = 2). The apple
juice is filled in standard 1L bottles ( j = 3), whereas the other, more outstanding
1L bottles—differing in shape and texture for marketing purposes—are used for the
cherry juice ( j = 4). Accordingly, in a first step, two different types of PET bottles
( j = 5, 6) are produced on stretch blow-molding machines. Since filling is faster than
molding, two identical molding lines l = 3, 4 are needed. A schematic representation
of the corresponding BOM and the assignment of products to lines is given in Fig. 5.

On the second production stage (and level e = 1 of the BOM structure, respectively)
the bottles are filled with the help of a single tank l = 2. Since this tank has a minimum
fill level, minimum lot-sizes are required. Setup times are highly sequence dependent
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Fig. 5 BOM and product-line assignment of the serial instance

Fig. 6 BOM and product-line assignment of the divergent instance

due to cleansing processes. As mentioned, filling is quite fast, however, WIP-stock
of filled bottles is limited because of the restricted space between the filling and the
wrapping machine.

On the final stage (l = 1) the shrink-packaging takes place, where six bottles of
each sort are wrapped. Due to the different types of bottles the corresponding calibra-
tion is quite time-consuming. Each macroperiod has a capacity of 80 time units and
the demand varies between 2 and 8 units for the final items. The production costs are
the same (=1) for all lines, except for line 4, which causes higher costs for mainte-
nance reasons. The lines are already setup for products 1, 3, 5, and 6, respectively. The
remaining data can be found in Table 7a–n of Appendix B.

5.1.2 Divergent product structure (DIV)

In this divergent scenario sheet glass is produced in different colors and lengths on
two production stages. The scenario is illustrated in Fig. 6. On the first stage there
is a single line l = 3 producing light-colored ( j = 5) and dark-colored ( j = 6)
glass. The production of light-colored glass is more time-consuming (a35 = 4) than
the production of the dark one (a36 = 2). To change the setup from light to dark is
less complex (st356 = 2) than vice versa (st365 = 6). Both pre-products can be cut
in two lengths—short and long—on the second stage. Thus, there are four final items
j = 1, . . . , 4 possible. Long items need twice as much of glass (p51 = p63 = 2) than
short cut (p52 = p64 = 1).

For cutting, two parallel lines are available. The newer one l = 1 needs a11 =
a13 = 3 for a long and a12 = a14 = 4 for a short item. Changeover from short to long
takes 2 time units, whereas long to short only 1. Besides, a cleansing of 3 time units
is needed for a change from dark to light and of 1 time unit for the reverse. The older
line l = 2 is just able to produce short items in 8 units of time. On that machine, a
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Fig. 7 BOM and product-line assignment of the instance with the general product structure

setup change from dark to light requires 4 and 2 for the reverse, respectively. Stocks
are not allowed for the pre-products.

The minimum lot-size is one unit. At the beginning all production lines l = 1, 2, 3
are already set up for j = 1, 2, 6. The older one causes production costs of 2 per unit,
the other lines expense 1 per unit. Setup costs equal the corresponding setup times.
The planning horizon consists of three macroperiods t = 1, . . . , 3. Accordingly, there
are four microperiods with fixed starting times of 0, 80, 160, and 240, the last one
being the artificial one. There is only demand for final items varying between 2 and 6
units. All other values are listed in Table 8a–n of Appendix B.

5.1.3 General product structure (GEN)

A third scenario with a general product structure describes the production of yogurt.
Two kinds of yogurt ( j = 6 and j = 7) are filled in big and small cups ( j = 5 and
j = 8) resulting in four different final items j = 1, . . . , 4. In this make-and-pack
environment, the cups as well as the yogurt are produced on the first stage, each of
them on a dedicated production line, which is shown in Fig. 7. The cups on line l = 3
need a35 = 8 and a38 = 2 time units per item. A changeover st358 from the big to
the small packaging format needs 8 units of time and 6 for the reverse. Besides, after
a machine breakdown (i = 0) it takes st30 j = 12 to ramp up. But standby is also
possible with b3 = 1. The yogurt can be produced on line l = 2 in parallel with
a2 j = 6. Both setups are sequence independent (st267 = st276 = 4).

On the second stage the final items are filled and packed on line l = 1 using
p63 = p74 = 0.5 units of yogurt for small cups, else 1. Making the yogurt on line
l = 2 and filling it on line l = 1 are synchronized. Thus, stocking for items 6 and
7 is not allowed. However, producing the cups is decoupled by an unlimited buffer.
The corresponding production coefficients are a11 = a12 = 6 and a13 = a14 = 3.
A changeover from big to small cups needs 8 and from small to big 6 time units,
whereas changing only the yogurt flavor needs 4. All further data is presented in
Appendix B (Table 9a–n).

As shown in Table 1, these three base scenarios are varied to 82 problem instances
by copying BOM structures and increasing the number of lines and periods of demand.
Finally, instances with 6–12 products, 3–9 lines, and 3–8 macroperiods result.

5.2 Results

At first, the aim is to learn the advantages and disadvantages of the different model
formulations and valid inequalities presented in Sect. 4.1. For the best performing
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Table 1 Overview of test
instances

L J T

SER 4,8 6,9,12 4,5,6,7,8

DIV 3,6,9 6,9,12 3,4,5,6

GEN 3,6 8,11 3,4,5,6

ones, the influence of different problem characteristics like product structure, utiliza-
tion rate, etc., is examined in Sect. 5.2.2. Finally, the solution quality of the heuristics
of Sect. 4.2 is compared in Sect. 5.2.3.

5.2.1 Comparison of the different model formulations

Before the different formulations were tested, the maximum solvable problem size
and the impact of different solver settings like “automatic cut generation” and “pre-
solving” of the standard MIP solver have been analyzed. These pre-tests have shown
that the default solver settings perform best on average. They are thus used for all
experiments of Sect. 5.2.

In the following the extended formulations “flow conservation” (F), “simple plant
location” (S) and their combination (SF) of Sect. 4.1.1 are compared with the original
formulation (O), each with the stock inequalities (K) and valid inequalities for the big-
M variant (M) of Sect. 4.1.2 potentially being added. According to the observations
of the pre-tests, we differentiate the test instances by their size and use default solver
settings in the following. The “size” of a problem instance is defined as the number
of products multiplied by the number of lines and the total number of microperiods
(J × L × S). All in all, three groups of sizes result, which are called G1, G2 and G3,
where G1 contains all instances with J×L×S ≤ 250, G2 with 250 < J×L×S ≤ 500,
and G3 with J × L × S > 500. The results are shown in Table 2.

The first column (PS) describes the percentage of instances that are solved in 3,600 s
to optimality. For those instances the percentage integrality gap =
optimal solution−LP relaxation

LP relaxation ×100 can be measured, which is given in the second column
(IG). The quality of the different formulations is evaluated by inspecting the IG, since
the LP relaxation describes the tightness of the formulation: the smaller the gap within
the same group of instances, the better the formulation. In the third column the average
runtime (AR) of the solved instances is presented (s).

It is interesting to note that using the simple plant location formulation (S, SF)
produces better IG values (36 and 45 % on average) than are possible when using the
original formulation or F stand alone (56 and 50 % on average). These observations
coincide with the results of Denizel and Sural who regarded the CLSP with setup times
(Denizel and Süral 2006).

If S is not applied, the IG can at least be improved by adding the big-M inequalities
M (e.g., for O and F the IG can be reduced from 80 to 54 % and from 76 to 46 % when
not using K, and from 49/44 % to 42/35 % when using K). Unfortunately however,
they do no make it possible to solve more instances. The percentage of instances PS
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Table 3 Percentage of instances that are unfinished after 3,600 s (PU) and the corresponding duality gap
(DG) for the original formulation (O), the extended formulations “flow conservation” (F), “simple plant
location” (S), and their combination (SF)—possibly extended by stock inequalities (K) and big-M-inequal-
ities (M)

– M K M + K Average

PU DG PU DG PU DG PU DG PU DG

G2

O 28 31 28 27 33 25 26 28 29 28

F 29 30 25 24 32 23 27 20 28 24

S 28 26 27 24 30 25 25 25 27 25

SF 30 24 26 18 32 21 25 20 28 21

G3

O 78 15 73 17 75 17 73 14 75 16

F 70 18 63 18 62 18 56 18 63 18

S 73 14 71 13 75 14 75 13 73 14

SF 70 16 67 15 65 17 65 15 67 16

Average

O 34 21 32 21 35 20 31 19 33 20

F 32 22 28 20 31 20 27 19 30 21

S 32 19 31 18 34 18 31 18 32 18

SF 32 19 30 16 32 18 29 17 31 18

that can be solved to optimality within the time limit almost stays the same regardless
of the type of formulation used (67–70 % on average).

What can also be seen is that for the simple plant location formulation (S) the big-M
inequalities produce higher integrality gaps (from 34 to 39 %). The plain explanation
is that constraints (26) are tighter than the corresponding adapted constraints (32).

As was to be expected, less instances can be solved to optimality when the problem
sizes increase. Within group G1 all problem instances can be solved within the one
hour time limit (PS = 100). This reduces to an average of 25–37 % within group G3.
Within the groups G1 and G2 the values of PS are quite independent on the formula-
tion chosen. However, for the big instances within G3 the flow formulation F performs
significantly better than the others (e.g., 37 % compared to 25 % of the original formu-
lation). But obviously, only those G3 instances which show a small IG can be solved
to optimality at all.

Concerning valid inequalities it can be stated that it is always advantageous to use
the big-M-inequalities. The PS-values of column “M” are never worse than the corre-
sponding ones of column “–”. The same holds true when comparing columns “M + K”
and “K”. All in all the combination M + K performs best with respect to the number
of optimally solvable instances PS.

To complete the picture, Table 3 also shows performance indicators for the prob-
lem instances that have proven to be too difficult to be solved to optimality within
the time limit. The first column PU—showing the percentage number of unfinished
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problems—complements the PS column of Table 2. Correspondingly, group G1 is
dropped since all instances of this group have been solved to optimality. For all other
instances, the percentage duality gap (DG) after 3,600 s is shown. It is measured by:
duality gap = best solution−best lower bound

best lower bound × 100. It gives an idea about the worst case
quality of the best (feasible) solution found after 1 h.

Interestingly, the duality gaps DG decrease when the problem sizes increase from
G2 (21–28 %) to G3 (14–18 %). This appears counterintuitive at the first sight. But one
has to keep in mind that—because of their smaller size—within the 1 h time limit more
than twice the number of G2-instances have been solved to optimality as compared
to G3-instances. Thus after 1 h only the 27–29 % “hard” instances of the middle-size
class G2 remain, which have a quite high DG. The larger instances of class G3 need
longer computation times anyway. Thus, after one hour also some “easier” problem
instances are left which already show a rather low DG.

It is also interesting to note that the S formulations offer preferable duality gaps (the
DGs of S are never higher than the ones of O; the same holds true for SF and F), even
though the percentages of unfinished instances PU might be higher (F and SF for G3).

5.2.2 Influence of varying problem characteristics

So far the instances have only been examined in terms of their size. But it might also
be important to learn about the impact of the underlying product structure or other
characteristics of the test instances like the utilization rate, the time between orders
and the relation between setup costs and setup times.

For this reason Table 4 shows the same results as Table 2, but now grouped by the
product structure. Indeed, three main effects can be seen: first, the big-M variants M
and M + K are still preferable (best value per model formulation is marked in italics).
Usually, M + K performs best, but especially for divergent product structures M also
shows very good results. Second, the integrality gap of the serial instances is very low
compared to the other product structures (between 5 and 9 % on average). In fact,
almost all instances of group G3, which have been solved to optimality according to
Table 2, actually show a serial product structure. Thus, divergent and general problem
structures seem to be significantly more difficult than serial ones. And third, the flow
formulation is beneficial for serial and general product structures. The PS values of F
outperform O and the PS values of SF outperform S for these kinds of problems. In
most cases F again seems preferable to SF. However, the situation is different for the
divergent instances. Here, F seems to be rather counterproductive and S performs best
(followed by O).

Summing up, the flow formulation F in combination with both valid inequalities
M + K performs best for the serial instances (88 %) and for the general instances
(78 %). On the contrary, F is rather disadvantageous for divergent product structures.
Here, the simple plant location formulation S—again using the extension of M + K—is
superior (66 %).

In accordance with these results, with the help of the two “best” formulations
F + M + K and S + M + K we want to examine the potential influence of the other
problem characteristics mentioned. To see the impact of the utilization rate, the capac-
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Table 5 Percentage of test instances with different problem characteristics solved to optimality in 3,600 s
(PS), the corresponding integrality gap (IG), and the average runtime (AR) in seconds for the two best
formulations S and F including stock inequalities (K) as well as big-M-inequalities (M)

Normal Cap tbo Setup

PS IG AR PS IG AR PS IG AR PS IG AR

SER

F + M + K 88 6 335 89 5 129 89 7 195 88 6 302

S + M + K 74 6 258 73 5 125 76 7 326 75 6 340

DIV

F + M + K 59 69 348 57 39 461 66 68 416 63 70 347

S + M + K 66 64 398 55 40 226 65 70 326 64 69 365

GEN

F + M + K 78 37 436 76 70 320 78 50 405 82 39 464

S + M + K 66 39 185 72 79 446 66 56 280 66 39 124

Average

F + M + K 73 35 363 72 32 288 76 40 325 75 37 356

S + M + K 69 37 302 65 36 240 69 43 317 68 38 305

ity (cap) of the instances is reduced by 20 % (w̄
cap
s := 0.8w̄s ∀s ∈ �). The time-

between-orders (tbo) is supposed to be a second factor. Therefore, the setup costs
are doubled (stbo

li j := 2sli j ∀l, i, j) so that holding inventory becomes more attrac-
tive and larger lot-sizes are to be expected. Finally, since setup costs and times are
the same for the current instances, the setup costs are now “inverted” (setup). This
means that for each line the setup cost for the most expensive changeover is now the
cheapest, the second most expensive is now the second cheapest, and so on (ssetup

li j :=
maxi, j {sli j } + mini, j {sli j } − sli j ∀l, i, j �= i with ali > 0 and al j > 0). Thus, setup
costs and setup times are not proportional any longer.

In Table 5 the corresponding results are shown. In column “normal” the values
of Table 4 are repeated for comparison. Obviously, general conclusions in terms of
solvability can hardly be derived. For instance, by reducing the capacity the IGs for
the divergent product structures become smaller (39/40 %), but less instances could be
solved (57/55 %). In contrast, PS is nearly the same for the general structure with the
flow formulation and even higher for the simple plant location formulation, although
the IGs are substantially larger now (70/79 %).

The impact of a different time-between-orders is almost negligible in terms of PS.
Only the IGs increase slightly for most of the instances, again to the highest degree for
the general product structures. The reason is that—compared to the other cost terms
of the objective function—mainly the setup costs are “affected” by the LP relaxation.
By allowing fractional setup costs instead of binary ones, the influence of an increase
gets mitigated.

For the “setup” instances no real difference could be observed at all. Accordingly,
it seems that instances with proportional setup times and costs are not easier to solve.
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5.2.3 Heuristics

In the remainder we evaluate the solution quality of the heuristics described in Sect. 4.2.
Table 6 contains the results of the Truncated MIP (TM), the LP-and-Fix (LF) and the
Relax-and-Fix (RF), again for each possible formulation and with a time limit of 300 s.

In the columns denoted by “GP” the average percentage difference between the
best feasible solution found within 300 s and the overall best lower bound found
by any formulation within 3,600 s (results of Sect. 5.2.1) is given. Thus, differences
really stem from the formulations’ potentials to find feasible solutions. Moreover, the
average runtime (AR) is listed as well (s).

Once more it can be seen that the serial instances are easier to solve. TM as well
as RF are both able to solve most of the instances to optimality (all GPs ≤ 2 %)—
independently from the used model formulation. Only LF shows some weaknesses
when using the flow formulations. Then GP values up to 23 % occur. But with the
other formulations LF produces competitive results as well, even though the average
runtimes are significantly higher than those of TM and RF. Note that RF also runs
considerably faster than TM.

For the divergent instances all three heuristics perform quite differently. TM per-
forms best (GP between 7 and 16 %) and specially the S formulation shows again its
superiority (GP between 7 and 9 %) as in the section before. In contrast, RF is not that
good anymore. The gaps (GP) lie between 19 and 29 %, but with an average runtime
between 11 and 20 s as compared to the 14–28 s of TM. Finally, the LF produces the
worst results. The lowest gap is 31 %, the highest even 663 %. Again a systematic
difference related to the formulations can be observed. It seems that for the F and
SF formulations more variables can be fixed. On the one hand, this results in a lower
runtime. But on the other hand, the GP values are quite high.

This contrast between F and SF for LF becomes dramatically obvious for the
instances with a general product structure. Here, LF produces e.g., a gap of 1,108 %
in 1 s compared to e.g., a gap of 25 % after an average runtime of 109 s. The results
of TM are again the best with gaps between 8 and 20 %. SF shows the best qual-
ity, but with the longest running times. The quality of F is close by, but computation
times are advantageous. RF performs quite bad (GP up to 213 %). However, the M+K
inequalities allow competitive results for the O, F, and S formulations (29–36 %).

In sum, TM performs best by far in terms of solution quality, in particular the S
formulation for the DIV instances and the (F and) SF formulation(s) for the GEN
instances. The main reason is probably that these formulations benefit from their sim-
ilar behavior in Table 4. LF is fast, but of very bad quality when applied in a flow
formulation. The O and S formulations of LF behave substantially better with respect
to solution quality, however, at costs of higher computation times. RF is also worse
than TM in terms of solution quality. However, the computational effort for RF is
significantly lower. This might become interesting when real-world instances are con-
sidered, which usually are much larger than the rather small examples tested here.
In this case, running times, scalability, and thus also decomposability of a heuristic
approach will become crucial.

Note that an increase of computation time from 300 to 3,600 s does not really
change the picture. For TM the GP stays almost the same when the SER instances
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Table 6 Gap (GP) and average runtime (AR) of Truncated MIP (TM), LP-and-Fix (LF), and Relax-and-Fix
(RF) for the original formulation (O), the extended formulations “flow conservation” (F), “simple plant loca-
tion” (S), and their combination (SF)—possibly extended by stock inequalities (K) and big-M-inequalities
(M)

– M

TM LF RF TM LF RF

GP AR GP AR GP AR GP AR GP AR GP AR

SER

O 1 14 1 118 2 7 1 14 1 114 2 8

F 1 15 23 3 2 5 1 13 22 3 1 6

S 1 19 1 113 1 10 1 18 1 96 1 10

SF 1 25 20 5 2 8 1 21 19 4 1 9

DIV

O 10 20 66 104 29 11 10 19 62 99 26 12

F 16 16 663 2 28 14 13 15 632 2 24 14

S 7 19 31 102 23 14 7 18 42 101 21 12

SF 13 28 637 2 26 15 10 26 644 2 20 14

GEN

O 18 21 42 99 213 5 19 17 25 99 87 5

F 15 18 1,119 1 193 5 13 15 1,108 1 84 6

S 19 17 20 99 39 8 18 16 25 109 48 8

SF 10 28 1,082 1 207 5 9 24 1,093 1 85 7

K M + K

TM LF RF TM LF RF

GP AR GP AR GP AR GP AR GP AR GP AR

SER

O 1 16 1 126 2 9 1 13 1 113 1 13

F 1 15 23 3 1 6 1 13 21 3 1 6

S 1 18 1 123 1 14 1 16 1 109 1 14

SF 1 23 19 5 1 11 1 19 18 5 1 13

DIV

O 12 19 46 119 24 16 8 18 43 103 22 15

F 16 15 543 2 27 20 12 14 519 2 26 19

S 9 19 33 108 22 14 6 19 36 108 19 16

SF 13 25 589 3 26 17 10 25 583 3 23 15

GEN

O 16 17 14 109 42 7 17 17 16 97 36 8

F 9 17 1, 057 1 41 6 8 15 1, 026 1 29 6

S 16 17 16 121 54 10 20 17 20 109 35 9

SF 9 26 1, 065 1 146 6 9 24 1, 048 2 66 7
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are considered. The reductions (GP300 s − GP3,600 s) range between 1 and 5 for the
DIV instances with F+M+K being the only exception because there a reduction by
11 is possible. The GEN instances are reduced by 1–6 as compared to Table 6. The
results of LF and RF cannot noticeably change when longer running times are allowed.
Within 300 s, all remaining MIPs of the (bad performing) flow formulations of LF
and around 70 % of the other formulations have already been solved to optimality.
Thus there is not much room left for improvement. For RF more than 99.5 % of the
“sub-MIPs” of RF can be solved to optimality within 300 s. Here improvements would
only be possible if the sub-MIPs were enlarged, i.e., by defining larger time windows.
However, testing this would go beyond the scope of this paper.

6 Conclusions

An improved version of the “General Lot-sizing and Scheduling Problem for Multiple
production Stages” (GLSPMS), a model for simultaneous multi-item, multi-level lot-
sizing and scheduling, is presented. In this model deterministic, dynamic demand has
to be met without backlogging. Sequence dependent setup times may further reduce
the limited capacity of heterogeneous, parallel production lines per stage. The objec-
tive is to minimize the sum of production costs, sequence-dependent setup costs, and
holding costs as well as costs for external purchase, overtime, and standby.

The main idea of this model is to use a common time grid for all production lines
of the different stages, which is based on rather short (micro-) periods, whose starting
times are decision variables. This enables us to model realistically short lead times
between the different stages without generating an unnecessarily high number of peri-
ods.

Different reformulations of this model, which aim at improving its computational
performance without destroying its basic structure, have been tested using a standard
MIP solver. These reformulations, which had already proven to be successful for other
types of lot-sizing problems, needed to be adapted for the problem on hand. As shown
in Sect. 5.2.2, the “simple plant location” based reformulation appears to perform
slightly better for instances with a divergent product structure, whereas a flow formu-
lation shows advantages for all other instances. Furthermore, the usage of a subset of
the (l,S) valid inequalities as well as tightened setup forcing constraints are always
recommendable. Nevertheless, even for instances of moderate size the percentage of
unfinished problems (that cannot be solved to optimality within a reasonable amount
of time) as well as the corresponding duality gaps are quite high.

Thus, standard MIP solvers do not appear to be promising for solving this problem
satisfactorily. For this reason, some first solution heuristics have been designed and
tested as well. Here Truncated-MIP performed best in terms of solution quality as
compared to LP-and-Fix and Relax-and-Fix. However, it has to be kept in mind that
only problem instances of moderate size have been considered. Real-world problems
are of larger size and thus enforce more powerful, scalable solution approaches to
be developed. Then especially the runtime performance of a Relax-and-Fix approach
might be advantageous.

All in all, the presented results promise to show further value in the future. For
example, the best-performing TM and Relax-and-Fix variants can be used to con-
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struct initial solutions, which might be improved in a second step by meta-heuristics
like local search and evolutionary algorithms. Alternatively, other math-programming-
based heuristics might be developed, which take advantage of the reformulations and
valid inequalities tested. Such more sophisticated solution approaches should be a
topic of future research.
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Appendix A: Objective function of the SPL formulation

To apply the SPL approach (Krarup and Bilde 1997) for multiple production stages,
Stadtler (1996) uses echelon stocks. This means that for each item j the system-wide
stock level is determined considering the stocks on hand as well as the stocks already
built in direct or indirect successor products. Since the echelon stocks do not indi-
cate on which production stage the regarded item is located, marginal holding costs
hm

js have to be introduced. They describe the delta of the holding costs h js to the
summed holding costs of the already processed pre-items (see e.g. Stadtler 1996 for
a formal definition). For each echelon these marginal holding costs must be added to
the total costs. In addition to the notation used before, the following indices and data
are necessary:

Indices
ρ, u = 1, . . . , T macroperiods

Index set
St set of all microperiods belonging to macroperiod t

Data
hm

js marginal holding costs of product j in microperiod s

Min
∑

j

T −1
∑

t=1

T
∑

u=t+1

u−1
∑

ρ=t

hm
j, fρ+1−1

∑

s∈St

∑

v∈Su

dn
jv

∑

l

ql jsv

+
∑

j

∑

s∈�

h js · max

{

0, I j0 −
s

∑

v=1

d jv

}

+
∑

j

T −1
∑

t=1

T
∑

u=t+1

u−1
∑

ρ=t

h j, fρ+1−1

∑

s∈St

∑

v∈Su

dn
jvqext

jsv

+
∑

l,i, j,s

sli j zli js +
∑

l, j,s

S
∑

v=s

cl j d
n
jvql jsv +

∑

l,s

bl(xb
ls + xe

ls)

+
∑

j,s

S
∑

v=s

e j d
n
jvqext

jsv +
∑

s

g · rs (33)
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In the first two rows the inventory holding and WIP stock costs are calculated.
Therefore, we differentiate three different kinds of “inflow” to the stock. The first
term refers to the production quantities which are determined by multiplying the pro-
duction ratios by the net demand. Here, the WIP costs are directly included, since the
total shares ql jsv are considered. Since items which are on stock from macroperiod
t to u incur (marginal) holding costs in macroperiods t, . . . , u − 1, the sum over all
these macroperiods has to be taken.

The second term is necessary, because for the starting inventories the full holding
costs have to be charged as long as they are available. And finally, there might be items
in the stock which are externally purchased. These may also incur holding costs.

The other terms on the third line of the objective function (33)—setup, production,
and standby costs as well as costs for purchasing and overtime—are analogous to the
original objective (1), but use the demand fractions introduced in Sect. 4.1.

Appendix B: Description of base scenarios

See Tables 7, 8 and 9.

Table 7 Data of serial base scenario (SER)

(a) Number of lines, products, macroperiods, microperiods as well as set of all last
microperiods and all fixed microperiods with their respective starting times
L 4

J 6

T 4

S 12 (3 micros per macro)

� {3,6,9,12}

� {1,4,7,10,13}

ws {0,–,–,80,–,–,160,–,–,240,–,–,320}

(b) Initial and maximum inventory, holding and purchasing costs as well as maximum
purchase and sets of immediate and all successors

I j0 I max
j h js (s ∈ �) e j emax

j N I
j N j

j = 1 0.0 15.0 8.0 100.0 100.0 ∅ ∅
j = 2 0.0 10.0 8.0 100.0 100.0 ∅ ∅
j = 3 0.0 10.0 2.0 0.0 0.0 {1} {1}

j = 4 0.0 10.0 2.0 0.0 0.0 {2} {2}

j = 5 0.0 100.0 1.0 4.0 100.0 {3} {1,3}

j = 6 0.0 100.0 1.0 4.0 100.0 {4} {2,4}

(c) Index sets for line synchronization constraints

D {(3,5,2,3), (3,6,2,4), (4,5,2,3), (4,6,2,4), (2,3,1,1), (2,4,1,2)}
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Table 7 continued

(d) Overtime costs and maximum overtime

gmax 80

g 200
(e) Production coefficients

al j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 3.0 3.0 – – – –

l = 2 – – 1.0 1.0 – –

l = 3, 4 – – – – 4.0 3.0

(f) First microperiod and set of microperiods belonging to a macroperiod

ft St

t = 1 1 {1,2,3}

t = 2 4 {4,5,6}

t = 3 7 {7,8,9}

t = 4 10 {10,11,12}

(g) Demand

d js s = 3 s = 6 s = 9 s = 12

j = 1 3.0 5.0 5.0 5.0

j = 2 2.0 4.0 6.0 8.0

(h) Maximum WIP

WIPmax
l j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 100.0 100.0 – – – –

l = 2 – – 10.0 10.0 – –

l = 3, 4 – – – – 0.0 0.0

(i) Setup costs and times

sli j /stli j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 i = 1 0.0 6.0 – – – –

i = 2 8.0 0.0 – – – –

l = 2 i = 3 – – 0.0 2.0 – –

i = 4 – – 12.0 0.0 – –

l = 3, 4 i = 5 – – – – 0.0 8.0

i = 6 – – – – 8.0 0.0

(j) Production costs

cl j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 1.0 1.0 – – – –
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Table 7 continued

l = 2 – – 1.0 1.0 – –

l = 3 – – – – 1.0 1.0

l = 4 – – – – 2.0 2.0

(k) Minimum lot-sizes

ml j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 1.0 1.0 – – – –

l = 2 – – 10.0 10.0 – –

l = 3, 4 – – – – 1.0 1.0

(l) Initial setup

yl j0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 1 0 – – – –

l = 2 – – 1 0 – –

l = 3 – – – – 1 0

l = 4 – – – – 0 1

(m) Bill of materials

pi j j = 1 j = 2 j = 3 j = 4

i = 3 6.0 – –

i = 4 – 6.0 –

i = 5 (6.0) – 1.0 –

i = 6 – (6.0) – 1.0

(n) Allowed products and microperiods as well as standby costs

Il �l bl

l = 1 {1,2} ∅ 0.0

l = 2 {3,4} ∅ 0.0

l = 3, 4 {5,6} ∅ 0.0

Table 8 Data of divergent base scenario (DIV)

(a) Number of lines, products, macroperiods, microperiods as well as set of all last microperiods and all
fixed microperiods with their respective starting times
L 3

J 6

T 3

S 12 (4 micros per macro)

� {4,8,12}

� {1,5,9,13}
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Table 8 continued

ws {0,–,–,–,80,–,–,–,160,–,–,–,240}

(b) Initial and maximum inventory, holding and purchasing costs as well as maximum purchase and sets
of immediate and all successors

I j0 I max
j h js (s ∈ �) e j emax

j N I
j N j

j = 1 0.0 100.0 3.0 100.0 100.0 ∅ ∅
j = 2 0.0 100.0 3.0 100.0 100.0 ∅ ∅
j = 3 0.0 100.0 3.0 100.0 100.0 ∅ ∅
j = 4 0.0 100.0 3.0 100.0 100.0 ∅ ∅
j = 5 0.0 0.0 – 100.0 100.0 {1,2} {1,2}

j = 6 0.0 0.0 – 100.0 100.0 {3,4} {3,4}

(c) Index sets for line synchronization constraints

D {(3,5,1,1), (3,5,1,2), (3,5,2,2), (3,6,1,3), (3,6,1,4), (3,6,2,4)}

(d) Overtime costs and maximum overtime

g 200

gmax 80

(e) Production coefficients

al j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 3.0 4.0 3.0 4.0 – –

l = 2 – 8.0 – 8.0 – –

l = 3 – – – – 4.0 2.0

(f) First microperiod and set of microperiods belonging to a macroperiod

ft St

t = 1 1 {1,2,3,4}

t = 2 5 {5,6,7,8}

t = 3 9 {9,10,11,12}

(g) Demand

d js s = 4 s = 8 s = 12

j = 1 0.0 6.0 6.0

j = 2 0.0 6.0 6.0

j = 3 2.0 6.0 6.0

j = 4 3.0 6.0 6.0

(h) Maximum WIP

WIPmax
l j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 100.0 100.0 100.0 100.0 – –

l = 2 – 100.0 – 100.0 – –

l = 3 – – – – 0.0 0.0
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Table 8 continued

(i) Setup costs and times

sli j /stli j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 i = 1 0.0 1.0 1.0 2.0 – –

i = 2 2.0 0.0 3.0 1.0 – –

i = 3 3.0 4.0 0.0 1.0 – –

i = 4 5.0 3.0 2.0 0.0 – –

l = 2 i = 2 – 0.0 – 2.0 – –

i = 4 – 4.0 – 0.0 – –

l = 3 i = 5 – – – – 0.0 2.0

i = 6 – – – – 6.0 0.0

(j) Production costs

cl j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 1.0 1.0 1.0 1.0 – –

l = 2 – 2.0 – 2.0 – –

l = 3 – – – – 1.0 1.0

(k) Minimum lot-sizes

ml j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 1.0 1.0 1.0 1.0 – –

l = 2 – 1.0 – 1.0 – –

l = 3 – – – – 1.0 1.0

(l) Initial setup

yl j0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

l = 1 1 0 0 0 – –

l = 2 – 1 – 0 – –

l = 3 – – – – 0 1

(m) Bill of materials

pi j j = 1 j = 2 j = 3 j = 4

i = 5 2.0 1.0 – –

i = 6 – – 2.0 1.0

(n) Allowed products and microperiods as well as standby costs

Il �l bl

l = 1 {1,2,3,4} ∅ 0.0

l = 2 {2,4} ∅ 0.0

l = 3 {5,6} ∅ 0.0
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Table 9 Data of base scenario with general product structure (GEN)

(a) Number of lines, products, macroperiods, microperiods as well as set of all last microperiods and all
fixed microperiods with their respective starting times
L 3

J 8

T 3

S 12 (4 micros per macro)

� {4,8,12}

� {1,5,9,13}

ws {0,–,–,–,80,–,–,–,160,–,–,–,240}

(b) Initial and maximum inventory, holding and purchasing costs as well as maximum purchase and sets
of immediate and all successors

I j0 I max
j h js (s ∈ �) e j emax

j N I
j N j

j = 1 0.0 100.0 8.0 200.0 100.0 ∅ ∅
j = 2 0.0 100.0 8.0 200.0 100.0 ∅ ∅
j = 3 0.0 100.0 7.0 200.0 100.0 ∅ ∅
j = 4 0.0 100.0 12.0 200.0 100.0 ∅ ∅
j = 5 0.0 100.0 1.0 200.0 100.0 {1,2} {1,2}

j = 6 0.0 0.0 – 200.0 100.0 {1,3} {1,3}

j = 7 0.0 0.0 – 200.0 100.0 {2,4} {2,4}

j = 8 0.0 100.0 2.0 200.0 100.0 {3,4} {3,4}

(c) Index sets for line synchronization constraints

D {(2,6,1,1), (2,6,1,3), (2,7,1,2), (2,7,1,4), (3,5,1,1), (3,5,1,2), (3,8,1,3), (3,8,1,4)}

(d) Overtime costs and maximum overtime

g 0

gmax 0

(e) Production coefficients

al j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

l = 1 1.0 6.0 6.0 3.0 3.0 – – – –

l = 2 1.0 – – – – – 6.0 6.0 –

l = 3 1.0 – – – – 8.0 – – 2.0

(f) First microperiod and set of microperiods belonging to a macroperiod

ft St

t = 1 1 {1,2,3,4}

t = 2 5 {5,6,7,8}

t = 3 9 {9,10,11,12}
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Table 9 continued

(g) Demand

d js s = 4 s = 8 s = 12

j = 1 0.0 0.0 7.0

j = 2 0.0 5.0 5.0

j = 3 0.0 5.0 6.0

j = 4 0.0 4.0 5.0

(h) Maximum WIP

WIPmax
l j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

l = 1 200.0 200.0 200.0 200.0 – – – –

l = 2 – – – – – 200.0 200.0 –

l = 3 – – – – 200.0 0.0 0.0 200.0

(i) Setup costs and times

sli j /stli j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

l = 1 i = 0 0.0 999.0 999.0 999.0 999.0 – – – –

i = 1 999.0 0.0 4.0 8.0 8.0 – – – –

i = 2 999.0 4.0 0.0 8.0 8.0 – – – –

i = 3 999.0 6.0 6.0 0.0 4.0 – – – –

i = 4 999.0 6.0 6.0 4.0 0.0 – – – –

l = 2 i = 0 0.0 – – – – – 999.0 999.0 –

i = 6 999.0 – – – – – 0.0 4.0 –

i = 7 999.0 – – – – – 4.0 0.0 –

l = 3 i = 0 0.0 – – – – 12.0 – – 12.0

i = 5 0.0 – – – – 0.0 – – 8.0

i = 8 0.0 – – – – 6.0 – – 0.0

(j) Production costs

cl j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

l = 1 1.0 1.0 1.0 1.0 1.0 – – – –

l = 2 1.0 – – – – – 1.0 1.0 –

l = 3 1.0 – – – – 1.0 – – 1.0

(k) Minimum lot-sizes

ml j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

l = 1 1.0 1.0 1.0 1.0 1.0 – – – –

l = 2 1.0 – – – – – 1.0 1.0 –

l = 3 1.0 – – – – 1.0 – – 1.0
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Table 9 continued

(l) Initial setup

yl j0 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

l = 1 0 1 0 0 0 – – – –

l = 2 0 – – – – – 1 0 –

l = 3 0 – – – – 1 – – 0

(m) Bill of materials

pi j j = 1 j = 2 j = 3 j = 4

i = 5 1.0 1.0 – –

i = 6 1.0 – 0.5 –

i = 7 – 1.0 – 0.5

i = 8 – – 1.0 1.0

(n) Allowed products and microperiods as well as standby costs

Il �l bl

l = 1 {0,1,2,3,4} ∅ 0.0

l = 2 {0,6,7} ∅ 0.0

l = 3 {0,5,8} ∅ 1.0
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